
HAL Id: hal-03204733
https://hal.science/hal-03204733

Submitted on 3 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Epidemiology and prevalence of extended-spectrum
β-lactamase- and carbapenemase-producing

Enterobacteriaceae in humans, animals and the
environment in West and Central Africa

Oumar Ouchar Mahamat, Marie Kempf, Manon Lounnas, Abelsalam Tidjani,
Mallorie Hide, Abdoul-Salam Ouedraogo, Julio Benavides, Christian Carrière,

Anne-Laure Bañuls, Hélène Jean-Pierre, et al.

To cite this version:
Oumar Ouchar Mahamat, Marie Kempf, Manon Lounnas, Abelsalam Tidjani, Mallorie Hide, et al..
Epidemiology and prevalence of extended-spectrum β-lactamase- and carbapenemase-producing En-
terobacteriaceae in humans, animals and the environment in West and Central Africa. International
Journal of Antimicrobial Agents, 2021, 57 (1), pp.106203. �10.1016/j.ijantimicag.2020.106203�. �hal-
03204733�

https://hal.science/hal-03204733
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Epidemiology and prevalence of extended-spectrum ß-lactamase- and carbapenemase-1 

producing Enterobacteriaceae in humans, animals and environments in West and 2 

Central Africa 3 

Oumar Ouchar Mahamat1,2,3*, Marie Kempf4†, Manon Lounnas1,2, Abelsalam Tidjani5, 4 

Mallorie Hide2, Julio Benavides6, Christian Carrière1,2, Anne-Laure Bañuls1,2,7, Hélène Jean-5 

Pierre1,2, Abdoul-Salam Ouedraogo8, Yann Dumont 1,2† and Sylvain Godreuil 1,2,7†     6 

1Laboratoire de Bactériologie, Centre Hospitalier Universitaire de Montpellier, Montpellier, 7 

France  8 

2MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France   9 

3Service de laboratoire Hôpital de la Mère et de l’Enfant, N’Djaména, Tchad  10 

4CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France; Laboratoire 11 

de Bactériologie-Hygiène, Institut de Biologie en Santé - PBH, CHU Angers, Angers, France  12 

5Faculté de Médecine, Université de N’Djaména, Tchad  13 

6Departamento de Ecología y Biodiversidad, Facultad de Ciencias de la Vida, Universidad 14 

Andrés Bello, Santiago, Chile   15 

7Laboraoire Mixte International, DRISA, IRD, Montpellier, France  16 

8Laboratory Department, Sourô Sanou University Hospital, Bobo-Dioulasso, Burkina Faso 17 

 18 

†These authors contributed equally to this article 19 

 20 

 21 

 22 

 23 

 24 

 25 

© 2020 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S092485792030409X
Manuscript_45f55b5282ddf8f514c9acc7a7ba9ad7

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S092485792030409X
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S092485792030409X


Running Title: Systematic review of ESBL- and carbapenemase-producing 26 

Enterobacteriaceae in West and Central Africa.  27 

Keywords: ESBL, Carbapenemases, Central and West Africa, Enterobacteriaceae, Data, 28 

Systematic review 29 

*Corresponding author: Ouchar Oumar Mahamat, Hôpital de la Mère et de l’Enfant, 30 

N’Djaména, Tchad 31 

Phone: +33 0752519030, E-mail: ouchar10@yahoo.fr 32 

 33 

Figures: 2  34 

Tables: 2 35 

Supplementary data: 3 tables S1, S2 and S2 associated with all bibliographical references 36 

Abstract:  249 words 37 

Text:  2053 words 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 



Abstract  51 

Extended-spectrum ß-lactamase-producing Enterobacteriaceae (ESBL-PE) and 52 

carbapenemase-producing Enterobacteriaceae (CPE) are widespread. Here, we used the “One 53 

Health” approach to determine the knowledge gaps on ESBL-PE and CPE in West and 54 

Central Africa. We searched all articles on ESBL-PE and CPE in these African regions 55 

published in PubMed, African Journals Online, and Google Scholar from 2000 onwards. 56 

Among the 1201 articles retrieved, we selected 168 studies (West Africa n=121, and Central 57 

