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Abstract

The paper deals with the discrete Laplacian on a uniform infinite square lattice. The definition of its
fundamental solution or lattice Green function (LGF) is clarified as the Fourier coefficients of a certain
generalized periodic function g. Such a functional must be regularized and gives the LGF up to a constant
equal to < g >, the mean value of g. For < g >= 0, the LGF may be expressed in an exact analytic form
in terms of hypergeometric and gamma functions. The continuum limit of the LGF is finally studied
requiring an appropriate renormalization of < g > in order to obtain the logarithmic Coulomb potential.

1 Introduction

Lattice Green functions arise in a wide variety of theoretical problems covering e.g. the lattice gauge
theories [1, 2], lattice models of statistical physics [3] as well as the study of random walks [4, 5] or the
calculation of two-point resistances of resistor networks [6, 7]. They are also central in numerical analysis of
partial differential equations for which the discretization of the continuum on periodic lattices is for instance
frequently used to deal with point singularities before considering a renormalization procedure when the
continuum limit is in fine taken [8, 9, 10]. In this respect, the Poisson equation and the use of the related
lattice Green function for the Laplacian operator are emblematic of lattice discretization technique and
constitute a toy model for implementing the lattice regularization of Coulombian potentials singularities.

The present work proposes to revisit the planar Poisson function and its discretization on an uniform
infinite square lattice Λ = Z2. The justification for such a restriction should be clearer below. As is known,
the lattice Green function (LGF) G[n,m] on Λ is thus defined as the isotropic solution of the partial difference
equation

∆G[n,m] := G[n+1,m]+G[n−1,m]+G[n,m+1]+G[n,m−1]−4G[n,m] = −δ[n,m] , (n,m) ∈ Λ (1)

where δ is the Kronecker delta

δ[n,m] =

{
1 n = m = 0
0 otherwise

.

The operator ∆ is a finite-difference representation of the planar Laplacian.
Such a solution is unique (up to a constant) and the term isotropic means it must demonstrate the

properties of symmetry and uniformity of the square lattice. The LGF is usually found using a discrete
Fourier transform and may be interpreted as Fourier coefficients of a generalized periodic function on the
flat 2-torus. A detailed review of these results is given in Section 1 (and the generalization for any other
dimensionality d should be straightforward).

Except in one dimension where the LGF can be derived exactly as

G[n] = −|n|
2

+ k , n ∈ Z , k arbitrary constant, (2)

the analytic calculation of the LGF G[n,m] from its Fourier integral representation is very difficult and de
facto no general closed-form result exists to date apart a few partial results [7, 11, 12]. Unfortunately, this
is also the case for higher dimensions (see e.g. [13]). In this work, we show in Section 2 that the exact
expression of the planar LGF G[n,m] for any (n,m) ∈ Λ can be actually derived in terms of hypergeometric
and gamma functions.
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2 LATTICE GREEN FUNCTION : DEFINITION 2

The continuum limit of the LGF is finally examined in Section 3. In one dimension, (2) clearly shows
that it is the exact discretized counterpart for the fundamental solution of the Laplacian on the real line
whatever the unit length chosen i.e. the lattice spacing. Indeed, recall that the solution of ∆G = −δ(x),
δ is the Dirac distribution at origin, is the even function G(x) = −|x|/2 + k, k an arbitrary constant. The
situation is quite different in the 2-dimensional case because of the logarithmic singularity and the scale
invariance of the radially symmetric potential G(r) = −(1/2π) log(|r|/L), L an arbitrary length, solution of
∆G = −δ(r), r = (x, y) ∈ R2. Since the LGF G[n,m] is finite everywhere on the square lattice, a specific
renormalization procedure is needed to recover the Coulomb logarithmic potential in the continuum limit.
All this sheds particular light on specific features of the infinite square lattice and the continuous plane which
do not exist in no other dimensionality.

