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Abstract

Explicit formulas expressing the solution to non-autonomous differential equations are of
great importance in many application domains such as control theory or numerical operator
splitting. In particular, intrinsic formulas allowing to decouple time-dependent features from
geometry-dependent features of the solution have been extensively studied.

First, we give a didactic review of classical expansions for formal linear differential equa-
tions, including the celebrated Magnus expansion (associated with coordinates of the first
kind) and Sussmann’s infinite product expansion (associated with coordinates of the second
kind). Inspired by quantum mechanics, we introduce a new mixed expansion, designed to
isolate the role of a time-invariant drift from the role of a time-varying perturbation.

Second, in the context of nonlinear ordinary differential equations driven by regular vector
fields, we give rigorous proofs of error estimates between the exact solution and finite approx-
imations of the formal expansions. In particular, we derive new estimates focusing on the role
of time-varying perturbations. For scalar-input systems, we derive new estimates involving
only a weak Sobolev norm of the input.

Third, we investigate the local convergence of these expansions. We recall known positive
results for nilpotent dynamics and for linear dynamics. Nevertheless, we also exhibit arbitrarily
small analytic vector fields for which the convergence of the Magnus expansion fails, even in
very weak senses. We state an open problem concerning the convergence of Sussmann’s infinite
product expansion.

Eventually, we derive approximate direct intrinsic representations for the state and discuss
their link with the choice of an appropriate change of coordinates.
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1 Introduction

1.1 DMotivations

There are multiple situations in which one desires to compute the solution to a differential equation
whose dynamics depend on time. One often looks for explicit formulas, depending preferentially on
intrinsic quantities, which describe the composition of flows, or even the continuous composition
of flows. Some important applications are listed below.



e Control theory. Here, the dynamics depend on time mostly through the choice of time-
varying controls. One looks for explicit formulas of the continuous product of flows in order
to be able to construct controls for which this resulting flow drives a given initial state to a de-
sired target state. In order to establish necessary and sufficient conditions for controllability,
one is interested in intrinsic formulas. It is our main motivation.

e Numerical splitting methods. Here, the splitting algorithm applies sequentially a suc-
cession of basic flows, composed with appropriate time steps. One is interested in choosing
correctly the base flows and the time steps in order to approximate the most precisely possi-
ble the solution to the true complex flow. Formulas concerning the composition of flows are
essential to compute the order of the resulting numerical scheme. We refer to the survey [20]
and the introduction books [19, 58]. Composition of flows formulas are also very useful in
particular settings like Hamiltonian systems [22] or in the presence of a small perturbation of
a reference flow [81]. Concerning numerical methods, more generally, we refer to [82] (respec-
tively [37]) for a survey on Butcher series (resp. post-Lie algebras), algebraic tools related to
the algebras manipulated in the sequel.

e Stochastic differential equations. Here, the dynamics depend on time through the
sources of randomness, say Brownian motions. One wishes to investigate the influence of
the randomness on the final state and thus looks for explicit formulas involving iterated
Stratanovich integrals to construct a representation of the flow, see e.g. [12, 15, 28, 32].

¢ Differential equations on Lie groups. Sometimes, the state itself of the differential
equation belongs to a Lie group, as in [64]. Then, looking for an intrinsic approximation of
the state helps to preserve structure which would be lost otherwise. In particular, writing the
product of multiple flows as a single flow is important. There are also control problems for
differential equations set on Lie groups, as in [67]. Some works, e.g. [30], also tackle the hard
question of obtaining Magnus-type expansions, which are intrinsically linear, for nonlinear
equations within matrix Lie groups.

e Analysis of time-periodic systems. When investigating the behavior of time-periodic
systems, some authors borrow tools from “chronological calculus” or expressions of the “log-
arithm of the flow” (described below). For example, such techniques are used to study
stability and asymptotic stability of time-periodic systems of ODEs; see the non linear Flo-
quet Theorem 3.2 and the high-order averaging procedure Theorem 7.1 in [93], or the recent
higher-order averaging results of [79].

1.2 Short historical survey

We start with a short survey of some of the many approaches related with the computation of
solutions to formal linear differential equations, say

o(t) = X (t)x(t), (1)

together with some initial condition x(0). We recall in Section 1.2.4 the consequences of such
results for nonlinear ordinary differential equations.

1.2.1 Iterated integration and Chen-Fliess expansion

A straightforward approach to solving (1) consists in what can be seen as a Picard iteration.
For small times, starting from the initial approximation z(¢) ~ x(0), one then enhances the ap-
proximation iteratively by substituting it in the equation and obtains successively z(t) ~ x(0) +
f(f X (s)z(0)ds, then z(t) ~ z(0) + fOtX(s)x(O) ds + fot X(s) [, X(s")2(0)ds’ ds and so on.

In the context of control theory, this expansion is known as the Chen-Fliess expansion, after
being popularized by the works [33, 45]. Its main advantages are its simplicity and nice convergence



properties (see Section 5.1). However, it also has some strong drawbacks, which we detail in
Remark 17 and Remark 167 and motivate the investigation of other expansions.

1.2.2 Magnus expansion

When X (¢) is piecewise constant, for example with values X; for ¢ € [0,1] and X» for ¢ € [1,2],
one has formally, 2(2) = e*X2eX12(0). Hence, the computation of solutions to (1) has a deep link
with the famous Campbell [29], Baker [11], Hausdorff [61], Dynkin [40] formula (“CBHD formula”
in the sequel).

This formula has a long and rich history which involves forgotten contributions of other authors
such as Schur, Poincaré, Pascal or Yosida. As noted by Bourbaki in [25], “chacun considére
que les démonstrations de ses prédécesseurs ne sont pas convaincantes” (each one considers that
the proofs of his predecessors are not convincing). We therefore encourage the reader to dive
into the fascinating retrospectives [2] and [23] to understand the progressive construction of its
proof throughout the decades. This formula is a formal identity expressing the product of the
exponentials of two (non-commutative) indeterminates X; and X, as the single exponential of a
series of Lie brackets (i.e. nested commutators) of these indeterminates, of which the first terms
are well-known:

1
€X2@X1 = exp <X1+X2+2[X2,X1]+) . (2)

When more than two exponentials are multiplied, say eX* through eX", one can of course iterate the
formula (2) with itself to formally express the product of n exponentials as the single exponential
of a complicated series. Letting n — +o00, one is lead to computing a continuous product of
exponentials, which corresponds, heuristically, to solving (1).

Magnus performed a breakthrough by deriving in [80] the first formal representation of the
solution to (1) as the exponential of a series, of which the first terms are

2(t) = exp (/OtX(ﬁ)dn + ;/Ot /On [X (1), X (r2)] dradrs + - ) 2(0). (3)

This formula can be seen as the continuous counterpart of the CBHD formula and highlights
important structural properties of the solutions to (1) (see Section 2.3).

1.2.3 Infinite products

The CBHD formula and the Magnus formula share the goal of expressing the desired quantity
as the exponential of a single, although complicated, object. Other approaches go the other way
around and try to express the desired quantity as a long (infinite) product of exponentials of very
simple objects.

A well-known example is the Lie-Trotter product formula (see e.g. [101]), often used for numer-
ical splitting methods which attempts to give a meaning to the equality

X1t X2 = im (e%e%)n, (4)
n—-+oo
the interest relying on the fact that the exponentials of X; and X5 are assumed to be easier to
compute in some sense than the direct exponential of X7 + Xo.
Another related formula is the Zassenhaus expansion, described by Magnus in [80], which
allows to decompose the same quantity eX'*X2 as an infinite product of exponentials of linear
combinations of nested commutators of strictly increasing lengths, whose first terms are

—
(%))
~

1 1 1
eX1+X2 = eX16X2 exp (—2[X1,X2]) exp <3[X2, [Xl,XQ]] + E[Xh [Xl,XQ]]> c.



In the context of differential equations such as (1), a nice formula is Sussmann’s infinite product
expansion, introduced in [100]. When X () is given as a linear combination of elementary genera-
tors, e.g. X(t) = a1(t) X1 + a2(t) X2, Sussmann’s infinite product expansion is given by a product
of exponentials of Lie monomials, such as

2(t) = €670 (62 (E121X0 o] 61120 [0, Xal] anal X [0 X011 ), (6)

where the ; are scalar functions of time given by explicit formulas from the functions a; and as.
Compared to other expansions, this formula is both intrinsic (such as the Magnus expansion) and
involves coefficients which are easily computed by induction (such as the Chen-Fliess expansion).

1.2.4 Consequences for nonlinear ordinary differential equations

Although the expansions mentioned above concern linear formal differential equations, they can
be adapted to ordinary nonlinear differential equations on smooth manifolds governed by smooth
vector fields. Indeed, one can identify vector fields with linear operators acting on smooth functions,
and points of the manifold with the linear operator on smooth functions corresponding to evaluation
at this point. This method allows to recast the nonlinear equation into a linear equation set on a
larger space, for which the formal linear expansions can be used (see Section 4.1).

This linearization technique has been used by Sussmann in [99, Proposition 4.3] to prove the
convergence of the Chen-Fliess expansion for nonlinear ordinary differential equations driven by
analytic vector fields, by Agrachev and Gamkrelidze in the context of control theory (see [3, 4, 49]
in which they derive an exponential representation of flows, very similar to Magnus’ expansion,
using the chronological calculus framework) and by Strichartz (see [97] and his derivation of the
generalized CBHD formula, with applications related to sub-Riemannian geometry).

At a formal level, all identities mentioned above (almost) always make sense. However, if
the indeterminates are replaced by objects coming from analysis (say vector fields, matrices or
differential operators), convergence issues arise. Generally speaking, convergence often requires
that one either assumes that the objects are small enough or that the generated Lie algebra has
additional structure, like nilpotence.

1.3 Main goals and organization of this article

This article is both a survey on some classical expansions for nonlinear systems, a research article
containing new results and counter-examples and a toolbox for future works. In particular, we aim
at the following goals.

e In Section 2 we give a didactic review of classical expansions for formal linear differ-
ential equations. Our introduction to this algebraic topic is written with a view to making
it understandable by readers with minimal algebraic background. We review the following
classical expansions:

1. the Chen-Fliess formula,
2. the Magnus or generalized CBHD formula (associated with coordinates of the first kind),
3. Sussmann’s infinite product formula (associated with coordinates of the second kind).
e We introduce a new formal mixed expansion, inspired by quantum mechanics, designed
to isolate the role of a time-invariant drift from the role of a time-varying perturbation (see

Theorem 41), which we name Magnus expansion in the interaction picture and for which we
define coordinates of the pseudo-first kind by analogy with first and second kind coordinates.

e We recall in Section 3 classical well-posedness results and estimates for products and
Lie brackets of analytic vector fields, which are used throughout the article.
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In the context of nonlinear ordinary differential equations driven by regular vector fields,
we give in Section 4 rigorous proofs of error estimates between the exact solution and
finite approximations of each of these four formal expansions. These estimates are part of
the mathematical folklore for the Chen-Fliess and Magnus expansions, but are new for our
mixed expansion (see Proposition 99) and for Sussmann’s infinite product expansion (see
Proposition 104). We strive towards providing estimates with similar structures for the four
expansions and which are valid under parsimonious regularity assumptions.

We investigate the convergence of these expansions in Section 5. We recall known positive
convergence results for smooth vector fields generating nilpotent Lie algebras and for small
linear dynamics (matrices). For our new expansion, we investigate the subtle convergence
under a natural partial nilpotency assumption (see Corollary 122). In this case, convergence
requires analyticity, contrary to the proofs we give for the other expansions under a full
nilpotency assumption.

For analytic vector fields, only the Chen-Fliess expansion is known to converge. We give
in Section 5.2 new strong counter examples to the convergence of CBHD and Magnus
expansions, which disprove the convergence of these expansions even for analytic vector
fields and in very weak senses (see Proposition 114). We state an open problem concerning the
convergence of Sussmann’s infinite product for analytic vector fields (see Open problem 135).

When the system involves a time-invariant drift and a time-varying perturbation, we show
in Section 6 that only the Magnus expansion fails to provide well-behaved estimates
with respect to the perturbation size. For the three other expansions, it turns out to
be possible to obtain such estimates by summing well-defined infinite partial series which
converge for analytical vector fields (see mostly Propositions 139 and 143).

In the particular case of scalar-input systems, we prove in Section 7 new errors estimates
involving a negative Sobolev norm of the time-varying input (see mostly Propo-
sitions 149 and 157). Such estimates are the best compatible with the regularity of the
input-to-state map and can be helpful for specific applications.

Eventually, we derive in Section 8 approximate direct intrinsic representations of
the state for nonlinear systems, which don’t require the computation of flows (see Propo-
sition 161). Our formulas can be viewed as almost-diffeomorphisms and might be useful
for applications in control theory. Unfortunately, we also study a counter-example which
demonstrates that one cannot obtain an exact representation through a diffeomorphism.

Formal expansions for linear dynamics

In this section, we consider formal linear differential equations, recall classical expansions valid
in this formal setting (for which there is no convergence issue; see nevertheless Remark 12) and
introduce a new mixed expansion which isolates the role of a perturbation in the dynamics. Here
and in the sequel, the adjective formal denotes situations in which we work within the realm of
formal power series (see Definition 11).

2.1

Notations

We recall classical definitions and notations for usual algebraic objects. In the sequel, K denotes
the field R or C. All statements and proofs hold for both base fields. It will be implicit that all
vector spaces and algebras are constructed from the base field K.



2.1.1 Free algebras
We refer to the books [65, 90] for thorough introductions to Lie algebras and free Lie algebras.

Definition 1 (Indeterminates). Let I be a finite set. At the formal level, we consider a set
X = {X;; ¢ € I} of indeterminates, indexed by I. For applications, we will substitute in their
place matrices or vector fields. Most often, we will write I = [1,q] for some ¢ € N*, or I = [0, q]
when we want to isolate the role of the indeterminate Xg.

Definition 2 (Free monoid). For I as above, we denote by I* the free monoid over I, i.e. the set
of finite sequences of elements of I endowed with the concatenation operation. More precisely, if
0 = (04)1<i<e and o' = (0})1<i<er are elements of I*, then the concatenation of o and o’ is the
sequence 0 -0’ = (0! )i<i<ere where o =o0; if 1 <i<lando! =o,_, if C+1<i<{+/{. Itis
common to write the elements of I* as words whose letters are elements of I, by juztaposition of the
elements of the sequence. With this point of view, the concatenation operation is the juxtaposition
of words. For a more detailed exposition, see [26, §7.2].

For 0 = (01,...01) € I*, where k is the length of o also denoted by |o|, we let X, :=
Xo, -+ Xo,. This operation defines an homomorphism from I* to X*, the free monoid over X
(monomials over X ).

Definition 3 (Free algebra). For X as above, we consider A(X) the free associative algebra gener-
ated by X over the field K, i.e. the unital associative algebra of polynomials of the non commutative
indeterminates X (see also [26, Chapter 3, Section 2.7, Definition 2/). A(X) can be seen as a
graded algebra:
A(X) = PA(X), (7)
neN
where A, (X) is the finite-dimensional K-vector space spanned by monomials of degree n over X.
In particular Ag(X) =K and A;(X) = spang(X).

Definition 4 (Free Lie algebra). For X as above, A(X) is endowed with a natural structure of
Lie algebra, the Lie bracket operation being defined by [a,b] = ab — ba. This operation satisfies
[a,a] = 0 and the Jacobi identity [a,[b, c]] + [c,[a,b]] + [b, [¢,a]] = 0. We also write [a,b] as ad,(b)
(respectively ady(a)) which allows for iterated left (resp. right) bracketing. We consider £(X), the
free Lie algebra generated by X over the field K, which is defined as the Lie subalgebra generated
by X in A(X). It can be seen as the smallest linear subspace of A(X) containing all elements of
X and stable by the Lie bracket (see also [90, Theorem 0.4]). L(X) is a graded Lie algebra:

L(X) = @ﬁn(X)a (L1 (X), L(X)] C Lintn(X) (8)

neN
where, for each n € N, we define L,(X) := L(X) N A, (X).

Definition 5 (Nilpotent Lie algebra). Let L be a Lie algebra. We define recursively the following
two-sided Lie ideals: L' := L and, for k > 1, L**1 := [L, L*] i.e. L¥*1 is the linear subspace of
L generated by brackets of the form [a,b] with a € L and b € L*. Let m € N*. We say that L is
a nilpotent Lie algebra of index m when L™ = {0} and m is the smallest integer for which this
property holds.

Definition 6 (Free nilpotent Lie algebra). Let m € N*. The free m-nilpotent Lie algebra over X
is the quotient Npp(X) := L(X)/L(X)™ (with the notation of Definition 5). Then the canonical
surjection o, : L(X) — Ny (X) is an homomorphism of Lie algebras.

The universal properties of the various free algebras constructed above allow to transport on
algebras relations proved at the free level.

Lemma 7. The following universal properties hold.



e For each unital associative algebra A and map A : X — A, there exists a unique homomor-
phism of algebras A(X) — A that extends A.

e For each Lie algebra L and map A : X — L, there exists a unique homomorphism of Lie
algebras L(X) — L that extends A.

o Let m € N*. For each nilpotent Lie algebra L of index m and map A : X — L, there exists
a unique homomorphism of Lie algebras N,,,(X) — L that extends A.

2.1.2 Iterated brackets and evaluation

Definition 8 (Iterated brackets). For X as above, we consider Br(X) the set of iterated brackets of
elements of X. This set can be defined by induction: for X; € X, X; € Br(X) and if by, bs € Br(X),
then the ordered pair (by,bs) belongs to Br(X). More rigorously, one can define Br(X) as the free
magma over X or as the set of rooted full binary trees, with leaves labeled by X .

For b € Br(X), we will use the following notations:
e |b| will denote the length of b (i.e. the number of leaves of the tree).

o If |b| > 1, there exists a unique pair b; € Br(X) and by € Br(X) such that b = (b1, b2) (left
and right factors) which are denoted as A(b) = by and p(b) = be. We also write (b1, b2) as
ady, (b2) (respectively ad,, (b1)) which allows iterated left (resp. right) bracketing.

e For i € I, n;(b) denotes the number of occurrences of the indeterminate X; in b. When
I =0, q] we will also write n(b) = ny(b) + - - - + ngy(b) = |b| — no(b).

Remark 9. There is a natural evaluation mapping E from Br(X) to L(X) defined by induction
by B(X;) = X; for X; € X and E((b1,b2)) := [E(b1),E(b2)]. Through this mapping, Br(X) spans
L(X) over K, i.e. L(X) = spang E(Br(X)). This mapping is however not injective: for example,
(X1, X1) and (X3, (X1,X1)) are two different elements of Br(X), both evaluated to zero in L(X).

More precisely, the E map extends to a surjective homomorphism of algebras from the nonasso-
ciative free algebra over X (which is the free vector space over Br(X), whose elements are (finite)
linear combinations of elements of Br(X), endowed with the natural product map induced by the
product in Br(X)). Moreover the kernel of the extended E is precisely the ideal generated by the
relations that define anticommutativity and the Jacobi identity in L(X). This gives an alternative
description of L(X) as a quotient of the free vector space over Br(X).

Definition 10 (Subspaces of brackets). When I = [0,q] and M € N, Sy, denotes the vector
subspace L(X) defined by

S = spang {E(b); b€ Br(X),n(b) < M}. (9)

2.1.3 Formal power series, exponential and logarithms

Definition 11 (Formal power series). We consider the (unital associative) algebra ﬁ(X) of formal
power series generated by A(X). An element a € A(X) is a sequence a = (an)nen written a =
Y nen n, where a, € Ay (X) with, in particular, ag € K being its constant term. We also define
the Lie algebra of formal Lie series E(X) as the Lie algebra of formal power series a € .Z(X) for
which a, € L(X) for eachn € N. For a € A(X) and o € I*, {a, X,) denotes the coefficient of X,
inaa=7y c.{a,X:)Xs.

Remark 12. The definition of .Z(X) can be made more rigorous by considering val : A(X) —
N U {oo} defined by val(a) := inf{n € N;a € @, Ar(X)}. Then d(a,d) := e~ vallb=a) s g
distance on A(X), that induces the discrete topology on each A,(X), and A(X) is defined as



the completion of the metric space A(X), to which the operations on A(X) naturally extend as
continuous operations, endowing it with a structure of topological algebra. This distance verifies a
stronger triangular inequality: 0(a,b) < max{d(a,c),d(b,c)} (usually referred to as the ultrametric
inequality ). This construction allows to write, for a € .Z(X) with components a,, € A,(X),

a= lim Zan, (10)

N—+o00
n<N

where the convergence holds with respect to the topology described above. This justifies the notation
a =) .cn0n used in Definition 11. To avoid confusion with convergence issues associated with
the evaluation of formal power series when substituting the indeterminates by objects coming from
analysis we shall however not use the term convergence in this context.

If a € A(X) has zero constant term, we define exp(a) € A(X) and log(1 + a) € A(X) as

m

exp(a) := Z %, (11)
m>0 ’
log(1+a) := Z Plgnimilam. (12)
m>1

Since a has zero constant term, one checks that the right-hand sides of (11) and (12) indeed define
formal power series of A(X) (and the sums converge in the sense of the topology constructed in
Remark 12). In particular, log(exp(a)) = a and exp(log(l +a)) =1+ a.

Lemma 13. Let a,b € .Z(X) with zero constant term. Then a = b if and only if exp(a) = exp(b).

Proof. The forward implication is obvious. Conversely, if exp(a) = exp(b) in ﬁ(X ), then, for every
r > 1, their components in A, are equal. Moreover, from (11), one has:

(exp(@), =3 Y % =4, + 0, (a1, .. ar_1), (13)

k=1ri+..rp=7

for some function ©, depending only on the a,. for v’ < r. Hence, we obtain by induction on r» > 1
that a, = b, from the equalities (exp(a)), = (exp(b));. O

2.2 Formal differential equations and iterated integrals
Using the notations of Section 2.1, for i € I, let a; € L'(R,;K) and define a by
at) = a;(t)X;. (14)
el

In this section, we consider the following formal ordinary differential equation set on E(X ), driven
by a and associated with some initial data x*,

{fb(t) = x(t)a(t),

*
9

(15)

whose solutions are precisely defined in the following way.

Definition 14 (Solution to a formal differential equation). Let a; € L*(Ry;K) fori € I and define
a by (14). Let * € A(X) with homogeneous components x, € A, (X). The solution to the formal
differential equation (15) is the formal-series valued function x : Ry — A(X), whose homogeneous



components T, : Ry — A, (X) are the unique continuous functions that satisfy, for every t > 0,
xo(t) = x§ and, for every n € N*,

t
Ta(t) = 2%+ / Enr(r)a(r) dr. (16)
0
Definition 15 (Ordered simplex). For r € N* and t > 0, we introduce
AT(t) ={(r1,..., 7)€ (0,t)"; 0< T <+ <7 <t} (17)

Iterating this integral formula yields the following power series expansion, which is the most
direct way to compute the solution to (15) and was introduced in [33, 34] and popularized in control
theory by [45]. In the “chronological calculus” terminology (not used in the present article), it is
called “(right) formal Volterra chronological series” [3, Section 1.5].

Lemma 16 (Chen series). In the context of Definition 14, the solution to (15) with initial data

x* =1 can be expanded as
t
Jf(t) = Z (/ ao) Xo, (18)
0

oel*

where fot ap =1 by convention and, for o € I* with |o| > 1, we introduce the notation

/Ot Gy = /n(t) g, (T1) - - g, () AT (19)

Proof. Expansion (18) is a direct consequence of the iterated application of (16) and of the defini-
tion of X, in Definition 2 and can be proved by induction on the length of o. O

Remark 17. Despite its simplicity, the Chen series suffers from a major drawback: it involves
non intrinsic quantities and is redundant. As an illustration, this has the following consequences:

o The functionals fot as for o € I* are not algebraically independent. For example, for every
solution to (15) and every t > 0, one has the identity

(x(t), X1 X2) + (2(t), Xo X1) — (2(t), Xa)(z(t), X2) = 0 (20)

e In the context of nonlinear ordinary differential equations, the representation (18) can fail to
converge for smooth vector fields despite strong structural assumptions (see Section 5.1.1).

e In the context of nonlinear ordinary differential equations, the representation (18) will not
be invariant by diffeomorphism (see Remark 167), which would be a desirable invariance.

This drawback motivates the search for more intrinsic representations of the solutions, which will
turn out to involve Lie algebras.

The Chen series give rise to Fliess operators (stemming from [45, 46]) which can be defined,
given some ¢ € A(X), as a Y ooer e Xo) fot a,. Such operators are well-defined (converge)
provided that the coefficients (¢, X,,) satisfy an appropriate asymptotic behavior. Fliess operators
can be used to model input-output systems and feedback groups. For manipulations of such
operators thanks to an underlying Hopf algebra structure, we refer to [53, 54, 55, 56], which
investigate the question of whether an interconnection of such operators remains a Fliess operator,
and its convergence, both in scalar and multivariate settings. See also [57] for the investigation of
global convergence issues, and realization of such formal operators on concrete systems.
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2.3 Logarithm of flows, coordinates of the first kind

In the particular case where a(t) is a constant element a € A; (X), evaluating the iterated integrals
in (19) yields the elegant formula x(t) = z* exp(ta), with the notation of (11). Of course, it is no
longer valid for a time-varying dynamic (because the indeterminates do not commute), but one
can wish to find an object of which the flow is the exponential, the logarithm of the flow.

In this section, we recall and prove Theorem 27, which states that the logarithm of flows of
formal linear differential equations is given by explicit Lie brackets. The key argument is the
structure result Theorem 20, which states that the logarithm of the flow is a Lie series, and of
which we give an elementary proof based on the differential equation satisfied by the logarithm
of the flow. We rely on well-known algebraic results, which we recall, for the sake of giving a
self-contained presentation.

2.3.1 A differential equation for the logarithm of the flow

We start by deriving the formal differential equation (23) satisfied by the logarithm of the flow.
This equation is well-known (see e.g. [80, Theorem III], [34, Theorem 4.1] or [3, formula (5.2)]).
We provide an elementary derivation (see Remark 19).

Proposition 18. The following statements hold.

1. Let T > 0 and z € CY([0,T); A(X)). Then, for everyt € [0,T),

(="

S () = exp(=(0) 3 = ad (5(0). (21)
n=0

2. Let a be given by (14) and x denote the solution to (15) with initial data ©* = 1. Then
z :=logx satisfies, for almost every t € Ry,

o DT
D Gy M G0) = alt), (22)
n=0
+oo n
s = 3 TP (o), (23)

n=0
where the Bernoulli numbers (By)nen are defined in (527).
Proof. We prove the two claims successively.

1. The regularity assumption z € C*([0,T]; A(X)) is to be understood component by compo-
nent, i.e. means that for each o € I*, t — (z(t), X,;) belongs to C1([0,7]; K). We have

+oo Zk +oo k ' .
%exp(z(t)) = % (Z k('t>> = G i 0 ZZJ(t)z'(t)zk—J (t)

k=0

B +o00 (71)1 . +o00 1 k ; . -
= exp(x() (3 A1) R ILIOLOEI)

=0

Letting n:= k + 1 and i := [ + j, we obtain that

+oo n ’
% exp(z(t)) = exp(z(t)) n;) (n%l)‘ ; Zi(t)é(t)znfi(t) l:0( 1)l <Tl -ll- 1> (25)



The following formulas, which can be proved by induction using Pascal’s rule,

S (") = e (), (26)

=0

i(—l)i (n) 2y = (1) ad”(y) (27)

give the conclusion. Of course, if z € W1((0,T); A(X)) (i.e. absolutely continuous), equa-

tions (21) remains true as an equality in L'((0,7);.A(X)), i.e. holding for almost every
te(0,7).

2. Since z = logz and & = za, (22) is an immediate consequence of (21), using the preceding
comment since both x and z have W! regularity in time when a has L' regularity in time.

Starting from (22) and applying Y, (—1)* By /k! adlz(t) to both sides yields (23) because

too Nk too  oyg
> ( 1}3, Be 5 (2 :i)' adf 1 (2(t)) = £(1). (28)
k= S !

o

This follows from the change of index n := k + ¢ and the combinatorial relation (529). O

Remark 19. The historical proofs of Proposition 18 are written using the Poisson bracket notation
{-, 2%} := (=1)* ad® () which allows to write (23) as the nice equality

z'_{a,ej_l}, (29)

using the generating series (527) of the Bernoulli numbers. This approach allows elegant compu-
tations, but requires some setup (see [80, Section III] or [34, Section 1]), which is why we prefer
here the elementary computations used in the preceding proof.

2.3.2 The logarithm of the flow is a Lie series

The fundamental result concerning the logarithm of the flow is that it is a Lie series. We repeat here
the proof given in [34, Theorem 4.2] for the sake of completeness. At least two other approaches
can be used: one relying on shuffle relations and Ree’s theorem (see Appendix A.1) and another
one relying on Friedrich’s criterion (see Appendix A.2).

Theorem 20. Let a be given by (14) and x be the solution to (15) with initial data x* = 1. Then,
for every t > 0, logx(t) € L(X).

Proof. The proof relies on an iterated integration of (23), where z = logz. More precisely, writing
z =Y z, where z, € A,(X), we prove by induction on n that, for every t, z,(t) € L(X). First,
for every t > 0, since xo(t) = 1, one has z(t) = 0 so zo(t) € L(X). Then, for every n > 1, by (23),

n—1 C1\k
an =3 CFPE S 0, B0, (0,00 (30)

k=0 : ni+---+ng=n—1

where the sum ranges over indexes n; > 1. Moreover, for every T > 0 and y € L*((0,7); £(X))
one checks that, for every ¢t € [0, 7], foty € L£(X). By the induction assumption, z,,(t) € L(X)
for each n; < n — 1 and every t. By the previous comment, this property is preserved by the
time-integration of (30), so z,(t) € L(X) for every t. O
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2.3.3 Notations

We start with an abstract definition of the truncated logarithm of a time-dependent dynamic.

Definition 21. For m,r € N*, we define the set of ordered positive partitions of size m of r,
N ={r=(r1,....vn) € N)"; r1 +---+1r,, =1}, (31)
where NI = () when r < m. For each r € N and t > 0, we also define the product of simplexes
AT(t) == ATH(E) x -+ X AT (1), (32)
Example 22. The sets A™(t) will be used as integration domains. As easy examples, one has

A(?’)(t) ={r=(r1,70,73) €(0,1)3 0< 7 <7 <3<t} (33)
A(l’l"l)(t) = {1 = (11,72, 73) € (0,1)%}. (34)

A more complex example forr =4, m =2 and r = (2,2) € N3 is
A(Q’Q)(t) ={r=(r,70,73,71) €(0,); 0<7 <m<tand 0<73<7y<th (35)

We now give a notation for the (truncated or complete) logarithm of a time-dependent dynamic.
We will see in the sequel why this quantity indeed corresponds to a logarithm.