Africa n=47) with data from 22 of the 26 West and Central Africa countries. Concerning the 58 

settings, 137 articles focused only on humans (carriage and/or infection), 6 articles on humans 59 

and animals, 12 on animals, 8 on humans and environments, one on environments, and one on 60 

humans, animals and environments. ESBL-PE prevalence ranged from 11% to 72% in 61 

humans, and from 7% to 79% in aquatic environments (wastewater). In animals, ESBL-PE 62 

prevalence hugely varied: 0% in cattle, 11-36% in chickens, 20% in rats, 21-71% in pigs, and 63 

32-75% in dogs. The blaCTX-M-15 gene was the predominant ESBL-encoding gene and was 64 

associated with plasmids of the incompatibility groups F, H, K, Y, N, I1 and R. CPE were 65 

studied only in humans. Class B metallo-ß-lactamases (NDM) and class D oxacillinases 66 

(OXA-48 and OXA-181) were the most common carbapenemases. Our results show major 67 

knowledge gaps, particularly on ESBL and CPE in animals and environments, that might 68 

limit antimicrobial resistance management in these regions. They also emphasize the urgent 69 

need to improve active surveillance programs in each country and to support antimicrobial 70 

stewardship. 71 

 72 

 73 

 74 

 75 



 76 

1. Introduction 77 

Beta-lactams are the most widely used antibiotics for the treatment of bacterial infections. 78 

Their misuse and abuse are the main cause of resistance in Enterobacteriaceae worldwide [1, 79 

2], in community and healthcare settings, and are associated with high mortality and 80 

morbidity [3,4]. 81 

The most prevalent mechanism by which bacteria acquire resistance to β-lactam antibiotics is 82 

the production of enzymes (β-lactamases) that hydrolyze these antibiotics [5,6]. Currently, 83 

extended spectrum β-lactamases (ESBL), such as the SHV, TEM and CTX-M variants, and 84 

carbapenemases (MBL, KPC, and class D oxacillinases) are the most common β-lactamases 85 

detected in Enterobacteriaceae, particularly in Escherichia coli and in Klebsiella 86 

pneumoniae. ESBLs are enzymes that can hydrolyze penicillins, cephalosporins and 87 

aztreonam, but neither cephamycins nor carbapenems, and are inhibited by β-lactamase 88 

inhibitors, such as clavulanic acid [7,8]. Therefore, carbapenems have been used as the 89 

treatment of choice for infections due to ESBL-producing Enterobacteriaceae (ESBL-PE), 90 

resulting in the emergence of carbapenemase-producing Enterobacteriaceae (CPE) [4,9]. 91 

During the last decade, ESBL-PE and CPE have increasingly been reported worldwide in 92 

different ecosystems [7,10–12].  93 

Resistance genes can spread by vertical transfer (e.g., transmission of the ESBL-producing E. 94 

coli sequence type 131) or by horizontal transfer of mobile genetic elements, such as plasmids 95 

of different incompatibility (Inc) groups (e.g., IncF, IncX3), transposons or integrons, within 96 

and between humans, animals and environments [13, 14]. Consequently, only a “one health 97 

approach” can help to understand the emergence and transmission of these genes. However, 98 

data collection and surveillance of multidrug-resistant Enterobacteria are often limited, 99 

particularly in middle and low income countries, such as many African countries.  100 



The aim of this review is to provide an overview of the epidemiology of ESBL-PE and CPE 101 

circulating in humans, animals and environments in West and Central Africa. For that, we 102 

systematically reviewed data published from 2000, on bacterial species, genotypes and 103 

genetic mechanisms of resistance of ESBL-PE and CPE isolated in humans, animals and 104 

environments. 105 

2. Methods 106 

2.1 Literature search  107 

A systematic search was carried out in PubMed, African Journals Online, and Google Scholar 108 

using the search terms “ESBL” and/or “carbapenemases”, “Enterobacteriaceae”, “West 109 

Africa” or “Central Africa”, “antimicrobial” or “antibiotic”, “resistance”, and “susceptibility” 110 

or “sensitivity”, combined with the names of the different West and Central African countries. 111 

According to the United Nation geographical region definition of the Central and West Africa 112 

region [15], this region includes the following countries: Angola, Cameroon, Central African 113 