2 Lattice Green function : definition

Assuming thatG[n,m] increases no faster than some power nkml as |n|+|m| → +∞, the double trigonometric
series ∑

(n,m)∈Z2

G[n,m]ei(nθ1+mθ2)

converges in the sense of generalized functions to g(θ1, θ2) [14] such that, according to (1),

g(θ1, θ2) (2− cos θ1 − cos θ2) =
1

2
. (3)

It is worth to notice right away that the evenness of g in both variables and its symmetry property g(θ1, θ2) =
g(θ2, θ1) agree with the reflection and symmetry properties of the LGF i.e.

G[n,m] = G[±n,±m] , G[n,m] = G[m,n].

By division, one obtains up to a constant multiple of a 2-dimensional Dirac comb δ(θ1, θ2), the generalized
function on the flat 2-torus R2/(2πZ)2,

g(θ1, θ2) =
1

2

1

2− cos θ1 − cos θ2
(4)

defined for any test-function ϕ(θ1, θ2) on the torus by the following regularized double integral owing to the
singularity at the origin,〈

g(θ1, θ2), ϕ(θ1, θ2)
〉

=
1

2

ˆ π

−π
dθ1

ˆ π

−π
dθ2

ϕ(θ1, θ2)− ϕ(0, 0)

2− cos θ1 − cos θ2
. (5)

Again, let us emphasize that such a regularization (i) is needeed owing to the singularity at the origin and
as a matter of fact, one can verify that over the disk centered at the origin and of radius r, the part of the
integrand which contributes to the integral (5) is O(r) as r → +0; (ii) is proposed among other more general
regularization procedure like

〈
g(θ1, θ2), ϕ(θ1, θ2)

〉
=

1

2

(¨
S(η)

ϕ(θ1, θ2)− ϕ(0, 0)

2− cos θ1 − cos θ2
dθ1dθ2 +

¨
[−π,π]2\S(η)

ϕ(θ1, θ2)

2− cos θ1 − cos θ2
dθ1dθ2

)
(6)

where S(η) is the square [−η, η]2 containing the singularity at the origin for any η, 0 < η ≤ π. The formula
(6) reduces to (5) for η = π. Comparing (5) and (6) shows that these two finite numbers differ from the
value 4π2g0 ϕ(0, 0), with

g0(η) =
1

8π2

¨
[−π,π]2\S(η)

1

2− cos θ1 − cos θ2
dθ1dθ2 (7)

and proves that (5) and (6) define the same generalized function on R2/(2πZ)2 up to a constant multiple of
the 2−dimensional Dirac comb δ(θ1, θ2). The functional defined by (5) is called the canonical regularization
of the function (4) [14] and is the one we will consider in the sequel (unless specified otherwise). We show
in Appendix B that the regularized integral (6) (and the particular case (5)) is equivalent to the Hadamard
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regularization [15]. This method of regularizing a divergent integral by removing the divergent term and
keeping the finite part will be relevant for the study of the continuum limit of the LGF in Section 4.

As stated above, the LGF is the Fourier coefficients

G[n,m] =
〈
g(θ1, θ2),

1

4π2
ei(nθ1+mθ2)

〉
=

1

8π2

ˆ π

−π
dθ1

ˆ π

−π
dθ2

cosnθ1 cosmθ2 − 1

2− cos θ1 − cos θ2
, (n,m) ∈ Z2 . (8)

In particular, G[0, 0] = 0. The canonical regularization (5) defines the generalized periodic function (4)
as having a zero mean value whilst the functional (6) gives the Fourier coefficients G[n,m] + g0(η). This
indeed proves that the solution of (1) is in general obtained up to an arbitrary constant and confirms that
any determination of parameter η is a legitimate one for constructing the LGF. Choosing η = π (i.e. the
canonical regularization such that g0(π) = 0) is simply the easiest choice to be capable of computing the
LGF.

3 Lattice Green function : calculation

The integral (8) is obviously known for a very long time and some exact and rapid evaluation can be
performed using e.g. the Mathematica software for |n|, |m| ≤ 3 (see Table 1). Of course, these numerical
values agree with those already obtained e.g. in [7].

