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The present paper proposes a new Strain Energy Function (SEF) for modeling incompressible orthotropic hy-
perelastic materials with a specific application to the mechanical response of passive ventricular myocardium.
In order to build our SEF, we have followed a classical strategy based on exponential functions, but we have
chosen to work with polyconvex invariants instead of the standard ones. Actually, in the context of hyperelastic
problems, the polyconvexity of the strain energy density is considered as a prerequisite for ensuring the
existence of solutions. By selecting a set of polyconvex invariants, we demonstrate that our model can predict
the experimental data with 6 different shear modes applied to passive ventricular myocardium.

1. Introduction

Understanding the behavior of anisotropic hyperelastic materials
is of major importance for scientists because their modeling has a
wide range of applications in engineering biosciences such as in health
therapeutic, medical prosthesis, ergonomics or virtual surgery. The
mechanical study of the shear deformation of myocardial layers is for
example useful because these deformations are considered to play an
important role in the mechanical behavior of the heart [1].

These past ten years, many works have been performed to inves-
tigate the structurally based model originally proposed by Holzapfel
and Ogden in [2] in relation to the tests carried out in [1] where the
orthotropic nature of the ventricular myocardium has been proven.
Erikson et al. [3] have for example improved this model with structure
parameters allowing the quantification of the degree of dispersion
based on measured fiber and sheet angle data. Melnik et al. [4] have
modified the hyperelastic Holzapfel–Ogden model by using Generalized
Structure Tensors (GSTs) in order to account for fiber dispersion in
every term of the strain–energy function. McEvoy et al. [5] have
studied the effect of compressibility by combining a nonlinear volu-
metric hyperelastic component with the Holzapfel–Ogden anisotropic
hyperelastic component for myocardium fibers. Palit et al. [6] have
implemented the Holzapfel–Ogden constitutive law in the MSCMarc
finite element software in order to inversely estimate the constitutive
parameters of the model. Very recently, Li et al. [7] have extended the
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Holzapfel–Ogden model by accounting for the mixed-invariants in the
fiber-normal and sheet-normal directions.

All these models, like in most of the papers published in the lit-
erature, separate the SEF into an isotropic part and an anisotropic
part. The first part is used to model the low strain behavior of the
ground matrix and the second part accounts for the behavior of the
fibers at higher strain. A first alternative to this standard approach is to
introduce free-invariants SEF [8]. Another alternative consists in using
an integrity basis of invariants as proposed in [9] and mixing them in a
single SEF [10]. This second alternative, mathematically justified by the
theory of invariant polynomials and by Noether’s theorem, is inspired
by the pioneering work of Thionnet et al. [11]. One advantage of this
second alternative is to work with polyconvex invariants, the polycon-
vexity of the strain energy density being considered as a prerequisite
for ensuring the existence of solutions in compatibility with physical
requirements [12]. A wide survey with many proofs on polyconvexity
of isotropic and transversely isotropic functions can be viewed in [13].

The present paper proposes a new SEF for modeling incompressible
orthotropic hyperelastic materials with a specific application to the
mechanical response of passive ventricular myocardium. In order to
build our SEF, we have followed a strategy based on exponential
functions, as proposed by Holzapfel et al. [2], but we have selected
polyconvex invariants instead of the standard ones generally used in the
literature [2–7]. Working with the set of polyconvex invariants exhib-
ited in [10] allows to replace the classical mixed invariant 𝐼8, which is
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non polyconvex (the proof is in Section 4), by the polyconvex invariant
𝐿4 defined by Eq. (10). This replacement provides consistent numerical
results with [2] and our model can perfectly match the experimental
data obtained by Dokos et al. [1] with 6 different shear modes applied
to passive ventricular myocardium. In addition, sufficient conditions
ensuring the convexity of the SEF are given in Section 7. Finally, our
model can represent stretch effect in the 3 specific directions of passive
ventricular myocardium, the myocyte axis direction, the direction lying
within the muscle layer and transverse to the myocyte axis, and the
direction normal to the muscle layer.

Notations

A bold-face Latin lowercase letter, say a, and a bold-face Latin
capital letter, say A, will denote a vector and second-order tensor,
respectively. The standard Euclidean inner product ⟨., .⟩ in a n vector
space dimension, its related norm ‖.‖, and the product .⊗. between two
vectors a and b, are respectively defined by:

⟨𝑨𝒂,𝒂⟩ =
𝑛∑
𝑖=1

𝐴𝑖𝑗𝑎𝑗𝑎𝑖; ‖𝒂‖ =

√√√√ 𝑛∑
𝑖=1

(
𝑎𝑖
)2
; (𝒂⊗ 𝒃)𝑖𝑗 = 𝑎𝑖𝑏𝑗

2. Kinematics and basic continuum mechanics

Consider a continuum body V with particle P ∈ V which is em-
bedded in the three-dimensional Euclidean space at a given instant t
of time. As the continuum body V moves in space from one instant
of time to another it occupies a continuous sequence of geometrical
regions denoted by 𝛺0 …𝛺𝑖. 𝛺0 is referred to as the fixed reference
(undeformed or Lagrangian) configuration (𝑡 = 0) of the body V
while the configuration t is called the current (deformed or Eulerian)
configuration. The position 𝒙 of particle P in the current (or deformed)
configuration can be deduced by the motion 𝜑 that depends on its
initial position vector 𝑿 and the time 𝑡:

𝒙 = 𝜑(𝑿, 𝑡) (1)

The deformation gradient matrix 𝑭 is defined by:

𝑭 =
𝜕𝒙

𝜕𝑿
= 𝑰 +

𝜕𝑼 (𝑿, 𝑡)

𝜕𝑿
(2)

𝑰 is the unity tensor and 𝑼 (𝑿, 𝑡) = 𝒙 − 𝑿 is the displacement vector
of the particle. The tensors 𝑪 and B are the so-called right and left
Cauchy–Green strain tensors:

𝑪 = 𝑭 𝑇𝑭 ; 𝑩 = 𝑭𝑭 𝑇 (3)

In terms of stress tensor, we remind that the second Piola–Kirchhoff
stress tensor 𝑺 and the corresponding Cauchy stress tensor 𝝈 are
obtained by differentiating a SEF W with respect to C:

𝑺 = 2
𝜕𝑊

𝜕𝑪
− 𝑝𝑪−1; 𝝈 = 𝐽−1𝑭𝑺𝑭 𝑇 (4)

where the extra pressure 𝑝 is included in the formulation to account
for the incompressibility condition 𝐽 = det (𝑭 ) = 1. Combining the two
equalities of Eq. (4) yields to:

𝝈 = 2𝐽−1𝑭
𝜕𝑊

𝜕𝑪
𝑭 𝑇 − 𝑝𝑰 (5)

Note that, in the following, the time 𝑡 will be omitted because we are
only interested in static problems.