Republic (CAR), Chad, Congo-Brazzaville, Democratic Republic of the Congo (DRC), 114 

Equatorial Guinea, Gabon, and São Tomé et Príncipe in Central Africa, and Benin, Burkina 115 

Faso, Cape Verde, Côte d’Ivoire, Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali, 116 

Mauritania, Niger, Nigeria, Saint Helena, Senegal, Sierra Leone and Togo in West Africa. 117 

All studies (in English or French) on ESBL-PE and/or CPE in humans, animals, food, or 118 

environment published between January 2000 and January 2019 were included.  119 

2.2 Data extraction 120 

After excluding irrelevant and duplicate studies, the remaining studies were fully read to 121 

extract data for this review: name of the first author, year of publication, country where the 122 

study was carried out, study design, and settings (hospital or community, animals, food, 123 

environment), Enterobacteriaceae species, ESBL-PE and CPE prevalence, method of analysis 124 



(phenotypic, molecular, or genomic), resistance genes, genetic support of resistance 125 

determinants, and genetic diversity. 126 

 127 

 128 

3. Results  129 

3.1 Studies selected for the analysis 130 

A total of 1366 articles were identified. After review of titles and abstracts, 1201 articles were 131 

excluded (irrelevant and duplicate studies), and 165 articles were fully read. These 165 132 

articles (West Africa n=118 and Central Africa n=47) focused on 23 of the 26 countries that 133 

constitute the West and Central African region (Figure 1): Nigeria (n=57), Senegal (n=16), 134 

Cameroon (n=14), Ghana (n=12), Burkina Faso, Chad, Gabon and Mali (n=7/country), DRC 135 

and CAR (n=6/country), Benin (n=5), Angola and Togo (n=4/country), Côte d’Ivoire (n=3), 136 

Mauritania, Niger and Sierra Leone (n=2/country), Congo-Brazzaville, Equatorial Guinea, 137 

Gambia, Guinea, Guinea-Bissau and São Tomé and Príncipe (n=1/country), and Benin and 138 

Togo together (n=1). No article was found on ESBL-PE and/or CPE in Cape Verde, Liberia 139 

and Saint Helena (Data and all references in table S1, S2 and S3 in supplemental material).   140 

Concerning the settings, 136 articles focused only on humans (carriage and/or infection), 6 141 

articles on humans and animals, 13 on animals/foods, one on humans and environment, 8 on 142 

the environment, and one on humans, animals and environment. The characteristics of the 143 

included studies are presented in Table 1, and Tables S1, S2 and S3 in supplemental material. 144 

3.2 Prevalence and genetic determinants of ESBL-PE in humans, animals, animal food and 145 

environments 146 

Among the 152 studies on ESBL-PE in humans, 54 identified ESBL-PE isolates using 147 

phenotypic tests based on synergy between indicators and inhibitors, but without resistance 148 



gene identification, 92 used molecular tests for the identification of resistance genes, and 6 149 

were based on whole genome sequencing. 150 

ESBL-PE prevalence varied among countries, and within countries it increased over time. For 151 

example, in Nigeria, ESBL-PE prevalence increased from 11% in 2009 to 72% in 2011. 152 

Overall, the highest ESBL-PE rate (79%) was detected in Enterobacteriaceae isolates from 153 

children in Senegal in 2017, and the lowest rate (4%), in clinical Enterobacteriaceae isolates 154 

from CAR in 2006 (Table 1).  155 

The blaCTX-M-15 gene (60 to 100%) was the most frequent ESBL-encoding gene detected in 156 

ESBL-PE isolates from 17 countries (n=67 studies), followed by blaSHV-12 (2 to 30%) in 10 157 

countries (n=13 studies), blaCTX-M-1 (3 to 6%) in 4 countries (n=13 studies), blaCTX-M-3 (3 to 158 

4%) in 3 countries (2 studies), and blaCTX-M-14 in 4 (2 studies) (Table 1). These ESBL-159 

encoding genes were detected in different Enterobacteriaceae species, especially in E. coli, K. 160 

pneumoniae, Salmonella, Enterobacter, Morganella, Proteus and Providencia.  161 

The few studies on the resistance genetic support identified several genetic elements (e.g. 162 

transposons and/or plasmids) involved in the mobility of resistance genes. In humans, the 163 

frequency of plasmids associated with ESBL was as follows: IncF (30 to 100%), IncNT (0 to 164 