It is particularly worth noting the exact value on the lattice diagonals n = ±m may be easily computed
as (see e.g. [16, 12] and below)

G[n, n] = − 1

π

|n|∑
l=1

1

2l − 1
= − 1

2π

(
ψ

(
|n|+ 1

2

)
+ γ + 2 log 2

)
, n ∈ Z \ {0} , (9)

with γ the Euler-Mascheroni constant and ψ(z) = Γ′(z)/Γ(z) the digamma function [17, p. 258]. Hence, as
emphasized in [16] progressing step by step from these values on the diagonals using the symmetry/reflection
properties and the fact that G[n,m], (n,m) 6= (0, 0), is the mean of the values at its four nearest neighbors,
all other values at any node (n,m) may be thus recursively obtained. Nevertheless, we show in Appendix A
that a closed-form general result for any coefficients G[n,m] may be derived in terms of hypergeometric and
gamma functions contrary to popular opinion that such a general result did not seem possible. It should
be noted that a similar attempt was made in [18] using tools of the complex analysis to evaluate G[n,m]
but the obtained representation in terms of a singular generalized hypergeometric function still requiring
regularization of a logarithmic singularity makes that result not very practical to use. As such, the following
expression should provide a substantial reduction of Ray’s representation. Indeed, it can be shown that for
any n ≥ m ≥ 0,

G[n,m] =
1

2π

(
log 2− 2

n∑
l=1

1

2l − 1
−
m+ 1

2

n+ 1
2

3F2

(
1, 1,m+

3

2
; 2, n+

3

2
;−1

))

+
1

2π

bn−m
2 c∑

k=1

(−1)k
(
n−m

2k

)
B

(
2k, n− k +

1

2

)
2F1

(
2k,m+ k +

1

2
;n+ k +

1

2
;−1

)
. (10)

The notations and definitions are given in Appendix A. Obviously, this formula allows to retrieve in an exact
form or to evaluate to arbitrary numerical precision all known results like (see [7, 19])

G[±5,±3] = G[±3,±5] = 4− 499

35π
≈ −0.53819

or

G[±10,±7] = G[±7,±10] =
577

4
− 20 506 034

45 045 π
≈ −0.65561 ,

but also gives new ones like for example

G[±30,±10] = G[±10,±30] = −3 775 513 781 874 238 568 +
660 137 345 297 797 509 134 893 757 768 588

55 655 536 011 075 π
≈ −0.80704 .
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PPPPPPPP|n|
|m|

0 1 2 3

0 0 −1

4
−1 +

2

π
−17

4
+

12

π

1 −1

4
− 1

π

1

4
− 2

π
2− 23

3π

2 −1 +
2

π

1

4
− 2

π
− 4

3π
−1

4
− 2

3π

3 −17

4
+

12

π
2− 23

3π
−1

4
− 2

3π
− 23

15π

Table 1: Lattice Green function G[n,m] in a 2-dimensional infinite square lattice.

In a general way, as already proved in [16], all these values G[n,m] are of the form a + b/π with a and b
rational. In particular, since

3F2

(
1, 1, n+

3

2
; 2, n+

3

2
;−1

)
=

+∞∑
l=0

(−1)l

l + 1
= log 2 ,

the result (9) for G[n, n] is well established from the general result (10). Also, considering the following
identity [20]

3F2(1, 1, c; 2, c+ 1;−1) =
c

2(1− c)

(
ψ

(
c+ 1

2

)
− ψ

( c
2

)
− 2 log 2

)
,

and the particular Lerch transcendent ([21, p. 20] and [22, p. 1391])

Φ(z) =
1

2

(
ψ

(
z + 1

2

)
− ψ

(z
2

))
=

+∞∑
l=0

(−1)l

z + l
,

it is straightforward to show that the LGF at nearest sites of the diagonal is simply given by the sum

G[n, n− 1] = G[n− 1, n] = − 1

π

|n|∑
l=1

1

2l − 1
+

1

2π
Φ

(
|n|+ 1

2

)
= − 1

π

|n|∑
l=1

1

2l − 1
+

1

2π

+∞∑
l=0

(−1)l

|n|+ 1
2 + l

for any integer |n| ≥ 1. The interested readers might want to check that the latter formula together with
(1) thus lead to the identity

ψ

(
|n|
2

+
5

4

)
− ψ

(
|n|
2

+
1

4

)
=

4

2|n|+ 1
, |n| ≥ 1.

in agreement with the well-known functional relation ψ(z + 1)− ψ(z) = 1/z [22, p. 1386].