3. Integrity basis of polyconvex invariants for modeling
orthotropic materials

The mechanical response of passive ventricular myocardium to
simple shear loading is sensitive to the shear mode as described in [1].
In this context, the fiber direction 𝒇𝟎, the direction 𝒔𝟎 transverse to the
fiber direction in plane of sheets, and the normal 𝒏𝟎 to sheets play a key
role to define the material symmetry group (Fig. 1). In particular, the
3 planes perpendicular to the three directions 𝒇𝟎, 𝒔𝟎 and 𝒏𝟎 are planes

of symmetry for the material. The material properties remain therefore
invariant under the action of 3 reflections 𝑹

(
𝒇 𝟎

)
, 𝑹

(
𝒔𝟎
)
and 𝑹

(
𝒏𝟎
)

related to these 3 planes; 3 rotations 𝑸𝝅

(
𝒇 𝟎

)
, 𝑸𝝅

(
𝒔𝟎
)
and 𝑸𝝅

(
𝒏𝟎
)
by

an angle 𝜋 around 𝒇𝟎, 𝒔𝟎 and 𝒏𝟎, and under 𝑰 and −𝑰 :

𝑹
(
𝒇 𝟎

)
= 𝑰 − 2𝒇 𝟎 ⊗ 𝒇 𝟎 = −𝑸𝝅

(
𝒇 𝟎

)
;𝑹

(
𝒔𝟎
)
= 𝑰 − 2𝒔𝟎 ⊗ 𝒔𝟎 = −𝑸𝝅

(
𝒔𝟎
)

(6)

𝑹
(
𝒏𝟎
)
= 𝑰 − 2𝒏𝟎 ⊗ 𝒏𝟎 = −𝑸𝝅

(
𝒏𝟎
)

(7)

The set 𝑆8 =
{
𝑹
(
𝒇 𝟎

)
,𝑹

(
𝒔𝟎
)
,𝑹

(
𝒏𝟎
)
,𝑸𝝅

(
𝒇 𝟎

)
,𝑸𝝅

(
𝒔𝟎
)
,𝑸𝝅

(
𝒏𝟎
)
,

𝑰 ,−𝑰} built with the 8 invariant matrix operators defined by Eqs. (6)–
(7) is stable under multiplication, contains the neutral element I and
each element has an inverse in 𝑆8. This confers a group structure to 𝑆8.
Using a mathematical argument based on the Reynolds operator and on
the Noether’s theorem, Ta et al. [9] have presented a systematic method
to find a set of invariants associated with 𝑆8 and demonstrated that the
following 7 polynomial invariants 𝐾𝑖 form an integrity basis of the ring
of invariant polynomials under the material symmetry group 𝑆8:

𝐾1 = 𝜌1; 𝐾2 = 𝜌2; 𝐾3 = 𝜌3; 𝐾4 = 𝜌2
4
; 𝐾5 = 𝜌2

5
; 𝐾6 = 𝜌2

6
; 𝐾7 = 𝜌4𝜌5𝜌6

(8){
𝜌1 = ⟨𝑪𝒇 𝟎,𝒇 𝟎⟩ ; 𝜌2 = ⟨𝑪𝒔𝟎, 𝒔𝟎⟩ ; 𝜌3 = ⟨𝑪𝒏𝟎,𝒏𝟎⟩
𝜌4 = ⟨𝑪𝒇 𝟎, 𝒔𝟎⟩ ; 𝜌5 = ⟨𝑪𝒇 𝟎,𝒏𝟎⟩ ; 𝜌6 = ⟨𝑪𝒔𝟎,𝒏𝟎⟩

(9)

Later, Cai et al. [10] combined the invariants 𝐾𝑖 in order to build an
integrity basis of 7 polyconvex invariants 𝐿𝑖:

⎧
⎪⎪⎨⎪⎪⎩

𝐿1 = 𝐾1; 𝐿2 = 𝐾2; 𝐿3 = 𝐾3; 𝐿4 =
(
𝐾1 +𝐾2

)2
+ 4𝐾4;

𝐿5 =
(
𝐾1 +𝐾3

)2
+ 4𝐾5

𝐿6 =
(
𝐾2 +𝐾3

)2
+ 4𝐾6;

𝐿7 = 𝐾7 +
1

2

(
𝐾1𝐾2𝐾3 −𝐾1𝐾6 −𝐾2𝐾5 −𝐾3𝐾4

)
(10)

It is also demonstrated in [10] that 𝐿7 contributes in Eq. (5) under the
form of a redundant term with the extra pressure p. 𝐿7 can therefore be
removed from the set of invariants. Consequently, in order to benefit
from the property of polyconvexity, we assume that the SEFW depends
on the six first polyconvex invariants 𝐿𝑖. Therefore, Eq. (5) yields to:

𝝈 = 2𝐽−1𝑭

(
6∑
𝑖=1

𝜕𝑊

𝜕𝐿𝑖

𝜕𝐿𝑖

𝜕𝑪

)
𝑭 𝑇 − 𝑝𝑰 (11)

The derivatives 𝜕𝐿𝑖

𝜕𝑪
embedded in Eq. (11) are calculated straightfor-

wardly from Eqs. (8)–(10):

𝜕𝐿1

𝜕𝑪
= 𝒇 𝟎 ⊗ 𝒇 𝟎;

𝜕𝐿2

𝜕𝑪
= 𝒔𝟎 ⊗ 𝒔𝟎;