100%), IncY (0 to 100%), IncH and IncK (Table 1).The blaCTX-M-15 gene was commonly 165 

detected in insertion sequences (ISEcp1), and was associated mainly with IncF (90%) 166 

plasmids, but also with IncN, IncY, IncH, and IncK plasmids (Table 1). 167 

Among the 165 reviewed articles, only 29 concerned ESBL-PE in animals and/or 168 

environments in Angola, Benin, Burkina Faso, Cameroon, Côte d’Ivoire, CAR, DRC, Gabon, 169 

Ghana, Guinea, Mali, Nigeria, and Senegal. In animals, ESBL-PE prevalence was 170 

investigated  in pigs [16–20], dogs  [21–23], rats [24,25], chickens or chicken food [19,21,26–171 

31], gorillas [32], cattle [19,20,33], goats and sheep [21]. Only one article described ESBL-172 

PE isolated from drinking water [34] (Table S2 in supplemental material). 173 



ESBL-PE prevalence in animals varied widely: 0% in cattle, 11-36% in chickens, 20% in rats, 174 

21-71% in pigs, and 32-75% in E. coli isolated from dogs (Table S2 in supplemental 175 

material). 176 

The blaCTX-M-15 gene (67 to 100%) was the predominant ESBL-encoding gene and was mainly 177 

associated with IncF, IncY, IncN, IncI1, and IncR plasmids. The genes encoding CTX-M-1, 178 

CTX-M-2, CTX-M-14, CTX-M-27, CTX-M-55, CTX-M-61 and SHV-12 were also detected 179 

(Table 1). 180 

In the environment, ESBL-PE were isolated from wastewater [35–41], hospital surfaces [42], 181 

and a poultry farm [43]. ESBL-PE prevalence in wastewater varied from 7 to 79%. Like in 182 

humans and animals, CTX-M-15 was the predominant ESBL type (Table S3 in supplemental 183 

material). 184 

3.3 CPE in humans, animals and environments 185 

CPE were reported by 25 studies in 12 countries, mainly in E. coli and K. pneumoniae 186 

isolates. Ambler class A carbapenemases (KPC and GES), class B metallo-ß-lactamases 187 

(NDM, VIM and DIM), and class D oxacillinases (OXA-48, OXA-51-Like, OXA-58 and 188 

OXA-181) were detected in CPE from different West and Central Africa countries (Figure 2). 189 

Specifically, production of NDM-1, -4, -5 and -7 was reported by studies in Angola, 190 

Cameroon, Chad, Gabon, Ghana, Nigeria, Senegal, and Sierra Leone. VIM-1 and -2 were 191 

detected in Nigeria and Sierra Leone, and DIM-1 only in Nigeria. KPC and GES were 192 

identified only in one study in Nigeria. OXA-48 was detected in Nigeria and Senegal, OXA-193 

181 in Angola, Chad,  Burkina-Faso, Mali, Nigeria, São Tomé and Príncipe, and Togo, and 194 

OXA-51- like and OXA-58 in Sierra Leone (Table 2).  195 

The blaNDM-1 gene was associated with many broad-host-range plasmid types, including 196 

IncA/C, IncH1 and IncF. The blaOXA-181 and blaNDM-5 genes were detected on IncX3 plasmids, 197 

and blaOXA-48 and blaNDM-4 on IncL/M and IncF plasmids, respectively. The plasmid 198 



frequencies and the frequencies of plasmid-enzyme associations are summarized in Table 2. 199 

No article was identified on CPE in food, animals, and/or environments. 200 

 201 

 202 

 203 

4. Discussion  204 

In this systematic review, the “one health” approach was used to analyze literature data on 205 

ESBL-PE and CPE prevalence in different ecosystems (humans, animals, food and 206 

environment) in Central and West Africa regions. Our results revealed major knowledge gaps 207 

that may hinder the management of antimicrobial resistance in these regions.  208 

First, most articles focused mainly on humans (n=136), and only a limited number of 209 

published studies investigated ESBL-PE and CPE isolated from animals and environments 210 