4 Lattice Green function : asymptotics and continuum limit

Now, let us investigate what becomes the LGF (10) far from the origin i.e. when m and n are large. Let

r =
√
n2 +m2 , n = r cos θ , m = r sin θ .
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In the Euclidean plane R2 given an unit length, r thus measures the distance between the lattice point of
coordinates (n,m) to the origin. On the diagonals, m = ±n, thus r = |n|

√
2 and it is thereby easy to show

that [17, p. 259]

G[n, n] = − 1

2π

(
log r + γ +

3

2
log 2

)
+O

(
1

r

)
as r → +∞ . (11)

In [12], Watson has expediently proved that such an estimate still holds true for any infinitely distant
lattice point (n,m) - notice that Watson has precisely given in his remarkable paper the following sharper
asymptotic expansion (see also, [23]),

G[n,m] = − 1

2π

(
log r + γ +

3

2
log 2− 1

12

cos 4θ

r2
−
(

3

40
cos 4θ +

4

48
cos 8θ

)
1

r4
+O

(
1

r6

))
(12)

- so that we set for a coming discussion,

Gasympt[n,m] = − 1

2π
log

r

L0
= − 1

2π
log

√
n2 +m2

L0
(13)

where L0 = e−γ2−3/2 ≈ 0.198506 is a characteristic length we have furthermore called horizon [24] related to
the unit length chosen in the plane. As a result, the main consequence of all of these is that the 2−dimensional
LGF (10) is asymptotically the discretized counterpart for the fundamental solution of the planar Laplacian
and exhibits the radial symmetry far enough away from the origin. Indeed, recall that the radially symmetric
solution on the plane of the Poisson equation ∆G = −δ(r) is the logarithmic Coulomb potential

G(r) = − 1

2π
log
|r|
L

(14)

where the horizon L is an arbitrarily chosen positive length relevant to the physical scale of the problem
allowing us to fix a zero potential at finite distance of the origin (precisely, on the circle |r| = L > 0)
but also more deeply, is needeed to report on the scale invariance of the fundamental solution G and to
adimensionalize constructively the argument of the logarithm [25]. Usually, one sets R = 1 without any
substantive reason except for convenience, but what precedes has shown that choosing here the particular
value L = L0 < 1 in the first instance allows matching accurately the asymptotic result (13) to the LGF
(10).

In addition, let us notice considering (12) that the relative error

ε(r) =

∣∣∣∣G[n,m]−Gasympt[n,m]

G[n,m]

∣∣∣∣
is O

(
1/(r2 log r)

)
, and numerical evaluations indicate that this error is already less than 1% when r > 2 (see

Figure 1 and Table 2).

1 2 3 4
r

-0.5

-0.4

-0.3

-0.2

-0.1

G [n,m]

Figure 1: Plots of the LGF G[n,m] (dotted) and the logarithmic estimate Gasympt[n,m] = (−1/2π) log(r/L0)

(dashed) as function of the distance r =
√
n2 +m2 ranging from 0 to 3

√
2.
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r
(n,m)

1
(1,0)

√
2

(1,1)
2

(2,0)

√
5

(2,1)

√
8

(2,2)
3
(3,0)

√
10

(3,1)

√
13

(3,2)
4
(4,0)

√
18

(3,3)

ε(r)% 2.94 1.82 1.18 0.31 0.37 0.44 0.04 0.16 0.21 0.15

Table 2: Percent relative error between the LGF G[n,m] and the logarithmic estimate Gasympt[n,m] for r =√
n2 +m2 ranging from 1 to 3

√
2 unit lengths. This error is asymptotically zero as r tends to infinity.

Hence, one may reasonably claim that the horizon L0 characterizes in the plane R2 the radius of a disk
centered at the origin/singularity of the logarithmic potential (14): (i) in which the lattice discretization
assigns the finite regularized value G[0, 0] = 0; (ii) and outside of which the approximation G[n,m] ≈ G(r =
(n,m)) i.e.