𝜕𝐿3

𝜕𝑪
= 𝒏𝟎 ⊗ 𝒏𝟎 (12)

𝜕𝐿4

𝜕𝑪
= 2

{(
𝐿1 + 𝐿2

) (
𝒇 𝟎 ⊗ 𝒇 𝟎 + 𝒔𝟎 ⊗ 𝒔𝟎

)

+

√
𝐿4 −

(
𝐿1 + 𝐿2

)2 (
𝒇 𝟎 ⊗ 𝒔𝟎 + 𝒔𝟎 ⊗ 𝒇 𝟎

)}
(13)

𝜕𝐿5

𝜕𝑪
= 2

{(
𝐿1 + 𝐿3

) (
𝒇 𝟎 ⊗ 𝒇 𝟎 + 𝒏𝟎 ⊗ 𝒏𝟎

)

+

√
𝐿5 −

(
𝐿1 + 𝐿3

)2 (
𝒇 𝟎 ⊗ 𝒏𝟎 + 𝒏𝟎 ⊗ 𝒇 𝟎

)}
(14)

𝜕𝐿6

𝜕𝑪
= 2

{(
𝐿2 + 𝐿3

) (
𝒔𝟎 ⊗ 𝒔𝟎 + 𝒏𝟎 ⊗ 𝒏𝟎

)

+

√
𝐿6 −

(
𝐿2 + 𝐿3

)2 (
𝒔𝟎 ⊗ 𝒏𝟎 + 𝒏𝟎 ⊗ 𝒔𝟎

)}
(15)

In order to calculate the derivatives 𝜕𝑊

𝜕𝐿𝑖
also included in Eq. (11), it is

necessary to define how the SEF W depends on the invariants 𝐿i. This
issue is discussed in the next section.

4. Strain energy function

Dokos et al. [1] have demonstrated that passive ventricular my-
ocardium behaves differently depending on the plane of shear. The
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Fig. 1. 6 possible modes of simple shear test in different planes.

6 different modes of shear are shown in Fig. 1 where the myocyte
axis representing the fiber direction is depicted with green full lines.
Building a consistent model thus requires accounting for the myocyte
axis direction 𝒇𝟎, the direction 𝒔𝟎 lying within the muscle layer and
transverse to 𝒇𝟎, and the direction 𝒏𝟎 normal to the muscle layer.

Due to the exponential trends of the stress observed experimentally,
Holzapfel et al. [2] have proposed a SEF made of exponential functions:

𝑊 =
𝑎

2𝑏
𝑒𝑥𝑝

[
𝑏
(
𝐼1 − 3

)]
+

∑
𝑖=𝑓,𝑠

𝑎𝑖

2𝑏𝑖

{
𝑒𝑥𝑝

[
𝑏𝑖
(
𝐼4𝑖 − 1

)2]
− 1

}

+
𝑎𝑓𝑠

2𝑏𝑓𝑠

{
𝑒𝑥𝑝

[
𝑏𝑓𝑠𝐼8𝑓𝑠

2
]
− 1

}
(16)

where a, b, 𝑎𝑓 , 𝑎𝑠, 𝑏𝑓 , 𝑏𝑠, 𝑎𝑓𝑠 and 𝑏𝑓𝑠 are 8 positive material constants,
𝐼1 is the first principal invariant of C, and 𝐼4f , 𝐼4s and 𝐼8fs are the
classical mixed invariants combining C with 𝒇𝟎 and 𝒔𝟎:

𝐼1 = 𝑇 𝑟 (𝑪) ; 𝐼4𝑓 = ⟨𝑪𝒇 𝟎,𝒇 𝟎⟩ ; 𝐼4𝑠 = ⟨𝑪𝒔𝟎, 𝒔𝟎⟩ ; 𝐼8𝑓𝑠 = ⟨𝑪𝒇 𝟎, 𝒔𝟎⟩ (17)

It is easy to check that the standard invariants (17) are connected to
the polyconvex invariants 𝐿𝑖 introduced by Eqs. (8)–(10) by:

𝐼1 = 𝐿1 +𝐿2 +𝐿3; 𝐼4𝑓 = 𝐿1; 𝐼4𝑠 = 𝐿2; 𝐼8𝑓𝑠 =
1

2

√
𝐿4 −

(
𝐿1 + 𝐿2

)2
(18)

And conversely:

𝐿1 = 𝐼4𝑓 ; 𝐿2 = 𝐼4𝑠; 𝐿3 = 𝐼1 − 𝐼4𝑓 − 𝐼4𝑠; 𝐿4 = 4𝐼8𝑓𝑠
2 +

(
𝐼4𝑓 + 𝐼4𝑠

)2
(19)

However, it should be also noted that, if the classical invariants 𝐼1, 𝐼4f
and 𝐼4s are polyconvex, as convex functions of 𝑭 , it is not the case for
𝐼8fs. Actually, from Eq. (17), the second derivative of 𝐼8fs with respect
to 𝑭 is:

𝑑2𝐼8𝑓𝑠

𝑑𝑭 2
(𝑭 ) (𝒅𝑭 ) (𝒅𝑮) = ⟨𝒅𝑭𝒇 𝟎,𝒅𝑮𝒔𝟎⟩ + ⟨𝒅𝑭𝒔𝟎,𝒅𝑮𝒇 𝟎⟩ (20)

⇒

𝑑2𝐼8𝑓𝑠

𝑑𝑭 2
(𝑭 ) (𝒅𝑭 ) (𝒅𝑭 ) = 2 ⟨𝒅𝑭𝒇 𝟎,𝒅𝑭𝒔𝟎⟩ (21)

In order to demonstrate that 𝐼8fs is non polyconvex, we just have to find
a counterexample with a matrix 𝒅𝑭 giving a negative value in Eq. (21).
We choose this 𝒅𝑭 as follows:

𝒅𝑭 = −𝒇 𝟎 ⊗ 𝒇 𝟎 + 𝒇 𝟎 ⊗ 𝒔𝟎 + 𝒔𝟎 ⊗ 𝒇 𝟎 (22)