(n=29). Only one study carried out in Angola [44] analyzed the distribution and molecular 211 

epidemiology of ESBL-PE and CPE in different non-clinical ecosystems (healthy individuals, 212 

healthy animals, and aquatic environments). Six other studies focused on ESBL-PE isolated 213 

from humans and animals: three in Cameroon (ESBL-PE in pigs and humans) [16–18], one in 214 

CAR (ESBL-PE isolates in wild mammals and humans) [32], one in Cote d’Ivoire (ESBL-215 

producing E. coli in humans, dogs, cats, and wildlife) [22], and one in Nigeria (ESBL-216 

producing E. coli isolates in humans and cattle) [33].  217 

Second, no molecular characterization was performed in some countries (Congo, Equatorial 218 

Guinea and Gambia), leading to a serious lack of information on the different resistance genes 219 

involved in ESBL-PE and CPE.  220 

Third, no data was available on CPE in animals and environments in Central and West Africa 221 

regions, although they were detected in animals and environment in other African countries 222 

[12,45,46]. 223 



Nevertheless, most of the ESBL-PE prevalence rates in humans in Central and West Africa 224 

regions were much higher than in North America [47] and Europe [48], in agreement with 225 

studies from other African regions [7] and Asian countries [49]. ESBL-PE prevalence in 226 

animals (E. coli isolated from dogs, pigs and cattle) and environment (hospital wastewater) 227 

also was high, when investigated.  228 

Several factors could explain this alarming situation in West and Central Africa. Indeed, 229 

major gaps in the knowledge on antimicrobial resistance in Africa undermine the 230 

development and implementation of evidence-based public health policies and medical 231 

practice. Moreover, the lack of standardized antimicrobial resistance detection methods and 232 

interpretation guidelines do not allow comparing the results of different studies and optimal 233 

resistance tracking. In addition, access to reference laboratories and to external quality 234 

assessment schemes must be improved by strongly promoting and scaling up the Global Anti-235 

Microbial Surveillance System (GLASS) launched by the World Health Organization in 2015 236 

and based on each country’s specific priority pathogens [4,10,11].  237 

Some studies (REF) showed that the degree of household antimicrobial usage, as reported by 238 

farmers, was higher in humans than in animals, probably because people have more access to 239 

human drugs than veterinary drugs. This might increase the risk of ESBL-PE circulation in 240 

humans and also between humans and animals. Then, free-roaming animals contribute to the 241 

dispersal of multidrug-resistant ESBL-producing bacteria in the community through fecal 242 

shedding and environmental contamination. Close contacts between humans and animals, 243 

poor household waste disposal methods, poor environmental sanitation and other related 244 

factors could facilitate the exchange of antimicrobial resistant bacteria between humans and 245 

animals within households. Therefore, a national antimicrobial monitoring program should be 246 

put in place to track the marketing and consumption of antimicrobial agents, including the 247 

quantity and reasons of antimicrobial drug usage in humans and animals [7,17,21]. 248 



The blaCTX-M-15 gene was the most prevalent ESBL-encoding gene in humans, animals and 249 

environment, and was carried by different plasmids, mainly of the IncF group, but also of the 250 

IncN, IncY, IncH, and IncK groups. This suggests that blaCTX-M-15-carrying plasmids are 251 

widely exchanged among humans, animals and environments, and may be responsible for the 252 

increasing ESBL-PE rate in this region. This hypothesis should be confirmed by detailed 253 

genetic studies.  254 

Despite the data paucity, CPE prevalence among human isolates varied between 4% and 27% 255 

in Central and West Africa. CPE were mainly detected in E. coli and K. pneumoniae isolates, 256 

and less frequently in other Enterobacteriaceae, such as Enterobacter cloacae, Klebsiella 257 

aerogenes, Citrobacter freundii and Morganella morganii. Class D carbapenemases 258 

(especially OXA-181) were the most reported enzymes in Central and West Africa. All the 259 

available publications found that blaOXA-181 was associated with the IncX3 plasmid. OXA-260 

181, a variant of OXA-48, was first identified in different Enterobacteriaceae isolates from 261 

Indian patients [50], and has spread in different countries, including Africa [4,51]. 262 