Definition 23 (Abstract logarithm of a time-varying field). Let M € N or M = 400, t > 0 and
F be a map from [0,t] with values in some algebra. We introduce the notation

Loy, (F}(1) =Y Z

1 m—1

S [ b FEFEL R (@

reNm

Remark 24. In such an abstract setting, the right-hand side of (36) does not make sense since
we are not able to define an integral over an abstract algebra (without topology on the algebra and
without time-regularity on F). At this stage, we see (36) as an abstract formula or notation. We
will check, each time we use it, that we can give a meaning to the integrals.

2.3.4 A preliminary algebraic result

Since the monomials form a basis of A(X), one can define the following linear map g from A(X)
to L(X) by setting its values on the monomials by (1) := 0, 8(X;) := X, for 1 < < ¢, and, for
1 <iy,...,0 < q with £ € N*,

B(XilXiz "'Xik) = [ o [XiNXiQ]? . ﬂXZk] (37)

This process defines a standard way, the “left to right” or “left normed” bracketing, to associate a
Lie bracket to each monomial. The following important result, proved successively by Dynkin [39],
Specht [95] and Wever [104] states that, if a polynomial is a Lie element, then it is equal to its left
normed bracketing.

Lemma 25 (Dynkin’s theorem). For a € A,(X), a € L(X) if and only if B(a) = na.
Proof. This statement is contained in the equivalence between (i) and (v) of [90, Theorem 1.4]. O

Example 26. The element X;Xs does not belong to L(X). And indeed, B(X1X3) = X1Xo —
XoX1 # 2X1X3. On the contrary, the element [ X1, Xo] = X1 X5 — X5 X5 belongs to L(X). And
indeed, /B([Xl,XQ]) = (X1X2 — XQXl) — (XQXl — X1X2) = 2[X1,X2].

13



2.3.5 An explicit formula for the logarithm of the flow

We now state an explicit expansion of the state as the exponential of the logarithm of the flow. It
is the continuous analogue of the well-known CBHD formula (which we recall in Section 2.3.7 as a
corollary). It was originally derived by Magnus in [80, Theorem III| and is thus often referred to
as the “Magnus expansion”.

Theorem 27. Fort € R, and 2* € A(X), the solution x to (15) satisfies

z(t) = x" exp (Log{a}(t)) , (38)
with the notation of Definition 23.

Proof. First, by linearity, it suffices to prove (38) for 2* = 1. Repeated integration of (16) yields
the following formula (which is a slightly different form of the Chen series of Lemma, 16),

z(t) =1+ Z/Mt) a(ry)---a(r.)dr. (39)

r>1

Hence, recalling the definitions (31) of N and (32) of A*(¢), one has

log(x Z Z Z /Ar(t) a(ti)a(rz) - - a(r.)dr. (40)

r=1m=1reNm

By Theorem 20, for each t > 0, log(x(t)) € Z(X) Hence, applying Lemma 25 to each of its
homogeneous components in A, proves that

log(x Z Z Z /Ar(t) [+ [a(m1), a(72)], ... a(7:)] dT. (41)

= m=1reNm
Recalling the notation (23) and taking the exponential concludes the proof of (38). O

Magnus expansions (also called BCH expansions) have been extended to more general structures
than Lie algebras, for instance to pre-Lie (another name for “chronological algebras”) and post-Lie
algebras [47], Rota-Baxter algebras [6, 43] and dendriform algebras [41, 42].

2.3.6 Coordinates of the first kind

Although the expansion (41) already has some interest by itself, it is not written on a basis of
L(X), which has some drawbacks. In this paragraph, we define canonical representations for this
expansion, in appropriate bases of £(X).

Definition 28 (Monomial basis). Let B C L(X). We say that B is a basis of L(X) when each
element a € L(X) can be written as a unique finite linear combination of elements of B.  We
say that B is a monomial basis of L(X) when moreover B C E(Br(X)). In particular, for such
bases, if b € B, one can define |b|, n;(b) for i € I and n(b) as in Section 2.1.2 by importing these
notions from Br(X). In particular, for n € N*, we use the notations B,, := {b € B;|b| = n} and
Bpi,np :={b € B; [b] < n}.

Proposition 29. Let B be a monomial basis of L(X). There exists a unique set of functionals
(Co)ven, with ¢, € C° (R+ X LI(R+;K)|I|;K), such that, for every a; € L*(Ry;K), 2* € A(X) and
t >0, the solution to (15) satisfies

x(t) = x* exp (Z Go(t, a)b> . (42)

beB

Moreover, the functionals ¢, are “causal” in the sense that, for every t > 0, (y(t,a) only depends
on the restrictions of the functions a; to [0,t].
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Proof. For each b € B, since B is monomial, only a finite number of summands of the right-
hand side of (41) have a non vanishing component along b (indeed, only terms sharing the same
homogeneity can be involved). Hence, it is clear that the functionals thereby defined are continuous
on Ry x L'(R,;K)?, due to their explicit expression. The sum in (42) is understood in the sense of
a well-defined formal power series. Indeed, for each word o € I'*, only a finite number of elements
b € B have a non-vanishing component (b, X,,). O

Definition 30 (Coordinates of the first kind). The functionals ¢, are usually called coordinates
of the first kind associated to the (monomial) basis B of L(X).

The terminology coordinates of the first kind or first species and the opposition with coordinates
of the second kind (see Section 2.5.3) is classical, see e.g. [24, II1.4.3]. See also Section 2.3.8 for
references concerning the computation of such coordinates in the context of control theory.

Remark 31. Thanks to the monomial nature of the basis, one does not need to specify the full
basis in order to define a given functional. For example, if A € N is a given homogeneity, let

Bra(X) :={b € Br(X); Vie I, nib)=\} (43)
Then the coordinates of the first kind ¢, for b € BN Bry(X) only depend on BN Bry(X).

Remark 32. An important particular case for applications to control theory is the case X =
{Xo0, X1}, with ap(t) =1 and a1(t) = u(t). This corresponds to formal scalar-input control-affine
systems @(t) = x(t)(Xo + u(t)X1). One often writes (p(t,u) (omitting the dependency on ag =1)
to denote the coordinates of the first kind in this particular context.

2.3.7 Campbell Baker Hausdorff Dynkin formula

As a corollary, we obtain the classical finite CBHD formula.

Corollary 33. Let X be a finite set, n € N* and y1,...,y, € Z(X) without constant term. There
exists a unique w € L(X) such that

evl...e¥n =¥, (44)
We will use the notation w = CBHDy(y1,...,yn). Moreover, for each monomial basis B of
L{Y1,...,Y,}), there exists a unique sequence (cp)pe C KB such that, for every finite set X and
Y1y, Yn € L(X)
CBHDoo(yla v ayn) = Z QpYp (45)
beB

where y, := A(b) and A : L({Y1,...,Y,}) = L(X) is the homomorphism of Lie algebras such that
AY;) =y, for j € [1,n].
Proof. We prove that (44) holds with

n
w = Log, Zyjl[jfl,j] (n) (46)

j=1
in the sense of Definition 23.

Step 1: Proof when X = {X1,...,X,,} and y; = X; for j € [1,n]. The solution to (15) with
a(t) = Z;L=1 Xj1pjo1,5(¢) is a(t) = x*e™ .- eXn. By Theorem 27, w satisfies (44). By injectivity
of the exponential (see Lemma 13), it is the unique solution. By Proposition 29, the equality (45)
holds with «ay := Cb(m 1[0,1], ey 1[71,17”]).

Step 2: Proof in the general case. Let X be a finite set, n € N* y,...,y, € E(X) Let
Y :={Y1,...,Y,} be another set of indeterminates.
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The map A : Y — £(X) defined by A(Y;) = y; for j € [1,n] extends into an homomorphism of
algebras A(Y) — ./zl\(X), which is also an homomorphism of Lie algebras E(Y) — E(X), that we still
denote A. Indeed Lemma 7 ensures the extension as an homomorphism of algebras A(Y) — ./Z(X )
(resp. an homomorphism of Lie algebras £(Y) — L£(X)). The extension can be done on A(Y)
(resp. E(Y)) because yi,...,y, do not have constant terms and the target space ./Z(X) (resp.
E(X )) is a space of formal power series.

Let W := Log,{3_7_, Yjl_1}(n) € L(Y). Then A(W) = w. By applying the homomor-

phism of algebras A to the relation e¥1 --.e¥» = e we get (44). By applying the homomorphism

of Lie algebras A to the relation W =}, s apb we get (45). O

Despite the fact that the product e¥* - - - ¥~ is of course non-commutative, there is some struc-
ture and symmetry inside its logarithm, which we highlight for future use in the following result.

Proposition 34. There exists a family of elements Fy ,(Y1,...,Yy) € L{Y1,...,Y,}) for ¢ € N*
and h = (h1,...,hy) € (N*)9, such that

o for each i € [1,q], Fyn(Y1,...,Y,) is of homogeneity h; with respect to Y;,

o for everyn>2,y1,...,Yyn € E(X) with zero constant term,

CBHDwo(yi,-oym) = O Fynyjee- 1 u,): (47)

g€[1,n],he(N")?
J1<--<jq€[1,n]

where Fy n(yj,,---,Y;,) denotes the image of Fyn(Y1,...,Y,) by the homomorphism of alge-
bras from L({Y1,...,Y,}) to L(X) which sends Y; to yj; for each i € [1,4].

Forq=1, I\, (1)(Y) = Y1 and Fy 4,y =0 for hy > 2. For ¢ =2 and hy + hy < 4,

1 1

Fran(Y) = 51, Y2l Fy,20)(Y) = =5 [Ya, [, [1, V2]
1

Fy oY) = E[YI’ (Y1, Y]] Fyi31)(Y)=0 (48)
1

Fy,0,9)(Y) = 52, [Y2, Y1]] Fy1,3(Y)=0.

For higher order terms, we state below a recursive formula.

Proof. Using the same Lie algebra homomorphism arguments as in the proof of Corollary 33, it is
sufficient to consider the case where y; = Y; is an indeterminate.

For n = 2, the statement is merely a rewriting of (45) where the terms are grouped by their
homogeneity with respect to y; and y2. This defines the elements Fy (Y1) =Y; and Fy (Y1)=0
for h > 2 and F (Y1, Ys) for h € (N*)? according to the usual two-variables formula, of which the
well-known low-order terms are recalled in (48).

We define by induction on n > 3 the functions F, , by the relations

Fon(Yi,...,Y,) = Z By (mn) (F e h,n,l)(Yl,...,Yn_l),Yn). (49)

m m

mlhy,...,hn_1

We now prove the result by induction on n. Let n > 3. By associativity of the product, the formula
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for two indeterminates and the induction hypothesis at step n — 1, we obtain
CBHD(Y1,...,Y,)
= CBHD(CBHD (Y1, ..., Y,—1),Ys)

= CBHDOO(Yl7 ... ,Yn—l) +Y, + Z Fg)g(CBHDOO(Yl, RN Yn_l),Yn)
ge(N*)2 (50)

=Yy + Z Ffbh’(le""’qu)Jr Z FQVQ(FfIﬁ'(YjU'"’i/jq)’yn)
q€[1,n—1],h €(N")? gE(N*)2
J1<<je€[l,n—1]

We now check that the right-hand side of (50) is the same as the right-hand side of (47). Since we
are working in the free Lie algebra over Y7,...Y,,, we can proceed by homogeneity.

e The terms not involving Y;, are equal, since they have the same expression.
e The term involving only Y,, on both sides is Y,, itself, so they are equal.

e Now, let ¢ € [L,n—1], j1 < --- < j, € [I,n—1] and h € (N*)?"1. We look for the
term involving h; times Y}, for i € [1,¢] and hgyq 1 times Y,,, which is Fyyq n (Y, ..., Y;,,Y5)
in (47). In (50), it is

Z Z FQ,!J(Fqﬁ'(Yju""qu)’Yn% (51)
h,E(N*)q g€(N*)2

where the sum is restricted to g1h; = h; and g2 = hy+1. Hence, both terms are equal thanks
to the definition (49).

This concludes the proof and gives a way to compute the elements F; ; iteratively. O

Remark 35. In particular, the component of CBHD o (y1, .. .,Yyn) homogeneous with degree h =
(h1,..., hq) with respect to (yj,,- -, ¥y;,) 18 Fq.n(Yj,,- - ¥j,). It depends neither on the total number
n of arguments in the initial product, nor on the selection of indexes (j1,...,Jjq). This is the natural
symmetry that we wish to highlight.

Algorithms to compute iteratively the terms in the CBHD formula are investigated for instance
in [85, Section 4.a] or in [18, 31] within Hall bases, or in [10] for an expansion on right-nested
brackets, which uses fewer terms.

2.3.8 Computation of some coordinates of the first kind

In this paragraph, we focus on the case X = {Xo, X1}. Computing the coordinates of the first
kind is of paramount interest for applications (see e.g. [70] where the first 14 such coordinates
are computed, and [31, 86] for efficient algorithms and explicit formulas obtained by an approach
relying on rooted binary labeled trees).

Here, we calculate as an illustration (and because they will be used later) all coordinates of the
first kind on a basis of

Sy := spang {E(b); be Br(X),ni(b) =1} C L(X), (52)
where this notation is chosen so that S; = KX, @ S; (see Definition 10). We define moreover
S = spang {E(b); b€ Br(X),ni(b) > 2} C L(X), (53)

thanks to which we can write the direct sum decomposition £(X) = KX, ® S; @ S .
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Lemma 36. The family (adé}o (X1))ken is a (monomial) basis of Sy .

Proof. From (52), S; is spanned by the evaluations in £(X) of the iterated brackets b € Br(X)
involving X exactly once. Let b € Br(X) be such an iterated bracket. We assume E(b) # 0
in £(X) and b # X;. Then E(b) = [E(A(D)),E(u(d))] thus E(A(b)) and E(u(b)) are non null in
L(X). Moreover, either A(b) or p(b) does not involve X; and is thus equal to Xy. Therefore
B(b) = £[Xo, E(b)] where b € Br(X) involves X exactly once and E(b) # 0. Working by induction
on the number k of occurrences of Xy in b, we obtain E(b) = + ad’j(o (X1).

The previous argument proves that the given family spans Sy Moreover, this family is linearly
independent in £(X) because two different elements have different lengths. O

We now compute the coordinates of the first kind associated with these elements. Up to our
knowledge, the following explicit expression is new.

Proposition 37. Let B a monomial basis of L(X) containing Xo and the family (adlj(o (X1))ken.
The associated coordinates of the first kind satisfy, for each t > 0, ag,a; € L*((0,t);K) and k € N,

k
By
Cad’j{O(Xl)(tvamal) = (—1)]62140(15)]“4 (kilf)' /N+ " a1 (1 )ao(m2) - - - ag(Te41) dr, (54)
1—0 . (+1

where Ag(t) := fg ag and the Bernoulli numbers (By)nen are defined in (527).

Proof. First, the considered coordinates are well-defined independently on the exact choice of B

(see Remark 31). Let x be the solution to (15) starting from z* = 1. To simplify the notations

in this proof, we write z(t), (x(t) and Z(t) instead of x(t,a), Cuax (x,)(t, a0, a1) and Log {a}(t).
0

From (42),

Z(t) =Y G(t,a)b = Cx,(t,a)Xo + Zi(t) + Za(t), (55)
beB
where Z,(t) € S5 and
Z Cu(t) ad, (X1). (56)
First, a straightforward identification in (36) yields (x, = Ao and (x, (¢ fo ai. Let k € N*. The

proof consists in computing (z(t), X1 X%) in two ways: first by the dlfferentlal equation (15), then
by the formula z(t) = e#*). By definition of the solution to (15), we have, for every word o € I*
and t >0

(2(t), X Xo) = /0 (2(r), X, )ao(r) dr. (57)

Taking into account that (x(t), X;) = fot a1, we obtain
(2 (t), Xo XE) = / a1 (m)ao(rs) - -~ ao(Tes1) AT (58)
Ak+1()

On the other hand, we deduce from the expansion of z(t) = eZ(*) that

k+1
1

((6), X, X5) = (26, X1 X5) + D~ 5 (Z2(0). X, X5) (59)
=2 "

because, for £ > (k +2), Z(t)" is a sum of words with length at least (k + 2). For £ € [2,k + 1],

£—

H

() X0)? Z1(t) (Ao (t) Xo) ™19 4 Zay(t), where Zo(t) € S (60)
]:0
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Thus

<Z(t)£’X1X§> = <Z1(t)(Ao(f)X0)£71,X1X§> = Ao(®) T (=1 G (8), (61)
because the word X; X¥~“*! appears in the decomposition of ad’, (X1) iff Kk —£+1 =n and then
it appears with coefficient (—1)". We deduce from (59) and (61) that

k+1 (_1)k+14
(2(t), X2 X5) = )+ YA e (0)- (62)
=2 ’

Using (58) and the index change j = k+ 1 — ¢ € [0,k — 1], we obtain

k— 1 jA
dr = (- )+ o (1), 63
Jo ) ol b= Z CE60. @

When Ag(t) = 0, this formula yields (54) immediately. When Aq(¢) # 0, let, for j € N,

ZEOXXG) s DGO

SRR NOTE = Ah (64

we deduce from (63) that
k 3,
=y —— (65)
= (k+1-j)
We have

ot X3 g (e &

k>0 k>0 j=0 >0

or equivalently

Zﬁjzj = ezz_ 1 Zakzk = ZZB,L%akzk. (67)

>0 k>0 n>0k>0

Thus, for every j € N*

Finally (64) and (58) give (54). O

Remark 38. Formula (54) bears a strong similarity with the differential equation (23) satisfied by
z(t), which also involves the Bernoulli numbers. Unfortunately, we have not been able to obtain a
shorter proof using this equation.

In particular, using Proposition 37, we recover the following very classical formula for the partial
coefficients of the CBHD formula (see e.g. [103, equation (2)] or [90, Corollary 3.24]).

Corollary 39. One has eX1eX0 = e¢Z where Z = Xo + Z1 + Zo, Z3 € S5 (see (53)) and

+oo

B, .. 1 B
Zl = Z ﬁadXO(Xl) = X1 [Xo,Xl =+ Z

n=0 2

% (X0). (69)

Proof. We apply the previous result to the controls ag(t) = 11 2)(t) and ay(t) = 1(0,1)(t), for which
the solution to (15) with z* = 1 satisfies 7(2) = eX1eX0. For f e N* and 0 < 7y < --- < 711 < 2,
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the real number a1 (71)ag(71) - - - aog(7e+1) does not vanish iff 0 < 7y < land 1 <71 < -+ < 741 < 2
and then it equals 1. Thus, for every k > 2, using (54) and (528),

k k
Bk—f 1 Z B] Bk
= Z = 3k (70)
20~ - ) K
We conclude by noticing, thanks to (54), that (y(2) = 1 = By and (1(2) = —3 = By. O

Example 40. As an example and for later use in the sequel, we compute the coordinates of the
first kind for the particular choice ag(t) := 1 and a1(t) :=t. Let k € N. Using formula (54) of
Proposition 37 and the identity (530) we obtain

B t5+2
2 : k— Z _DPk—t 4
C'}dk (Xl) t Cl t (€+2)'

) By_
— (1ykeh Zm (71)

B
_ 1 k+1tk+2 k+1
(=1) (k+ 1)

2.4 Interaction picture, coordinates of the pseudo-first kind

In quantum mechanics, the interaction picture is an intermediate representation between the
Schrédinger picture (in which the state vectors are time-dependent and the operators are time-
independent) and the Heisenberg picture (in which the state vectors are time-independent and the
operators are time-dependent). The interaction picture is particularly useful when the dynam-
ics can be written as the sum of a time-independent part, which can be solved exactly, and a
time-dependent perturbation. In this section, we introduce and study a formal counterpart of this
situation, that can be useful for applications.

2.4.1 A new formal expansion

In this paragraph, we therefore consider I = [0,¢] to isolate the role of Xy. For some given
a; € L*(Ry;K) for i € [1,q], we assume that a takes the form

a(t) = Xo+ Y _ a;(t)X;. (72)

Theorem 41. Fort € R, z* € ,Z(X) and a of the form (72), the solution x to (15) satisfies
x(t) = 2" exp(tXo) exp (20 (¢, X, a)), (73)
where Z5,(t, X, a) := Log,,{b:} (t) with the notation of Definition 23 and

q q +oo
by(s) := e~ (t=9)Xo (Zai(s) > (t=9)Xo — ZZ k' t—S )ai(s )adxo( i) (74)
i=1 i=1 k=0

i.€.

—1)ym-1 Tl*tkl T —t kr
Zoo(t7X7a) :Z(,n?”a/r(t) ( kll) ( k’rl) a’i1(7-1)"'ai7~(7-7“) dr (75)
[ [ad, (X)), adR (X)), - ad’y (XG,)],

where the sum is taken over r € [1,00], m € [1,7], r € N, ky,..., k. € N and iy,...,i, € [1,4].
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Proof. First, note that the second equality in (74) stems from the fact that both functions g1 (1) :=
e X0 Xe™X0 and go(7) 1= ::5 (7,;!)k ad’§(0 (X;) solve the Cauchy problem §(7) = [g(7), Xo] and
9(0) = X, so they are equal.

Let t > 0. A key point is to remark that all the definitions and results from the previous
paragraphs which are stated for a finite set I of indeterminates are still valid if I is an infinite
set. For mathematicians with a background in analysis, all equalities can be understood “in the
weak sense” as equalities holding along each monomial. Therefore, for a set of indeterminates
{Yk,itren,ie[1,q)> the solution to

\k
Hs) = (s)uls) where ()= 30 (- ) an(e) Vi (76)
ki

with initial data z(0) = 1 satisfies, thanks to Theorem 27,
2(t) = exp (Logoo {7:}(t)) - (77)
Let © be the unique homomorphism of algebras from A\({Yk,i}keN,ie[[l,q]]) to A(X) defined by
O(Yi) = adk, (Xi). (78)

Then zg(s) = O(z(s)) satisfies on the one hand 2¢(0) = 1 and Z¢(s) = ze(s)b:(s), and on the
other hand zg(t) = exp (Log,,{b:}(t)).
We introduce the change of variables y(s) := z(s)e*~)X0_ Then,

y(s) = @(s)et=9%¥0 _ z(s5) Xpelt=5)%0 = x(s) (Z ai(s)Xi> et=9Xo — y(5)by(s).  (79)
i=1

Hence
a(t) = y(t) = y(0)ze(t) = z" " exp (Logo {be} (1)), (80)
which concludes the proof of (73). O

Remark 42. In the above proof, Z.(t,X,a) is defined by the logarithm of the product of two
flows: the one associated with —X, and the one associated with a(t). It is a particular case of
the construction of the chronological logarithm of the product of two flows associated with two
non-autonomous vector fields, see [4, Section 2.2 or [12, p. 92].

Remark 43. In expansion (73), the choice to write exp(tXy) to the left of the formal logarithm
is arbitrary. One could obtain a similar formula with exp(tXoy) to the right. Depending on the
application one has in mind, both choices can be helpful.

2.4.2 Coordinates of the pseudo-first kind

Proposition 44. Let g € N*, X = {X, X1,...,X,} and B be a monomial basis of L(X). There
exists a unique set of functionals (ny)ven, with m, € C° (Ry x LY(R1;K)%K), such that, for every
a; € LY Ry;K) and t >0

Zoo(t, X,a) =Y my(t,a)h in  L(X). (81)
beB

Moreover, nx, = 0 and the functionals n, are “causal” in the sense that, for every t > 0, ny(t,a)
only depends on the restrictions of the functions a; to [0,t].
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Proof. For every r € N* and v € N we introduce the finite sum of brackets

(=" / (-0 (m=t"
Zr7y t, )(7 a) = N 7 ‘e ail T1) - air Tr dT
L Xa) =) Ay ! g () (m) (82)

[+ [ad¥, (Xi,), adR, (X)), . ady, (X5, )],

where the sum is taken over m € [1,7], r € N, kq,..., k. € N such that ky +---+ k. = v and
i1,...,ir € [1,¢]. For each term in this sum, the bracket

[+ [ad¥, (Xi,), adR, (X)), . ady, (X, )] (83)

has a unique expansion on the basis B,, = {b € B; n(b) = r and ng(b) = v}. By summing
these expansions we obtain causal functions (75)pep,, in C° (Ry x L*(Ry;K)%; K) such that the
following equality holds in £(X)

ZhV(t, X, a) = Z e (t, a)b. (84)
beBr,u
By summing these relations, we get (81). O

Definition 45 (Coordinates of the pseudo-first kind). We call the functionals n, coordinates of
the pseudo-first kind associated to the (monomial) basis B of L(X), by analogy with coordinates of
the first kind.

2.4.3 Structure constants and estimates for the coordinates

At the formal level, series such as (81) make sense. However, in the sequel, we will need to give
a meaning to such series where the indeterminates are replaced by true objects. To make sure
that the resulting series converge, it will be necessary to have estimates on the coordinates of
the pseudo-first kind. In this paragraph, we suggest a criterion based on the structure constants
of L(X) relative to the underlying monomial basis to obtain such estimates.

Definition 46 (Structure constants). Let B be a basis of L(X). For every a,b € B, since [a,b] €
L(X), it can be written as a finite linear combination of basis elements, say

la,b] = Z ’72,176) (85)

ceB

where the coefficients v; , € K and only a finite number of them are non-zero. The set of these
coefficients are called the structure constants of L(X) relative to the basis B.

Definition 47 (Geometric growth). Let X be a finite set and B be a monomial basis of L(X). We
say that B has geometric growth when there exists I' > 1 such that, for every by,by € B,

> g, b, | S TIIHIEL (86)
ceB

Definition 48 (Asymmetric geometric growth). Let ¢ € N*, X = {X, X1,...,X,} and B be a
monomial basis of L(X). We say that B has geometric growth with respect to Xy when, for every
k € N, there exists T'(k) > 1 such that, for every by,ba € B with n(by) + n(b2) <k,

D 16y e S T(R) PRI (87)
ceB

Asymmetric geometric growth is a weaker notion than geometric growth (which can be seen
as asymmetric geometric growth with a constant I" independent of k). These definitions therefore
lead to the following algebraic open problem:.
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Open problem 49. Which monomial bases B of L(X) have (asymmetric) geometric growth?

Remark 50. A family of examples of monomial bases of L(X) is given by Hall bases (see Sec-
tion 2.5.1, and in particular Definition 56). In the paper [13] dedicated to studying the growth
of structure constants for Hall bases of L(X), we provide examples of Hall bases of L(X) that
have geometric growth (in particular, the classical examples of length-compatible Hall bases and the
Lyndon basis have geometric growth, see Theorem 1.5 and Theorem 1.6 in the cited work). More
importantly, we show that every Hall basis has asymmetric geometric growth (see Theorem 1.9 in
the cited work).

For such bases, we can prove nice estimates for the coordinates of the pseudo-first kind. We
start with an estimate concerning the decomposition of the Lie brackets involved in (82).

Lemma 51. Let ¢ € N*, X = {X,, X1,...,X,}, B be a monomial basis of L(X) with geometric
growth with respect to Xo. For every r > 1, there exists C(r) > 1 such that, for every { > 2,
bi,...,bp € B\ {Xo} with n(bi)+---+n(be) <r and b € B,

|<["'[blvbQ}v"'b£]7b>B| SC(T)lb‘v (88)
where the bra-ket denotes the component of the Lie bracket along b in its decomposition on B.

Proof. Any a € L(X) can be written as a linear combination of basis elements, say a = 3 .z adc,
where the coefficients a? € K and only a finite number of them are non-zero. We endow L£(X)
with the norm |[la||s := > czlag|. Then, Definition 48 gives, for every by,by € B, ||[b1,b2][|5 <
T'(n(by) + n(bg))!P11*1%21, We prove by induction on ¢ > 2 that, for every by, ..., b, € B\ {Xo},

I (b1, bal, - bellls < T ((br) + -~ + m(be))~ D beD (89)

which implies Lemma 51 with C(r) = I'(r)"~!. The result for £ = 2 is already known. Let ¢ > 2
and by,...,bpp1 € B\ {Xo}. Then [---[by,b],...be] = > ,.5qd where the sum is finite and
Y aen laal <T(n(by) +--- + n(bg)) =D brl++1bel) - Then

[+ [b1,b2], ... be],bes1] = Z agld,besq] = Z ayq Z’yinlc = Z <Z aﬂ;’%) ¢,  (90)

deB deB ceB ceEB \deB

where the sums are finite and indexed by d € B such that n(d) + n(ber1) = n(b1) + - - - + n(be+1)
and |d| + |bey1| = |ba| + -+ + |bes+1] thus

I [b1s b2l - bel beralls = > 1D @avipe,, | < D laal D Vb, |

ceB |deB deB  ceB (91)
F(n(bl) N n(bg))([_lmbl|+"'+‘b’5‘)l—‘(n(b1) 4Lt n(bé+1))|b1|+-~.+|bl+1‘

which gives the conclusion. O

Proposition 52. Let ¢ € N*, X = {Xo, X1,...,X,}, B be a monomial basis of L(X) with
geometric growth with respect to Xy. Then, for every M € N*, there exists Cpy > 0 such that, for
every T >0, u € L1((0,T);K9), b € B with n(b) < M and t € [0,T],

ol . n(b)
ot )] < el G o (92)

Proof. We may assume that (C(r)),en+ given by Lemma 51 is non-decreasing. Then, for every
i1,...,0r € [1,¢] and kq,...,k, € N, for every b € B,

(-, (X, 008, (X0, - ady, (X,0)0)_| < ), (93)
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Indeed, for each j € [1,r], there exists b; € B with n(b;) = 1 and |b;| = k; + 1 such that
ad’;(j0 (Xi;) = £b; in L(X). Indeed, the homogeneous part of £(X) containing k; times X, and
X;; once is of dimension one.