One reports Eq. (22) in the inner product of Eq. (21):

⟨𝒅𝑭𝒇 𝟎,𝒅𝑭𝒔𝟎⟩ = ⟨−𝒇 𝟎 + 𝒔𝟎,𝒇 𝟎⟩ = ⟨−𝒇 𝟎,𝒇 𝟎⟩ = −1 < 0 (23)

The proof of the non-polyconvexity of the classical mixed invariant
𝐼8fs is complete. Besides, it is underlined in [2] that 𝐼8fs generally
has a destabilizing influence. It turns out that if polyconvexity is a
prerequisite for building SEF in order to ensure existence of solutions,
it would be better to choose the set of invariants defined by Eqs. (8)–
(10) rather than the ones defined by Eq. (17). In order to make further
comparison between the model introduced in [2] and our model, it is
useful at this stage to remind the Cauchy stress calculated in [2]:

𝝈 = 𝑎 𝑒𝑥𝑝
[
𝑏
(
𝐼1 − 3

)]
𝑩 − 𝑝𝑰 + 2𝑎𝑓

(
𝐼4𝑓 − 1

)
𝑒𝑥𝑝

[
𝑏𝑓

(
𝐼4𝑓 − 1

)2]
𝒇 ⊗ 𝒇

+ 2𝑎𝑠
(
𝐼4𝑠 − 1

)
𝑒𝑥𝑝

[
𝑏𝑠

(
𝐼4𝑠 − 1

)2]
𝒔⊗ 𝒔

+ 𝑎𝑓𝑠𝐼8𝑓𝑠𝑒𝑥𝑝
[
𝑏𝑓𝑠𝐼8𝑓𝑠

2
]
(𝒇 ⊗ 𝒔 + 𝒔⊗ 𝒇 ) (24)

where 𝒇 and 𝒔 represent the deformed directions, respectively for the
fiber and for the direction transverse to the fiber direction in plane of
sheets:

𝒇 = 𝑭𝒇 𝟎; 𝒔 = 𝑭𝒔𝟎; 𝒏 = 𝑭𝒏𝟎 (25)

To build our model, we proceed at the beginning in the same manner
as in [2], by expressing the SEF in the form of exponential functions
such as in Eq. (16). However, instead of using the classical invariants
introduced by Eq. (17), we select the set of polyconvex invariants
defined by Eqs. (8)–(10):

𝑊 =

3∑
𝑖=1

𝛼𝑖

2𝛽𝑖

{
𝑒𝑥𝑝

[
𝛽𝑖
(
𝐿𝑖 − 1

)2]
− 1

}
+

𝛼4

2𝛽4

{
𝑒𝑥𝑝

[
𝛽4

(
𝐿4 − 4

)2]
− 1

}

(26)

The 8 coefficients 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛽1, 𝛽2, 𝛽3 and 𝛽4 are the material parame-
ters of our model, the 𝛼𝑖 parameters having the unit of stress while the
parameters 𝛽𝑖 are dimensionless. Note that we have omitted in Eq. (26)
the dependence of W with respect to the invariants 𝐿5 and 𝐿6 in order
to keep the same number of invariants as in the model proposed in [2].
It is also remarked that the SEF defined by Eq. (26) is null if the material
is at rest. Actually, if the displacement is equal to zero, it comes from
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Eqs. (2)–(3) that both tensors F and C are equal to the identity matrix
I . Therefore, it follows from Eqs. (8)–(10) that: 𝐿1 = 𝐿2 = 𝐿3 = 1;
𝐿4 = 4. Consequently, 𝑊 = 0. We now calculate the Cauchy stress
corresponding to our model by reporting Eqs. (12)–(15) in Eq. (11) and
by assuming the incompressible nature of the material (𝐽 = 1):

𝝈 = 2𝑭

{[
𝜕𝑊

𝜕𝐿1

+ 2
𝜕𝑊

𝜕𝐿4

(
𝐿1 + 𝐿2

)]
𝒇 𝟎 ⊗ 𝒇 𝟎

+

[
𝜕𝑊

𝜕𝐿2

+ 2
𝜕𝑊

𝜕𝐿4

(
𝐿1 + 𝐿2

)]
𝒔𝟎 ⊗ 𝒔𝟎 +

𝜕𝑊

𝜕𝐿3

𝒏𝟎 ⊗ 𝒏𝟎

+2
𝜕𝑊

𝜕𝐿4

√
𝐿4 −

(
𝐿1 + 𝐿2

)2 (
𝒇 𝟎 ⊗ 𝒔𝟎 + 𝒔𝟎 ⊗ 𝒇 𝟎

)}
𝑭 𝑇 − 𝑝𝑰 (27)

We next report the well-known property 𝒏𝟎⊗𝒏𝟎 = 𝑰 −𝒇 𝟎⊗𝒇 𝟎 − 𝒔𝟎⊗ 𝒔𝟎
in Eq. (27) and we use Eq. (25):

𝝈 = 2
𝜕𝑊

𝜕𝐿3

𝑩 − 𝑝𝑰 + 2

[
𝜕𝑊

𝜕𝐿1

−
𝜕𝑊

𝜕𝐿3

+ 2
𝜕𝑊

𝜕𝐿4

(
𝐿1 + 𝐿2

)]
𝒇 ⊗ 𝒇

+ 2

[
𝜕𝑊

𝜕𝐿2

−
𝜕𝑊

𝜕𝐿3

+ 2
𝜕𝑊

𝜕𝐿4

(
𝐿1 + 𝐿2

)]
𝒔⊗ 𝒔

+ 4
𝜕𝑊

𝜕𝐿4

√
𝐿4 −

(
𝐿1 + 𝐿2

)2
(𝒇 ⊗ 𝒔 + 𝒔⊗ 𝒇 ) (28)

We finally calculate the derivatives 𝜕𝑊

𝜕𝐿𝑖
from Eq. (26):

𝜕𝑊

𝜕𝐿𝑖

= 𝛼𝑖
(
𝐿𝑖 − 1

)
𝑒𝑥𝑝

[
𝛽𝑖
(
𝐿𝑖 − 1

)2]
, 𝑖 = 1, 2, 3;