G[n,m] ≈ − 1

2π
log

√
n2 +m2

L0
, (n,m) 6= (0, 0) (15)

holds with a sufficient accuracy for most of physical applications. Additionally, it is of great importance to
note that owing the scale invariance of the continuous fundamental solution G, all the foregoing remain true
if we set

r = (na,ma) , r = a
√
n2 +m2 , ∀a > 0

and take a circular cut-off of radius (or horizon) aL0. This amounts to modify the physical scale of the

problem and consider the discretization on the 2−lattice (aZ)
2

of spacing a. Consequently, for a given
r ∈ R2 \ {0}, taking the limit a→ +0 implies

√
n2 +m2 infinitely large and de facto positions ourselves in

the asymptotic conditions. So that we are surprisingly led to conclude that the continuum (or scaling) limit

at point r 6= 0 of the LGF (10) when defined for the 2−lattice (aZ)
2

should be

lim
η→+0

− 1

2π
log
|r|
η
, η = aL0 (16)

i.e. a logarithmic potential with a null horizon, which is not obviously an acceptable result, and simply
means that the continuum limit for the 2−lattice (aZ)

2
as previously addressed cannot be summed up by

a simple rescaling of a to zero. Indeed, the crux of the problem here lies in the prior condition G[0, 0] = 0
that is conserved by rescaling of a, thus precluding the continuum limit to mimic the logarithmic divergence
at the origin. Such a difficulty is well-known in many areas of theoretical physics (classical and quantum
field theories for instance) where the discretization on lattice are implemented for regularization of all the
divergences due to singularities in the continuum as for instance when dealing with ultraviolet divergences in
perturbative quantum field theory (see e.g. [1, 8, 9]). Hence, in order to draw conclusions about the solutions
for the continuous case, a renormalization procedure is in fine needed to restore as much as possible the
correct behaviour [26].

In our case, writing (16) as

− 1

2π
log
|r|
L
− g0(+0)

(L being an arbitrary positive constant) evidences the divergent term (see (28), Appendix B)

g0(+0) = lim
η→+0

− 1

2π
log

η

L

which may be interpreted as the self-potential of the origin point source. The lattice regularization has
simply removed this divergent term by assigning the null value at the origin, the renormalization procedure
reinstating this self-potential to restore the correct behaviour. As a result, the renormalized scaling limit
of the LGF G[n,m] may be derived by substituting g0(+0) for G[0, 0] = 0 so that the renormalized LGF
formally must read

Grenorm[n,m] = G[n,m] + g0(+0) (17)

whose continuum limit is as expected the logarithmic potential (14) owning the scale and rotational invari-
ance.
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4.1 An application

a. Consider an infinite square lattice formed from equal resistors R with nodes (n,m) ∈ Z2 and assume a
current I flowing from the origin node (0, 0) to a distant node (n0,m0).

r
r

r
r r

rrr
r

(n,m) (n+ 1,m)(n− 1,m)

(n,m− 1)

(n,m+ 1)

The electric potential V [n,m] at node (n,m) is thus solution of the partial difference equation

V [n− 1,m]− V [n,m]

R
+
V [n+ 1,m]− V [n,m]

R
+
V [n,m− 1]− V [n,m]

R

+
V [n,m+ 1]− V [n,m]

R
= −I (δ[n,m]− δ[n− n0,m−m0])

i.e. ∆V [n,m] = −RI (δ[n,m]− δ[n− n0,m−m0]). Hence, from (1), the exact value of the potential is

V [n,m] = RI (G[n,m]−G[n− n0,m−m0]) (18)

where the LGF G is given by (10). Since G[0, 0] = 0 and given the symmetry properties, it is worth to notice
that

V [n0,m0] = −V [0, 0] = RI G[n0,m0].

Therefore, the two-point resistance between these two nodes is defined as

R0,r0 =
V [0, 0]− V [n0,m0]

I
= −2R G[n0,m0]. (19)

By way of example, the exact value of the resistance between the origin and one of the nodes (±30,±10) is

2R

(
3 775 513 781 874 238 568− 660 137 345 297 797 509 134 893 757 768 588

55 655 536 011 075 π

)
≈ 1.61408 R .