‘Let M € N* and b € B be such that n(b) < M. We deduce from (75) that

u) = (=)™ (Tl_t)kl...(T’"_t)kru- ) (1) dr
nb(t’ )_ Z mr /Ar(t) k’l' ]4?7' 21( 1) lr( T)d (94)

(I fad}, (Xi,),adig (X3,)], - adf, (X)) 0)

where the sum is taken over r € [1,00], m € [1,7], r € N, kq,...,k. € Nand i1,...,4 € [1,4].
If the summand bra-ket in (94) does not vanish, then » = n(b) and k; + --- + k. = ng(b). Thus
the sum in (94) is taken over the finite set r = n(b), m € [1,n(b)], k1,...,k- € N such that
ki +---+k. =ng(b) and iy,...,%, € [1,q], whose cardinal is bounded by M2/’l¢™ . Moreover, for

every r,m, ki, ..., kq,i1,...,%, in this set, the associated term in (94) is bounded, thanks to (93),
by

tkl tkr r n r r b n(b)|

i Ell e €M < Ol (2ror)™ S (95)
thanks to (117). Thus

1 b n
It )] < MM (2 O) Ol (96)

which gives the conclusion with, for instance, Cp; := M!M¢M2M+1C(M). O

2.5 Infinite product, coordinates of the second kind

In this section, we present an expansion for the formal power series x(t) solution to (15) as a
product of exponentials of the members of a Hall basis of £(X), multiplied by coefficients that
have simple expressions as iterated integrals, called coordinates of the second kind. This infinite
product is an extension, suggested in [69], of Sussmann’s infinite product on length-compatible Hall
bases [100] to all Hall bases (understood in the generalized sense of Viennot [102, Theorem 1.2] or
Shirshov [94, Definition 1]).

2.5.1 Lazard sets, Hall sets and Hall bases

We start by defining Lazard sets and Hall sets, which are two equivalent notions, as proved by
Viennot in [102, Corollary 1.1]. They lead to the essential notion of Hall bases (see Definition 56).

Definition 53 (Lazard set). A Lazard set is a subset B of Br(X), totally ordered by a relation <
and such that, for every M € N*, the set By of elements of B with length at most M, labeled
as By = {b1,. .., bpy1} with k € N and by < --- < byy1 satisfies

b1 €Yy =X,
by € Y1 :={ad] (v);j € N,ve Yy \ {b1}},
(97)
bir1 € Vi == {ad), (v);j € N,v € Vi1 \ {br}}
and
By NYe = {brs1}, (98)
where condition (98) can equivalently be written
By N Yer =0, (99)

where Vi1 := {ad] (v);5 € N,v € Vi \ {bp11}}.

bk41
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The elements adie (v) for £€{0,....,k+1},j € Nand v € Yy_1 \ {bs} are all different in Br(X)
(identify their left and right factors iteratively) and all belong to B.

Definition 54 (Hall set). A Hall set is a subset B of Br(X), totally ordered by a relation < and
such that

e X CB,

e for b= (b1,bs) € Br(X), b€ B iff by,bs € B, by < by and either bs € X or \(b2) < by,
o for every by, by € B such that (by,bs) € B then by < (b1, ba).

When b = (b, (b3, b4)) € B then b; is “sandwiched” in between b3 and b, since bs < by < b.

Remark 55. A Hall set can be built by induction on the length. One starts with the set X as
well as an order on it. To find all Hall monomials with length n given those of smaller length,
one adds first all (by,by) with by € B, |b1] =n—1, bo € X and by < ba. Then for each bracket
by = (b4, by) € B with length |ba| < n one adds all the (by,b2) with by € B with |b1| =n — |b2| and
by, < by < by. Finally, one inserts the newly generated monomials of degree n into an ordering,
maintaining the condition that by < (by,bs).

Viennot proves in [102, Corollary 1.1] that a subset B of Br(X) is a Lazard set iff it is a Hall
set. He also proves in [102, Proposition 1.1 and Theorem 1.1] that properties (97) and (98) ensure
that E(B) is a linearly independent and generating family of £(X). This leads to the following
definition.

Definition 56 (Hall basis). Given B a Hall set (or equivalently o Lazard set), B := E(B) is a
basis of L(X). Such bases are call Hall bases.

Remark 57. Historically, such bases where introduced by Marshall Hall in [59], based on ideas of
Philip Hall in [60]. In his historical narrower definition, the third condition in Definition 54 was
replaced by the stronger condition: for every by, by € B, by < by = |by| < |ba|. To avoid confusion
with the generalized definition, we name them length-compatible Hall bases in the sequel.

Given a Hall set B, the evaluation mapping E is one to one from B to the associated Hall
basis B, so that the elements of the basis (belonging to £(X)) can be identified with the bracket
of b € B C Br(X) of which they are the evaluation. We will use this identification in the sequel
when no confusion is possible.

Two famous families of Hall bases of £(X) are the Chen-Fox-Lyndon basis (see [102, Chapter 1])
and the historical length-compatible Hall bases, for which b; < by = [b1| < |ba].

Example 58. For instance, with X = {X1, Xz}, the elements with length at most 4 of each
Hall set B of L(X) with a length-compatible order < such that X1 < Xo are: X1, Xo, (X1, X2),
ady, (X2), (X2, (X1,X2)), adk, (X2) and (X2,ad%, (X2)), adk, ((X1,X2)). Note that, however,
(X1, (X2, (X1,X5))) does not belong to B because A\((Xa, (X1, X2))) = X2 is not smaller than X1,
and the following equality holds in L(X)

[le [XQv [XDX?H] = HX17X2]7 [XhXQH + [X27 [Xh [leXZ]]] = [XQvadi(l(XQ)] (100)

This illustrates how Definition 54 prevents elements from Br(X), whose evaluations in L(X) are
linked by Jacobi relations, to appear simultaneously in B.

Remark 59. Let X := {X¢, X1} and B C Br(X) be a Hall set with an order such that X, < X;.
The definition of a Hall set implies that, for every k € N, adl)cfo (X1) € B. Moreover, these are all

the elements of B containing X, evactly once. Since B(B) is a basis of L(X), E(B)N Sy is a basis
of S1 and this provides an alternative proof of Lemma 36.
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2.5.2 Infinite product on a Hall basis

Definition 60 (Infinite product). Let J be a totally ordered set and (S7);c; be a family of A(X)
such that

o foreveryje J, (S7,1) =1
e for every o € I* with o # 0, the set {j € J;(S7, X,) # 0} is finite.

< . o~
The infinite product _gJSJ is the element of A(X) defined by
j

— .
ns =% PrPx,, 101
JEEDS )

where Py =1 and P, is the finite sum

o]

_Z Z Z <Sj17Xal>"'<Sj“',Xgn>. (102)

n=0 oy,...,0n€I%, Ji,.,jn€J,
Xoy KXoy =Xo 1>

an

The following lemma is the key point to generalize rigorously Sussmann’s infinite product on
length-compatible Hall bases, to all Hall bases.

-
Lemma 61. Let B be a Hall basis and (cay)pep be a family of K. The infinite product bHBeabb 18
€

well defined in .K(X) Moreover, for every o € I*,

— —
< I eo‘bb,XU> = < I eo‘bb,XU> (103)
beB bEB[[l"gH]

where By 5] s ordered by the induced order of B.

Proof. B is a totally ordered set and, for every b € B, (e®" 1) = 1. Let o € I* with |o| > 1. For
a € K and b € B, the property (e®®, X, ) # 0 requires |b| < |o|. Indeed

— bk (104)

has non vanishing coefficients only on monomials X, with length |0/| > |b|. Thus the set {b €
B, (e®® X,) # 0} is finite. This proves that the infinite product is well defined in A(X) and, by

(102), the formula (103) holds. O
2.5.3 Coordinates of the second kind

Definition 62. Let B be a Hall basis of L(X). The coordinates of the second kind associated to
B is the unique family (&)pen of functwnals Ry x L (Ry;KT) — K defined by induction in the
following way: for everyt >0 and a € L (R, ;K')

loc

o &x.(ta): foal,forzel

e forb € B\ X, there exists a unique pair (by,bs) of elements of B such that by < by and a
unique mazimal integer m € N* such that b = ady} (b2) and then

&(t,a) / € (7, 0)éy, (v, a) dr (105)
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Formula (105) indeed defines continuous functionals on L' and the following estimates hold.

Lemma 63. Let a; € L. _(Ry;K) fori € I. For everybe€ B and t >0,

loc

€5(t, a)| < [Blla(®)[lallf - (106)

b
&(ta)| < llallf .- (107)
Proof. Estimate (106) is valid for b € X because x,(t) = a;(t) for i € I and propagated by
induction on b using the recursive definition (105). Estimate (107) is obtained by time-integration
of (106) for each b. O
2.5.4 Infinite product expansion of the solution to the formal differential equation

The following result is due to Sussmann in [100]. The proof below follows Sussmann’s argument.
It is recalled for sake of giving a self consistent presentation and also to treat the extension from
length-compatible Hall bases to all Hall bases (which were not included in Sussmann’s original
statement).

Theorem 64. Let B be a Hall basis of L(X). Let T > 0 and a; € L*((0,T);K) for i € I. For
every x* € A(X), the solution to the formal diff (15) satisfies, for every t € [0,T],

—
z(t) = x*HeEb(t»G)b_ (108)
beB

Proof. Tt is sufficient to prove the formula with * = 1. To simplify the notations in this proof, we
write & (t) instead of & (¢,a). By Lemma 61 it is sufficient to prove that, for every ¢ € [0,T] and
ocel”

X ﬁ &b x 1
(x(t), Xo) = <bEB[[1,|g|]]€ , U>. (109)

Let 0 € I*, M :=|o|, k € N and by,...,bxy1 and Yy, ..., Yiq1 be as in (97). The equality (109)
can equivalently we written

(x(t), Xo) = <65bk+1(t)bk+1 oo gl (b Xa> . (110)
We define x4(t) := z(t) and, for j € [1,k+ 1],
2 (t) == aw(t)e S (O =8, (Db (111)
We prove by induction on j € [0,k + 1] that
() =a;(t) | Y &t)b]| and z;(0) = 1. (112)
beY;

It is clear for j = 0 because zo(t) = (t), Yo = X and &x,(t) = a;(t) for i € I. Let j € [1,k+ 1].
We assume (112) holds at step j — 1. We deduce from the definition of z;(¢) that

wj(t) = i1 (t)e S D% (113)
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Since &, (0) = 0, 2;(0) = 1. Moreover,

ai(t) =21 () | Y &b ] e D —ay (1), (t)bje s
bEY; 1

=z, (t)eﬁbj (t)b; Z éb(t)b e b (t)b; (114)
beY;_1\{b;}

™ (1)
=20y > 5l’;n(!)fb(t)adﬂj(b)

meN bey; _1\{b;}

which ends the proof by induction.
We deduce from (99) and (112) for j = (k + 1) that zx41(¢f) — 1 has non vanishing coefficients
only on monomials X, with |o’| > |o|. Therefore, by (102),

(x(t), X,) = <xk+1(t)e§bk+l(t)bk+l ...efbl(t)bl’XU> _ <6£bk+1(t)bk+1 "'65h1(t)b17X0> ’ (115)

which concludes the proof. O

3 Technical tools about functions and vector fields

In this section, we state classical definitions and technical results about functions and vector fields.
For the sake of completeness, the proofs, although classical, are provided.

Throughout the whole article, d € N* denotes the dimension of the state space for the considered
ordinary differential equations. We work locally, in neighborhoods of the origin 0 € K¢. For § > 0,
Bs denotes the closed ball of center 0 and radius ¢ in the state space K.

3.1 Functional spaces for finite or analytic regularity

3.1.1 Conventions for multi-indexes

For a € N* and a multi-index o = (a!,...,a%) € N%, we use the notations |a| := a' + -+ + a®

1 a
9% := 9% ---92" and a! ;= all. -l

?

Lemma 65. The following estimates hold:
VneN, n"e"e<n!<(n41)"Tlem (e, (116)
Va € N*Va = (a',...,a%) e N?, 27 Dleljg|l < ol <al! (117)

Proof. The first inequality can be proved using classical series-integral comparison and the second
by iterating plg! > 2= #*9) (p 4 ¢)! for every p,q € N. O

3.1.2 Finite-regularity norms

Definition 66 (Regular functions). Let a,b € N* and K a compact subset of K*. Let k € N. We
endow C*(K;K®), the space of functions whose real-derivatives are well-defined and continuous up
to order k on an open neighborhood of K to K® with the norm

b
1
[ fller = Z Z a”aafjHLw(K), (118)

J=1|a|<k

where the sum ranges over multi-indezes o € N* whose sum is at most k and f1,..., f, are the
components of the vector-valued function f. We denote by C>(K;KP®) the intersection of these
spaces over k € N.
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Lemma 67 (Submultiplicativity). Let a € N*, K a compact subset of K* and k € N. For every
f,g € C*(K;K), one has
1fgllee < I fllew llgllen - (119)

Proof. Using the multivariate Leibniz formula, one has

1
I fgllcr = Z a”aa(fg)HLw(K)

lo| <k

. N (120)
< 3 3 X (519 lamao 10" Pl < s s
la|<k  BLa
where the sum ranges over all multi-indexes 8 € N® such that 3; < «; for each i € [1, a]. O

Lemma 68 (Control of gradients). Let a € N*, K a compact subset of K* and k € N. For every
f € CHYK;K) and j € [1,4],
10 fller < (k+ 1) fllcr+s. (121)

Proof. By (118),
1 a-+te; Oﬁ +>1 a-+te;
10 fller = Z Ella I fllLee(xy = Z (7”a 7 [l ) < (k+ D) fller+s (122)

A
! « €;)!
|| <k | < +ej)

since a; < |a| < k. O

3.1.3 Analytic norms

Definition 69 (Analytic norms). Let a,b € N* and K a compact subset of K*. We define
C¥(K;Kb) the space of real-analytic functions defined on an open neighborhood of K to K°, as
the union for v > 0 of the spaces C*"(K;K®), which are the subsets of C>(K;K®) for which the
following norm is finite

b ]
T (03
AL =D > — 10% fill oo (xc).- (123)
i=1 a€Ne

Lemma 70 (Submultiplicativity). Let a € N*, K a compact subset of K, r > 0. Then, for every
fyg € C¥T(K;K), one has
£l < AL Mgl - (124)

Proof. Using the multivariate Leibniz formula, one has

lex|
IFell, = > 110" (Fa) o=

aeNae

ol N (125)
< 3 T 2 (8)19° hum o0 gl = 17, Nl
aeNe " B<a
where the sum ranges over all multi-indexes 8 € N such that 3; < a; for each i € [1, a]. O

Lemma 71 (Control of gradients). Let a € N*, K a compact subset of K*. For every ro > 11 > 0,
feco(K;K) and j € [1,4],

-1
1 T2
0 < — In = . 126
10361, < = (em2) i, (126)
In particular, if ro < erq,
1
0; < — . 127
05l <~ I, (127)

29



Proof. We start with the first estimate (126). One has

o flll,, = 3 " |ooFe £ -1y ) (@t ety gases g
74 i ot al L=l = ) g (a+e;)! o Le®)
|ate;]
1 T a+e))!
< —Ifll,, sup (= arer (128)
™ aeNa \ T2 (o2}

IN

Ll ()
— supn — .
r1 2 nzri r2

For z € (0,1), let C(z) := sup,,»; na" = sup,>; exp(lnn + nlnx). Considering that x is a fixed
parameter and differentiating the argument with respect to n € [1,+00) yields

d 1
a(lnn—i—nlnx)zﬁ—i—lnx. (129)

Since x < 1, this derivative is negative for n large enough. For = > 1/e, the global maximum is for
n = —1/Inz. So its value yields the bound

C(z) < (—elnz)™". (130)

For x < 1/e, the supremum over n is achieved for n = 1 and its value is z. Since z < (—eln x)fl
for « € (0,1), the bound (130) is looser and valid for every x € (0,1).

The second inequality is a consequence of the estimate In(1+0) > o/(e—1) foroc <e—1. O

Remark 72. The first estimate (126) is classical (see e.g. [84]). The second estimate (126) is a
simplified version, restricted to the case when the relative radius loss is small enough. This is the
form under which we will use Lemma 71 in the sequel since we consider small radius losses.

3.2 Estimates for differential operators and Lie brackets
3.2.1 Vector-valued functions, vector fields and differential operators

As is usual, we will identify each smooth vector-valued function with the associated first-order
linear differential operator, and we will refer to both objects as a vector field. Let K be a compact
subset of K.

Definition 73 (Vector field). Given coordinates ay,...,aq € C*(K;K), we define the associated
vector field f indifferently as the vector-valued function f = (a1, ...,aq) of C*(K;K?) (mapping
each point of the state space to a vector of K), or as the first-order linear differential operator
f=a101 + -+ aq0q (acting on smooth functions ¢ € C*°(K;K)).

Remark 74 (Composition of vector fields). Seen as linear operators, vector fields can be composed,
yielding higher-order differential operators. Let f,g € C®(K;K%) (denoting their coordinates by
ai,...,aq and by,...bg) and ¢ € C*°(K;K). We will hence write

d
fo= Z a;0;¢ (131)
=1
and
d d
96 =3 > ai (b;0:0;6 + (9:b;)(9;0)) . (132)
i=1 j=1

Similarly, for k € N, f*¢ will denote the composition of the linear differential operator f with itself
k times, applied to ¢. Such formulas still make sense in a finite reqularity setting, as long as all
derivatives are well-defined.
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3.2.2 Estimates for products

Lemma 75. Letk € N, n,b € N*, § >0, f1,... fn € C*¥™1(Bs; K?) and ¢ € Ck+"(Bs; K®). With
the notations of Remark 7/,

(k+n)

- frdller < =7 fallewtn—s -l fullersn-sllglleren. (133)

Proof. For n =1, it is a consequence of (118), Lemma 67 and Lemma 68. For n > 1, the estimate
follows by induction. O

Lemma 76. Let v, > 0, 11 € [ra/e,72), n,b € N* and § > 0. Let fi,..., fn € C*"2(Bs;K%) and
¢ € C¥"2(Bs; K?). With the notations of Remark 74,

n! e "
oo fiolle, < 2 () Woally, - Al W, (134
In particular, under the same assumptions,
5 n
1o Frdlico <! () Wl = WAL, T, (135)

Proof. For n = 1, estimate (134) is a consequence of (123), (124) and (127). For n > 1, one applies
the n = 1 estimate n times with a radius increment (ro — r1)/n at each step. This yields more
precisely

n
e fioll, < () Wall W o6l

n n
n
< (1) 6l LTl 0z

which concludes the proof because the norm (123) is non-decreasing with respect to r, and we can
bound n" using (116). Estimate (135) is a direct consequence for the particular choice 1 = ra/e,
because e?/(e — 1) < 5. O

(136)

3.2.3 Lie brackets

Definition 77 (Lie bracket of vector fields). We define the Lie bracket of smooth vector fields
f and g as the usual commutator of the associated linear differential operators: [f,g] := fg — gf
(with the notations of Remark 7/). By (132) and Schwarz’s theorem, one checks that [f,g] is
also a first-order differential operator, which, as a vector-valued function, can be computed as

[f,g] = (Dg)f — (Df)g.

Definition 78 (Evaluated Lie bracket). Let I be a finite set of indices, X = {X;;i € I} be
indeterminates and {fi;i € I} be C* wvector fields on a subset Q of K. For an iterated bracket
b € Br(X), we define f, := A(E(b)), where A : L(X) — C®(K?) is the unique homomorphism
of Lie algebras such that A(X;) = f; for every i € I (see Remark 9 and Lemma 7).

The vector field f, is obtained by replacing the indeterminates X; with the corresponding vector
fields f; in the iterated bracket b, for instance f(x, (x,.x,)) = [f1, [f2, f3]].

The notation f, will sometimes denote the same vector field, seen as a vector-valued function,
under weaker reqularity assumptions, for instance f; € CI°1=1 and then f, € C°.

Lemma 79 (Finite regularity estimate). Let k € N and § > 0. Let b € Br(X). For i € I, let
fi € CFHIPI=1(Bs: K4, Then,

k +1b n; (b
ller < 2 =D Ty (137)
el
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Proof. This follows from (133) because, as can be checked by induction on b, f; is a sum of at
most 2/°1~1 terms of the form studied in Lemma 75, where ¢ is one of the vector fields f;. O

Lemma 80 (Analytic estimate). Let ro > 0, 11 € [r2/e,12) and § > 0. Let b € Br(X). Fori €1,
let f; € C*"2(Bs; K%). Then,

(ol =1t (_2e "7 na(®
< il 138
sll,, < === (=) TLIAI: (138)
el
In particular, under the same assumptions,
9\ na(b)
Il < (ol =0t (2) 7 TLHAIE®. (139)

icl

n;(b)
. (140)

1 9\ /=t
Iler < max {1, Lo - 0 (2) 7 T s

iel
Proof. Estimate (138) stems from (134) because, as can be checked by induction on b, f; is a
sum of at most 2/°/=! terms of the form studied in Lemma 76, where ¢ is one of the vector fields

fi. Estimates (139) and (140) are direct consequences of (138) for the particular choice r; = ry/e
because 2e?/(e — 1) < 9 and, for every r1 > 0, || foller < max{1, =} [ fslll,,- O

o
Remark 81. The fact that estimate (138) scales like the factorial of the length of the Lie bracket
is optimal, as illustrated by the following vector fields. For x € R? with |x| < 1, define

1
_17£81

fo(x):=e1 and fi(x): €s. (141)

Using (123), one checks that these vector fields belong in particular to C**"(Bs; R?) for r = % and
§ =35, with || folll, =1 and ||| f1]|,, = 2. For k € N, one has

27

adk (f1)(z) = oF (1) er = (1_2’1)%62. (142)

1—$1

Moreover, since fy is constant and f, depends only on x1 but is a multiple of eo, every Lie bracket
involving f1 at least twice vanishes identically. Since these analytic vector fields “saturate” the
bounds and exhibit such a nice structure, we will use them repeatedly in our counter-examples.

3.3 Well-posedness of ordinary differential equations

The nonlinear differential equations

(t) = f(t,z(t)) and z(0)=0p (143)
will be studied in the following classical frameworks.
Lemma 82. Let 6,7 > 0 and f € L*((0,T);C*(Bas; K?)) such that || f||11((0,1):c0) < 6.

1. For each p € By, there exists a unique function z(-; f,p) € C°([0,T); Bas) such that
t
Ve 0.1), oltifip)=p+ [ finalrifp) dr (144)
0
2. If f € CO([0,T] x Bas; K?) then z(-; f, p) € CL([0,T); Bas) and satisfies (143) pointwise.
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3. If f € C*([0,T] x Bas; K%), the map p € Bs + z(-; f,p) € C°([0,T]; Bas) is smooth.

4. If g satisfies the same assumptions as f, then, for each p € Bs and t € [0,T],
(t; f,p) — 2(t; 9, 0)] < |If = gllr0.6:c0) exp (1 fllLr0,07:c)) - (145)
Proof. We proceed step by step. Let E := C°([0,T]; Bas)-

1. Define © : E — E by O(z)(t) :==p+ fot f(r,z(7))dr for x € E. Thanks to the smallness
assumption on f, ©(z)(t) € Bzs. Let n € N* be such that || f]|7: o r).c1)/n! < 1. By the
Banach fixed-point theorem, ©™ has a unique fixed point, which is also a f‘21xed point of O.

2. If f is continuous, then t — ©(x(t; f,p)) belongs to C1 ([0, T]; Bas) and its derivative at time ¢
is f(t,z(t; f,p))-

3. If f is smooth, let p € Bs, T := «(-; f,p) and define F': Bs x E — E by

t
We.T), Fp.a)t) =) -p- | f(ra(m)dr (146)
0
Then F is of class C*°, vanishes at (p,z) and 9, F(p, ) is a bijection on E. By the implicit
function theorem, the map p — z(-; f,p) is C*> on a neighborhood of p.
4. This follows from a standard Gronwall’s lemma argument. O

Lemma 83. Let 6,6, >0, ¢ € N* and f € C¥(Bas x Bga(0,6,); K?). Let T :=§/|f||co. For each
p € Bs and u € L>=((0,T); K?) with ||u||p~ < 8., there exists a unique solution x € C°([0,T]; Bas)
to

(147)
denoted z(t; f,u,p). Moreover, the map (u,p) — z(:; f,u,p) € C°([0,T]; Bas) is real-analytic on
Bs X Breo(0,1(0,0y).

Proof. Existence stems from Lemma 82. Analyticity is a consequence of the implicit function
theorem, which yields the analyticity of the implicit function when the direct function is analytic
(see e.g. [27, Theorem 4.5.4]). O

3.4 Flows, compositions and pushforwards

Here and in the sequel, when we manipulate flows of vector fields, we always make sure that an
appropriate smallness assumption ensures that the local flow is well-defined up to the time at which
we evaluate it.

3.4.1 Definitions and approximations

By applying Lemma 82 to a time-independent vector field we obtain the following object.

Definition 84 (Flow of time-independent vector fields). Let § > 0. Let f € C'(Bas; K?) such that
I fllco < 6. We denote by ef the flow at time one of the vector field f,

Bs — Bsygs,
ef Q70T (148)
p= x(1; f,p),

with the notations of Section 3.3. We write e/p instead of ef(p) to allow easier composition of

flows. When moreover f € C®(Bas; K?), ef can also be seen as the zero-order linear operator on
C>(Bas; K) defined by e/ ¢ : p— ¢(elp).

33



Lemma 85. Let § > 0 and f € C'(Bs;K?). Assume that &' := & — ||f|lcos;) > 0. For each
p € By, efp is well-defined and e’p € Bs. Moreover,

le/p =l < |Iflleocss). (149)

and
HD(ef)||C0(B5/) < e”DfHCO(B(;) < erHCI(B(;). (150)

Proof. The second estimate comes from the fact that D(ef),, = R(1) where

R(t) = Df(e“p)R(t) and R(0) = Id. (151)
Thus, by Gronwall’s lemma,

IR()|| < |[Td]jeo 1P7( PNt < DI, (152)
which concludes the proof. O

The exponential notation is motivated by the possibility to approximate e/ by partial sums
of the exponential series of the linear differential operator f. It is completely legitimate in the
analytic setting, as underlined by the following result.

Lemma 86 (Approximation of autonomous flows). Let § > 0, f € C*(Bas; K%) with || f|jco < 6.
Using the notations of Remark 7:

1. For each M € N, if f € CM(Bys; K?) and ¢ € CM+1(Bys; K), for each p € Bs,

;oS
(-5 ) 0w
k=0

< IS N llearsa (153)

2. If f € C¥(Bas; K?) and ¢ € C¥(Bas; K), for t small enough, for each p € Bs,

+oo Lk
H(G)) = 3 i/ 0w) (154)
k=0

and the sum converges absolutely in the sense of analytic functions.

Proof. First statement. By the first point of Lemma 82, e!/(p) is well defined for every ¢ € [0, 1]
and takes values in Bas. For t € [0,1] and k € [0, M + 1], we have

k
% [o(eT ()] = (£70) (e (p). (155)

Thus, the considered sum is the Taylor expansion of order M of the map t + ¢(et/(p)) at t = 0
and

M
fk _ ! (1 — S)M 1 s
(ef - g’f') (#)(p) = /O g () (e (1) ds. (156)

This concludes the proof of (153) thanks to the integration in (156) and Lemma 75.

Second statement. Let v > 0 be such that f € C¥"(Bas; K¢) and ¢ € C¥"(Bas; K). Let 1’ € [r/e, 7).
By (134), for each k € N,

¢k k! F
| B2 (=) mansnan,. (157

, k! r—r!

tk:
Hf%
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so that the sum converges absolutely in C"" when |t|e || f|[l, < r — 7. Moreover, by (156) with

f < tf and (134),
t 2 tk k
(ef —ng ) (¢)
k=0

where, using (157), the right-hand side tends to zero as M — +4o0c under the same smallness
condition; so that the sum converges towards e'/¢ in C*" when |tle || ]|, <7 — . O

|t|M+1

M
< m”f 1g|lco, (158)

co

3.4.2 Pushforwards of vector fields by diffeomorphisms

Definition 87 (Pushforward of a vector field by a diffeomorphism). Let Q,Q' be open subsets
of K¢ Let 0 € CH(; Q) be a local diffeomorphism from Q to Q'. Let f € C°(Q;K?) be a vector
field. We define 0. f € C°(Q'; K?) the pushforward of f by 6 as

(0:f)(a) = (DO)jg-1(9) F(0~ (a)) = (DO™1), ;) F(O7(q)). (159)

Lemma 88 (Chain rule for pushforwards). Let 2,Q, Q" be open subsets of K. Let 6 € C'(2;€))
be a local diffeomorphism from Q to ' and §' € CY(Q;") be a local diffeomorphism from €'
to Q". Let f € CO(;K?) be a vector field. Then, on ',

0.(0.f) = (6" 0 0).f. (160)
Proof. This is a consequence of the chain rule for differentiation, see e.g. [77, Problem 12-10]. [

Lemma 89 (Lie brackets of pushforwards). Let Q, Q' be open subsets of K¢. Let 6 € C2($; ) be
a local diffeomorphism from Q to Q'. Let f,g € C*(;K?) be two vector fields. Then, on €',

[9*f> 0*9] = 9*[fa g}' (161)

Proof. This is a consequence of the chain rule for differentiation, see e.g. [77, Corollary 8.31]. O

3.4.3 Composition of vector fields with flows

Lemma 90. Let § > 0, fo € C1(Bas; K?) and t € R such that [t||| follco < 6. Denote by ®q(t,p) :=
efo(p) the associated flow for p € Bs.

1. For each M € N, if fo, fi € CM+1(Bys; K?), then, for each p € Bs,

M-1 1 M
_ t t
@polt,) ™ (ot ) = 32 30, (0] < 5 Jadfi(m) - (62
=0
2. For each M €N, if fo, fi € CMT1(Bas; K?) and ad%(fl) =0, then, for each p € B,
M—-1 tk
(@o(—0)- @) = 0@0(t0) i (@o(t.p) = 3 bradhy (). (163)
k=0
This holds in particular when L({fo, f1}) is nilpotent with index at most (M + 1).
3. Ifr >0, fo, f1 € C¥"(Bag; K?), then, for |t| < m, for each p € Bg,
+o0 Lk
_ -1 I AT
(@o(=t)uf1)(P) = (BpPo(t,p)) " f1 (Bo(t,p)) = D 71 25, (F1) (), (164)
k=0

where, for every r' € [r/e,r) the series converges in C¥" (Bas; K%) when |t| < ﬁ.