𝜕𝑊

𝜕𝐿4

= 𝛼4
(
𝐿4 − 4

)
𝑒𝑥𝑝

[
𝛽4

(
𝐿4 − 4

)2] (29)

In order to compare the Cauchy stress of Eq. (28) with Eq. (24)
extracted from [2], one reports Eq. (29) in Eq. (28):

𝝈 = 𝐴𝑩 − 𝑝𝑰 + [𝐵 − 𝐴 + 𝐶]𝒇 ⊗𝒇 + [𝐷 − 𝐴 + 𝐶] 𝒔⊗ 𝒔+𝐸 (𝒇 ⊗ 𝒔 + 𝒔⊗ 𝒇 )

(30)

𝐴 = 2𝛼3
(
𝐿3 − 1

)
𝑒𝑥𝑝

[
𝛽3

(
𝐿3 − 1

)2]
; 𝐵 = 2𝛼1

(
𝐿1 − 1

)
𝑒𝑥𝑝

[
𝛽1

(
𝐿1 − 1

)2]

(31)

𝐶 = 4𝛼4
(
𝐿4 − 4

) (
𝐿1 + 𝐿2

)
𝑒𝑥𝑝

[
𝛽4

(
𝐿4 − 4

)2]
;

𝐷 = 2𝛼2
(
𝐿2 − 1

)
𝑒𝑥𝑝

[
𝛽2

(
𝐿2 − 1

)2] (32)

𝐸 = 4𝛼4
(
𝐿4 − 4

)√
𝐿4 −

(
𝐿1 + 𝐿2

)2
𝑒𝑥𝑝

[
𝛽4

(
𝐿4 − 4

)2]
(33)

It is observed that the same 5 tensors 𝑩, 𝑰 , 𝒇 ⊗ 𝒇 , 𝒔 ⊗ 𝒔 and 𝒇 ⊗

𝒔 + 𝒔 ⊗ 𝒇 are involved in both equations (24) and (30). But there
exist fundamental differences since Eq. (24) is a sum with a single
exponential associated to each term while several exponentials com-
ing from the polyconvex invariants are mixed in the 3 last terms of
Eq. (30), according to Eqs. (31)–(33). Beyond working with polyconvex
invariants, the interest of Eq. (30) is to account for the invariant 𝐼4𝑛 =
⟨𝑪𝒏𝟎,𝒏𝟎⟩ and therefore to distinguish explicitly the effect of the stretch
in the myocyte axis direction 𝒇𝟎, in the direction 𝒔𝟎 lying within the
muscle layer and transverse to 𝒇𝟎, and in the direction 𝒏𝟎 normal to the
muscle layer. To prove this claim, Eq. (30) is reorganized by factorizing
the common terms with 𝐴 and 𝐶:

𝝈 = 𝐴 (𝑩 − 𝒇 ⊗ 𝒇 − 𝒔⊗ 𝒔) + 𝐵𝒇 ⊗ 𝒇 +𝐷𝒔⊗ 𝒔 − 𝑝𝑰

+ 𝐶 (𝒇 ⊗ 𝒇 + 𝒔⊗ 𝒔) + 𝐸 (𝒇 ⊗ 𝒔 + 𝒔⊗ 𝒇 ) (34)

The first parenthesis in Eq. (34) is simplified by reporting inside the
following result which holds in the basis (𝒇𝟎, 𝒔𝟎, 𝒏𝟎):

𝑩 = 𝒇 ⊗ 𝒇 + 𝒔⊗ 𝒔 + 𝒏⊗ 𝒏 (35)

⇒ 𝝈 = 𝐴𝒏⊗ 𝒏 + 𝐵𝒇 ⊗ 𝒇 +𝐷𝒔⊗ 𝒔 − 𝑝𝑰 + 𝐶 (𝒇 ⊗ 𝒇 + 𝒔⊗ 𝒔)

+ 𝐸 (𝒇 ⊗ 𝒔 + 𝒔⊗ 𝒇 ) (36)

It is noted from Eqs. (19), (31) and (32) that the coefficients 𝐵 and 𝐷

are linked to the invariants 𝐼4𝑓 and 𝐼4𝑠:

𝐵 = 2𝛼1
(
𝐼4𝑓 − 1

)
𝑒𝑥𝑝

[
𝛽1

(
𝐼4𝑓 − 1

)2]
;

𝐷 = 2𝛼2
(
𝐼4𝑠 − 1

)
𝑒𝑥𝑝

[
𝛽2

(
𝐼4𝑠 − 1

)2] (37)

That means that the second and third terms of Eq. (36) represent the
effect of the stretch in the directions 𝒇𝟎 and 𝒔𝟎. Regarding the first term
of Eq. (36), it follows from Eqs. (17), (19) and (31) that 𝐿3 is equal to
the mixed invariant 𝐼4𝑛:

𝐿3 = 𝑇 𝑟
(
𝑪
[
𝑰 − 𝒇 𝟎 ⊗ 𝒇 𝟎 − 𝒔𝟎 ⊗ 𝒔𝟎

])
= 𝑇 𝑟

(
𝑪𝒏𝟎 ⊗ 𝒏𝟎

)
= 𝐼4𝑛 (38)

The coefficient 𝐴 is therefore linked to 𝐼4𝑛 via Eqs. (31) and (38):

𝐴 = 2𝛼3
(
𝐼4𝑛 − 1

)
𝑒𝑥𝑝

[
𝛽3

(
𝐼4𝑛 − 1

)2]
(39)

That means that the first term of Eq. (36) represents the effect of the
stretch in the direction 𝒏𝟎. It is thus possible to give a physical meaning
to each of the 3 first terms of Eq. (36) with respect to the specific
geometry of the material. This would be useful if one needed to focus
specifically on the effect of stretching in the 𝒏𝟎 direction. This is a
significant difference with the model proposed in [2] which uses the
3 invariants 𝐼1, 𝐼4𝑓 and 𝐼4𝑠 instead of 𝐼4𝑓 , 𝐼4𝑠 and 𝐼4𝑛.