Our results also indicate that many variants of the metallo-ß-lactamase NDM are produced by 263 

different Enterobacteriaceae species. NDM-1 was identified in E. coli and K. pneumoniae 264 

isolates from Angola, Nigeria and Ghana [45,46,52–57], NDM-4 in E. coli isolates from 265 

Cameroon [58], NDM-5 in E. coli, K. pneumoniae and E. cloacae from Angola, Chad and 266 

Togo [46,59,60], and NDM-7 in K. pneumoniae and E. cloacae from Gabon [61]. Hence, 267 

NDM-producing Enterobacteriaceae are considered to be endemic CPE in North African 268 

countries [62]. In addition, other metallo-ß-lactamase-encoding genes, such as blaVIM and 269 

blaDIM, were detected only in E. coli and K. pneumoniae isolates from Nigeria and Sierra 270 

Leone [52,53,63]. Unlike North America and Europe where blaKPC is the most common β-271 

lactamase gene in CPE isolates, KPC-producing E. coli was detected only in Nigeria [52]. 272 

 273 



5. Conclusions 274 

This review on ESBL-PE and CPE in humans, animals and environments in Central and West 275 

Africa confirms the dissemination of ß-lactamase-producing Enterobacteriaceae in this 276 

region of the world. 277 

Our findings highlight the paucity of data on ESBL-PE and CPE in animals and the 278 

environment. They also emphasize the urgent need to improve active surveillance programs in 279 

each country and to support antimicrobial stewardship.  280 
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1366 studies identified through PubMed, African 
journals Online and Google Scholar 

1366 studies reviewed by title and abstract 

165 full text studies 
assessed and included 

1201 studies that did not meet to 
the selection criteria were excluded 

- 136 in humans 
- 6 in humans and animals  
- 13 in animals 
- 1 in humans and environments 
- 8 in the environment 
- 1 in humans, animals and 
environment 

118 from West Africa  
47 from Central Africa 

Figure 1: Flow diagram summarizing article identification and selection 



 

 
Figure 2: Geographic distribution of carbapenemases produced by Enterobacteriaceae isolates 

in the West and Central Africa region.  



 

Table 1: Prevalence and genetic determinants of extended-spectrum ß-lactamase-producing Enterobacteriaceae isolated in humans, animals 

and environments in West and Central Africa. 

ESBL type (%) Origin Incompatibility group ESBL-PE 

prevalence 

Country References 

CTX-M-15 (98%) 

 

 

 

SHV-12 (2%)  

Humans 

 

 

 

 

 

IncF [30% (100% associated with CTX-M-15)]  

IncHI2 [15% (100% associated with CTX-M-15)] 

IncY [20% (100% associated with CTX-M-15)] 

NT [35% (100% associated with CTX-M-15)] 

NA 

22% Angola [44] 

CTX-M-15 (100%) Animals IncF [45.5% (100% associated with CTX-M-15)] 

IncY [36.4% (100% associated with CTX-M-15)] 

NT [18.2% (100% associated with CTX-M-15)] 

75%  [23,44] 

CTX-M-15 (100%) Humans NA 35-65% Benin [42,47,49] 

 

CTX-M 

 

Environments  

 

NA 

 

15% 

  

[36,42] 

CTX-M-15 (94%) 

SHV-12 (6%) 

Humans NA 32-58% Burkina Faso [64,65] 

 

SHV-100 

 

Environments 

 

NA 

 

NA 

  

[37] 

CTX-M-15 (97%) Humans IncF [100% (100% associated with CTX-M-15)] 12-55% Cameroon [66–70] 

SHV-12 (3%)  NA    

 

CTX-M-15 (100%) 

 

Animals 

 

IncF [100% (100% associated with CTX-M-15)] 

 

21% 

  

[16,18] 

CTX-M-15 (65%) Humans IncF [89% (100% associated with CTX-M-15)] 

IncHI2 [4% (100% associated with CTX-M-15)] 

NT [7% (100% associated with CTX-M-15)] 

4-63% CAR [71–74] 

CTX-M-3 (5%)  NA    

SHV-12 (20%)  NA    

SHV-2a (10%)  NA    

 

CTX-M-15 (100%) 

 

Animals 

 