T
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4. Let Hy, Hy € My(K?) and M € N*. Then

M-1

- (2([ Hol)™
eHo fe=Ho — ﬁadlﬁlo(Hl) < THHlHeQ”HO“ (165)
k=0
and
+oo 1 .
eHOHlefHO = Z H adHo (Hl), (166)
k=0
where ad is the commutator of matrices ada(B) := [A,B] = AB — BA and || - || a sub-

maultiplicative norm on M4(K) such that ||Id4|| = 1.
Proof. We proceed step by step.
1. First, for each 7 € [0,t], ®o(7,p) is well-defined. Taking into account that

@0t ] = ~@p0(t ) 0,20(7,p)] (3ot )

(167)
-1
= —(0p®0(t;p)) "D fojaq(r,p):
one obtains by induction on & € [0, M + 1] that
dk _ _
<7 [@o(t.p) T i (B0(r,p) | = (@p@0(t,p) adf (A1) (R0(mp)) . (168)
The Taylor formula
M-—1 tk
(@p®o(t,p) ™" f1 (Bo(t,p)) — i ad’, (f1)(p)
k=0 " (169)
¢ (t — S)Mil —1 M
= ) m(ap‘%(s»l’)) adfo (f1) (®o(s,p)) ds
proves the first statement.
2. Equation (169) yields the conclusion.
3. Let ' € [r/e,r). Thanks to (138),
t* te R ( 2e \*
o] <55 (Z25) st w,, 170

so the series converges absolutely in C*"" when 2elt| || foll, < 7 — 7/, which is the case when
6[t| || folll,, < r—r’ because 2e < 6. The weakest bound, for ' = r/eis 2elt| ||| folll,, < (1—1/e)r
and it holds when 9|¢| ||| fol|,, < r because 2e/(1 —1/e) < 9.

Moreover, thanks to (169) and (170),

M-1 1

(@o(~0)uf)(B) — 3 otk (£1)(0)

k=

|t
< M
- M!

ladf (f1)llco sup [[(Bp®o(s,-)) ™ lco
s€[0,t] (171)

2elt] |l folll, \
< ol (2R

where Aj denotes the supremum in the right-hand side of (171) which is finite. So the sum
converges towards the pushforward under the same smallness assumption on time.

4. The last statement is proved similarly, by considering the function t — e*Ho H e tHo, O
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3.4.4 Partial derivative of a flow with respect to a parameter

In this paragraph, we compute the partial derivative of a flow with respect to a parameter on which
the vector field depends, under a particular nilpotency assumption.

Lemma 91. Let J an interval of R. Let § > 0 and f € C*°(J x Bus; K?) such that ||f|lco < 6. Let
Ao € J, M €N and assume that, for each A € J, ad%xo)(f(/\)) = 0. Then, for each p € By,

d oo N~ (DE £00)
dX (e p)M:AO =2 &+ 1) ad () (Oxf(Mo)) (e o p) : (172)
k=0

This holds in particular when L(f(J)) is nilpotent with index at most M + 1.

Proof. Let © € C*([0,1] x J x Bj;) defined by O(t, \,p) := /M (p). Let py € Bs and \g € J. Let
xo(t) := etfX0)(py) for t € [0,1]. Then, the desired derivative is 9,0(1, Ao, po) = 2(1) where z is
the solution to z(0) = 0 and

2(t) = 0u f (Mo, 20 (1)) 2(t) + Oxf (Ao, o (1)) (173)

Let R: (¢,8) € [0,1]2 = M4(K) be the resolvent associated with the linearized system at po, which
is the solution to R(s,s) =Id and

atR(tv 5) = 8mf(>‘07 xO(t))R(tv S)a (174)
ie. R(t,s) = 9,0(t — s, A0, zo(s)). Then by Duhamel’s principle

Z(l):/o R(1,1)7'0xf (Ao, zo(7)) AT

) (175)
:/ (0,01 — 1,20, 20(1))) " 0 f(ho, O(r — 1, A, 20(1))) dr-
0
By (163) of Lemma 90 with ¢t < 7 — 1, fo « f(Xo,-), f1 < Oxf(No,-) and p < z0(1),
1 M—1 (T _ 1)k
2(1) :/O S T adh ) (03700 (wo(1) d, (176)
which gives the conclusion. O

4 FError estimates in time for nonlinear vector fields

Using a classical linearization principle (see Section 4.1), we show that the formal expansions for
linear equations of Section 2 can yield approximate formulas in the context of nonlinear ordinary
differential equations. We derive rigorous error bounds at every fixed order with respect to time,
involving finite sums or products.

4.1 Linearization principle for nonlinear vector fields

We explain how, by seeing vector fields as first-order differential operators and points on the
manifold as the operator of evaluation at this point, one classically recasts a nonlinear ODE driven
by smooth vector fields to a linear equation set on a larger space of operators on smooth functions.
This approach is notably used in [3, 4] (replacing nonlinear objects by infinite-dimensional linear
ones is the foundation of the “chronological calculus”) and in [97]. More generally, the idea of
replacing the study of a space by the study of the ring of functions on that space is reminiscent of
the representation results of [50]. For readers with a background in PDE analysis, this linearization
principle can be seen as a “reversed method of characteristics™ it transforms a nonlinear ODE into
a linear transport PDE, considered at the level of evolution operators.
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4.1.1 Definition of an operator acting on smooth functions

When T > 0 and f € C([0,T] x K% K?) satisfies ||f| z1(0,7):co) < 1, we take the nonlinear
ODE (143) back to a linear framework by considering, for every ¢ € [0, T the linear operator L(t)
on C° (K% K) defined, for ¢ € C°(K% K), by

L(t)p:p— @ (x(t; f,p)) - (177)

L(t)y is of class C* as a composition of C*> functions, by the third statement of Lemma 82. L(t)¢
is compactly supported in K¢ because ¢ is and |z(¢; f,p) — p| < 1 for every p € K%, by the first
statement of Lemma 82 (which is of course invariant by translation of the origin). We don’t specify
the dependence of L(t) with respect to f to simplify the notations.

For every p € K%, the map ¢ € [0,T] — (L(t)9)(p) belongs to C'([0,T];K) and satisfies, for
every t € [0,T], using the notations of Remark 74,

d

S (L02)0) = D (a(t: £,9)) £ (L2(t: £9)) = (LOFD) ). (178)

Thus, L satisfies the following linear equation

d
L(t) = L)1 (1) (179)

in the weak sense explicited above. For every fixed ¢ € [0, 7],
t
Vo CREERL R (LOR)0) = o)+ [ (LM dr (150
0

where the symbol f(f is the Lebesgue integral on L'((0,); K). We will use the following notation
to refer to this property:

L(t) = Td + /O L) f(7) dr. (181)

In the sequel, all integral equalities between operators on C°(K¢; K) should be understood in this
weak sense (after evaluation on a test function and at a point). The right-hand side refers to
the composition of two operators on C2°(K% K): L(7) and f(7), seen as a first-order differential
operator on smooth functions.

Equation (179) is now a linear differential equation satisfied by the object L(¢) (in a much
larger space), so one can hope to apply the linear results of the previous sections.

4.1.2 Approximating sequence

In order to approximate the operator L(t), it is natural to introduce the sequence (L;);en of
time-dependent operators on C2°(K%; K) defined, for every t € [0, T], by Lo(t) := Id and, for j € N,

t
Lialt) = [ Li(f(r)r (182)
0

where this definition should be understood in the weak sense. Hence, recalling Remark 74,

Lty = [ fn)- (), (153)
A (t)

where the integration domain is the ordered simplex of Definition 15. Then, for every j € N,
L; is “of order j with respect to f”, and a differential operator of order at most j (with respect

to x) on C°(K%;KK). And this sequence indeed allows to approximate L(t) in the sense exposed in
Proposition 92 below, in a finite regularity setting.
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4.2 Chen-Fliess expansion

The approximating sequence for the operator L(t) yields the following straight-forward estimate
for the Chen-Fliess expansion of the state, which can also be found in [3, Proposition 2.3].

Proposition 92. For every M € N, § > 0, T > 0, f € L'((0,T);C™>*(M1)(Bys: K9)), with
£l (0,):c0) < 0 and ¢ € CMTY(Bys;K), for each t € [0,T], with the notations of Remark 74,

2(t: £.p) Z / F)0) ) dr| < (M + DUFIMT o can @llcws. (184)

In particular, for each p € By,

M
2t fp) = /A o T @) @) dr| < O+ DI ey (155)

Hence, if f € L>((0,T);CM), both estimates correspond to a bound scaling like tM+1.

Proof. Let p € Bs. Thanks to Lemma 82, z(7; f,p) is well-defined for 7 € [0,7] and z(-; f,p) €
CL([0,T); K?). Thus, for each 7 € [0, 7],

Platrifoo) = o)+ [ (1)) ol £ dm. (156)
By iterating this formula, we obtain for ¢ € [0, 7],
o (a(ti f.p) g IR IEE,

— / (F(r) - F(raran)e) (@(marass f.p)) dr,
AM+1(¢)

(187)

which concludes the proof of (184) using Lemma 75. Then (185) follows by applying (184) to
coordinate functions. O

4.3 Magnus expansion in the usual setting

In Section 4.3.1, we state a precise estimate of the difference between the exact flow and the
exponential of its truncated logarithm. In Section 4.3.2, we show that this estimate implies a
similar estimate for the CBHD formula. Section 4.3.3 is devoted to a technical result used in the
proof, which transposes to vector fields a formal integral identity.

4.3.1 Standard error estimate in time

The following estimate can be viewed as a refined version of classical time-focused estimates (see
e.g. [87, Proposition 4.3]). It bears a lot of similarity with [38, Theorem 1.32], but is both easier to
state and to prove in our flat setting since [38] is concerned with the truncated logarithm of flows
in general Riemannian manifolds. We propose a proof for sake of completeness, and because this
precise estimate is the founding principle of the new estimate, proved in the next section. It relies
on the usual arguments, used for instance in [97] and [3, Proposition 4.1] (which states a slightly
tighter estimate).
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Proposition 93. Fog every M € N, there exists dp;,Cpy > 0 such that, for every 6 > 0, T > 0,
f € Ll((OaT);CmaX(M 1) (BQ(S; Kd)) with ||fHL1((O)T);CM2) < 5M 111111{17 5}, pE B5 and t € [O,T},

z(t; ,p) — D) < CullFI TG ey (188)

where Zy;(t, ) := Log, {f}(t) is the vector field introduced in Definition 25.
Hence, if f € L"C’((O,T);C'M2 (Bas; K9)) this estimate corresponds to a bound scaling like tM+1,
Moreover, if f(t,x) = > ;c;ui(t) fi(x) with u; € L*((0,T);K) and f; € CM* (Bys; K%), then, for
each monomial basis B of L(X),

Zut, )= Y Gtuf (189)
bEB1,M]

where the functionals (, are the associated coordinates of the first kind and f, are the evaluated
Lie brackets (see Definitions 28, 30 and 78).

Proof. For M = 0, Zy(t, f) = 0 thus (188) holds with Cy = 1 because |z(t; f,p) — p| < |[fllL1(co)-
From now on M € N* is fixed. By Definition 23, there exists C; > 0 such that, for every § > 0,
T>0, f S Ll((O7T);CM_1) with ||f||L1(CM—1) <landte [O,T],

[Loga {f}()llco < Cusll fllrerr—r). (190)

In particular, for every 6 > 0, T > 0, f € L'((0,T);CM~1) with | f|| 1 a1y < min{1;6;6/Ch,},
for every p € Bs and t € [0,T],

e x(t; f,p) is well defined and belongs to Bas,
e for every s € [0,1], eS8/} ()p is well defined belongs to Bas.

This happens, in particular, when || f|[ 11 (cm-1) < dp7 min{1; 6} with dps := min{1;1/C),}.

From now on, we fix 6,7 > 0 and f € L'((0,T);CM") with 1l 1 a2y < O min{1; 6}

In order to use the operators L(t) defined in Section 4.1, we assume that f € C2°([0, 7] x K% K%).
This is not restrictive because this space is dense in L!((0,T); oM’ (Bas; K9)) and both sides of (188)
are continuous for the L((0,T);CM") topology on f (see the fourth item of Lemma 82). More-
over, this regularization procedure is merely an heuristical convenience, since all the computations
performed below make perfect sense even in our finite regularity setting.

Step 1: Counstruction of the formal logarithm. We introduce Z;(¢, f) the finite sum of
terms “of order at most M with respect to f” in the following formal power series (recall the formal
power series for log(1 + x)):

1 m—1
ez = Y TV (S e (191)
meN* JEN*
with the notation of (182), i.e. we define
M M (=1)m-1
Zu(t, f) = Z Z E— Z Ly, (t) - L, (t), (192)
r=1m=1 reern
where N7 is defined in (31). For instance,
1, 1 1,
Zs =L+ | Ly — §L1 + ( Lg — B (L1Lo + Lo Ly) + ng . (193)
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Then, by (183),

m—l

wt =33 E s /. (e (194)

r=1m=1 rGN;’L

A priori, Zy(t, f) is thus an inhomogeneous differential operator on C°(K% K), of order at
most M. Using Lemma 96 (see below in the next paragraph) and Definition 23, Zy(t, f) =
Log,{f}(t) and satisfies (189). Thus Zys (¢, f) is a smooth vector field, i.e. both a vector-valued
function and a first-order differential operator.

Step 2: Strategy for the proof of the estimate. The key observation is that it is sufficient
to prove that there exists Cp; > 0 (independent of §, T, f) such that, for every p € Bs, t € [0,T]
and ¢ € C*(K% K),

‘(L(t) — eZM(t’f))(%@)( )‘ < CM||f||241+C1M2 lellgrsr- (195)

Then, the conclusion follows by considering an appropriate C;° truncation of the coordinate func-
tions ;1 x € K9 z; € K. To prove (195), we will decompose the difference in three terms

M M Z]]& M Zk s
L—e%m ZL + ZLJ-—ZF + F—eM , (196)
k=0

= 3=0 k=0
with the notation of (182). The first term is estimated in Proposition 92.
k
Step 3: Bound for > L; — % By (192), this operator is a (finite) linear combination of
terms of the form L;, (t)--- L;, (t) where p € N*, ji,...,j, € [l, M] and M+1 < ji+...4j, < M.
Indeed, Zys(t, f) is also the finite sum of terms “of order at most M with respect to f” in the formal

power series (191). Thus, there exists C; > 0 (independent of 6, T, f) such that, for every p € Bs,
t € [0,T] and ¢ € C* (K% K),

M M &
55t~ Y0 22U D0 (0)0)| < LA el (197

k=0

Step 4: Bound for ) Zk—j‘?{ — e?M, Using Lemma 86 for the time-independent vector field
Zym(t, f) (where t € [0,7] has been fixed), estimate (153) yields for every p € By, t € [0,7] and

¢ € C2(K%K),
Z]u(t f) l ZM(t?f)k
e W — E — (¥)(p)

k=0

<1 Zas(t, OIS Il enrsr. (198)

We deduce from (36) the existence of C}; > 0 (independent of §, T, f) such that for every ¢ € [0, T
1Z01(t, F)ller < CRrllfllro,0y:020-1). (199)
Hence, for every p € Bs, t € [0,T] and ¢ € C°(K%; K)

|<eZM<t,f> oy ZM(,j,”) (D)) <

k=0

(O,//)M_‘—l”fH%—(‘rcle—l)H<pHCM+1' (200)

Gathering (184), (197) and (200) concludes the proof of (188). O
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4.3.2 Campbell Baker Hausdorff Dynkin formula

We deduce from Proposition 93 the following estimate for the classical CBHD formula with ¢
time-independent vector fields.

Corollary 94.2F0r every M € N* there exists dpr, Cpr > 0 such that, for every § > 0, ¢ € N*,
fiyoooy fq € CM7(Bas; KY) with i<j<q I fillere < 6p min{1; 6},

Hefq oo eft _ OBHDN (f1,..fq)

Lo < Cull M (201)

where CBHDpf(f1, ..., fg) = Logy{f}(q), where the time-dependent vector field f is defined by
f:(tm)e [07Q} X Bas Z?’:l 1[j71,j](t)fj(w) and ”f” = ||fHL1(cM2) = Z1§j§q ||fj||cM2-
Moreover, for each monomial basis B of L({X1,...,X,})

CBHDuy(f1,.- - fa) = Y. ol (202)

bEB[[LM]]
where (ay)pes C K2 is given by Corollary 33.

Proof. Because of the particular form of f, we have z(t; f,p) = efe---efip. Thus the estimate
(201) is an application of Proposition 93. Let A : L({X1,...,X,}) — L{f1,...,fq}) be the
homomorphism of Lie algebras such that A(X;) = f;. The map CBHD,y is defined by a finite sum
of Lie brackets, thus it commutes with A

CBHDw(f1,---, fg) = A(CBHD (X1, ., X)) =A [ D awb| = DY aA(d), (203)
bGBﬂl,M]] bEB[[l,Aj]]

which proves (202). O

4.3.3 Replacing products with brackets in logarithm integrals

The goal of this section is to prove Lemma 96, which is a key point in the proof of Proposition 93,
as it allows to replace products of differential operators with Lie brackets in the integrals involved
in the computation of the logarithm of the flow.

We first state and prove a corollary of Theorem 27 in algebras. Indeed, Theorem 27 is a
statement about formal differential equations, but it has consequences for concrete realizations,
e.g. for systems governed by vector fields or matrices (this will be used in Section 5.2.2).

Corollary 95. Let A be a unital associative algebra over K and Ay be a finite dimensional linear
subspace of A. Then, for every r € N*, t >0 and a € L'((0,t); A1), one has

r _1\ym-—1
S Bt am) dr =

m=1reNm Ar(t)
’ 1 < (71)m71 (204)
- mZ::l %: e /Mt) [ [a(m), a(m)], ... a(r)] dr,

where the equality should be seen as an equality between elements of a finite dimensional linear
subspace of A (generated by monomials of terms in A1 of degree ), so that one can give a meaning
to the integrals without introducing any topology on A.

Moreover, if a(t) = Y_,c; i(7)y; with a; € L*((0,t);K) and y; € A then, for each monomial
basis B, of L.(X),

r _1\ym—1
% Z Z ( 1?’)77, / [ o [a(’rl)? 3(7_2)]’ s a(Tr)] dr = Z Cb(ta a)ym (205)

m=1reNm Ar(t) beB,.
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where the functionals (, are the associated coordinates of the first kind and y, = Y(b) where
Y : A(X) — A is the homomorphism of algebras such that Y(X;) = y; (see Definition 30 and
Lemma 7).

Proof. Let ¢ € N* be the dimension of A, (as alinear subspace) and y1, . .. y4 be a linear basis of A;.
Let a; € L'((0,t); K) denote the components of a(-) in the basis y1, ...yg, i.e. a(r) = a1 (7)y1+.. .+
ay(7)y, for almost every 7 € [0,¢]. Then a(t) = Y(a(t)) where a(7) := a1 (1) X1+ ... + a4(17)X, €
A1 (X). From (40) and (41), one obtains that (204) holds for a(-). Applying the homomorphism
T of algebras to both sides proves (204) for a(-). The same strategy proves (205). O

Lemma 96. For everyr € N*, ¢t >0 and f € C2°([0,t] x K% K9),

T _1m71
PPIEE T

m=1reNm

L SO fr) T =

Sy

o

(206)

S|

[ b U Sl Sl
Ar(t)

m=1reN

33

which should be seen as an equality between linear operators on C° (K% K), hence only valid after

evaluation at a function @ at a point p, so that the integrals are integrals of scalar-valued functions.
Moreover, if f(1,2) = > ;c; ui(7) fi(z) with u; € L'((0,1); K) and f; € C°(K%KY) then

r _1\ym—1
I S B S S = 3 Gl (20)

m=1reNm Ar(t) beB,

where B, is a monomial basis of L,.(X), the functionals (, are the associated coordinates of the
first kind and fi, are the evaluated Lie brackets (see Definitions 4, 30 and 78).

Proof. Let (fn)nen- be a sequence of functions in C2°([0,¢] x K% K9) such that f, takes values in
an at-most n-dimensional vector subspace E, of C3°(K%K?) and || fn, — fllL1(0,6),cr) — 0 when
n — oo. For example, one can choose an n-points trapezoidal approximation of f. For each
fixed n, applying Corollary 95 with A = Op(C>° (K% K)) and A; = E,, proves (206) for f,. Let
¢ € C*(K%K) and p € K¢. For each n € N*, we deduce that

r —1)ym—1

D D A A L
m=1reNm Ar(t)

. (208)
1 r (71)m71

[ alr) a0 0
Ar(t)

i3

For each fixed ¢ and p, both sides converge as n — 400 towards the same quantities for f. This
proves that (206) holds as an equality between linear operators. Applying (205) gives (207). O

Remark 97. Although most algebraic results of Section 2 remain valid for infinite alphabets (sets
of indeterminates), there is a difficulty when one wishes to “evaluate” equalities in the free algebra
over an infinite alphabet towards some target algebra (one must somehow introduce compatible
topologies on both sides). Our approach to prove Lemma 96, where f is allowed to take values
in the infinite-dimensional space C2°, therefore relies on a discretization scheme to return to a
finite alphabet, and the convergence of the involved integrals in a weak sense. Another approach,
followed in [91, 92], consists in introducing definitions allowing an infinite (continuous) number of

generators and proving analogous algebraic results in such a setting.
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4.4 Magnus expansion in the interaction picture

In this section, we consider the nonlinear ordinary differential equation

&(t) = fo(z) + fi(t, x) (209)

We show how the formal expansion introduced in Section 2.4 allows to obtain error bounds at every
order in the size of the time-varying perturbation f4, provided that the flow of fy is known. Such
estimates can be useful for example to design splitting methods in the case of a small perturbation
(see e.g. [20, Section 3.6] or [21, Section 2]).

The results of this section can be seen as quite natural, but we are not aware of references
containing the same statements. We adopt the notations specified in the following definition.

Definition 98. Let M € N, 6 >0, T > 0 and fy € CM2+1(B55;Kd) such that T follco < 0. Let
fi € LY((0,T);CM* (Bss; K?)) and t € [0,T]. We consider

o )€ CMZ‘H([O,T} X Bys; Bss) the flow associated with fo i.e. ®o(7;p) = e™/o(p),
o g € L'((0,T);CM* (Bus; KY)) defined by
9¢(r,9) == (Ro(t = 7). f3(T)(Y) = (Bp@o(7 — t,y)) " fi(1,®o(r —t,y)), (210

o Zy(t, fo, fi) == Logy{g:}(t) € CM’=M+1(B, - K9) in the sense of Definition 23.

4.4.1 Error bound

Proposition 99. Let M,0,T, fo, fy as in Definition 98. There exists v = (M, 6, || foll crrz+1) > 0
such that, if

Hfﬁ”Ll((QT);cM?) <7 (211)
then, for every p € Bs and t € [0,7],

z(t; fo + fy.p) — 2T ethop| < Curllgnl 77 4y onre (212)

where Cpy > 0 is the constant of;Proposition 93.
Hence, if f; € L=((0,T);CM (Bss; K?)), estimate (212) scales like tM+1.

Proof. Let nar,Car > 0 be as in Proposition 93. There exists T* = T(9, || follcar2+1) € (0,T] such
that, for every fy € L'((0,T);CM" (Bss; K%)) and ¢ € [0, T*]

Hgt”Ll((o,t),cM"’) < 2||fu||L1((o,t),cM2)- (213)

Let v := min{T*, 6, % min{1,d}}. Let f; € Ll((O,T);CM2 (Bss; K%)) with ”fﬂHLl(cM"’) < . Then,
for every p € Bs and 7 € [0,T], z(7; fo + fs,p) is well defined and belongs to Bss. To simplify

the notations in this proof, we write z(7) instead of z(7; fo + f4,p). Let t € [0,7]. The function
y : [0,t] — K% defined by

y(7) = g (t - x(T)) (214)
takes values in Bys and satisfies, for every 7 € [0, ¢],
y(1) = g¢ (1,9(7)) - (215)

By (213), ||9t||L1(cM2) < 2n < §p min{1, §} thus, by Proposition 93
[y(t) — 2 Iy ()] < Onlgr| 2L v (216)

which is exactly (212) because y(t) = z(t) and y(0) = e'/op. O
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4.4.2 Expansions of Z,;

Proposition 100. Let M,6,T, fo, f; as in Definition 98. Let r > 0. If fo € C¥"(Bss;K?) and
fi € C°([0,T);C" (Bss; K?)) then, for 0 < 1 <t < min{T}; 9\Hfo||| }

+oo

gi(r,-) = T adso (f, Z dfo (fs(7)) (217)

k=0
and

_1\ym—1 - k1 T — ko
ZM(t,vafﬁ):Z( 2,1 /r(t)( klyt) -k k:rlt)
o |adf () ad 2 (F(72))] -y (fy (7)) d,

where the sum is taken over r € [1, M], m € [[1 r], r € N, and kq,...,k, € N. Moreover, for
every v’ € [r/e,r) and 0 < 7 <t < min{T} 6|||f0|||T}’ the series (217) and (218) converge absolutely
in C" (Bss; K9).

Proof. We apply the third statement of Lemma 90 to fo and fy(7) to get (217). The absolute
convergence in this series allows to interchange the sums and the integrals. O

(218)

When the perturbation f;(¢, z) is affine, i.e. of the form >°7_ ! u;(t) f;(x), by analogy with The-
orem 41, we use the notation Zy (¢, f,u) instead of Zs (¢, fo, >ty wifi), with f = (fo, f1,..., fq)
and u = (ug,...,uq). In this context, we have the following result, that emphasizes that Z,, is a
truncated version of Z.,

Proposition 101. Let M,6,T, fo, f; as in Definition 98. Let r > 0. If fo € C¥"(Bss;K?) and
fe(t,z) =300 ui(t) fi(x) where u; € LY(0,T) and f; € C¥"(Bss; K?). Then

where, for every r' € [r/e,r] the limit holds in C*" (Bss; K%) when 0 < t < min{T; 6|||f0||| }.

Proof. Let X = {X¢,X1,...X,} and A : £(X) — C¥"(Bss; K?) be the homomorphism of Lie
algebras such that A(X;) = f; for i € [0,¢] (see Lemma 7). By applying A to each term in the
equality (84) (where Z72” (¢, X, a) is the finite sum defined in (82)), we obtain for every € N* and
veN

20 fu) = Y mltu) fo (220)
bEB,,,
By Proposition 100
N M
_ i v

Zy(t, fou) = ngnoo;o;Zw (t, f,u) (221)
where for every ' € [r/e,r] the limit holds in C*" (Bss; K%) when 0 < ¢t < min{T; 6|ﬂfo\H }. This
proves (219). O

Remark 102. Although the family ny(t,u)fy for b € BN Sy = {b € B;n(b) < M} (using
Definition 10) is not proved to be absolutely summable, equality (219) gives a sense to the expression

ZM(t7f7 u) = Z nb(tvu)fb~ (222)
beBNSn

Indeed, the proof above justifies the absolute summability of appropriate packages ZLV (t, f,u) for
r € [1, M] and v € N of this family. The full absolute summability over BN Sy is investigated in
the next subsection.
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4.4.3 Absolute convergence for coordinates of the pseudo-first kind

Continuing the discussion started in Section 2.4.3 we state a criterion on the basis I3 which entails
the absolute summability for analytic vector fields of the family n,(¢,u)f, for b € BN Sy = {b €
B;n(b) < M} (using Definition 10).

Proposition 103. Let ¢ € N*, X = {Xo,X1,...,X,} and B a Hall basis of L(X); or more
generally a monomial basis of L(X) with geometric growth with respect to Xy (see Definition 48
and Remark 50).

Let M, 5, T, fo, f; as in Definition 98. Let r > 0. We assume fo € C*"(Bss; K?) and fy(t,z) =

1 wi(t) fi(x) where u; € LY(0,T) and f; € C¥"(Bss; K?).

Let r' € [r/e,r). There exists T* = T*(M,q,r,r", || folll,) > O such that, for every t € (0,7*)
and u € L*((0,t),K%)

Zu(t fiw)= Y mtu)fs (223)

bEBNS s
where the series converges absolutely in C"”/(Bg; K%).
Proof. By (92) of Proposition 52 and (138), for every b € BN Sy and ¢ € [0,T]
r—r <QeC’Mt|||f0|||T>”0(b) (2eCM

2e2 r—r r—r

n(b)
e (& ) Il folll, < l[ullzr (0. |||f|||7-) (224)

where ||| fll,. :== max{||| f;]ll, ;5 € [0,¢]}. In particular, if |t| < T*(M,r,r’) : then

the series > (¢, a) fp converges absolutely in C“" because

— r—r’
4(q+1)eCunll[ folll..

M +oco
> @g+1)) TP <IN g+ )T (2g+ 1) < M(g+ )M, (225)
beBNSnm n=1ng=0
O
4.5 Sussmann’s infinite product expansion
Let T > 0. In this section, we consider affine systems of the form
#(t) = > wi(t) fi(x(t)) and (0) =p, (226)

iel
where, for i € I, f; is a vector field and u; € L'((0,7);K). When well-defined, its solution is
denoted x(t; f,u, p). For every norm || - || on vector fields, || f| denotes >, || fi|-

Proposition 104. Let B be a Hall basis of L(X) and (&)pep be the associated coordinates of the
second kind. For every M € N*, there exist Cpy,mp > 0 such that the following property holds.
Let T,§ > 0, f; € C*M(B3s; K?) and u; € L*((0,T);K) fori € I. Assume that

[l 1fllear < mar min{1, 6} (227)

Then, for each t € [0,T] and p € Bg,

B
ot foup) = JL 00| < Oulull L IS (L 1A 229)

where the arrow above the product symbol designates the order for the product, i.e. with the notations
of Definition 53

—

I St — ooy (tu)fo, | eﬁbk+1(t7u)fbk+1 ' (229)
beBIIl,IW]]
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Proof. Let M € N*. We adopt the notations by,...,bx+1 and Yp,...,Ys4+1 of Definition 53. For
J € [1,k + 1], we denote by ®; the flow associated with fy,, i.e. ®;(t,p) := eth; (p). To simplify
the notations in this proof, we write x(t) and &,(¢) instead of x(¢; f,u,p) and &, (¢, u). Let nas :=
1/(4]|I|M!). For brevity, we use the shorthand notation F' := || f||c2ar—1.

Step 1: Well-definition of the flows. Using (227),

> uifi

icl

< nprmin{l, 6} < 6. (230)
L1((0,1);¢0)

Thus, for ¢ € [0,T], x(t) is well-defined and x(t) € Bas. For b € B, using (107) and Lemma 79, we
obtain, for each t € [0, 77,
1€6(8) foller < 0125 Hlull a0, 1 flle (231)

where ¢ := |b|. Hence, using the crude estimate |B,| < |I|*, we obtain, for each ¢ € [0, 7],

M
ST la®fller <3 1B 02 ullf | £llEe

bEB[1,Mm] £=1

“+oo
. 232
< MUY @ full ] fllee) (252)

=1

2l e o
— L=2[[Jullze [ fllear — 7
Thus, for every j € [1,k + 1],

x;(t) = e~ o o= (D1 (2(1)) (233)

is well-defined and belongs to Bss.