Obviously, application of (19) and (10) allows to find all known results both theoretical and experimental
(see e.g. [7, 6, 11]).

b. Let us investigate now the continuum limit of the previous resistor network considering the homogeneous
conducting plane R2 of (free length scale) conductivity σ2 = 1/R (in Ω−1), a current I flowing from the
origin to point r0. As it is known [25, 27], some key results are well established : the electric potential at
point r due to the steady flow of charges is solution of the Poisson equation ∆V = (−I/σ2) (δ(r)− δ(r− r0))
and may be expressed as (see (14)),

V (r) =
I

σ2
(G(r)− G(r− r0)) =

I

2πσ2

(
log
|r− r0|
L

− log
|r|
L

)
=

I

2πσ2
log
|r− r0|
|r|

exhibiting two singularities at current input and output points, thus making impossible to define the two-
point resistance R0,r0 by the common formula

R0,r0 =
V (0)− V (r0)

I
=

2

σ2
(G(0)− G(r0)) . (20)
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to be compared with (19). The utility of lattice discretization technique is here evident since the renormal-
ization procedure discussed in the previous section can give instead a mathematical sense to (20): indeed,
the renormalized scaling limit of (19) is simply

R0,r0 =
1

πσ2
log
|r0|
L

, L a constant , (21)

a result identical to the one obtained in [25] where the regularization procedure consisted in removing the
Coulomb singularity from (20) using an electrostatic energy-type argument. Nevertheless, this is a result
which leaves us unsatisfied because the horizon L can be arbitrarily fixed and thus, leads us to the surprising
conclusion that the two-point resistance between any pair of current input and output points in the infinite
conducting plane is indeterminable in contrast to the discretized case of the 2−dimensional resistor network.
It is rather curious for instance that choosing L = |r0|, one may obtain a zero resistance! All of this appear
to reflect an universal specific characteristic of the 2−dimensional space in which the electrical conduction
could not be limited, a property that cannot be found in any other dimensionality. This also means possibly,
indeed roughly from the point of view of classical fields theory, that the intriguing features observed in
electric properties of 2D materials like graphene or any 2D crystalline matter [28, 29] may be nothing but
the very evidence of the only algebraic dimension of the conducting flatland regardless of the accuracy and
the refinement of physical models describing the conduction mechanism.
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Appendix A : Exact value of G[n,m]

The exact value of the LGF G[n,m] given by the double integral (8) is derived in this Appendix. First, using
the change of variables θ1 = u+ v and θ2 = u− v, this integral reads,

G[n,m] =
1

2π2

ˆ π/2

0

dv

(
cos(n−m)v

ˆ π

0

cos(n+m)u

1− cosu cos v
du−

ˆ π

0

1

1− cosu cos v
du

)
. (22)

The two integrals in brackets are evaluated without difficulties using the following result :

ˆ π

0

cos ku

1− α cosu
du =

π

αk

(
1−
√

1− α2
)k

√
1− α2

, |α| < 1 , k ≥ 0 (23)

so that

G[n,m] =
1

2π

ˆ π/2

0

dv

sin v

(
cos(n−m)v

(
1− sin v

cos v

)n+m
− 1

)
. (24)

Then, setting x = cos v and introducing the Chebyshev polynomial of the first kind Tk(cos v) = cos kv yield
to the expression

G[n,m] =
1

2π

ˆ 1

0

dx

1− x2

(
xn+m T|n−m|(x)(
1 +
√

1− x2
)n+m − 1

)
. (25)

Now, assuming 0 ≤ m ≤ n throughout the Appendix (otherwise, simply switch the roles of n and m or/and
use the symmetry properies), let us remark that the product xn+m Tn−m(x) is explicitly the polynomial of
degree 2n

xn+m Tn−m(x) = x2n +

bn−m
2 c∑

k=1

(−1)k
(
n−m

2k

)
(x2)n−k(1− x2)k

allowing to write G[n,m] as the finite sum of convergent integrals

G[n,m] =
1

2π

ˆ 1

0

dx

1− x2

(
x2n(

1 +
√

1− x2
)n+m − 1

)
+

1

2π

bn−m
2 c∑

k=1

(−1)k
(
n−m

2k

)ˆ 1

0

(x2)n−k(1− x2)k−1(
1 +
√

1− x2
)n+m dx ,
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the first integral being the single term where the regularization is needed. Making finally the change of
variable t =