NA 

   

[32] 

CTX-M-15 (96%) 

CTX-M-9 (4%) 

Humans IncF [100% (100% associated with CTX-M-15)] 48% Chad [59,75,76] 

CTX-M-15 (98%) Humans IncF [24% (100% associated with CTX-M-15)] 27-56% Côte d’Ivoire [22,77] 



 

 IncN [6% (100% associated with CTX-M-15)] 

IncR [6% (100% associated with CTX-M-15)] 

NT [64% (100% associated with CTX-M-15)] 

SHV-12 (2%)  NA    

 

CTX-M-15 (100%) 

 

Animals 

 

IncF, IncR 

 

32% 

  

[22] 

CTX-M-15 (100%) Humans IncY [100% (100% associated with CTX-M-15)] 50% DRC  

 

CTX-M-1(100%) 

 

Environments 

 

NA 

 

7% 

  

CTX-M-15 (90%) 

CTX-M-1 (3%) 

CTX-M-8 (7%) 

Humans NA 45-51% Gabon  [78,79] 

 

CTX-M-1 (35%) 

CTX-M-14 (55%) 

CTX-M-32 (10%) 

 

Animals 

 

NA 

 

23% 

  

[80] 

CTX-M-15 (98%) 

CTX-M-27 (2%) 

Humans IncF [100% (98% associated with CTX-M-15 and 2% with CTX-M-

27)] 

49-62% Ghana  [81] 

      

CTX-M-15 (77%) 

CTX-M-1 (6%) CTX-M-

2 (6%) CTX-M-14 

(8%) SHV-12 (3%) 

Animals NA 36%  [27,28] 

CTX-M Humans NA 32% Guinea Bissau [82] 

CTX-M-15 (67%) 

CTX-M-14 (17%) 

CTX-M-9(16%) 

Animals IncF [100% (98% and 16% associated with CTX-M-15, CTX-M-14 

and CTX-M-9, respectively)] 

20% Guinea [24] 

CTX-M-15 (82%)  

CTX-M-14 (9%) 

SHV-12 (8%) SHV-27 

(1%) 

Humans NA 58% Mali  [83–86] 

CTX-M-15 (82%) CTX-

M-27 (15%) SHV-12 

(3%) 

Environments NA NA  [38] 

CTX-M-15 (100%) Humans NA 6% Mauritania [87] 

CTX-M-15 (91%)  Humans IncF [57% (100% associated with CTX-M-15)] 31% Niger  [88] 



 

 

SHV-12 (3%) 

SHV-2a (3%) 

SHV-44 (3%) 

NT [43% (100% associated with CTX-M-15)] 

NA 

NA 

NA 

CTX-M-15 (90%) CTX-

M-1 (6%) CTX-M-3 

(4%) 

Humans IncF [54.5% (100% associated with CTX-M-15)] 

IncH [27.3% (100% associated with CTX-M-15)] 

IncK [18.2% (100% associated with CTX-M-15)] 

 

11-72% Nigeria [33,89–99] 

CTX-M-14 (4%) CTX-

M-15 (92%) CTX-M-

27 (2%) CTX-M-55 

(2%) 

 

Animals IncF [100% (100% associated with CTX-M-15)] 

 

71%  [20,21,30,31] 

CTX-M-15 (72%) SHV-

12 (14%) SHV-2 

(14%) 

Environments IncF [100% (100% associated with CTX-M-15)] 

 

79%  [40,41] 

CTX-M-15 (100%) Humans NA NA São Tomé and 

Príncipe 

[100] 

CTX-M-15 (60%)  

SHV-12 (30%) 

SHV-2 (10%) 

Humans IncHI2 (50%), IncN (33%), IncF (17%) 

IncHI2 (100%) 

IncN (100%) 

26-79% Senegal  [101–106] 

CTX-M-15 (100%) Animals NA NA   

CTX-M Humans NA 64% Sierra Leone [107] 

CTX-M Humans NA 22-55% Togo  [108] 

ESBL-PE: Extended-spectrum ß-lactamase- producing Enterobacteriaceae; NA: not available; NT: not typeable; CAR: Central Africa Republic ; DRC: Democratic 

Republic of Congo. 

 

 

 

 