5. Simple shear test

A shear experiment is driven by the shear deformation k as shown
in Fig. 2. The displacement U , related for example to a simple shear
deformation in the (𝒏𝟎,𝒇 𝟎) plane, is expressed with respect to k as
follows:

𝑼 =

⎧⎪⎨⎪⎩

𝑘𝑛0
0

0

⎫⎪⎬⎪⎭
(40)

It follows from Eqs. (2), (3) and (40) that:

𝑭 =

⎛⎜⎜⎝

1 0 𝑘

0 1 0

0 0 1

⎞⎟⎟⎠
; 𝑪 =

⎛⎜⎜⎝

1 0 𝑘

0 1 0

𝑘 0 𝑘2 + 1

⎞⎟⎟⎠
; 𝑩 =

⎛⎜⎜⎝

𝑘2 + 1 0 𝑘

0 1 0

𝑘 0 1

⎞⎟⎟⎠
(41)

Applying to the 6 different modes of shear the same kind of calculation
as the one used for establishing Eqs. (40) and (41), it is easy to obtain
the displacement 𝑼 , the gradient deformation matrix 𝑭 and the strain
tensors 𝑪 and 𝑩 related to each of these 6 modes (Table 1).

By using the data contained in Table 1, the expressions of the
polyconvex invariants 𝐿1, 𝐿2, 𝐿3 and 𝐿4 with respect to k (Table 2)
come from Eqs. (8)–(10). Finally, by using Tables 1 and 2, Eq. (28)
gives the Cauchy stress expressions corresponding to each of the 6
shear modes (Table 3). Since the (nf) and (ns) modes have the same
invariant 𝐿3, they also have the same shear stresses. This is consistent
with the experimental observations since the responses for the (nf) and
(ns) modes are indistinguishable as reported in [1].

6. Comparison between the model of Eq. (26) and the experimen-
tal data of Dokos et al. [1]

In order to identify the 8 material parameters 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛽1, 𝛽2, 𝛽3
and 𝛽4 of the SEF W defined by Eq. (26), we have used the classical
coefficient of determination 𝑅2:

𝑅2 = 1 −
𝑆𝑟𝑒𝑠

𝑆𝑡𝑜𝑡

(42)

where 𝑆𝑟𝑒𝑠 and 𝑆𝑡𝑜𝑡 are respectively the residual sum and the total sum
of squares over the number of experimental data n:

𝑆𝑟𝑒𝑠 = ‖𝒚 − 𝒇‖2 =
𝑛∑
𝑖=1

(𝑦𝑖 − 𝑓𝑖)
2; 𝑆𝑡𝑜𝑡 =

‖‖𝒚 − 𝒚‖‖2 =
𝑛∑
𝑖=1

(𝑦𝑖 − 𝑦)2 (43)
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Fig. 2. Simple shear test in the (𝒏𝟎 ,𝒇 𝟎) plane.

Table 1
Displacement and strain tensors for the 6 shear modes.

Shear modes 𝑈 𝐹 𝐶 𝐵

(nf)

⎧⎪⎨⎪⎩

𝑘𝑛0

0

0

⎫⎪⎬⎪⎭

⎛
⎜⎜⎝

1 0 𝑘

0 1 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 𝑘

0 1 0

𝑘 0 𝑘2 + 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

𝑘2 + 1 0 𝑘

0 1 0

𝑘 0 1

⎞
⎟⎟⎠

(ns)

⎧
⎪⎨⎪⎩

0

𝑘𝑛0

0

⎫
⎪⎬⎪⎭

⎛
⎜⎜⎝

1 0 0

0 1 𝑘

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0

0 1 𝑘

0 𝑘 𝑘2 + 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0

0 𝑘2 + 1 𝑘

0 𝑘 1

⎞
⎟⎟⎠

(fn)

⎧
⎪⎨⎪⎩

0

0

𝑘𝑓0

⎫
⎪⎬⎪⎭

⎛⎜⎜⎝

1 0 0

0 1 0

𝑘 0 1

⎞⎟⎟⎠

⎛⎜⎜⎝

𝑘2 + 1 0 𝑘

0 1 0

𝑘 0 1

⎞⎟⎟⎠

⎛⎜⎜⎝

1 0 𝑘

0 1 0

𝑘 0 𝑘2 + 1

⎞⎟⎟⎠

(fs)

⎧⎪⎨⎪⎩

0

𝑘𝑓0

0

⎫⎪⎬⎪⎭

⎛⎜⎜⎝

1 0 0

𝑘 1 0

0 0 1

⎞⎟⎟⎠

⎛⎜⎜⎝

𝑘2 + 1 𝑘 0

𝑘 1 0

0 0 1

⎞⎟⎟⎠

⎛⎜⎜⎝

1 𝑘 0

𝑘 𝑘2 + 1 0

0 0 1

⎞⎟⎟⎠

(sn)

⎧⎪⎨⎪⎩

0

0

𝑘𝑠0

⎫⎪⎬⎪⎭

⎛
⎜⎜⎝

1 0 0

0 1 0

0 𝑘 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0

0 𝑘2 + 1 𝑘

0 𝑘 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 0 0

0 1 𝑘

0 𝑘 𝑘2 + 1

⎞
⎟⎟⎠

(sf)

⎧
⎪⎨⎪⎩

𝑘𝑠0

0

0

⎫
⎪⎬⎪⎭

⎛
⎜⎜⎝

1 𝑘 0

0 1 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 𝑘 0

𝑘 𝑘2 + 1 0

0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

𝑘2 + 1 𝑘 0

𝑘 1 0

0 0 1

⎞
⎟⎟⎠

Table 2
Polyconvex invariants for the 6 shear modes.

Shear modes Polyconvex invariants

𝐿1 𝐿2 𝐿3 𝐿4

(nf) 1 1 𝑘2 + 1 4
(ns) 1 1 𝑘2 + 1 4

(fn) 𝑘2 + 1 1 1
(
𝑘2 + 2

)2
(fs) 𝑘2 + 1 1 1

(
𝑘2 + 2

)2
+ 4𝑘2

(sn) 1 𝑘2 + 1 1
(
𝑘2 + 2

)2
(sf) 1 𝑘2 + 1 1

(
𝑘2 + 2

)2
+ 4𝑘2

Table 3
Shear component of the Cauchy stresses for the 6 shear modes.