Step 2: Estimates along a Lazard elimination. We prove by induction on j € [0, k+1] the existence
of a numerical constant C; > 0 such that

) {w (1) = Shenps ayry, &0 fola(£) +25(2), o3
z;(0) = p,
where
&5 ()] < Cilu(®)][|ul FMH (1 4+ FM-Y), (235)

First, letting xo(t) := z(t) by convention, (Ho) holds with g9 = 0, Cy = 0 because £x, (t) = wu;(t)
fori e I. Let j € [1,k+ 1] and assume that (7,_1) holds. We deduce from the definition of x;(¢)
that

(1) = e O ;1 (8) = @ (=&, (1), 251(1)) (236)
and, using (H;_1), that

&5 (t) = =&, (1) fo, (2;(1)) + Yo &1)0P; (<&, (1), 71 (1) folzj_1(t) + () (237)

beB1, m)NYj-1
where £;_1(t) := 9,®; (=&, (t), xj_1(t)) j-1(t). By (232), [|&, () fs,llcr < 1, so, using (150),
|g5-1 ()] < elej-1(D)]. (238)
Moreover, for each b € B

Op®; (=&, (), zj1(1)) folzj—1(t) = (5 (=&, (1)), fo) (z; (1)), (239)
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thus,

iy (t) = > & (t) (@5 (=&, (1)), fo) (1)) +&;(1). (240)

bEB[[lJ\,[]] vajfl\{bj}

For b € By ap NY;\ {b;}, we introduce the maximal integer h(b) € N* such that
|6 + (h(b) = 1)[bj| < M. (241)

Then, by the first statement of Lemma 90 and Definition 62

. h(b gb ( ) —j
&) (@5 (=&, (1), fo) (23(0) = D TE6(t) faay v (1) + 80 (1)

m=1
oy (242)

= > éadg’;(b)(t)fadg’;(b)(xj(t))+§Z(t)

m=1

where | e
_j : &, (1)
O] < O o oo (243)
By definition of h(b) we have M + 1 < |b| + h(b)|b;| < M + |b;| < 2M. Thus, using Lemma 79,
(106) and (107), we get

g] H < lu |b‘+h b)|b| 1 ‘ 22M 2M !FM+1 1+FM_1
L0 < @)l na2 @M — P ) s
< Ju()|||ul| Y M22M (2M — 1)/ FMTL (1 4 pMT),
By definition of Y; in Definition 53, we obtain (7;) with
g;(t) :==2,_1(t) + > (). (245)

bEB[[l‘M]]ﬁ}/jfl\{bj}

that satisfies (235) with, for instance Cj 1 := eCj + [I|MF1M22M (20 — 1)1,
Step 3: Conclusion. Taking into account that By a N Y1 = {0}, we get Zx41(t) = epy1(t) thus

|Trg1 () = pl < Crpalfuf i FMHHL + FM7L) e,
—
e 6tha) —p| < G Jul M FM+1(1 4 PH), (246)
bEB1, M

Applying the locally Lipschitz map eéer(w)fer ... eforir (B0 oiin £ the two terms in the left-hand
side, we get another constant Cp; > 0 such that (228) holds. Note that (232) and (150) ensure
that Cpy < eCly1, so that Cys depends indeed only on M. O

5 Convergence results and issues

The formal expansions of Section 2 generally exhibit poor convergence properties for smooth vector
fields without any additional assumption. Nevertheless, one can hope to obtain convergence results
in the following particular contexts:

e Nilpotent Lie algebras. Here, one assumes that the Lie algebra generated by the set
of smooth vector fields {f(¢,-); t € [0,T]} is nilpotent (see Definition 5). This structural
assumption turns most of the involved infinite expansions into finite ones, and it is thus
reasonable to expect convergence properties.
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e Banach algebras. Here, one assumes that the vector fields are actually linear in the space
variable, e.g. that f(t,z) = A(t)x for some A(t) € My(K). This assumption yields better
estimates for Lie brackets (since products of matrices behave more nicely than differentiation
of nonlinear vector fields) and it is thus reasonable to expect convergence properties. In this
section, we give statements for matrices for consistence, but similar results can be obtained
for linear operators in a Banach algebra.

e Analytic vector fields. Here, one assumes that the vector fields are locally real-analytic,
i.e. than their k-th derivative grows roughly no more that k!. This bound is compatible with
the 1/k! factors which come out of the corresponding time integrals, and it is thus reasonable
to expect convergence properties.

In the following paragraphs, we investigate the convergence properties of each expansion in each
of these three reasonable contexts and encounter some surprises. We summarize the results in the
following table.

Expansion Lie-Nilpotent Banach Analytic

Chen-Fliess No Global Yes
(Section 5.1.1) (Section 5.1.2) (Section 5.1.3)

Magnus in the Yes for C*> Small time No
usual setting (Section 5.2.1) (Section 5.2.2) (Section 5.2.3)

Magnus in the Yes for C¥ Small perturbation No
interaction picture | (Section 5.3.1) (Section 5.3.2) (Section 5.3.3)
Sussmann’s Yes for C* Small time Open problem
infinite product (Section 5.4.1) (Section 5.4.2) (Section 5.4.3)

5.1
5.1.1

Chen-Fliess expansion
Counter-example for nilpotent vector fields

As already discussed in Remark 17, the Chen-Fliess expansion is not an intrinsic representation
of the flow and involves quantities which are not Lie brackets of the dynamics. Therefore, this
expansion is not expected to converge under a Lie-nilpotency assumption. The following counter-
example (where the dynamic does not depend on time, thereby obviously generating a nilpotent
Lie algebra of order 2) proves that this expansion indeed relies on quantities which are not Lie
brackets.

Proposition 105. There exists fo € C*°(R;R) such that, for everyt € (0, 1], the solution x(t; f,0)
to (143) with f(t,x) := fo(x) satisfies, with the notations of Remark 74,

N

#(6£,0) = 30 5 (51 (0

n=0

lim = +00. (247)

N—+o00

Proof. For every sequence (a,)nen € RY, there exists f, € C(R;R) N L>°(R;R) with f,(0) = 1
such that

V> 2, (f2Id1)(0) = ay,. (248)
This is an easy consequence of Borel’s lemma. Indeed, for n > 2 and f,(0) = 1,
(f21d1) (0) = £ 0(0) + Po (fal0),, £82(0)) (249)

for some polynomial P,. Thus, given a sequence (&, )nen, One can prescribe an appropriate value

for "V and recursively ensure (248). Let fy be a vector field constructed following this process
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for o, :== n!?. On the one hand, since fy € L=(R;R), x(¢; f,0) is bounded for ¢ € [0,1]. On the
other hand, thanks to (248), for each t > 0

tn
' n
Z 1 (f31d1) ( Z nlt" — +oo, (250)
n=0 n=0
which proves (247). O

Remark 106. In this counter-example, the local change of coordinates which transforms fo(x)e;
into the constant vector field e; allows to transform the ODE on x to a new ODE for which
the Chen-Fliess expansion is finite (and thus convergent). It would be even more interesting to
construct a counter-example, probably in dimension d > 2, for which no local change of coordinates
can restore the convergence of the Chen-Fliess expansion.

5.1.2 Global convergence for matrices

Let T > 0. In this paragraph, we study linear systems of the form

z(t) = A(t)z(t) and x(0) = p, (251)
where A € L1((0,T); M4(K)). The solution is denoted z(t; A, p).
Proposition 107. Let T > 0 and A € L*((0,T); My4(K)). For each t € [0,T] and p € K¢,

x(t; A,p) =p+ Z/J(t A(m)pdr, (252)

where the series converges absolutely.
Proof. To simplify the notations, we write z(t) instead of x(¢; A, p). By Gronwall’s lemma, we have

lz(7)| < |ple!z©n for every 7 € [0, T). By iterating the formula

z(t)=p+ /OT A(z(r")dr’ (253)

we obtain, for every M € N*

M—-1

Z/A Ary)) - A(m)pdr| =

j=1 I (t)

/ A(rag) -+~ A(m)a(r) dr
AM (1)

(254)
Al ”A”%(O ) 1) NAl
< | Al JAG) | drfplel Alon = ZEEOD il
AM (t) M!
which proves the convergence. Similar estimates prove the absolute convergence. O

5.1.3 Local convergence for analytic vector fields

For analytic vector fields, it is well known that the Chen-Fliess series (also called “(right) chrono-
logical exponential” in [3, Section 2.1]) converges locally in time (see e.g. [3, Proposition 2.1], or
[99, Proposition 4.3] for slightly different assumptions). The analyticity assumption is necessary,
as highlighted by the counter-example of Section 5.1.1.
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Proposition 108. Let T, 6,7 > 0. There exists n > 0 such that, for f € L*([0,T];C¥"(Bas; K?))
with || fllzrcory <m, @ € C"(Bas;K9), t € [0,T) and p € Bs,

o (a(t: f.p) +Z / CCARRCNEIRLE (255)

where the sum converges absolutely. In particular,

«(t: f.p) p+Z / » - £(r;))(da) (p) dr. (256)

Proof. Let n:= min{d/2,r/10}. By Lemma 82, x(¢; f,p) is well defined for t € [0,7T], p € Bs and
belongs to Bas. Moreover, by Lemma 76, we have, for every j € N*

[ e s <t (2) L g, (257
Ad (1)

where || f|| := || fll1((0,¢);c+-r), which proves the absolute convergence because the right-hand side
is bounded by 277 |||¢]l|,.. Eventually, we deduce from (187) and Lemma 76 that

-M
w(t: 1.9 Z G @ <L e

which proves (255). O

5.2 Magnus expansion in the usual setting
5.2.1 Equality for nilpotent systems

The goal of this section is to prove that the Magnus expansion is an exact expansion for regular
vector fields generating a nilpotent Lie algebra (see Proposition 110).

If the vector fields are analytic in space, a simple proof can be given (see e.g. [66, Remark A.1]
for the case of the CBHD formula), with the following steps. First, by density, one can assume
that the dynamic depends analytically on time. Then, the maps ¢t +— z(t) and t + e?M(t) are
analytic. Because of the nilpotency assumption, Zy; = Zpp for every M’ > M and estimate (188)
proves that both functions have the same Taylor expansion at ¢ = 0, and are thus equal.

For non-analytic vector fields, the proof is much more intricate. A sketch of proof is briefly
suggested in [4, Proposition 2.4]. In this paragraph, we write the proof completely. The difficulty
is to formulate the question in the nilpotent Lie algebra generated by the vector fields, in order to
conclude with the universal property of free nilpotent Lie algebras (Lemma 7).

To that end, we start with the following statement.

Lemma 109. Let a be given by (14), M € N*, Zy(t) := Logy{a}(t) with the notation of
Definition 23. Then for every t € R, the following equality holds in N1 (X)

M—1 (—1)
> oy Mo (Zu (0) = alt), (259)
n=0

n+1)!

where Zyr(t) belongs to the space &  L(X)" which is identified with Nar1(X) as a vector space.
re[1,M]

Proof. The canonical surjection op11 @ £(X) — Nary1(X) is an homomorphism of Lie alge-
bras. Applying this homomorphism to (22), where z(¢t) = Log, {a}(t) thanks to Theorem 27,
proves (259). O
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Proposition 110. Let M € N*. There exists nyr > 0 such that, for every T,6 > 0 and every
time-varying vector field f : [0,T] — C>(Bys; K?9) such that L(f([0,T))) is nilpotent with index at
most M + 1 and f € L*((0,T);CM(Bys; K9)) with

£l Lr o myery + 1N o.rysenny < mad, (260)
then, for each p € Bs and t € [0,T)], one has x(t; f,p) = eZ D) (p) where Zy(t, f) := Logy {f}(t)
is the vector field defined in Definition 23.
Proof. Let M € N*. By Definition 23 and Lemma 79, there exists np; > 0 such that,

1 M
1 < 1 oMy + 1 .
1Zn(t, fller < ; (Hf”L ey + I FIIE (cM)) (261)

In particular, for every p € Bs, e?™ &) (p) is well-defined thanks to Eq. (260).

Step 1: Proof for f(t,x) = >21_, a;(t) f;(x) with ¢ € N*, a; € C>([0, T};K) and f; € C (K4 KY).
By uniqueness in the Cauchy-Lipschitz theorem, it is sufficient to prove that for every ¢ € [0, T

and p € By,
D) = 1 (1,7 p)) (262)

By Definition 23, the map (¢,p) — Zu(t, f)(p) belongs to C>([0,T] x Bas; K?). Thanks to the
nilpotency assumption, adAZ/[M(tyf)(ZM(T, )) = 0 on Bys for every t,7 € [0,T]. Thus Lemma 91
yields

% <eZM(t,f) (p)) = i (l(f_—i—l)l) ady,  p (ZM(t,f)) (ezM(t,f) (p)) _ (263)

Let A : Nywi(X) — L(f1,.. .,fq) be the homomorphism of nilpotent Lie algebras such that
A(X;) = fjfor j =1,...,q. By applying A to the equality (259), we obtain that the right-hand
side of the above equality is f(t,e%™ &) (p)).

Step 2: Proof for a general time-dependent vector field f. We apply Step 1 to a sequence f, of
simple functions, taking values in f([0,T]), converging towards f in L'((0,T);CM (Byss; K?)). We
get the conclusion by passing to the limit in both sides, using the fourth item of Lemma 82. O

5.2.2 Convergence for linear systems

In this paragraph, we consider linear systems of the form (251). Since the Magnus expansion was
designed for linear systems, its convergence in this context has received much attention. Depending
on the exact convergence notion that one considers and on the way one groups terms, different
sufficient conditions for the convergence can be derived. In [97], T'|| A/ (0,7y) < 1 is shown to be
a sufficient condition for convergence on [0,7] thanks to a careful estimate of the combinatorial
terms. In [83], ||Al[z1(0,r) < 7 is shown to be a sufficient condition for convergence using complex
analysis.

We give below a short elementary proof with a sub-optimal constant, for the sake of com-
pleteness and because it will be used in the sequel. Let || - || be a sub-multiplicative norm on

Ma(K).

Proposition 111. Let T > 0 and A € L'((0,T); M4(K)) such that ||Al|r7r) < . For each
t €10,7T],

is well defined in My(K) and, for every p € K¢, x(t; A, p) = e=%=®p, where the brackets refer to
commutators of matrices, i.e. [A, B] = AB — BA.

Z / 1), A(72)], ... A7)l dr (264)

reNm *(t)
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Proof. Step 1: Absolute convergence of Z(t). Let r € N*. For every m € [1,7] and r € N,

/r@) I[---[A(m), A(72)], - A(mp)]|| dr

. r (265)
< [, 21aml el <2  [lamiar)
T (t
Moreover, recalling the definition of (31), [N| = ("~ ) and Y0 (1 ) = 2""1. Thus,
X1 &1 = .
Do > / Il [A(), Ar2)), - Al dr <Y (41 Al 11)" < oo (266)
r=1 r m=1 m rENL" Af(t) r=1
Step 2: Formula for the solution L € C1([0,t]; M4(K)) of
L =L(1)A
(1) = L(7)A(7) (267)
L(0) = Idg.
By working as in the proof of Proposition 107, we obtain
+oo
L) =1da+ Y / A(ry) -+ A(ry) dr (268)
AT (1)
where the series converges absolutely. Moreover, we have
A
A(ry)dr|| < Z ~ | H“ <ei—1<1. (269)

Thus

+o0 m [+oo m
log (L()) = Z 713 (Z / » (Tr)d7'> (270)

is well defined in My(K) and L(t) = e'°¢(2()), By applying Corollary 95 with A = A; = M4(K),
we get log(L(t)) = Z(t).

,_.

Step 8: Conclusion. The resolvent R(7) associated to the linear system & = A(7)x with initial
condition at 7 = 0is R(7) = L(7)~!. Thus z(t) = R(t)p = e~ Z=®p. O

Remark 112. For X,Y € My(K) such that | X|| + [|Y]| < §, the previous statement implies the
convergence of the CBHD formula, yielding a matriz Zs, such that eXe¥ = e?>. Some authors
have investigated the optimal convergence domain in different contexts for the CBHD formula.
Such a domain sometimes depends on the summation process (i.e. the way terms are grouped
together) and the exact question one asks (existence of a logarithm, absolute summability of the
series, convergence of the remainder, etc.). Better sufficient conditions than ours can be found
for instance in [18], for instance, | X|| + |Y|| < %2. We refer to [16] for a nice survey of the
convergence questions regarding the CBHD formula.

Remark 113. The smallness assumption (on time or on the matrices) is in general necessary, both
for the CBHD formula (see [16, Example 2.3] or [103, Section II]) and for the Magnus expansion
(see [83], where the authors also prove that, although the condition ||A| 1o r) < 7 is not necessary
for convergence, there exists A with ||AllL1 o,y = 7 for which the Magnus series at time 7 does
not converge).
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5.2.3 Divergence for arbitrarily small analytic vector fields

The convergence of Magnus expansions is deeply linked with the convergence of the CBHD series.
For analytic vector fields, it is expected that both series diverge (see e.g. [4, p.1671] or [97, p.335] for
statements without examples). Some authors nevertheless suggested that, despite the divergence
of the series, the flows could converge for analytic vector fields (see [97, p.335] and [71, p.241]).

In this paragraph, we give explicit counter-examples to the convergence, even in the weak
sense of the flows, for arbitrarily small analytic vector fields, of both the CBHD series and the
Magnus expansion. Similarly to counter-examples concerning the convergence of the CBHD series
for large matrices (see e.g. [16, Theorem 2.5]), our construction relies on the choice of generators for
which many brackets vanish thanks to their particular structure, and the remaining non-vanishing
brackets are associated with coordinates of the first kind involving Bernoulli numbers.

Proposition 114. There exists § > 0 and fo, f1 € C¥(Bs; R?) such that,
VM € N,3Cx,e0r > 0,V € [0,epr],  |e570e5/1(0) — e“BHPa(Ef1e0) ()| < Cpre™MHL, (271)

where CBHD ys(ef1,ef0) is defined in Corollary 94, but, simultaneously, for every € > 0,

lim |CBHDy(ef1,£/0)(0)] = +o0 (272)
M —~+oco
and
lim |efoes/1(0) — eCBHDAI(EflaEfO)(O) = 400. (273)
M —+oc0

Proof. Let fo, f1 as in Remark 81. For these vector fields, estimate (271) comes from Corollary 94.
Due to their structure, the only non vanishing brackets are those containing f; at most once.
Therefore, formula (69) of Corollary 39 yields, for M > 1,

M-1

B
CBHD (e f1,ef0) = efo + Z kk ekt adk (f1). (274)
Hence, using (142),
CBHDM(6f1, €f0)($) =ce1 + 8@34(%‘1)62, (275)
where we introduce, for ¢ € R,
M—1
BeF(1 —q)7F L. (276)
k=0
In particular,
|CBHD (e f1,£f0)(0)] = [€05,(0)] . (277)

Since the odd Bernoulli numbers except B are zero, when M = 2M' + 2 with M’ > 1, ©5,,, ., =
O3541- Then,

1 € —
Oonrr41(q) = 1—q 2(1—qp 5 T ZB%E —2kl (278)
k=1

In particular, using (531),

€ : € : 2(2k)!
€ _ E 2k __ § : k+1 : 2k
@2M'+1(O) — 1 - 5 + - BQk€ — 1 - 5 + k:1(—1) (27]_)2’64‘(2]{;)6 . (279)

Thus, for every fixed € > 0, |05,(0)] = +o00 when M — +o00, because it involves a sum of the
form 212/1:1 ay, where |ag+1|/|ak| = +00 when k — +oo. Using (277), this proves (272).
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For p € R? close enough to the origin, one can also compute the flow eCBHP (f1.6f0) (1) which
is y(1) where y is the solution to the ODE y(0) = p and

hi(s) =e and  ga(s) = €O (31(s)) - (280)

Solving successively for y; then ys yields y;(s) = p1 + se and

y1(s)
wls)=pe+ [ 65 (h)dh (281)
y1(0)
Thus,
p1t+e
(P I) g) = -+ 2)es + (e [ OG0 ) e (282
P1
In particular,
eCOBHDM(e2f0) (0) = ceq + < / 05, (h) dh> es. (283)
0
When M = 2M’ + 2 with M’ > 1, using (278), we get
el 1 I B 1
CBHDNI(Efl,Efg) 0 — _1 1 _ _ = _ 1 72]? 2k _ 1 .
e (0) =eer + n(l—e¢) 5\ 1= +; 5% € TSEa €2
(284)
Hence, for the same reason as above, the flow satisfies |eBHPm (¢/1.2f0) (0)| — 400 when M — 400,
which proves (273). O

Remark 115. If one sees (x1,x2) as (q,p) in an Hamiltonian setting, one checks that the vec-
tor fields defined in (141) and used in this counter-example are associated with the Hamiltonians
Holg,p) := p and H1(q,p) := In(1 — q). Therefore, assuming an Hamiltonian structure on the
considered vector fields does not provide enough structure to yield convergence.

One could wonder if assuming even more structure on the dynamics, for example assuming that
it is time-reversible, prevents the construction of such counter-examples.

Open problem 116. Do there exist Hamiltonians Ho and Hi on R??, which are time-reversible
(i.e. satisfy Hi(q,p) = Hi(q, —p) for every q,p € RY), locally real-analytic near zero and for which
the convergence of the CBHD series fails as in Proposition 114%

The counter-example of Proposition 114 for the convergence of the CBHD series allows to build
counter-examples to the convergence of the Magnus expansion which blow up instantly, despite
analytic regularity in both time and space.

Proposition 117. There exist T,6 > 0 and f € C*([0,T] x Bs; R?) such that, for every e > 0 and

te (0,17,
pim 1 Za (8, ef)(0)] = +o0 (285)
and
lim |z(t;ef,0) — 2 &2D(0)] = +oo, (286)
M —+o00

where x is the solution to ©(t) = ef(t,z(t)) with £(0) =0 and Zp;(t,ef) = Logy{ef} ().

Proof. Let T = 1. We define f(t,z) := fo(x) + tf1(z), where fy and f; are defined in Remark 81.
Similarly as for the previous construction, only Lie brackets involving f; at most once are non-
vanishing. Moreover, the coordinates of the first kind associated with the controls ag(t) = 1 and
a1(t) =t have been computed in Example 40. Hence, recalling (142), we have

(—1)kH1ght2 K
B .
CES R (e i

M-1
Zy(t,ef) = etey + Z ghtl (287)
k=0
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Proceeding along the same lines as in the proof of Proposition 114 allows to conclude that both
Z(t,ef)(0) and e (*#)(0) diverge when M — +oc. O

5.3 Magnus expansion in the interaction picture
5.3.1 Nilpotent systems

For ODEs of the form (209), the starting point of the interaction picture is to factorize the flow
of fo. Hence, the roles of fy and f; are asymmetric. One can expect that, under the assumption
that Lie brackets of fy and f; containing at least M + 1 times f; identically vanish, the Magnus
expansion in the interaction picture should yield an equality of the form

w(t; fo+ fi,p) = S Petop, (288)

where Zy(t, fo, f1) is defined in Proposition 99. We prove in this paragraph that it is indeed the
case, when fy and f1 are analytic. However, contrary to the case of the usual Magnus expansion
(see Section 5.2.1), we give examples highlighting the fact that the analyticity assumption cannot
be removed, which is quite surprising but stems from the mixing induced by pushforwards.

We therefore start with the following definition.

Definition 118 (Semi-nilpotent family of vector fields). Let 0 be an open subset of K%. Let
F C C®(KY), fo € C°(K?Y) and M € N*. We say that the family of vector fields F is
semi-nilpotent of index M with respect to fo if every bracket of elements of F U {fo} involving
M elements of F vanishes identically on Q and M is the smallest positive integer for which this
property holds.

Remark 119. Some authors (see e.g. [62, Section 3]) refer to this situation by saying that L£(Sy)
is nilpotent of index M, where S; = {ad’}o(f);f € F,k € N}. Both definitions are equivalent,
thanks to the Jacobi identity for Lie brackets.

Proposition 120. Let T,6 > 0. Let M € N. Let fo € C®(Bys; K?) with T| follco < 6. There
exists 1 > 0 such that, for every f1 : [0,T] — C>®(Bas; K%) with f; € L'([0,T];CM+1(Bys;K))
and || f1l[ L1 cmy < 0, the following family is well-defined

G == {®o(—t). f1(t); t€[0,T]} CC®(Bs;K?). (289)

and, assuming moreover that G is nilpotent of index M + 1, then, for each t € [0,T] and p € By,
the solution to (209) satisfies (288).

Proof. Let t > 0. As in the proof of Proposition 99, we introduce the new variable y(s) :=
Do (t—s,2(s)). Then y(s) = g:(s,y(s)), where g; is defined in (210). Thanks to Lemma 88, g;(s) =
D (1) Po(—5)«f1(s). Thanks to the assumption and to Lemma 89, the family {g:(s); s € [0,¢]} is
nilpotent of index M + 1. Thus, by Proposition 110, y(t) = eZM(t:fo.f1)y(0). Since 2(t) = y(t) and
y(0) = ®¢(¢,p), this concludes the proof of (288). O

Lemma 121. Let T,6 > 0, F C C®(Bys;K?), fo € C®(Bas;K?) such that T| follco < 5. The
following family is well-defined

G = {®o(—t).f; t€[0,T),f € F} C C®(Bs;K?). (290)

Assume that the family F is semi-nilpotent of index M with respect to fo and that there exists
r > 0 such that F U{fy} C C*"(Bs;K?). Then G is nilpotent of index M.
Proof. For t € [0,T] and f € F, equation (164) of Lemma 90 implies that

+oo tk .
Bo(—t).f = 5 adj,(f) (291)
k=0
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and that the series converges absolutely in C™ (Bs; K¢) (in particular). Hence, if ¢y,... ¢ € [0,T]
and f1,... fyp € F, the bracket

[@o(=tar)«farsl - [Po(—t2)s f2, Po(—t1)xf1]---]]

Ky kn
= 3 Tl (b ) adf (]
1,---kME

(292)

vanishes thanks to the assumption and the absolute convergence of the sums. The same is true for
every other bracket structure, which proves that G is nilpotent of index M. O

Corollary 122. Let T,6,7 > 0. Let fo € C“"(Bs;K%) such that T| follco < 6 and f €
LY([0,T);C"(Bys; K%)). Assume moreover that F := {fi(t,-); t € [0,T]} is semi-nilpotent of
index M + 1 with respect to fo. Then, for each t € [0,T] and p € Bs, the solution to (209) satisfies
(288), where Zp;(t, fo, f1) is defined in Proposition 99.

Proof. This corollary is a direct consequence of Proposition 120 and Lemma 121. O

The analyticity assumption in Lemma 121 is necessary, as illustrated by the following counter-
example for smooth functions.

Example 123. We consider smooth vector fields on R3. Let x € C*°(R;R) with x =0 on R_ and
x(x) > 0 for x > 0. Let fo and F := {f1, fa} where

fo(z) == ea, (293)
fi(z) = x(w2)w1e3, (294)
fa(@) := x(—mz2)er. (295)

Heuristically, f1 and fo commute because they have disjoint (touching) supports, but the flow of fo
involved in (290) mizes these supports for every positive time. This is possible only because x is
not analytic.

First, we check that F is semi-nilpotent of order 2 with respect to fy. Indeed, for every j € N,

ad’, (f1)()
ad’ (f2) ()

Thus, forj,k € N, [audgcO (f1), audkO (f1)] (resp. [audgc0 (f2), audk0 (f2)]) vanishes because both vector fields
are multiples of es but independent of x3 (resp. multiples of ey but independent of x1). Moreover,

ladd, (1), ad} (f2)](x) = —(=1)"x*) (=22)xP (22)es = 0, (298)

because the supports of x(-) and x(—-) only touch at xo = 0 where all derivatives vanish.

Second, let us check however that the family G defined in (290) is not nilpotent of index 2.
Indeed, for t > 0 and x € R, ®q(t)(z) = x + tea. Thus, for f € C®(R3R3), (®o(—t).f)(x) =
f(x +tey). Therefore, for every T > 0, G is well-defined on R3. Moreover,

[f2, (Po(=1)« f1)](z) = x(—>2)x(z2 + t)es. (299)

In particular, for every e > 0, [fa2, (®o(—2¢).f1)](—ee2) = x(¢)?e3 # 0, which prevents the family
G from being nilpotent of index 2 (even locally in time and space).

X9 (w3) 13, (296)
(=17 X9 (—z3)es. (297)

The analyticity assumption in Corollary 122 is also necessary, as illustrated by the following
counter-example for smooth functions, inspired by the previous one.
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Example 124. We consider smooth vector fields on R3. Let x € C*°(R;R) with x =0 on R_ and
x(x) >0 for x > 0. Let fo(x) :=es and f1(t,z) := fi(x) (independent of time) with

fir(@) = 2x W (w)zres + XD (—22)er. (300)
For j € N, one has
ad’, (f1)(x) = A fr(x) = 2XU ) (wo)mres + (—1)7 XU (—z2)er. (301)
Thus, for every ji,j2 € N,
[ad}, (1), ad}? (f1)](2) = 2(=1)7 XD (—a)x 21 (22)es (302)
_ 2(_1)j2x(j2+1)(_xQ)X(jl-'rl)(xQ)eS -0

because the supports of x(-) and x(—-) only touch at xo = 0, where all derivatives vanish. Hence
each bracket of fo and fi involving fi at least twice vanishes identically on R3. Thus, for every
T > 0, the family F := {f1(t,-); t €[0,T)} = {f1} is semi-nilpotent of index 2 with respect to fo.
Let us prove that, despite this property, equality (288) with M =1 fails.

Computation of the state. We solve & = fo(x) + f1(x) for some initial data p. Solving the
ODE successively for xo, 1 and x3, we obtain

z1(t) = p1 + x(=p2) — x(=p2 — 1), (303)
za(t) =p2 +1t, (304)
z3(t) = ps + 2 (x(p2 +t) — x(p2)) (p1 + x(—p2)). (305)

In particular, with t = 2¢ and p = —eeq, x(2¢; fo + f1, —€ea) = (x(€),¢,2x(¢)?).