√
1− x2, one obtains in an easier tractable form,

G[n,m] =
1

2π

ˆ 1

0

dt

t
√

1− t2

(
(1− t)n

(1 + t)m
− 1

)
+

1

2π

bn−m
2 c∑

k=1

(−1)k
(
n−m

2k

)ˆ 1

0

t2k−1
(1− t)n−k−1/2

(1 + t)m+k+1/2
dt .

The second integral is related to the Euler’s fundamental representation of Gaussian hypergeometric functions
[21] and is straightforwardly found having the exact value (see e.g. [22, formula 8, p. 315])

ˆ 1

0

t2k−1
(1− t)n−k−1/2

(1 + t)m+k+1/2
dt = B

(
2k, n− k +

1

2

)
2F1

(
2k,m+ k +

1

2
;n+ k +

1

2
;−1

)
(26)

(where B is the beta function and 2F1 the Gauss hypergeometric function) while the first one (which
represents the regularization of a divergent integral owing to the singularity at t = 0) may be rewritten as

ˆ 1

0

dt

t
√

1− t2

(
(1− t)n

(1 + t)m
− 1

)
= lim
ε→0+

(ˆ 1

ε

dt

t

(1− t)n−1/2

(1 + t)m+1/2
+ log ε

)
+

ˆ 1

0

dt

t

(
1− 1√

1− t2

)
=

 1

0

dt

t

(1− t)n−1/2

(1 + t)m+1/2
− log 2 .

The slashed integral notation here indicates the Hadamard finite part of integral (26) as k tends to 0 [15, 30],
which can be simply derived considering the power series expansion of the RHS around k = 0. Indeed, we
have on the one hand [17, p. 258]

B

(
2k, n− k +

1

2

)
=

1

2k
− γ − ψ

(
n+

1

2

)
+O(k) =

1

2k
+ 2 log 2− 2

n∑
l=1

1

2l − 1
+O(k)

with γ the Euler-Mascheroni constant and ψ(z) the digamma function, whilst on the other hand via a Taylor
series,

2F1

(
2k,m+ k +

1

2
;n+ k +

1

2
;−1

)
= 1 + 2k ∂aF

(
0,m+

1

2
;n+

1

2
;−1

)
+O(k)2

where ∂aF means a differentiation with respect to the first parameter of the hypergeometric function F =

2F1(a, b; c; z) (F is here an entire analytic function of k [21] and we recall that 2F1(0, b; c; z) = 1 and
∂bF (0, b; c; z) = ∂cF (0, b; c; z) = 0 (see e.g. [31, 32] for a modern and comprehensive investigation of these
derivatives and others)). Instead, the derivative ∂aF deserves particular attention: considering the Gauss
hypergeometric function written as

F = 2F1(a, b; c; z) =

+∞∑
l=0

(a)l(b)l
(c)l

zl

l!

where (α)l denotes the so-called Pochhammer symbol (α)l = Γ(α+ l)/Γ(α) of derivative

∂α(α)l = (α)l (ψ(α+ l)− ψ(α)) ,

it follows that

∂aF (a, b; c; z) =

+∞∑
l=1

(a)l(b)l
(c)l

(ψ(a+ l)− ψ(a))
zl

l!
.