Shear modes Cauchy stress – shear component

(nf) 2𝑘
𝜕𝑊

𝜕𝐿3

(ns) 2𝑘
𝜕𝑊

𝜕𝐿3

(fn) 2𝑘

[
𝜕𝑊

𝜕𝐿1

+ 2
(
𝑘2 + 2

)
𝜕𝑊

𝜕𝐿4

]

(fs) 2𝑘

[
𝜕𝑊

𝜕𝐿1

+ 2
(
𝑘2 + 4

)
𝜕𝑊

𝜕𝐿4

]

(sn) 2𝑘

[
𝜕𝑊

𝜕𝐿2

+ 2
(
𝑘2 + 2

)
𝜕𝑊

𝜕𝐿4

]

(sf) 2𝑘

[
𝜕𝑊

𝜕𝐿2

+ 2
(
𝑘2 + 4

)
𝜕𝑊

𝜕𝐿4

]

𝑦𝑖 stands for the experimental data, 𝑓𝑖 for the theoretical data and 𝑦 for

the mean of the experimental data:

𝑦 =
1

𝑛

𝑛∑
𝑖=1

𝑦𝑖 (44)

Table 4
Identified material parameters.

𝛼1 (kPa) 𝛼2 (kPa) 𝛼3 (kPa) 𝛼4 (kPa)

18.877 2.495 3.184 0.168
𝛽1(−) 𝛽2(−) 𝛽3(−) 𝛽4(−)

19.39 20.113 11.543 0.107

Table 5
Coefficient of determination 𝑅2.

Shear modes (nf)=(ns) (fn) (fs) (sn) (sf)

𝑅2 0.982 0.998 0.997 0.993 0.998

The closest to 1 𝑅2 is, the best the fit of the experimental data by

the theoretical data will be. The aim is thus to find the set of ma-

terial parameters
(
𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛽1, 𝛽2, 𝛽3, 𝛽4

)
minimizing the ratio 𝑆𝑟𝑒𝑠

𝑆𝑡𝑜𝑡
.

The experimental data were extracted from [1] and the theoretical

values were computed by using the stress expressions of Table 3 in

combination with Eq. (29):

𝜎𝑛𝑓 = 𝜎𝑛𝑠 = 2𝑘3𝛼3𝑒𝑥𝑝
(
𝛽3𝑘

4
)

(45)

𝜎𝑓𝑛 = 2𝑘3
[
𝛼1𝑒𝑥𝑝

(
𝛽1𝑘

4
)
+ 2𝛼4

(
𝑘2 + 2

) (
𝑘2 + 4

)
𝑒𝑥𝑝

(
𝛽4𝑘

4
(
𝑘2 + 4

)2)]

(46)

𝜎𝑓𝑠 = 2𝑘3
[
𝛼1𝑒𝑥𝑝

(
𝛽1𝑘

4
)
+ 2𝛼4

(
𝑘2 + 4

) (
𝑘2 + 8

)
𝑒𝑥𝑝

(
𝛽4𝑘

4
(
𝑘2 + 8

)2)]

(47)

𝜎𝑠𝑛 = 2𝑘3
[
𝛼2𝑒𝑥𝑝

(
𝛽2𝑘

4
)
+ 2𝛼4

(
𝑘2 + 2

) (
𝑘2 + 4

)
𝑒𝑥𝑝

(
𝛽4𝑘

4
(
𝑘2 + 4

)2)]

(48)

𝜎𝑠𝑓 = 2𝑘3
[
𝛼2𝑒𝑥𝑝

(
𝛽2𝑘

4
)
+ 2𝛼4

(
𝑘2 + 4

) (
𝑘2 + 8

)
𝑒𝑥𝑝

(
𝛽4𝑘

4
(
𝑘2 + 8

)2)]

(49)

We have implemented equations Eqs. (45)–(49) in the Octave free

software [14] and performed the material identification by using the

optimization routine fminunc based on gradient search. The identified

material parameters are shown in Table 4 and the corresponding co-

efficients of determination 𝑅2 in Table 5. It is observed an excellent

level of correlation, confirmed by Fig. 3 which shows a very good fit

between the theoretical curves and the experimental data. That proves

that a model using polyconvex invariants is as efficient as a model using

standard invariants for predicting the mechanical response of passive

ventricular myocardium. The worst prediction, with a coefficient of

determination equal to 0.982, is obtained with the (nf) = (ns) modes,

but it is not surprising because these modes concern the lowest level

of stress and it is generally difficult for a model to match perfectly

experimental low values. Finally, we have observed that the theoretical

curves drawn in Fig. 3 are identical to the ones provided in Figure 6

of [2], proving the consistency of our model with the literature.
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Fig. 3. Comparison between the model and the experimental data.

7. Convexity of the SEF defined by Eq. (26)

The convexity of a SEF is an important issue regarding compu-
tational efficiency, and particularly for ensuring the uniqueness of
the solution of a hyperelastic problem. In order to present sufficient
conditions providing this desired property of convexity, we proceeded
at the beginning in the same way as in [2]. Since the SEF defined by
Eq. (26) is expressed as a sum over exponential functions, a sufficient
condition for ensuring convexity is to study separately the convexity
for each term. The contribution in the SEF of the first invariant 𝐿1 is
for example written as follows from Eq. (26):

𝑊1 (𝑪) = 𝑓1
(
𝐿1 (𝑪)

)
(50)

With the real-valued function 𝑓1 defined by:

𝑓1 (𝑥) =
𝛼1

2𝛽1

{
𝑒𝑥𝑝

[
𝛽1 (𝑥 − 1)2

]
− 1

}
(51)

From Eq. (8)–(10), the invariant 𝐿1 (𝑪) can be expressed linearly with
respect to 𝑪 thanks to the trace operator 𝑇 𝑟:

𝐿1 (𝑪) = ⟨𝑪𝒇 𝟎,𝒇 𝟎⟩ = 𝑇 𝑟
(
𝒇 𝟎 ⊗ 𝒇 𝟎𝑪

)
(52)