Computation of the flow. We compute e (:-fo.f0etho(p) for some initial data p. One has
Oo(7,q) = q + Tea. Hence, in particular (Po(T)sf1)(q) = f1(q — Te2). Moreover Z1(t, fo, f1)(q) =

f(f 9:(8,q) ds where g(s,q) = (Po(t — 8)«f1)(q). Hence g:(s,q) = fi1(q — (t — s)e2) and

20ty fon f1)(@) = / fi(g+ (s — thea) ds

=2q1(x(q2) — x(g2 — t))es + (x(—q2 + t) — x(—q2))e1-

(306)

Then eZ1(bfos)ethop = eZ1(8fof1) (p - tey) is y(1) where y is the solution to y(0) = p + tea and
y(s) = Z1(t, fo, f1)(y(s)). Solving the ODE successively for y2, y1 and y3, we obtain

y1(s) = p1 + s(x(—=p2) — x(—p2 — 1)), (307)
Yy2(s) = p2 +1t, (308)
ys(s) = ps + (x(p2 + 1) — x(p2)) (2p15 + 5*(x(—p2) — x(—p2 — 1))) - (309)

In particular, with with t = 2c and p = —cey, 212 f0.e2fo(—cey) = (x(¢), ¢, x(€)?). Thus, for
every € > 0,

x(2e, fo + f1, —ceq) — 2125 Fo ) 280 (_gey)| = x2(e) > 0. (310)

5.3.2 Convergence for linear systems

Let T > 0. In this paragraph, we study linear systems of the form
(t) = (Ho+ H1(t)) z(t) and z(0)=p, (311)

where Hy € My(K) and H; € L*((0,7); M4(K)). Let ||-|| be a sub-multiplicative norm on M 4(K).
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Proposition 125. Let T > 0, Hy € M4(K) and Hy, € L*((0,T); M4(K)) such that | H1llzr 0,y <

eIl Then, for each t € [0,T] and p € K? the solution to (311) satisfies x(t) = e~ Z="etHop
where Z(t) is defined by (264) with

400 k
t—T
At(T) — e(t_T)HOHl (T)e(T_t)HO — E % ade){O (Hl) (312)
k=0 ’

Proof. The function y : 7 € [0,t] — e~ Hog(7) satisfies y'(1) = A(7), y(0) = etfop. Thus, by
Proposition 111, y(t) = e~ Z="etHoy which gives the conclusion because y(t) = (). O

Remark 126. The Magnus expansion in the usual setting (Proposition 111), when applied di-
rectly to A(t) = Ho + Hi(t) requires a smallness assumption on T||Hy| (through the condition
Al 10,7y < %), even for small perturbations Hy. On the contrary, the Magnus expansion in the
interaction picture (Proposition 125) holds even when T||Hy|| is large, provided that the perturba-
tion Hy is small enough.

Remark 127. More generally, in [4, p. 1671], the authors consider the formal power series ex-
pressing the chronological logarithm of two flows, associated to two mon-autonomous vector fields.
They explain that, when the vector fields take values in a Banach algebra, and one of them is small
enough, then this series converges. Proposition 125 is an illustration.

5.3.3 Divergence for arbitrary small analytic vector fields

Generally speaking, since, as illustrated in Section 5.2.3, the Magnus expansion does not converge
for analytic vector fields, one cannot expect that the Magnus expansion in interaction picture
converges for analytic vector fields.

For instance, if fo = 0, or if, for some a € [1,d], fo(z) is a linear combination of ey, ..., e, with
coefficients depending only on z1,...,z, and f;(¢,z) is a linear combination of €411, ...eq, with
coefficients depending only on x,41,...24, then the vector field g¢(7) = ®o(t — 7)4« f1(7) defined
in (210) and involved in the Magnus in the interaction picture formula satisfies g;(7) = f1(7).

Hence, each counter-example to the convergence of the usual Magnus expansion also yields
counter-examples to the convergence of the Magnus expansion in the interaction picture.

More generally, in [4, p. 1671], the authors consider the formal power series expressing the
chronological logarithm of two flows, associated to two non-autonomous vector fields. They claim
that, even for analytic vector fields, this series does not converge in general. The counter examples
of the present article illustrate this assertion.

5.4 Sussmann’s infinite product expansion
5.4.1 Equality for nilpotent systems
In this section, we study affine systems of the form (226).

Proposition 128. Let B be a Hall basis of L(X) and (&)pep be the associated coordinates of the
second kind. For every M € N*, there exist ny; > 0 such that the following property holds. Let
T,6 >0, f; € C®(Bss; K?) and u; € L'((0,T);K) fori € I. Assume that the Lie algebra generated
by the f; fori € I is nilpotent of index at most M +1. Then, under the smallness assumption (227),
for each t € [0, T] and p € By,

x(t; f,u,p) = M Gl (313)
LU p beB[ Ay b.

Proof. The proof strategy is the same as for Proposition 104. We apply the second statement of
Lemma 90 instead of the first one, which gives ¢; = 0 for each j € [0,k + 1]. The smallness
assumption guarantees that all flows are well-defined. O
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5.4.2 Bilinear systems

Let T' > 0. In this paragraph, we study the convergence of Sussmann’s infinite product expansion
for bilinear systems of the form

z(t) = <Z ui(t)Ai> z(t) and z(0)=p (314)

iel

where A; € My(K) are time-invariant and u; € L*((0,7);K). When well-defined, its solution is
denoted z(t; A, u,p). Local convergence is proved in Proposition 131 while an example illustrating
the lack of global convergence is proposed in Proposition 132.

Local convergence. The main goal of this paragraph is to prove Proposition 131 which as-
serts that Sussmann’s infinite product expansion for system (314) converges locally (i.e. for small
matrices, small controls or small time).

Before proving this result, we need a definition for an ordered infinite product (given in Defi-
nition 129 below) and a sufficient condition for its convergence (given in Lemma 130 below).

Defining the ordered product of a family of matrices indexed by a length-compatible Hall basis
is straightforward, because there exists an indexation of the family by N which is compatible with
the order induced by the Hall basis (since it does not involve infinite segments). Hence, one is
brought back to the classical case of a sequence of products and usual definitions and convergence
criteria can be used.

For arbitrary Hall bases (in the generalized sense of Definition 54), the situation is more intri-
cate, due to the potential infinite segments which can prevent the order of the basis from being
compatible with the order of natural integers. For example, in the Lyndon basis of £(X) for
X = {Xo, X1} with Xy < Xy, ad];’(o(Xl) < (Xo,X;) for all k > 2, so there is an infinite segment
before (Xo, X1). This problem already appears for a product which would be indexed by N? with
the lexicographic order

(0,0) < (0,1) < (0,2) <--- < (L0O)<(,) < (L,2) <--- < (2,0) < -~ (315)

We therefore propose a natural definition and a basic sufficient condition for convergence based
on absolute convergence. In what follows, || - || is a submultiplicative norm on M4(K) such that
IIId|| = 1, for instance a subordinated norm.

Definition 129. Let J be a totally ordered set and (A;),c; matrices of M4(K). We say that the
ordered product of the e over J converges when there exists M € My(K) such that, for every
€ > 0, there exists a finite subset Jy of J such that, for every finite subset J; of J containing Jy,
one has

-
M — TI %

<e. 316
et < (316)

When such an M ezists, it is unique and we write

<
M= gjef“f. (317)
J

The following natural convergence criteria also appears in [68].

Lemma 130. Let J be a totally ordered set and (A;)jec; matrices of Mq(K) such that

> 4] < +oo. (318)

jeJ

Then the ordered product of the e?i over J converges in the sense of Definition 129.
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Proof. Let « be the left-hand side of (318).
Step 1: Basic claims. We start with straightforward claims. First, for every j € J, one has

les —Td]| < M0 =1 < Jlagflel T < |]4; e (319)
Second, for every finite part J' C .J, one has

-
I e

Py < I ellAill < e, (320)

~ jer

Third, for every finite parts Jy C Jy C J, one has

— —
I ed — 11 ™
JEJ Jj€Jo

<& > 44l (321)

j€J1\Jo

Indeed, writing J; \ Jo = {j1 > -+ > jn}, we have the following telescopic decomposition

n

— — — —
et — I et =) T e (et —1d) I Y, (322)
JEJ1 Jj€Jo Jj€Jo JE

k=15>jx J<in

which, together with the two first claims, proves estimate (321).

Step 2: Construction of a limit. We construct a possible limit. For each n > 2, let

1
si=fies lan> 1), (32)
Thanks to assumption (318), the sets J,, are finite and, moreover,
JEIN\In

Now, for each n > 2, we define the matrix
M, I A
= I, 325
nT enS (325)
This defines a Cauchy sequence in the complete space My(K). Indeed, for every n < p, thanks to
estimate (321), one has
| M, — M,|| < 3%, (326)
Hence, there exists M € Mgy(K) towards which the sequence (A,),>2 converges. By letting
[p — o0] in the previous inequality we obtain, for every n > 2

M, — M| < e*%¢,,. 327
[

Step 3: Proof of convergence. We now prove that the ordered product of the e4i over J converges
to M in the sense of Definition 129. Let ¢ > 0. Let n > 2 large enough such that e3%¢, < /2.
For every finite set J; containing J,, condition (316) holds thanks to (327) and (321). O

Proposition 131. Let B be a Hall basis of L(X), (&)vep be the coordinates of the second kind
associated to B. There exists 7 > 0 such that the following property holds. Let A; € My(K) for
i € I. Forb € B, we define the matriz Ay :== A(b) where A : L(X) = M,,(K) is the homomorphism
of Lie algebras such that A(X;) = A; fori € I (see Lemma 7). Let T > 0 and u; € L'((0,7T); K)
fori e I. Assume that

lullzro,m) 1Al < . (328)
Then, for each t € [0,T] and p € K, the ordered product of the ot WA pper b € B converges.
Moreover, for every p € K¢,

.
o(t; Ayu,p) = TLeS 0, (329)
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Proof. Let n:=1/(8|I|?). Let T > 0. Below, the variable ¢ implicitly belongs to [0,7]. To simplify
the notations we write &,(¢) instead of &, (¢, u).

Step 1: Convergence of the ordered product of the e€*"Av oyper b € B. One obtains, by induction
on |b], that for every b € B, || 4| < (2]|A|)!®!. Thus, recalling (107),

1]

&) Asll < IIANull1.0,0)) (330)
Taking into account that |Bs| < |I|¢, we obtain, using (328),
+oo p
>_lla®An <3 Il o) <1 (331)
beB =1

and Lemma 130 gives the conclusion.

Step 2: Estimates along a Lazard elimination in By pp. Let M € N*. We adopt the notations
bi,...,bky1 and Yy, ..., Ys 1 of Definition 53 and we define x¢(t) := z(t) and, for j € [1,k + 1]

;i (t) 1= et (WA L o=y (L) Avy gy (332)

We prove by induction on j € [0,k + 1] that

(M) : {ij(t) = (Siespumny, S04+ () (1) (333)
z;(0) = p,
where ¢g = 0 and
le; 1 < (MA@ QA w2 0,0)™ + -1 (2)]]) €210 Dol (334)

First, (Ho) holds with £9 = 0 because zo(t) = x(t) and £x, (t) = u;(t) fori € I. Let j € [1,k+1]
and assume that (#;_1) holds. We deduce from the definition of x; that

;) = e D%, (1) (335)
and from (#;_1) that
() = =6, O Apa; () + e ON | BT GO+ ea(t) | My (0
bGB[[LM]]ﬁY'jfl (336)
= > E(t)e s W Ay Oy 251 (8) | 25(t)
bEB1,Mm)NY;-1\{b; }

where €;_1(t) := e Sbs (DA 5j_1(t)65b1 (4 gatisfies,

1851 (D] < llej—a ()]0 O, (337)

For b € By vp NYj-1\ {b;}, let h(b) € N* be the maximal integer such that (241) holds and

, . RO em()
B (1) 1= G(t)e % DA Ayt (D — &(t)—
0

m=

2 Ay 1) (338)
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Then, by definition of Y;, (H;) holds with ¢; defined by (245). Using the fourth statement of
Lemma 90, (106), (330), we obtain

. : 2||&, () Ay, [[)H®
e

oi—1 (21| Al 11 ) (D1bs IR ()
< oot - A

< Mlu(t)| (41 Allllull 22) M| All

(339)

- (2| A"

taking into account M + 1 < |b] 4+ h(b)|b;| < 2M and ||A||||ul|zr < 1.
We deduce from (245), (337), (339) and the relation By | < [I]M 7 that (334) holds.

Step 4: Proof of an estimate on the ordered product of the €4 oyer Bpi,ag- We deduce
from (334), (331) and the relation k + 1 = [B aq| < [I|M 7 that

ler+1 ()] < eM AN [u)| AP [Alllull 2 0,0)™ - (340)

Hence, using (328),
e _
lenrallzi.e < FATPIANul Ly o)™ < 27, (341)

We deduce from (Hp+1), (99) and Gronwall’s lemma that

+—

t
i e—ﬁb“ﬂ”bx(t)—p\=|xk+1<t>—p|s | @@ <2 Velpl @42
beB1, 0] 0

N
Multiplying both sides by the finite product I et A gives

bEB[[l’M]]
s A 20—M
o(t)— I eSBWAnyl < 297 M) (343)
bEB[[L}V[]]
Passing to the limit [M — oo] in the previous estimate gives (329). O

Lack of global convergence. The goal of this paragraph is to illustrate that the smallness
assumption (328) in Proposition 131 is necessary because the equality does not hold globally.

Proposition 132. Consider the constant control u:t € Ry — (1,1) € R2.

1. There exist a Hall basis B of L({X1, X2}) and a subsequence (by)ren of B such that
|br |
By >0V ENE>0, & () > (W) (344)

2. There exists Ay, Ay € M3(C) and t > such that (€Sx4, o does not converge to 1ds
in M3(C). Thus, the ordered product of the 554 oyer B does not converge in M3(C).

Proof. For the first point we adapt an argument due to Sussmann in [100, pages 333-335]. We
define by induction two sequences (b}.)ren and (b7)ren of Br({Xi, X2}) by

btl) =Xy, b%) = Xo, bllc+1 = [b%a [bllcv b%]]a szrl = [b}w [bllw bi“ (345)

There exists a Hall basis of £({X7, X2}), whose order, denoted <, is compatible with length and
such that, for every k € N, b}, b2 € B and b, < b?. It suffices to choose, on the brackets with length
3%, some order such that bj < b7. Then, automatically, [b},b7] € B and thus bj_,,b%,, € B. Such
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a process indeed allows to construct a Hall basis (see Remark 55), provided that one chooses an
arbitrary length-compatible order on all other brackets.

To lighten the notations, we write &(t), instead of &,(¢,u). We have {x, (1) = £x,(t) =t. An
easy induction shows that, for every b € B, &,(t) = t'b‘_l/ab, where o € N*. The constants «; can
be computed recursively: ax, = ax, = 1 and, if b = ad} (b2) with m € N*, by < by and A(b2) < by
then o, = a3 |b1|"m!ay,. In particular, for every &k € N,

O[bi+l = abiagi |bi||b]1€| = O(bllcaii?)Qk, Oébi+1 = 20[5)160%2 |b]1$|2 = 2045116041,%3%. (346)
Let 85 = maX{%i&‘bi}- Then, 8y = 1 and, by the previous relations,
Brg1 < 3%H133, (347)
+ k

Thus 6y, := 3% In(B},) satisfies #y = 0 and

Or1 < O + (2k + 1)3~FHD 1n(3), (348)
which leads to 0, < n:= ;2(23' +1)37U+D In(3) ie. B < (v)*" where 4/ = e”. Therefore, for
every k € N and j € {1,2} we have

A

1 t k
0z (5) - 349
w2 o7 () (349

3k

Let v > ~ be such that, for every k € N, -1 (1,) > 1. Then (344) holds, for instance with

3k
b = bl.

For the second point, let, for j € {1,2,3}, F; € M3(R) be the matrix of the linear map
z € R® — e; Ax. Then [Fy, Fy] = F3, [Fp, F3] = Fy and [F3, Fy] = F». In particular

[Fy, [F1, Fo]] = Fy,  [F1, [F1, Fy)] = —Fa. (350)

We consider A; = €'5 F} and Ay = €'5 I, in M3(C). One easily proves by induction on k € N*
that A, = (=1)**'iFy and Az = —iF,. We have, for every k € Nand t € R

1 0 0
ebo WA, — [0 cosh(&, (1)) i(—1)* sinh(&, (1)) (351)
0 i(—1)F*!sinh(&, (1)) cosh(&p, (1))

By (344), this sequence of matrices diverges for every ¢t > . O

5.4.3 Investigation for analytic vector fields

In this paragraph, we study affine systems (226). Our goal is to explain the difficulty of the
convergence question for Sussmann’s infinite product for arbitrary analytic vector fields. First, we
state a definition (Definition 133) and a sufficient condition for the convergence (Lemma 134), in
the same spirit as for matrices. Then we show that they do not provide convergence for general
analytic vector fields and we formulate an open problem.

Definition 133. Let J be a totally ordered set, § > 0 and (f;);jcs a family of C'(Bas; K%). We say
that the ordered product of the efi over J converges uniformly on Bs if there exists g € C°(Bs; K?)
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such that, for every € > 0, there exists a finite subset Jo of J such that, for every finite subset Jq
of J containing Jo, and for every p € Bs one has

e
— ipl| <e. 352
Joto) = 11 eh < (352)
When such a g exists, it is unique and we write
-
g= leIJeff. (353)

Lemma 134. Let J be a totally ordered set, § > 0 and (f;);cs a family of C*(Bas; K?) such that
S llfillco <6 and  a:=>_|lfiller < oo (354)
jeJ jeJ

Then the ordered product of the efi over J converges uniformly on Bs and is e“-Lipschitz.

Proof. We proceed as in the proof of Lemma 130.
Step 1: Basic claims. First, for every finite subset J' C J and p € K with [p| < 263",/ || fjllco,
then

H elip € Bog and ‘
jeJ’

|: II epr:| H < II elfillco <e“ (355)
jeJ’ jeJ’

because of Lemma 85 and the chain rule.

Second, for every finite parts Jy C J; C J and p € K¢ with [p| <26 — > | fillco one has

JEJ1

H efip— H efip
JEJ Jj€Jo

\ < Y 1fle (356)

j€J1\J0

Indeed, writing J; \ Jo = {j1 > -+ > jn}, we have the following telescopic decomposition

n — — — —
H elip — H elip= I eli | efin I eli — I efi I efi . 357
et metr=2 30, jen” P e R L Rl
J>Jk I<Jk J>Jk J<Jk

-
For k € [1,n], let z := HJ efip which is a point in Bos |11, By (355) and (149), the term
JeJ1

/HCO'
J<Jk
with index k in the previous sum is bounded by
I efi efykxk - II efi T < e® efﬂkxk — $k| < eaHfijco. (358)
J€Jo j€Jo
J>jk J>3k

which, together with (357) proves (356).

Step 2: Construction of a limit. We construct a possible limit. For each n > 2, let
) 1
Jni=yi€d Mille >~ (359)

Thanks to assumption (354), the sets J,, are finite and, moreover,

eni= Y, Ilfiller 0. (360)

JEI\Jn

65



Now, for each n > 2, we define g,, € C°(Bs; K?) by

gn(p) = jeHJ elip. (361)

This defines a Cauchy sequence in the complete space C°(Bs; K¢). Indeed, for every n < n’ and
p € Bg, thanks to estimate (356), one has

19n(P) — g (P)| < €%enn. (362)

Hence, there exists g € C°(Bs;K?) towards which the sequence (g, ),>2 uniformly converges on
Bs. By (355), gn is e®-Lipschitz on Bj for every n € N, thus so is g. By letting [n’ — o¢] in the
previous inequality we obtain, for every n > 2 and p € By

lgn(p) — 9(p)| < e“en. (363)

Step 3: Proof of convergence. We now prove that the ordered product of the efi over J converges
uniformly to g on Bs in the sense of Definition 133. Let ¢ > 0. Let n > 2 large enough such
that e%e,, < £/2. For every finite set J; containing J,,, condition (352) holds thanks to (363) and
(356). O

Now, let us emphasize that, by using estimates on &,(¢,u) and f, depending only on the length
of the Lie bracket b, it is not possible to prove the convergence of > |&, (¢, w)|||follct, where the
sum ranges over b € B, an arbitrary Hall basis of £(X).

On the one hand, one easily proves by induction on [b| that, for every b € B and u € L™
with ||u|z~ < 1, there holds |&, (¢, u)| < t!’l. However, by the first statement of Proposition 132,
when X contains at least two indeterminates, there are Hall bases (even compatible with length)
for which one may not expect an upper bound, function of |b| alone, that behaves better than
geometrically. Hence, we should consider the ¢/’l bound to be sharp, when one restricts to bounds
depending only on |b].

On the other hand, if the vector fields are locally analytic, there exists r,§ > 0 such that
fi € C¥7"(Bs; K?) for i € I. By (140) with 71 < r and 73 < r/e for every b € B,

Ifoller < (1+ %) (bl = 1t (f)'“ FIY, (364)

where F':= max;¢y ||| fil||,. However, by Remark 81, the dependence in (|b| — 1)! is optimal (again,
if one restricts to bounds involving only |b|).
We deduce from the previous estimates that there exists C > 0 such that

&t )l foller < (Ct)PT]bL. (365)

This bound does not provide the convergence of the considered series. Indeed, for every ¢ > 0,
(Ct)PI|b]! = 400 as |b| — +o0, so an argument depending on |b| alone doesn’t even prove that the
general term tends to zero.

To prove the convergence of Sussmann’s infinite product expansion, one therefore either needs
a better sufficient condition than Lemma 134 or one needs to prove estimates on &, and f; that
take into account the structure of the bracket b, and not only its length.

Open problem 135. Does Sussmann’s infinite product converge for analytic vector fields?

In Section 6.4, we prove the convergence (for analytic vector fields) of some infinite subproducts,
by applying Lemma 134 with estimates on &, that depend on the structure of b.
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6 Error estimates for control systems

In this section, we consider control-affine systems with drift, i.e. of the form
q
#(t) = fo(z(t) + > _ui(t) fi(z(t) and x(0) =p, (366)
i=1

where fo, ..., f, are vector fields and u = (uy, ..., u,) € L*(R; K?). When well-defined, the solution
is denoted z(t; f,u,p) where f = (fo,..., fy) and u = (uq, ..., uq).

We prove error formulas at every order in |lu||z1 for the Chen-Fliess expansion, the Magnus
expansion in the interaction picture and for Sussmann’s infinite product expansion. In each case,
the error formula involves an infinite sum or an infinite product which turns out to be well-defined.
We also propose a counter-example for the validity of such error estimates for the usual Magnus
expansion, for which the infinite sum involved is not well-defined.

6.1 Chen-Fliess expansion

The convergence of the Chen-Fliess series, for control affine systems (366) with analytic vector
fields, under a smallness assumption on ¢ and a uniform bound on wu, is a classical result, see for
instance [36, Proposition 3.37] or [99, Proposition 4.3]. In this section we prove the convergence
of the Chen-Fliess expansion, (Proposition 136) under a smallness assumption on ||u||;:. We also
generalize the Chen-Fliess expansion to nonlinear systems (not necessarily affine) with scalar input
(Proposition 137), because this fact will be used in Section 7.2.

In the following statement ¢ € N*, I = [[0,¢]. For a word ¢ = o1---0¢ € I*, with £ € N*,
o1,...,0¢ € I, and vector fields fo, f1,..., fy, we denote by f, the differential operator f,, --- fs,

(with the notations of Remark 74). For ¢t > 0 and u = (uy,...,u,) € L'(0,¢), the quantity fot Uy
is defined in (19), with uo = 1.

Proposition 136. Let 6,7 > 0 and fo, f1,..., fy € C*"(Bas; K?). There exists n > 0 such that,
for every o € C¥7(Bas; K), t € [0,7] and u € L*((0,t); KY) such that ||u||z2 <n and p € Bs, then

ottt ) = 3 ([ 00) (o) 0 (367)

oel*

where the sum converges absolutely, uniformly with respect to (t,u,p). Moreover, for every ¢ €
C¥"(Bas; K), there exists C > 0 such that, for every M € N, p € Bs, t € [0,7] andu € L*((0,t); K?)
such that ||ul|p1 < n, then

ot fonp) — Y ( / u) () ()] < (Clull)™™, (369)

n(o)<M
where the sum ranges over words o € I* such that the number of non-zero letters is at most M.

Proof. For 0 = 01---04 € IT*, let n(o) be the number of non zero letters in o, i.e. n(o) = |{i €
[1,€]; 0; # 0}| and no(o) be the number of occurrences of the letter zero in o, i.e. no(o) = [{i €
[1,€];0; = 0}]. Then ¢ = n(o) + ng(o). One proves by induction on the length ¢ of o € I* the
following estimate, for every ¢ > 0 and u € L'((0,t); K9),

/ " <4”“HTLL(1(Z<)M) ol (369)
o )| nla) nglo)
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Let || fIl = >2{ g I filll,» m = r/(LO[[f]), ¢ € C*"(B2s; K), t € [0,7] and u € L'((0,¢); K?) such
that ||ullL10,e) = >oiq luillLi0,r) < 1 and p € Bs. Using (369) and (135), we get

¢ () 10, ..\"
([ o) o) @] < 1l (32051 e, (370)

which proves the absolute convergence of the sum in (367), uniformly with respect to (¢, u, p)
The proof of the equality in (367) consists in applying (255) to f(t,z) = fo(x)+> i, wi(t) fi(z).
In particular the sum involved in (368) is the Taylor expansion of order M of u — p(z(¢; f,u,p))
at u = 0. By adapting Lemma 83 to affine systems with L' controls, we get the real-analyticity of
the map u — p(z(t; f,u,p)) on Bri(y(0,n) uniformly with respect to (¢,p) € [0,1] x Bs which
ends the proof of (368). O

The last statement of this section focuses on nonlinear control systems with scalar input
i = f(a,u) (371)

where f : K% x K — K% When well-defined, the solution of this ODE, with initial condition
x(0) = p is denoted x(¢; f,u,p). We introduce the notation

/Otuk = /n@) w(r)* - u(r,) P dr (372)

for every t > 0, u € L*((0,t);K), and every multi-index k = (ki,...,k,) € N® with n € N*.

Proposition 137. Let r,6,6, > 0, f € C¥"(Bas X [~0u, 6,]; K?) and fi, := %Qljf(-,()) for every
k € N. There exists T*,n > 0 such that, for every ¢ € C*"(Bas; K), t € [0,T*], u € L*>((0,t); K)
with ||ul|p~ <n and p € By, with the notations of Remark 7/,

((t; fu,p)) = tu’“ (frr -+ fr ) (@) (D), (373)
¥ p kg%;}l (/0 ) k ACIAVY

where the sum converges absolutely, uniformly with respect to (t,u,p). Moreover, for every ¢ €
C¥ 7 (Bas; K), there exists C' > 0 such that, for every M € N, t € [0,T*], u € L>=((0,t); K) with
|ullL~ < n and p € B

t
o (x(t; fu,p) — Y </0 uk> (frn - i) (@) ()| < (Cllullpo)™ (374)
keNg,e\llj]gM
where the sum is taken over n € N and k = (k1,...,k,) € N such that ky + -+ + k, < M.

Proof. We define 1’ =r/e,

’I"l (5 r
T ==minq ————, ——— &, =minq 0y, — ¢ - 375
{10|||f|T Ifllco} 1 { m} (375)

Let ¢ € C¥"(B2s;K), t € [0,T*], u € L*((0,t); K9) with [Ju|p~ < 1 and p € Bs. Then
x(ta f7u7p) € 325-

Step 1: Uniform absolute convergence of the sum in (373). Using the iterated version of (127) and
(116), we get, for every k € N,

k k k k
Al < (2 ) 0ot < (=) me < (2) o, (370
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For every n € N* and k1, ..., k, € N, we have, using (135) and (376)

5 n
(G )G <0t (2) Wl e el
5 n 5 ki+--+kn .
< (2) (2) A el

/ u(7’1)k1 . -U(Tn)k" dr
An(t)

(377)

and

< Sl (378)
— n! LOO .

t
0

By definition of 7* and n we have 2 |||, < 3 and 2|ju|[ =~ < 3, which gives the conclusion.

Step 2: Equality in (378) and error formula (374). We have f(-,u) = ;:8 u f; with convergence
in c«’ (Bas; K9) uniformly with respect to u € Bga (0, 7). Thus, the equality (373) is a consequence
of Fubini theorem and (255) applied to (¢,x) — f(z,u(t)). In particular the finite sum involved
in (374) is the Talyor expansion of order M of u — @(x(t; f,u,p)) at v = 0. By Lemma 83
u — o(x(t; f,u,p)) is analytic on Bpe(o,r+)(0,71) uniformly with respect to (¢,p) € [0,T*] x Bs,
which ends the proof of (374). O

6.2 Magnus expansion in the usual setting: a counter-example

Contrary to other expansions, the usual Magnus expansion does not yield, in general, error es-
timates involving the size of the control. Indeed, the infinite segments which would need to be
summed do not converge, even for analytic vector fields, arbitrarily small times and even when the
drift vector field vanishes at the origin. The following statement illustrates that even the series
defining the terms which are linear with respect to the control does not converge.

Proposition 138. Let d := 2. There exists T, > 0, fo, f1 € C¥°(Bs; K?) with fo(0) = 0 and a
control u € C*([0,T]), such that, if one defines, for t € (0,T), the sequence of vector fields

Fa(t) =) Gaat, (x(tw) ady, (1), (379)
k=0

then, for each 6* € (0,8) and t € (0,T), F,(t) € C>(Bs; K?) does not converge in C°(Bs-; K%).
Proof. We define the following vector fields for € R? with |z| < 1,

1
_I—Il

fo(x) :=x9e; and  fi(x): eo. (380)

Then,

d* (f1)(z) = aboF _r _Lx’; 381
adg, (JI)\T) = T30; 1— 2, 62_(1_x1)k+162' (381)
We now choose the particular control u(t) := ¢ for ¢ € (0,7") with T =1 (the simpler choice, u(t) :=
1, would not produce a diverging counter-example). Using the expression (71) from Example 40
for the coordinates of the first kind along the brackets ad])“(0 (X1) for this particular control, we
obtain, for ¢t € (0,7,

n

B xk
r _ _)ktH1gk+2 k+1 2 ) 9
n(t)(x) kz:;)( ) t E+1 (1 _ 1’1)k+1 (38 )

Thus, for each t,5* > 0, the sequence of vector fields F},(t) does not converge in C°(Bs-; K?), since
for every zo # 0, the general term of the series does not tend to zero because of the asymptotic
(531) for Bernoulli numbers. O
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6.3 Magnus expansion in the interaction picture

The following statement is an immediate consequence of Proposition 99. It illustrates that, contrary
to the classical Magnus expansion, our “Magnus in the interaction picture” expansion allows to
obtain error estimates involving the size of the control, at any order.