When the parameter a tends to zero, (a)l tends to zero for l ≥ 1 and so the product (a)lψ(a+ l), but

(a)lψ(a) = Γ(a+ l)
Γ′(a)

Γ2(a)
= −Γ(a+ l)

d

da

(
1

Γ(a)

)
tends to −Γ(l) since 1/Γ(a) = a+O(a)2 [17, p. 256]. Therefore,

∂aF

(
0,m+

1

2
;n+

1

2
;−1

)
=

+∞∑
l=1

(−1)l

l

(
m+ 1

2

)
l(

n+ 1
2

)
l

= −
+∞∑
l=0

(
m+ 1

2

)
l+1(

n+ 1
2

)
l+1

(−1)l

l + 1

= −
m+ 1

2

n+ 1
2

+∞∑
l=0

(
m+ 3

2

)
l
(1)l(1)l(

n+ 3
2

)
l
(2)l

(−1)l

l!
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using the identities (1)l = l! and (α)l+1 = α(α+1)l. Finally, we notice that the latter sum may be interpreted
as the series representation for argument z = −1 of the hypergeometric function 3F2(1, 1,m+ 3/2; 2, n+ 3/2; z).

Accordingly, retaining for the product (26) the finite term when k = 0, it results the Hadamard finite
part  1

0

dt

t

(1− t)n−1/2

(1 + t)m+1/2
= 2 log 2− 2

n∑
l=1

1

2l − 1
−
m+ 1

2

n+ 1
2

3F2

(
1, 1,m+

3

2
; 2, n+

3

2
;−1

)
and whence the result (10). �

Appendix B : Hadamard regularization of g(θ1, θ2)

Consider the canonical regularization of g(θ1, θ2) defined by the functional (5) we recast as follows,

〈
g(θ1, θ2), ϕ(θ1, θ2)

〉
= lim
η→0+

(
1

2

¨
[−π,π]2\S(η)

ϕ(θ1, θ2)− ϕ(0, 0)

2− cos θ1 − cos θ2
dθ1dθ2

)

= lim
η→0+

(
1

2

¨
[−π,π]2\S(η)

ϕ(θ1, θ2)

2− cos θ1 − cos θ2
dθ1dθ2 − 8π2ϕ(0, 0)g0(η)

)
(27)

where g0 is given by (7) and S(η) is the square [−η, η]2 containing the singularity at the origin for any
η, 0 < η ≤ π.

The term g0(η) is logarithmically divergent when η → +0. Precisely, one could show that

g0(η) = − 1

2π
log η +O(1) as η → +0

i.e.

g0(η) ∼
η→+0

− 1

2π
log

η

L
, L a constant. (28)

On the one hand, it should be noted that the constant L is not arbitrary but must have an appropriate value
(say, L = L1) in order that the doubly periodic function g has a zero mean value. On the other hand, the
logarithmic term (28) is precisely the divergent part of the integral (27) which is dropped. As a result, this
shows that the canonical regularization is equivalent to the following Hadamard finite part integral〈

g(θ1, θ2), ϕ(θ1, θ2)
〉

=
1

2

¨

\

[−π,π]2

ϕ(θ1, θ2)

2− cos θ1 − cos θ2
dθ1dθ2

= lim
η→+0

1

2

(¨
[−π,π]2\S(η)

ϕ(θ1, θ2)

2− cos θ1 − cos θ2
dθ1dθ2 + 4πϕ(0, 0) log

η

L1

)
.

Moreover, replacing L1 with L 6= L1 results in the Hadamard regularization related to the functional (6)
which defines the same generalized function g up to the Dirac comb 2π log(L1/L)δ(θ1, θ2).

Regarding the LGF, these Fourier coefficients here read

G[n,m] =
〈
g(θ1, θ2),

1

4π2
ei(nθ1+mθ2)

〉
= lim
η→+0

(
1

8π2

¨
[−π,π]2\S(η)

cosnθ1 cosmθ2
2− cos θ1 − cos θ2

dθ1dθ2 +
1

2π
log

η

L1

)
(29)

with G[0, 0] = 0. The term (28) in the limit η → +0 is heuristically the key element in the renormalization

procedure needed to obtain the continuum limit of the LGF G[n,m] when defined on the 2−lattice (aZ)
2

of
infinitely small spacing a (see (17)). In addition, let us emphasize that such a divergent term corresponds
in 2−D potential theory to the self-potential of an origin point source whose removal from certain divergent
integrals involved in the evaluation of lattice sums is ubiquitous in many physical problems like e.g. the
Madelung constant in physics of crystal (see e.g. [33] for more details). �
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