Deriving twice Eq. (50), one obtains from Eq. (52):

𝑊1
′′ (𝑪) (𝒅𝑪) (𝒅𝑪) = 𝑓1

′′
(
𝐿1 (𝑪)

) [
𝑇 𝑟

(
𝒇 𝟎 ⊗ 𝒇 𝟎𝒅𝑪

)]2
(53)

where the second derivative of 𝑓1 is obtained from Eq. (51):

𝑓1
′′
(
𝐿1 (𝑪)

)
= 𝛼1

{
1 + 2𝛽1

(
𝐿1 (𝑪) − 1

)2}
𝑒𝑥𝑝

[
𝛽1

(
𝐿1 (𝑪) − 1

)2]
(54)

It is deduced from Eqs. (53) and (54) that a sufficient condition for 𝑊1

to be strictly convex is:

𝛼1 > 0; 𝛽1 > 0 (55)

Following the same logic with the second and third polyconvex in-
variants 𝐿2 and 𝐿3, it is obtained the additional sufficient conditions:

𝛼2 > 0; 𝛼3 > 0; 𝛽2 > 0; 𝛽3 > 0 (56)

The case of the fourth invariant is more complicated because 𝐿4 (𝑪) is
expressed in a quadratic form with respect to 𝑪 :

𝐿4 (𝑪) = 4
[
𝑇 𝑟

(
𝒇 𝟎 ⊗ 𝒔𝟎𝑪

)]2
+
[
𝑇 𝑟

(
𝒇 𝟎 ⊗ 𝒇 𝟎𝑪

)
+ 𝑇 𝑟

(
𝒔𝟎 ⊗ 𝒔𝟎𝑪

)]2
(57)

From Eq. (26), the contribution in the SEF of 𝐿4 is:

𝑊4 (𝑪) = 𝑓4
(
𝐿4 (𝑪)

)
(58)

With the real-valued function 𝑓4 defined by:

𝑓4 (𝑥) =
𝛼4

2𝛽4

{
𝑒𝑥𝑝

[
𝛽4 (𝑥 − 4)2

]
− 1

}
(59)

Deriving twice Eqs. (57), (58) and (59), one obtains:

𝑊4
′′ (𝑪) (𝒅𝑪) (𝒅𝑪) = 𝑓4

′′
(
𝐿4 (𝑪)

) [
𝐿′
4
(𝑪) (𝒅𝑪)

]2

+ 𝑓 ′
4

(
𝐿4 (𝑪)

)
𝐿4

′′ (𝑪) (𝒅𝑪) (𝒅𝑪) (60)

𝑓4
′
(
𝐿4

)
= 𝛼4

(
𝐿4 − 4

)
𝑒𝑥𝑝

[
𝛽4

(
𝐿4 − 4

)2]
(61)

𝑓4
′′
(
𝐿4

)
= 𝛼4

(
1 + 2𝛽4

(
𝐿4 − 4

)2)
𝑒𝑥𝑝

[
𝛽4

(
𝐿4 − 4

)2]
(62)

𝐿4
′′ (𝑪) (𝒅𝑪) (𝒅𝑪) = 8

[
𝑇 𝑟

(
𝒇 𝟎 ⊗ 𝒔𝟎𝒅𝑪

)]2

+ 2
[
𝑇 𝑟

(
𝒇 𝟎 ⊗ 𝒇 𝟎𝒅𝑪

)
+ 𝑇 𝑟

(
𝒔𝟎 ⊗ 𝒔𝟎𝒅𝑪

)]2
(63)

Noting that 𝐿4
′′ (𝑪) (𝒅𝑪) (𝒅𝑪) ≥ 0, as a sum over positive quantities,

and that 𝐿4 −4 ≥ 0 in each of the 6 shear loadings studied in this work
(last row of Table 2), it results from Eqs. (60)–(63) that a sufficient
condition for 𝑊4 to be convex is:

𝛼4 > 0; 𝛽4 > 0 (64)

Note that the material parameters identified in Table 4 satisfy the
convexity conditions given by Eqs. (55), (56) and (64).

8. Conclusions

In this study, a new strain energy function (SEF) was proposed
for modeling incompressible orthotropic hyperelastic materials with a
specific application to the mechanical response of passive ventricular
myocardium. The SEF was built by combining exponential functions
as proposed in [2] but, instead of using standard mixed invariants, we
have selected the integrity basis of polyconvex invariants introduced
in [10].

Using this new set of invariants allows to replace the classical
mixed invariant 𝐼8, which is demonstrated to be non-polyconvex, by
the polyconvex invariant 𝐿4 defined by Eqs. (8)–(10). With a SEF
built on this basis, according to Eqs. (10) and (26), we demonstrated
that our model is capable to accurately predict the experimental data
obtained in [1] with 6 different shear modes applied to passive ven-
tricular myocardium. In addition, our model is also consistent with
results previously obtained in the literature [2]. Besides, we established
sufficient conditions ensuring the convexity of the SEF and expressed
them as inequalities involving the material parameters (Eqs. (55), (56)
and (64)). Finally, our model can explicitly represent the stretch effect
in the 3 specific directions of a passive ventricular myocardium: the
myocyte axis direction 𝒇𝟎, the direction 𝒔𝟎 lying within the muscle
layer and transverse to 𝒇𝟎, and the direction 𝒏𝟎 normal to the muscle
layer. We demonstrated that 3 of the polyconvex invariants are equal
to the squared stretches 𝐼4𝑓 , 𝐼4𝑠 and 𝐼4𝑛. Consequently, three terms
directly connected to the 3 possible stretch effects are embedded in the
stress tensor (Eq. (34)). This is a significant difference with the model
proposed in [2] which uses the 3 invariants 𝐼1, 𝐼4𝑓 and 𝐼4𝑠 instead of
𝐼4𝑓 , 𝐼4𝑠 and 𝐼4𝑛.

Because polyconvexity is often considered as a prerequisite for en-
suring the existence of solutions, the next step of our research work will
be to implement the new SEF introduced in this paper in a university
finite element code.
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