Proposition 139. Let M ¢ N, § > 0, T > 0, fyo € CM2+1(B55;Kd) with T follco < § and
fi.-ofq € CM*(Bss;K?).  There exists v,C > 0 such that, for every u = (ut,...,uq) €
LY((0,T); K) with

ullr < v (383)

p € Bs and t € [0,7] then
w(t; fu,p) — e ethopl < Cllul| i, (384)

In (384), Zp (¢, f,w) (where implicitly f = (fo, f1,..., fy) and u = (u1, ..., uq)) is a notation for
the vector field Zx (¢, fo, > i uif;), defined in Definition 98 for the affine perturbation f(¢,z) =
>4 wi(t)fi(x). This notation is chosen by analogy with Theorem 41.

6.4 Sussmann’s infinite product expansion

The goal of this section is to prove Proposition 143 which states that, despite the difficulties men-
tioned in Section 5.4.3 concerning the full convergence of Sussmann’s infinite product expansion,
some (infinite) subproducts of it do converge and yield error estimates at every order in the size
of the control for control-affine systems with drift of the form (366).

We start with an elementary remark (Lemma 140) on the structure of brackets of a Hall set
which allows to prove nice asymmetric estimates on the associated coordinates of the second kind
(see Lemma, 141). The following result proves that, when one tries to factorize the lateral X factors
outside of a bracket of a Hall set B C Br(X) with Xy € X, these X, factors cannot alternate sides
more than once.

Lemma 140. Let g € N*, X = {X,X1,..., X} and B C Br(X) be a Hall set. For each b € B,
there exist m,m € N such that o
b= ad¥, ad’, (b"), (385)

where @?0 denotes the iterated right bracketing m times by Xy and b* € B is such that either
b*e X orb= (bl,bg) with by 7é Xo and by 75 Xo.-

Proof. The key point is that, by the third condition in Definition 54, for each b € B\ X, A(b) < b.
Let b € B. We disjunct cases.

o If be X or (A(D) # Xo and u(b) # Xo), then (385) holds with m =m = 0 and b* = b.

e If \(b) = Xy, there exists a unique m € N* and b € B such that b = ad’, (b) where b € X or
A(b) # Xo.
— Ifbe X or u(b) # Xo, (385) holds with 7@ = 0 and b* = b.
— Otherwise, there exists a unique 7 € N* and b* € B such that b = ad’y, (b*) where
b* € X or p(b*) # Xo.
* If b* € X, (385) holds.

x Else p(b*) # Xo. one has A(b*) < b* as recalled. Moreover, since m > 1,
(b*, Xo) € B so b* < X (by the second point of Definition 54). Hence A(b*) < Xo.
So we also have A\(b*) # X, and (385) holds.
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o If 1(b) = Xy, there exists a unique 77 € N* and b € B such that b = @?0(6) where b € X or
M(B) # Xo.
— If b € X, (385) holds with m = 0 and b* = b.
— Else w(b) # Xo. Since m > 1, (b, Xo) € B, so ~l~) < Xo. Since A(b) < b, this proves
A(b) # Xo. So (385) holds with m = 0 and b* = b.
Hence, the decomposition (385) always holds. O

We now turn to asymmetric estimates for the coordinates of the second kind, which, contrary
to Lemma 63, isolate the role of X associated with the implicit control uy = 1.

Lemma 141. Letq € N*, X = {X¢, X1,..., X}, B C Br(X) a Hall set and (&)vecp the associated
coordinates of the second kind. For every k € N*, there exists ¢, > 1 such that, for each b € B
with n(b) =k, T >0, u € L'((0,T);K%) and t € [0,T],

(th)no(b)
16 (t, 1,u)| < Hquzl(O,t)W (386)
and
k—1 _
G < 4O s e mo®r =0
= el (tut) + no(®)lul oo, ) 52— when no(b) > 0.

Proof. In this proof, we write &, (t) instead of (¢, 1, u) by concision for the value at time ¢ € [0, T
of the coordinate of the second kind associated with the control uyp = 1 and w; for i € [1,¢].
First, when (387) holds on [0, T7], then so does (386) by time-integration (with the same constant).
Hence, we only need to prove the bound on the time derivative of the coordinates.

Step 1: Persistence of the estimates by right bracketing with Xo. Let k € N* and b € B such that
n(b) = k. We assume that (386) holds and we prove that b := (b, X;) satisfies both estimates with
the same constant. Since £x,(t) = 1, we have

(th)no(b)

|&@p:muk%@N£HW$wm‘%@F’

(388)

Hence b satisfies (387) (and (386) by integration) because ¢, > 1 and ng(b) > 0.

Step 2: Persistence of the estimates by arbitrary long left bracketing with X, up to cp < 2cy. Let
k € N* and b € B with n(b) = k. We assume that (387) holds and we prove that, for every m € N*,
b:= ad, (b) satisfies both estimates with a constant cz < 2cy. If ng(b) = 0, it is straightforward

to check that b satisfies (387) with ¢; < 1. If ng(b) = 1, we have

60 = = (€0 (0E(D)]

m!
tm

— 7 (k@) + no(5) ul 21 )

Ck(ckt)”o(b)71

gmAno(b)—1 (389)
(m +no(b))!

IN

a5 (Refu()] + (m -+ no (8)) [l 2 ) 2740 Pege®
l-;) tno(b371

because ng(b) = m + ng(b) and ¢ > 1. So b satisfies (387) with a constant ¢z < 2cj.

< a5 (keu(t)] + o (B) ull 1 ) (2e5)™
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Step 8: Proof of the estimates by induction on k € N*.

Initialization for k = 1. For i € [1,q], £x,(t) = wi(t) so both estimates are satisfied with
constant 1 when b € {Xy,...,X,}. By Lemma 140, Step 1 and Step 2, we deduce that (386) and
(387) hold for k = 1 with ¢; = 2.

Induction (k — 1) — k. Let k > 2 and let us assume that the estimates are proved for every
b € B with n(b) < (k —1). Let b € B with n(b) = k. By Lemma 140, Step 1 and Step 2, we can
assume that b = ady, (b2) with b1,bs € B, by # Xo and (by € X or A(b2) < b1) and (by # Xo or
m > 1). Assume that by # Xo. Then the induction assumption applies to both b; and by. Let
k1 :=n(by) and ko := n(b2). Then k = mky + ko, no(b) = mng(b1) + no(b2) > ng(b2). Using the
induction assumption and (117) with a < (m + 1), we obtain, when ng(b2) > 0,

&) = \m,&n( ) (0)
(Ckl ) no(b1) kg — Chs (Ckzt)nO(bQ)_l
< o (s 2 1(k2t|u<t>|+no<b2>||u|\Ll)W (390
— mn m’ﬂo 1 710 2 t 0() !
< ullfs (ko) +no@)ulls 2o e e =

Since m < k, we have the two desired estimates with ¢ := 2 - 2¥ max{c;;j € [1,k — 1]}, where
the first factor 2 comes from Step 2. When ng(b2) = 0, the proof is similar and easier. When
by = Xp, the induction hypothesis applies because m > 1 so n(b;) < n(b) and the proof is
straightforward. O

Remark 142. The “persistence” of the estimates with respect to left or right bracketing by Xo, as
mentioned and derived in Steps 1 and 2 of the proof of Lemma 141 might be linked with sufficient
conditions for small-time local controllability which “ignore” the number of leading (or trailing) X
factors (see [17], [63, Theorem 6] or [73, Theorem 3.7]).

These estimates allow to prove the main result of this section.

Proposition 143. Let ¢ € N*, X = {X, X1,..., X}, B o Hall basis of L(X) and (&)pen the
associated coordinates of the second kind. Let M € N, r,§ > 0, fo,..., f, € C“"(Bas; K?). There
exists 1, Cry > 0 such that, for every u € L*((0,T); K?) with T < 1 and ||ul| 10,7y < 1, the ordered
product of the e&ELWIe oyer the infinite set BN Sy = {b € B;n(b) < M} (using Definition 10)
converges uniformly on Bs and, for each t € [0,T] and p € By,

N
. _ Eb(t71,u)fb < M+1
ot fup)— T e Cullul 25 (391)
Proof. In this proof, to simplify the notations, we write z(t), &(¢) and |lu|| instead of z(¢; f,u, p),

&(t,1,u) and |lul|z1(o,)- Let (ck)ren+ be the increasing sequence of constants of Lemma 141. We
define

1
Cyi = M max _Cg, (392)
T ke[1,2M]
. min{1,d} }
= 1min R 393
! {2||f||c1 2C(g+1)M!(1+r) (393)
Chr = 2 (1+7)(2M)! (g + 1)M oM+, (394)

For t € [0,T]) and w € L*((0,7); K?) with T' < n and |Ju]| < n, using (393),

q
tl folleo + D sl r ol filleo < mllfllco < 6. (395)

i=1
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Hence, for each p € By, x(t; f,u,p) € Bas.

Strategy. Since the product involved in (391) is indexed by the infinite set B N Sy, the proof
strategy consists in considering the sequence of finite products By rj N Sy for L € N* and let
L — +00. The error between the true solution and the finite product contains both a term scaling
like |lu[™*! which will persist in the limit and a transitory error term which vanishes as L — +oo.
Each bracket in b € B is either, not involved at all in the process, involved in the final error,
involved in the transitory error term, or involved in the finite product, depending on L, M, n(b)
and ng(b) as pictured in Fig. 1. In Steps 2, 3 and 4, L > M + 1 is fixed. In Step 5, we take the
limit L — +o0.

n(b)

Never part of the process
2M < n(b)

Part of the final error

M < n(b) <2M

N\
N\
N

n(b) < M and [b| < L«
N

Finite product

i’
S
o
—
S
=

Figure 1: Decomposition of B along the Lazard elimination process for the product on 5N Sy,.

Step 0: Preliminary estimates. First, using estimate (387) from Lemma 141, for each b € B with
n(b) = k, one has in particular

(ckt)no(b)
Taking into account that for every m € N*, |B,,| < (¢+1)™ and using the analytic estimate (140),
we obtain the following estimate for the terms which can be part of the final error

> €6l 1 1 follcr

bEBﬂ(SQ}VI\SJM)

€Il < Jull® (396)

2M

+oo no k+no
< 33 Bl S @) () g -1

|
k=M+4+1no=0 o (397)

2M “+o0
<(T+r)EM -1 Y ((g+DCu)* Y ((a+1)CT)"™
k=M+1 no=0

< (L4 7)(2M) g + 1M ful M

because |lul| <n, T <nand (¢+1)Cin < L. For the terms which can be part of the finite product
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or of the transitory error, there holds similarly

Y el fslle

beBNSp
M +oo k+ng
cpt 9f,
< Tl + 30 3 el 0 1 ) (M) g —
k=1 no=0 (398)
M +o0
< T foller + (L +7)(M =D (g + DCJul)* Y- (g + 1)CT)™
1 ’I‘L(]:O

k=
< T foller + (1 +r)Ml(g + 1)Cillul <.

Step 1: Convergence of the ordered product of the es*®Fe over BN Sy, uniformly on Bs, towards
a Lipschitz map. Thanks to (398), we have

Yo el < Y élnllfoller <6 (399)

beBNSp beBNS

and Lemma 134 gives the conclusion of Step 1.

Step 2: Lazard structure on By rj M Sy . We use the notations of Definition 53 to describe By ).
There exists m € N and an extraction ¢ such that

Bp,ry NSy = {bsa) <+ < bgm+n)}- (400)
Let i € [1,m + 1] and n = ¢(¢). By Definition 53, there exists a unique factorization
bo(i) = bn = ad} 2 -~ ad]? (bo) (401)

where by € X, j1,...,jn—1 € N (one just identifies left and right factors in Br(X)). For every
jel,n—1]\ ¢([1,i —1]), b; contains at least (L + 1) occurrences of the variables X,..., X,
thus it cannot be involved in the factorization of b,,. This proves that

bs) € Yo := X,
boiz) € Y :={ad], | (v);5 € Nov € Yo\ {byr)}}, o)
boma1) € Y = {adgm) (v);5 € N,v € Y1 \ {bg(m) }

B2y N Sar N Yongr = 0, (403)

where Y, 11 := {adi¢(nl+l)(v);j e Nyv e Y \ {bg(m+1)}}-

Step 3: Proof of estimates along the Lazard elimination on Bpy NSy . To simplify the notations,
from now on, we write By 1] NSy = {b1 < --- < byy1} and we use (402) and (403) with ¢ =
Let zq(t) := z(t). By (399), for every j € [1,m + 1],

;(t) = e S Doy e =8 O on (1) (404)
is well-defined and belongs to Bss. The goal of Step 3 is to prove by induction on j € [0,m + 1]

that .
(H ) . {$J<t) = ZbEB[[l,L]]mSMﬂ?j gb(t)fb(mj(t)) + Ej(t)7

z;(0) = p, (405)
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where .
lejlipr < el @Mesletyie; ylip+ 3" gl flleo, (406)
EEZ]‘

where Zj C (B N SQM> \ (B[[l,L]] N SM) is defined in (413)
First (Ho) holds with g9 = 0 because £x,(t) = 1 and £x,(t) = u;(t) for i € [1,¢]. Now, let
j € [1,m + 1] and assume that (#;_1) holds. We deduce from the definition of x; that
2(8) = €= s (1 () = B (=, (8), 751(1)) (407)
and thus that
aj(t) = > & (t) (@5 (=&, (1)), fo) (x(t) + &1 (1), (408)
bEB[[LL]]ﬂSMﬁ?jfl\{bj}
where gj_l(t) = 61,‘1)]‘ (—&,j (t), .I‘j_1(t)) e’:‘j_l(t). We get (H]) with
gj(t) == > (1) +&-1(1) (409)

beEB, L1NSarNY;—1\{b;}
where, for every b € By ,j N Sy N f”j_l \ {b;},
_ . hOTL ek ()
5 (1) =& (1) (®; (=&, (1)), fo) (z;(t) — ];) (1) = Jaap (23 (1)) (410)
where h(b) € N* is the maximal integer such that
n() + (h(b) — 1) n(b;) < M and b| + (h(b) — 1)|b;| < L. (411)

B
y (162), 6 ()0

B ()] < () h )l Hfad;;b)(b)llco = &GOl flleo, (412)
for b := ade(b)(b). Hence, (406) holds with
Z; = {ady " (b); b€ BN Sy NY;_1\ {b;}} (413)

This yields Zj C (B N SQM) \ (B[[l,L]] N SM) thanks to (411).

Step 4: Proof of an estimate on the finite product over By 1N Sy. By (406), (399) and (397), we
have

lemrllze <€ >0 N&lnllfolles +€° > 1612 1 follco

beBN(S2am\Snr) be(BNSa)\B1,L] (414)
< e Oulull™* + 0r— 400 (1),

because the series in (398) converges. We deduce from (405) and (403) that

—

em S bW o () — P‘ = |21 () = pl < e Curllul| M + 0r 100 (1) (415)
bEB[[lyL]]ﬁSM

N
By (399), the map I e &®&Wh is e Lipschitz on Bss. Then, by (415),
bEB[[l,L]]ﬂSJW

—

I e*éb(tvl,u)fbp

o <C M+1 1 416
beB(1. 1) NS < Curllul ¥ + 0 400(1) (416)

x(t)

Step 5: Infinite subproduct limit. By Step 1, the infinite product over BN .Sy, is well-defined. By
letting L — 400 in estimate (416), we obtain the conclusion of Proposition 143. O
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7 Refined error estimates for scalar-input affine systems

In this section, we consider scalar-input affine systems with drift, i.e. of the form

i(t) = fo(z(t)) +u(t) fi(z(t)) and xz(0)=p, (417)

where fo, fi are vector fields on K? and v € L'((0,7);K). When well-defined, its solution is
denoted z(t; f,u,p). Such systems have been extensively studied in control theory, as toy models
for more complex situations.

The goal of this section is to improve, in this particular framework, the error estimates of the
previous section: the new bound is not expressed in terms of |ul|z: but in terms of the L> norm
of the time-primitive of the input, which heuristically corresponds to the W ~1> norm of u.

This refined estimate is somehow optimal in the scale of Sobolev spaces (as shown by the one
dimensional system #(¢) = u(t)) and specific to the scalar-input case (see Section 7.5).

Lowering the Sobolev regularity required on the input is of paramount interest for applications
in control theory (see e.g. [14]) and might also be useful for applications to stochastic differential
equations where the input is a noise with low regularity (see e.g. [15]).

Definition 144 (Integrated input). Let T > 0 and u € L'((0,7);K). In this section, U always
denotes the time-primitive of u vanishing at zero, i.e. defined by U(t) := fot u(s)ds fort € [0,T).

7.1 Auxiliary system trick

Enhancing the estimates relies on the following trick which factorizes the dependence of the input
and introduces an auxiliary system involving the time-primitive U of the input (and not w itself).

Proposition 145. Let 6 > 0, fo, fi € C¥(Bss;K?) and n* > 0 small enough so that the two
following maps are well defined and (globally) analytic

—n*,n*| x B — B Bos X [-n*,n*] — K¢
@1:{[0,77] 26 35 25 [77’77] (418)

and F':
(1.9) = e (q) {(qﬁ) = (D1(=7)fo)(q)-
Let T > 0 be such that T||F||co <.

1. For every p € Bs and U € C°([0,T);K) with ||U||p~ < n*, there exists a unique solution
r1 € CH([0,T]; K9) to

(419)

1’1(0) =D,

denoted x1(t; F,U,p). It takes values in Bas. Moreover, the map (p,U) — z1(-; F,U,p) is
analytic from Bs x Beojo 71(0,1*) to C*([0,T]; K?).
2. For every p € Bs, t € [0,T] and u € L'((0,T); K) such that |U|| 1~ < n*,

z(t; fyu,p) = &1 (U(t);xl(t;F, U,p)). (420)

Proof. The existence of n* such that ®; and F' are well defined and globally analytic results from
the third statement of Lemma 90. The analytic dependence of x; with respect to (p,U) is given
by Lemma 83. By definition of x1, the right-hand side of (420) satisfies the same Cauchy problem
as z thus the two functions are equal. O
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7.2 A new formulation of the Chen-Fliess expansion

The goal of this section is to derive of a new formulation of the Chen-Fliess expansion for scalar-
input affine systems (417).

Proposition 146. Let 6,7 > 0 and fy, f1 € C*"(Bss; K?%). There exists n > 0 such that for every

© € C¥"(Bss;K), t € [0,n], u € L'((0,t); K) such that |U| L~ <n and p € By, with the notations
of Remark 74,

uw' ([
et fup) = 3 G ([ 04) (A 6 ) e @2
£eN,neN
keN™
with the notation (372), where the sum converges absolutely, uniformly with respect to (t,u,p).
Moreover, for every ¢ € C*"(Bss; K), there exists C > 0 such that, for every M € N*, ¢t € [0,7),
u € L1((0,t); K) such that |U||L~ <n and p € Bs,

att )= S GO [ 0) (st (o) -+ i () D)0

£eN,neN
(+|k|<M

t
SCMJrl <|U(t)|M+1+/ U|M+1)
0

where the sum is taken over £ € N, n € N and k = (k1,...,kn) € N” such that {+k1+---+k, < M.
Proof. Let n*, T,z be as in Proposition 145, || f|| == || foll,. + Il f1]ll, and
0 r
7 := min T,n*,,}. 423
Ry (2

Let ¢ € C¥"(Bss;K), t € [0,n], w € L*((0,t);K) such that ||U|p~ < 1 and p € Bs. Then
x1(t; F,U, p) € Bas and, by (420) and (423), z(t; f,u,p) € Bss.

Step 1: Proof of the absolute convergence in (421) uniformly with respect to p € Bs. Let r' :=r/e.
Then, by Lemma 80, for every k € N, adlfcl(fo) ecwr (Bss; K?) and

K (9\"
L2 (3) i (424)

(422)

ot o0

Thus, by (135),
|(#t(adf: (o)) (a "(fo)))( )|
<o (5) st

adk1

ot

r!

nte 425)
1Nk 9\ k! (9)* (
<o) (2) ||f||’““---:<r> Tk
14 R
<e "(n A+ Okl k! (Lﬂ') .
Moreover, recalling notation (372),
uw [*ox| _ [T U(r)* - U(ra)* ek, U1
’K!k! /OU T /n() o hy | s vl A T (420
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Thus it is sufficient to prove the summability over £ € N,n € N* ky,...,k, € N of the following
quantity

n nt+ltkitetkn
(t) (n+0)! (14|f||) ' [T
LOC

e nll! r
t\" 14 S S,
<(5) = (%) g (427)
28t F11\" ( 28I/l Ok ot
<( 102
er r

which is ensured by (423).
Step 2: Proof of (421) and (422). Applying Lemma 86 and Proposition 137 we get

o(a(t; fu,p)) = ¢ (eU(”flxl(t; F, U,p))

= ! (428)

The bound proved in Step 1 allows to exchange the differential operator f{ and the second sum,
which proves (421). To prove (422), one bounds the queue of the series thanks to (425) and the
following consequence of Holder’s inequality, valid when ¢ + |k| > (M + 1)

U(t)f/m()U(ﬁ)kl.-.U(Tn)kn dr| < C(n) <|U(t)|M“+/0 |U|M+1>. (429)

O

One of the ingredients of the above proof is the Chen-Fliess expansion of the auxiliary sys-
tem x1(t; F,U, p), which appears in [3, Section 3] under the denomination “representation of the
perturbation flow”.

Remark 147. The bound (422) between the exact solution and the truncated Chen-Fliess series
(in its’ original formulation) is used by Stefani in [96, Lemma 8.1 and Corollary 3.1]. Our proof
is both different and shorter.

Remark 148. Equality (421) where the sum converges absolutely proves that appropriate packages
of the Chen-Fliess expansion are absolutely summable under a smallness assumption on ||U|| L,
which is weaker than the smallness assumption on ||u||p: which is used in Proposition 136 for
multi-input systems.

7.3 Magnus expansion in the interaction picture

In this section, we prove the following enhanced error estimate for the magnus expansion in the
interaction picture with scalar input. Our proof relies on an appropriate approximation for the
auxiliary system x; introduced in Section 7.1.

Proposition 149. Let § > 0 and fo, fi € C¥(Bss;K?). For every M € N, there exist nys, Cay > 0
such that, for every T € [0,mn], u € LY((0,T);K) such that |U||p~ < na, t € [0,T] and p € Bs,

< Cu <|U(t)|M+1 + /Ot U|M+1) : (430)

;v(t; f7u7p) _ eZM(t,ﬁu)etfop
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Proof. In Section 7.3.1, we introduce a vector field Yy (¢, f, U) such that eyM(t’f’U)etf".(p) is a good
approximation of the auxiliary state ; defined in (419). Since, by (420), z(t) = eV ®/1(z,(t)), the
desired estimate then relies on the following decomposition

a(t; fou, p) — eZM(tf,u)etfop = x(t; f,u,p) — U N eyM(t7f,U)etf0p

+ VN eyM(t»f’U)etfop _ BZM(t’f’u)etfop. (431)

Using Proposition 150 and Proposition 154 (see further) for the first and second lines, we get

w(t; f,u,p) — 2 EIethop) < O (U737 + U@ + |UIIZAEL) (432)

which gives the conclusion since ||U||51(0,¢) < ¢ U Ly+10,8)- O

In Section 7.3.1, we define Vs (¢, f,U) and prove in Proposition 150 that it indeed provides
a good approximation of the auxiliary state. In Section 7.3.2, we explain the link between
VM X1eYu (XU) gnd e2um(EXu) gt the formal level. In Section 7.3.3, we show in Proposition 154
that this formal link entails that eV ®f1eYm(5£U) g close to eZm (t:f:u),

7.3.1 An approximation of the auxiliary state

We use the error formula of Proposition 99 for the Magnus expansion in the interaction picture to
obtain an approximation of the auxiliary state.

Proposition 150. Let §,p > 0, fo, fi € C¥*?(Bss; K?). For every M € N, there exist nyr, Cas > 0
such that, for every p € Bs, t € [0,n0], u € L*((0,t); K) such that |U| L~ < nar,

x(t; f,u,p) — eV F1eYm (. 10) gtfo | < CMHUH%TO{U (433)

where Yy (t, f,U) := Log {G:}(t), and Gy : [0,t] x Bas — K is defined by

s— D U(s)k

Gus) = 3 BT ot k() 0) (134
keEN* ’ '
LeN

and this sum converges absolutely in C*' (Bss; K) with o' = p/e. Moreover,

S g S
P o . d
yM( af’ ) Z rm AT () fl' kll e'r" k’l“' ! (435)

[+ [ (adf (o)), a2 (a2 (f0))] .- ol (adfy (o)),

where the sum is taken over r € [1, M], m € [1,7], r € N, £y,..., 4. € N, kq,..., k. € N* and
the sum converges absolutely in C** (Bss; K?).

Proof. Step 1: Convergence in (434) and (435). By (138), for every s € [0,t],

thus the sum in (434) converges absolutely in C**' (Bss; K%) when ¢ and ||U||z~ are smaller than

_r__
8111,

(s—1)"U(s)"
TR

k+0)! 9\
adf, adf, (fo) < ok L ><) (K7 (436)

0k! p

p
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For every r € [1,M], m € [1,r], r € N, ¢1,...,4, € N, ky,..., k, € N*  using (117) and the
non-decreasing of ¢ € [1,00] = || - [|za(0,¢) for t € [0,1], we get

‘ [ N P T
SORERCE 1

eyl 7, PR

9Hf|| > r+|0|+|k|—1
p

(r+ €+ |kl —1)! (
(437)

P 10|+ —1
so111) 1

< (2r_1t)|€|(2r_1||U||L\k'I(O,t))|k| < P

Thus, by (138), the sum in (435) converges absolutely in C<*' (Bss; K?) when t and ||U]|L~ are
smaller than {éﬁﬁ'

Step 2: Proof of (433). Let T,n* and F as in Proposition 145. We introduce the function
Fy :[0,T] x Bas — K9 defined by

8

s i
Fi(tay) = P U0) ~ foly) = 3 2t (o)) (139

J

I
-

where the sum converges in C**' (Bags; K%) when ||U]| L~ < W. Let M € N. There exists C > 0
P

such that, for every t € [0,T], U € C°([0,T];K) with ||U||p~ < n*, the function F; defined by
(438) satisfies

||F1||L1((o,t);cM?) < C”UHLl(O,t) < C(T”UHLOO(O,:&)- (439)
Let Car > 0 and v = (M, 0, || follcar241) > 0 be as in Proposition 99 and
: . 27Ny
Ny c=ming 1,5 ——m— —— 5. (440)
{ 361171, CT}

Let p € Bs, t € [0,ny] and u € L'((0,¢);K) such that ||U]|z~ < nas. Then, the convergences of
Step 1 hold and ||F1||L1((0 p:cm2y < 7 thus we can apply Proposition 99 and Proposition 100 to
the equation 1 = fo(x1) + Fi (¢, z1)

:r,l(t; F, U,p) _ eyM(t,ﬁU)etfop < CM||Gt| M+1 (441)

Li((0,t);cM?)

Moreover, there exists C’ (depending only on n*, fo, f1) such that
1Gl s oayieny < MU L0 (442)
Thus, we get (433) by applying the e I/1llct_Lipschitz map eV ®/1 to (441). O

In the next paragraphs, we will use the following technical result about Vas(t, f,U) and its
decomposition in homogeneous components with respect to U.

Lemma 151. Let §,p > 0, fo, fi € C¥?(Bss; K?). For every M € N*, there exists ny, Cay > 0
such that, for every j € N*, t € [0,mn], u € L*((0,t),K) such that |U|~ < nar, the sum in
the right-hand side of (435) taken over r € [1,M], m € [1,r], r € N, {y,...,¢, € N and
ki,..., k. € N* such that k1 + ... + k. = j, converges absolutely in cwr’ (Bss; K9) and its sum,
denoted Y3, (t, f,U), satisfies

) Ully, J

e e (14
P 2N

where p' = p/e. Moreover, Y (t, f,U) = ZjeN* y&(t,f, U) where the sum converges absolutely

in C¥*' (Bss; KP).
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Proof. Let nas > 0 be as in Proposition 150, ¢t € [0,7] and v € Ll((O t); K) such that |U||L~ <
nar- The sum involved in Y (¢, f,U) converges absolutely in C<*'(Bss; K?) because it is a sub-
family of the one considered in Proposition 150. By (437), there exists Cp; > 0 (independent of ¢
and U) such that, for every j € N*, (443) holds. The non-decreasing of ¢ € [1,00] — || - ||La0,1)
(since t < 1) gives the last conclusion. O

7.3.2 Identification procedure at the formal level

In this paragraph, we highlight at the formal level the link between eV () X1eYm (6:XU) g g2 (8:X,u)

in [Z(X ). We start with a new formal factorization, well adapted to estimates with respect to the
primitive of the scalar input.

Proposition 152. Let X = {Xo, X1} and u € L'(R;K). For every z* € ./zl\(X), the solution x
to the formal differential equation

{o‘c(t) 2(t) (Xo + u(t) X1), (444)
z(0) = x*
satisfies, for everyt € Ry,

x(t) = 2" exp (tX0) exp (Voo (t, X, U)) exp (U (t) X71) (445)

where Voo (t, X,U) € L(X) is defined by Voo (t, X,U) = Log  {B:}(t) and B : [0,t] — L(X) is
defined by

(s =)' U(s)"

Bi(s) = e~ (1= X0 <€U(S)X1X0€7U(S)X1 - Xo) =% = Z ad, ad’;, (Xo)

o0 K
keN*
LeN
(446)
i.e.
m 1 k L ky
T1—t LUy (rp — ) U(r,)"
o0 t)Xy cee d
Yeolt, X, U) = /A,( k! o R
[+ [ad%,( ad‘“ (X)), adf, (ad’?, (X0))| ... ad, (ad¥, (X0)
(447)

where the sum is taken over r e N*, m € [1,r], r e N {y,... 0, € N, ky,..., k. € N*.

Proof. First, in the same way as Theorem 27 has been generalized to an infinite alphabet in the
proof of Theorem 41, it is possible to generalize Theorem 41 to an infinite alphabet.
The function z; : [0,T] — A(X) defined by z1(t) := z(t)e~V X1 satisfies z1(0) = 2* and

B = l‘l(t)eU(t)XlXoe_U(t)Xl — 1.1 ( 0)) (448)

keN*

This equation is of the form @1 (t) = 1 (t)(Xo +>_ ey ar(t)Yr) for some indeterminates Y. Thus,
Theorem 41 (adapted to an infinite alphabet) and the homomorphism of algebras sending Y} to
ad’)f(1 (Xo) prove that

21(t) = 2% exp(tXo) exp(Voo (¢, X, U)). (449)

which gives the conclusion. O
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We now use the formal expansion (445) to obtain an alternative formula for Z, (¢, X, u) defined
by Theorem 41, in terms of the primitive of the scalar input. For r, v € N, we introduce the finite
dimensional subspace of £(X)

L, (X) :=span{E(b); b€ Br(X),no(b) =v,n1(b) =1} (450)

~

and P, : £L(X) — L, ,(X) the associated canonical projection.

Proposition 153. Let X = {Xo, X1}, T > 0, u € L'((0,T);K), t € [0,T], Voo(t, X,U) defined
by Proposition 152 and Z(t, X, u) defined by Theorem 41. Then, in L(X),

Zo(t, X, u) = CBHD o (Vuo(t, X, U), U(£)X1). (451)
In particular, for every M € N*, r € [1, M] and v € N,
PTJ,Z]\/[(t7 X, U) = PTW CBHDM (yM(t, X, U), U(t)Xl) . (452)

In this statement, CBHD, is defined in Corollary 33, CBHD,; is its truncation used in Corol-
lary 94 and Zy(t, X, u) is defined in Theorem 41 and used in Proposition 99.

Proof. We deduce from Proposition 152 and Theorem 41 that
exp(Zo0(t, X, 1)) = exp(Voo (t, X, U)) exp(U (t) X1). (453)
Thus Corollary 33 proves (451). Let M € N*, r € [1, M], v € N. We deduce from (451) that
P.,Z(t, X, u) = P,, CBHD, (Vo (t, X,U),U(t)X1). (454)

By definition, Z.,(t, X,u) — Zp;(t, X, u) is a linear combination of brackets all involving at least
(M + 1) occurrences of X1, thus P, , Z(t, X,u) = P, Zum(t, X, u). By definition, YV (¢, X,U) is
a sum of brackets involving all at least one occurrence of X7, thus

Py, CBHD o, (Voo (£, X, U),U(t)X1) = Py, CBHD y (Voo (£, X, U), U (£) X1) . (455)

Moreover Voo (t, X, U) =YV (t, X, U) is a linear combination of brackets involving all at least (M +1)
occurrences of X thus

P,,, CBHD y; (Vs (t, X, U),U(t)X1) = P,,, CBHD »; (Y (t, X, U), U (t) X1), (456)

which ends the proof of (452). O

7.3.3 Error formula for analytic vector fields
We prove in Proposition 154 an error bound between eV ®Of1eYm(t:.£.U) and e2m (t.f.u)

Proposition 154. Let §,p > 0, fo, fi € C¥?(Bss; K?). For every M € N, there exist nys, Cay > 0
such that, for every t € [0,na], p € Bs and u € L((0,t); K) such that |U| p~ < nar,

¢
eU(t)fleyM(t’f’U)ethp - ezM(t’f’“)etf"p < Oy <|U(t)|M+1 —|—/ U|M+1) ) (457)
0

Proof. We split the difference as

U1 Ym (6,5,U) gtfo,,  (CBHDM (Var (2, f,U),U(8) f1) gt fo

p p

+ eCBHDM (yM (t,f,U),U(t)fl)etfop _ eZM (t7f,u) etfop. (458)

Taking into account that ||Vas(t, f,U)| o2 < Cl|U|| 10,1, the first line is bounded by Corollary 94.
Using Gronwall’s lemma and Proposition 155 bounds the second line. O
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Proposition 155. Let §,p > 0, fo, fi € C¥?(Bss;K?) and p' := p/e. For every p” € (0,p),
M € N, there exist nar,Car > 0 such that, for every t € [0,mn], v € LY((0,t); K) such that
IUllzes < nar,

| Zas(t, £, u) = CBHDy (Vas(t, £,U), U f)l o < Coa (U(t)lﬂ”1 + / |U|M“>- (459)
0

In particular, Zy(t, f,u) is the sum of the terms homogeneous with degree at most M with respect

Proof. Step 1: Finite approxzimation of Yar(t, f,U). First, by Lemma 151, one can write

Yult, f,U ZJ}M (6 LU)+ Y V4 £.0) = Vu(t, £,U) + Ru(t, £, U), (460)

i>M

where the remainder satisfies [[Rar(t, f,U)ll,, < C’||U||]L\41&Zr11(0 p- By the triangular and Young
inequalities, it is therefore sufficient to prove (459) with Y, replaced by the finite truncation
Yul(t, f,U0).

Step 2: Identification at the free level. Let A : £L(X) — C*(Bss; K?) be the homomorphism of Lie
algebras such that A(X;) = f;. The relation (452) is made of finite linear combinations of brackets
of X and X;. Let M € N. By applying A to this equality, we get, for every r € [1, M], v € N

PruZum(t, f,u) = Pry CBHDy (Va(t, £,U), U(1) f1) - (461)
By definition
tf7 ZZPTVZMtf? ) (462)
veNr=1

where the sum converges in C“”’/(Bg(;;Kd) for appropriate p’ € (0, p), by Proposition 100. Thus,
with the notations of (47),

Mm(t, fou) — CBHDy (Ve (E, £,U), U f1) = Z B n (Vi (t, £,U),U(#) f1), (463)

jhi+ha>M

where the sum is taken over j, hi, he € [1, M].

Step 3: Proof of (459). From now on, 75, > 0 is given by Proposition 150 and Lemma 151,
t € [0,mm], u € LY((0,t); K) is such that ||U||z~ < na and p” € (0,p’). For each term in the finite
sum (463), one has, thanks to Lemma 151,

s on.o0n)|| | <c|Ye s noonig
) (464)
h h _ by
< U U@ < O o o ™37 U ()2
which concludes the proof thanks to Young’s inequality since jhi + hy > M + 1. O

7.4 Sussmann’s infinite product expansion

When the input is scalar, the estimates of the coordinates obtained in Lemma 141 can be enhanced
to involve only the primitive of the input, at least for Hall bases where X is minimal, which in
turn improves the estimate of Proposition 143 (see Proposition 157 below). The hypothesis that
X is the minimal element can be seen as the formal counterpart of the auxiliary system trick of
Section 7.1.
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Lemma 156. Let X = {X, X1}, B be a Hall basis of L(X) for which X, is the minimal element
and (& )pep the associated coordinates of the second kind. For every k > 1, there ewists ¢, > 1
such that, for each b € B\ X with n(b) =k, T >0, u € L*((0,T);K) and t € [0,T],

(th)no(b)—l

k
& (¢, 1, u)| < Ck||U||Lk(O,t)m (465)
and
: c|U@)|F when ng(b) =1,
& (t; L u)| < yro®) -1 o Ym0 (02 (466)
erlU D" Grotm=nr + U Er o Gritm=zr when no(b) > 2.

Proof. As for Lemma 141, estimate (465) is obtained, for each b, by time integration of (466).
Moreover, still as in Lemma 141, both estimates are invariant by right-bracketing with Xy, and
also by arbitrary long left-bracketing with Xy, up to ¢ + 2cg. Let us prove (465) and (466) by
induction on k.

Initialization for k = 1. We have £x,(t) = U(t) and é[X17XO] (t) = U(t). Hence [X1,Xo] € B
(because X7 < Xj) satisfies both estimates. By Lemma 140, when n(b) = 1, there exist m,m € N
such that b = ad, @?0 (X1). Since X; is minimal, if b # X3, m > 0. Thus, by the previous
invariant properties, we get the conclusion with ¢; := 2.

Induction (k — 1) — k. Let k > 2 and let us assume that the two estimates are proved for every
be B\ X with n(b) < (k—1). Let b € B with n(b) = k. By Lemma 140 and the previous invariant
properties, we may assume that b = ady’ (b2) with m € N*, by < by € B, by # Xo, (bp € X or
)\(bg) < bl) and (bg 7& Xop or m > 1).

e If by = X3, then by = X (otherwise, if bo ¢ X, A(ba) < X3, which is impossible since X7 is
minimal). Thus
. U™
o) = 1) (467)

m!
so (466) with ¢ = 1 holds since ng(b) =1 and k = m.

e If by # X3, then by satisfies (466) for some k; € [1,k — 1]. Moreover, either by = X, or
by ¢ X (because it cannot be X7). The case (by = Xy and m > 1) is easier and left to the
reader. Thus we are left with the case where b satisfies (466) for some ko € [1,k — 1]. One
has k = mk; + ko and v := ng(b) = mng(b1) + no(ba) =: mvy + vo. Thus,

. CkaU”mk/ﬁ (cp t)™ 1™ (ck t)llgfl (ck t)"272
t) < L U2 + U5, 2 12 ) -
‘gb( )| = m| (Vl . l)lm Ck2| ( )‘ (V2 . 1)| + Ckg” ||Lk2 (1/2 _ 2)' 22>2
(468)
Thanks to Hélders’ inequality,
IS IO, < IUNG. ™. (469)
Thanks to Holder’s inequality and Young’s inequality,
IO T O <t™ (U5t~ + [U@)*7) - (470)
Moreover, thanks to (117), for i € [1, 2],
1 1 1 , 1
— < glmAlv=1)__—__ 471
m! (vy — )™ (v —0)! — (v —1)! (471)

Combining these inequalities proves (466) with cj := 2¥T2 max{c;;j € [1,k — 1]}.
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These enhanced estimates yield the following result.

Proposition 157. Let X = {Xy, X1}, B a Hall basis of L(X) for which X1 is the minimal element
and (&)pep the associated coordinates of the second kind. Let v,8 > 0, fo, f1 € C*"(Bys; K?). For
each M € N*, there exist ny,Cay > 0 such that, for every u € L'((0,T);K) with T < na and
Ul y+10,7) < nas, the ordered product of the S gyer the infinite set BN Sy = {b €
B;n(b) < M} (using Definition 10) converges uniformly on Bs and, for each t € [0,T] and p € By,

.
ol frup) =, I @100y < Oy U o (472)

Proof. The proof is the same as the proof of Proposition 143. The only difference is that we use
estimates of Lemma 156 instead of those of Lemma 141. The fact that these enhanced estimates
are not valid for b € X doesn’t come into play. Indeed, neither Xy nor X; are involved in the final
error term (397). O

7.5 Failure of the primitive estimate for multiple inputs

Proposition 149 relying only on the primitive of the input is specific to the scalar-input case and
fails for multiple inputs. As an illustration, for § > 0 and fo, fi € C*(Bs;K?), in the degenerate
case M = 0 and the particular case fy(0) =0, p = 0, estimate (430) implies that, for every T' > 0,
there exists Cr > 0 such that, for ¢t € [0,7] and u € L*(0,T) with |U]|p~ < 1,

(£ u,0)] < Cp||U]| Lo (473)

As illustrated by the following example, even this very crude estimate fails for multiple inputs,
because the W1 norms are not sufficient to bound the nonlinear terms arising in the dynamic.

Example 158. Let T > 0 and consider the following system on R2:

{jl - (474)

T = V1,
where u and v are two scalar inputs. There exists u,,v, € L*(0,T) such that
[UnllLe + [Valle =0 and  [x(t; (un, vn),0)| £ 0, (475)

where U, is the primitive of u, and V, the primitive of V,,. Indeed, let n € N* and define
un(t) == ncosn’t and v, (t) := nsinn?t. Then one has

2
[Unllzee + [IVallzee < e (476)
Moreover, x1(t) = U, (t) = (sinn?t)/n and
T T T
zo(T) = / v (U, (t) dt = / sin?(n?t) dt — 5 (477)
0 0

as n — +o0o0. This proves (475).

Remark 159. Although Proposition 149 does not hold for multiple inputs, we expect that the proof
method can be adapted to obtain asymmetric estimates, involving for example |U||p=~ + ||v||p= in
the two-inputs case (or the converse). Such asymmetric estimates have been used successfully to
obtain sharp results for particular control systems in [51].
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8 On direct intrinsic representations of the state

The expansions studied above in this article unfortunately don’t provide a direct intrinsic repre-
sentation of the state. The Magnus and Sussmann expansions are given with intrinsic quantities
(Lie brackets of the vector fields) but they require to compute one or multiple flows in order to
recover the state. The Chen-Fliess expansion gives directly a formula for the state, but it depends
on non-intrinsic quantities (see Remark 17 and Remark 167). In this section, we investigate the
possibility of finding a direct intrinsic formula for the state. We discuss this possibility in the
context of affine systems.

8.1 Approximate direct intrinsic representations

We prove in this section approximate direct intrinsic representations which achieve the desired goal
up to a small error. We believe that the formulas we derive can be of interest for applications to
control theory as they give approximate expressions for the state in terms of the inputs and Lie
brackets of the vector fields evaluated at the origin.

We start with an elementary result, which bounds the error when replacing a flow by the value
of the vector field.

Lemma 160. Let § > 0 and z € C*(Bs; K?) such that ||z|co < 6. Then
|€%(0) = 2(0)] < [2(0)|[| Dz[|coe! PZllee. (478)

Proof. Let z(t) := €'#(0) for t € [0, 1]. Then, for every ¢ € [0, 1],
j2(t) — £2(0)] < / 12( ) dr < 1Dz ol |+/ |Dzllcola(r) — T2(0)|dr  (479)

and by Gronwall’s lemma, |z(t) — t2(0)] < %HDZHCO‘Z(O)|et”DZ”CO, O

This elementary estimate allows to obtain approximate direct intrinsic representations from the
various Magnus expansions described above.

Proposition 161. Let M € N*, § > 0 and ¢ € N*.

1. Let I = [0,q] or I = [1,q]. Let f; € CM*(Bs;K%) fori € I. For T > 0 and u €
L>((0,7);K9), if x(t; f,u,0) denotes the solution to (226) with p = 0 and Zp (¢, f,u) de-
notes the vector field defined in Proposition 93 (called Zn(t,) ;o wifi) in this statement),
then, as T — 0,

z(t; f,u,0) = Zy(t, f,u)(0) + O (tM+1 + tlz(t; f, u, O)|) . (480)

in the following sense: there exist C,n > 0 such that, for every T € (0,n] and u €
L>((0,T); K9) with ||u||p~ <1, for each t € [0,T],

| (t; f,u,0) = Zar(t, f,u)(0)] < C (M + tlx(t; f,u,0)]) . (481)

2. Let T > 0, fo,...,f; € CM' Y Bys; K with f5(0) = 0 and T|follco < 8. For u €
LY((0,T);K9), if z(t; f,u,0) denotes the solution to (366) with p = 0 and Z(t; f,u) denotes
the vector field defined in Proposition 139, then, as ||u||» — 0,

2t £,0,0) = Zur(t, £,0)(0) + O (Il Pk + |o(t; £, 0)[+3) (482)
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3. Let fo,fi € C¥(Bss; K?) with fo(0) = 0. Let T > 0 as in Proposition 145. For u €
LY((0,T);K), if x(t; f,u,0) denotes the solution to (417) with p = 0 and Z(t, f,u) denotes
the vector field defined in Proposition 139 (with ¢ = 1), then, as (T,||U]|p~) — 0,

2(t; £,u,0) = Zar(t, £,0)(0) + O (U1} o ) + |t £u, O ) - (483)

Proof. Proof of the first statement. By Proposition 93, there exists C; > 0 and T > 0 such that
for every uw € L ((0,7*); K9) with ||u|z~ <1 and t € [0,T*],

(t; f,u,0) — eZmBfw (0)] < Oy tMHL (484)

By the explicit expression of Zy; (¢, f, u), there exists Cy > 0 such that for every v € L>°((0,T*); K?)
with |lu||z~ <1 and t € [0,T7],

Thus, by Lemma 160, there exists C3 > 0 such that, for every for every v € L>°((0,7%); K?) with
llul|L= <1 and ¢ € [0, 7],
eZm T (0) — Zy (8, f,u)(0)| < Cst | Zar(t, f,u)(0)] . (486)
Then, by triangular inequality, for every w € L>((0,7*); K?) with ||u|p~ <1 and ¢ € [0,T%]
lz(t; f,u,0) — Zar(t, £,u)(0)| < CLtMT 4 Cst| Zys (2, £,u)(0)] (487)
and in particular, for ¢ <T <1/(2Cs)
|Zae(t, f,u)(0)] < 2|2(t; f,u,0)] + 201 M (488)

This gives (481) with C' = max{2C;;2Cs} and n := min{T™*,1/(2C3)}.
Proof of the second statement. The strategy is the same: one starts from the estimate in Proposi-
tion 139, then applies Lemma 160 to Zy(t, f,u) and concludes thanks to the following estimate,
implied by the explicit expressions of the vector field

120t frw)ller = O (llullzio,) - (489)

llull L1 —0
and Young’s inequality.

Proof of the third statement. First, one can assume that f1(0) # 0. Indeed, otherwise, both
x and Z); vanish identically, so the desired estimate is void. Using Proposition 155 and the
explicit expression of the vector field CBHD y; (Vs (¢, f,U),U(t) f1), we obtain in the asymptotics
(@ [Ullz<) =0

120t fuw)ller = O (U] + U L1 0,1)) - (490)
Thus, using fo(0) = 0, Proposition 149 and the same strategy as above, we obtain in the asymp-
totics (¢, |U||r=) — 0

(491)
The following proposition and Young’s inequality give the conclusion. O

2(t; f,u,0) = Zm(t, f,u)(0) + O (|U(f)|MJrl +/0 T+ (U@ + Ul ) (s f,u,0)

~_

Proposition 162. Let 6 > 0, fo, fi € C¥(Bs;K?) with fo(0) = 0 and f1(0) # 0. There exists
T,n,C > 0 such that, for every u € L*((0,T),K) with ||U||r~ <n and t € [0,T],

U@)] < C(|zt; f,u,0)] + U1 0,p)) - (492)
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Proof. With the notations of Proposition 145, z(t; f,u,0) = eV /1 (t; F, U, 0) tends to zero when
|U||z~ — 0. A Taylor expansion of order 2 in z(t; f,u,0) = eV® 1z (t; F,U,0) provides C; > 0
such that, for every t € [0,7] and u € L'((0,T);K) such that ||U]|L~ < n*,

lz(t; f,u,0) — z1(t; F,U,0) — U(t) f1(0)] < CL{U®)|*> + C1|{U(#) |21 (t; F, U, 0)]. (493)
Moreover, by Gronwall’s lemma, there exists Co > 0 such that
lz1 (8 F,U,0)| < Co|| Ul 10,0y (494)

Let P: K¢ — K¢ defined by P(y) = (y, f1(0))/|f1(0)|>. Applying P to the vector in the left-hand
side of (493) and using (494), we get the conclusion, when ||U|| e is small enough. O

Under additional nilpotency assumptions, one can omit the truncation errors in the represen-
tation formulas of Proposition 161.

Corollary 163. Under the same assumptions as in Proposition 161.

1. Assume moreover that L({fi;i € I}) is nilpotent of index at most M + 1. Then, as T — 0,
z(t; f,u,0) = Zp (2, f,u)(0) + O (ta(t; f,u,0)]). (495)

2. Assume moreover that f; € C*(Bas; K®) for i € I := [0,q] and that {f;;i € [1,q]} is semi-
nilpotent of index at most M + 1 with respect to fo. Then, as |u]|r — 0,

LL‘(t; fv ’LL,O) = ZM(tv fﬂ u)(O) +0 (||u||L1(O,t)|x(t; f7u7 O)|) . (496)

3. Assume moreover that fo, fi € C¥(Bas; K?) and that {f1} is semi-nilpotent of index at most
M + 1 with respect to fo. Then, as (T, ||U||L~) — 0,

w(t; f,u,0) = Zar(t, £,u)(0) + O ((IUl L2 o,y + U0 D(t; £, u,0)]) - (497)

Proof. These are straightforward consequences of Proposition 110 (for the first item) and Corol-
lary 122 (for the second and third item, thanks to the analyticity assumption), using the same
approach as in the proof of Proposition 161. O

Remark 164. FEstimate (483) proves that, for a situation in which fot |U|M*L s negligible, the
state is well approzimated by Zp;(t, f,u)(0), which is a convergent series of iterated Lie brackets
of fo and f1 evaluated at 0. We expect that this representation can be useful for applications to
control theory, where one tries to relate controllability of the system with geometric relations on
the Lie brackets evaluated at zero.

8.2 Diffeomorphisms and Lie brackets

Lie brackets behave very nicely with respect to local changes of coordinates. Let f; be smooth
vector fields for i € I, p € K¢ and # be a smooth local diffeomorphism near p. If x(t) denotes the
solution to (226), we define y(t) := 6(z(t)). Then, one checks that y is the solution to

() =Y wi()gi(y(t)) and y(0) =/, (498)

iel

where g; := 6, f; and p’ := 0(p). By iterating Lemma 89, Lie brackets of the vector fields defining
the dynamics for y can be computed explicitly from those of . More precisely, for every b € Br(X),

9o = 0. fo (499)
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with the notation of Definition 78. In particular, there exists a linear invertible map L,, : K¢ — K¢,
L, := D0(p), such that, for every b € Br(X),

a(p") = Lfy(p). (500)

Conversely, if the f; and g; for ¢ € I are analytic vector fields, the existence of points p and
p’ and a linear invertible map L, such that (500) holds is a sufficient condition for the existence
of a local smooth diffeomorphism 6 with (p) = p’ and such that, for all controls u;, there holds
y(t) = 0(z(t)) where z and y denote the solutions to (226) and (498) for the same set of controls.
This nice property is proved in [75, Theorem 1] and was then extended with a more general
geometric viewpoint in [98] (see also [5, Theorem 5.5] for a modern presentation).

When (500) only holds for brackets up to some length M € N and the controls are uniformly
bounded in L, one can prove (see [76]) the existence of a local smooth diffeomorphism 6 and a
constant C' such that

ly(t) — O(x(t))| < CEMH. (501)

Up to our knowledge, the converse, which is conjectured to be true in [76], is a nice open problem.

Open problem 165. Let I = [1,q] and X = {X1,...X,}. Let p,p’ € K% Assume that there
exists a smooth diffeomorphism 6 from a neighborhood of p to a neighborhood of p' and M € N such
that, for all controls uy,...uq € L°(0,T) with ||u;|| < 1, estimate (501) holds for the trajectories

x and y corresponding to the same controls. Does this imply that there exists a linear invertible
map such that, for each b € Br(X) with |b| < M, (500) holds?

Open problem 166. Same question in the context of affine systems with drift, i.e. when I = [0, q],
X = {Xo, X1,... Xy} and the first control ug is constrained to be identically equal to 1. This
question might be harder because one gets less information from (501) as it is valid for less choices
of controls since uq is heavily constrained.

Remark 167. Property (500) is specific to Lie brackets and does not hold for products of differ-
ential operators. As an illustration, consider the case K =R, d =2, X = {X0, X1}, p=p' =0
with Lo := DO(0) = Ids. Then, for every ¢ € C*(R?%:R), (g5¢)(0) = (f»0)(0), but this relation
does not extend to a similar relation between products of fy and f1 and those of go and g,. For
example, with the vector fields fo(x) := (0,21) and fi(z) := (1,0) and the smooth diffeomorphism
0(x) = (21, 2o+22), one has go(y) = (0, 1) and g1(5) = (1, 2y1). In particular, (£26)(0) = du16(0)
but (g26)(0) = 0116(0) + 2012¢(0). This explains why we consider that the Chen-Fliess expansion
is mot an intrinsic representation of the state, as it depends on quantities which are not invariant
through local changes of coordinates.

8.3 Replacing the Magnus flow by a diffeomorphism

Let f; for i € I be smooth vector fields. We consider the solution z(t;u) to (226) with p =
0. Let Zy(t,u) be the vector field defined in Proposition 93 (and called Zas(t,) ;c; uifi) in
this statement). By Proposition 93, for each M € N, z(¢;u) is given by the time-one flow of
the autonomous vector field Zy;(¢,u), up to an error scaling like tM*1 when the controls u; are
uniformly bounded in L.

In this paragraph, inspired by the nice properties of Lie brackets with respect to diffeomorphisms
recalled above, we attempt to replace the computation of the time-one flow by a diffeomorphism.
This can be seen as being related with the converse of the classical question of whether a given
diffeomorphism can be represented as the time-one flow of an autonomous vector field (see e.g.
[7, 8] for positive answers in particular cases, [7, Section 2] for an elementary necessary condition,
and [52] or [88] for statements highlighting that the answer is only rarely positive).

This also corresponds to replacing the terms z(t; u)+o(|x(¢; w)|) in Proposition 161 by 0(x(t; u)),
where 6 is a smooth local diffeomorphism of K¢.

We start with a definition.
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Definition 168. Let T > 0 and n € N. We say that a functional 5 :[0,T) x L*=((0,7); K?) - K
is homogeneous of degree n with respect to time when, for every v € L>((0,T);K?), A € (0,1]
and t € [0,T7,

B, ut) = X"B(t,u) (502)

where u* is defined by u(\t) := u(t) for t € [0,T] and u*(A\t) :=0 fort > T.

In particular, the product of two homogeneous functionals of degree n and m with respect to
time is an homogeneous functional of degree n + m. The coordinates of the first kind ¢, (¢, u),
pseudo-first kind 7, (¢, ) and second kind &, (¢, w) are all homogeneous of degree |b| with respect to
time. An interesting property of homogeneous functionals is given by the following statement.

Lemma 169. Let T > 0, n € N and 5 : [0,T] x L>=((0,T); K?) — K, homogeneous of degree n
with respect to time. Assume that there exists C > 0 such that, for every u € L*°((0,T); K?) with
lul| o0,y < 1 and each t € [0,T],

1B(t,u)| < O+, (503)

Then 8 = 0.

Proof. Let t € [0,7] and u € L*((0,T);K?) such that ||ul[ze@,r) < 1. On the one hand, for
each A\ € (0,1], B(At,u*) = A"B(t,u). On the other hand, |3(A\t,u")| < C ALt because
|[uM|Le = |lu||z < 1. Hence |B(t,u)| < CAt"*! for each X € (0,1] so B(t,u) = O

One could wonder if the following proposition holds.

False proposition 170. Let X = {X;;i € I}, B be a monomial basis of L(X). Let T > 0. There
exists a family (Bp)ven of functionals from [0, T] x L>=((0,T);K9) to K, with B, homogeneous
of degree |b| with respect to time, such that the following statement holds. Let § > 0 and f; €
C>®(Bs;K?) for i € I. There exists a smooth diffeomorphism 0 of K¢ near p = 0 such that, for
each M > 0, there exists Cpr,Tag > 0 such that, for every u € L ((0,T); KY) with |ju| L~ <1, for
each t € [0,Tn],

10(z(t;w) — yar(tu)] < Cort™ (504)
and
yn(t;u) = 0(0)+ > Bu(t,u)gs(6(0)), (505)
lb|l<M

where g, = 0. f, and x(t;u) is the solution to (226) starting from p = 0.

The functionals 5, would be the analog of the coordinates of the first and second kind described
earlier. A formula such as (505) would be ideal for applications to control theory for example, since
it is expressed on intrinsic quantities (Lie brackets) and allows to compute x(¢; u) directly without
solving for flows (one recovers z(t;u) ~ 6~1(y(t;u))). In some sense, it corresponds to asking if
there exists a local change of coordinates for which the Chen-Fliess expansion only involves Lie
bracket terms (and all the non-Lie bracket terms vanish).

Unfortunately, it is impossible in general, as illustrated by the following counter-example.

Proposition 171. Let X = {Xo, X1}. Let T > 0 and consider, in R3, fo(x) := (0,21 + 23, x122)
and f1(z) := (1,0,0), i.e. the following affine system with drift

3.5'1 =u,
iy = a1 + a3, (506)
T3 = T1T2,

together with the initial data x(0) = 0. There exists a monomial basis B of L(X), such that, for
all functionals By : [0,T] x L=((0,T);R) — R for b € B, homogeneous of degree |b| with respect
to time and for every local C® diffeomorphism 0 of R®, there exists M € [1,6] and a control
u € L*((0,T);R) with ||u|]|pe <1 such that (504) does not hold, even for small times.
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Proof. Let B be a length-compatible Hall basis of £(X) with X < X;.

Step 1: Computation of ys(t). We define By = {b € B;ni(b) = ¢} for every £ € N. Then
B = {ad’)f(o (X1);k € N}. The computation shows that the only elements b € By such that f, # 0
are

b =Xy, by = [Xo, X1, c1 = [Xo, [Xo, X1]], (507)
fo, () = eq, foo () = =(1 4 221 )es — z9e3, fer () = x%eg. (508)

Thus, the only elements b € By that could satisfy f, # 0 are [b1,bs], [b1,c1], [b2, ¢1]. The compu-
tation shows that, among them, only the two first ones do satisfy the condition:

by = [X1, [Xo, Xi1]], 2 = [X1,ad%, (X1)), (509)
fba(x) = —2ey, fcz(‘r) = 2z1€3. (510)

Thus, the only elements b € B3 with length at most 6 that could satisfy f, # 0 are [b1, bs], [b1, 2],
[b2, bs], [b2, 2], [c1,b3]. The computation shows that, among them, only the second and the third
ones do satisfy the condition:

by = ad%, ad%, (X1), bs = [[Xo, X1], [X1, [Xo, Xi]]], (511)
fo () = 2e3, fos (2) = —2e3. (512)

Thus the only elements b € By with length at most 6 that could satisfy f, # 0 are [by,bys] and
[b1,b5], but the computation shows that they satisfy f, = 0. Therefore, for every b € B4 U Bs U Bg,
f» = 0. In conclusion, by, ...,bs are the only elements b € B such that f,(0) # 0. In particular,
none of them have length 4 or 6, thus

ys(t) = 6(0) + DA(0) (Bl(t,u)el — Ba(t,u)es — 2B5(t, u)es + 2(Ba(t, u) — ﬁ5(t,u))e3) (513)

is the sum of 4 homogeneous functionals of degree 1, 2,3 and 5. Here and below we write §; instead
of By, for brevity.

Step 2: Computation of homogeneous terms with degree 4 and 6 in 0(x(t)). In this step, we consider
a local C® diffeomorphism 6 of R? defined on a neighborhood of p = 0. For u € L>((0,T);R), we
denote by U the primitive of u such that U(0) = 0 and V the primitive of U such that V(0) = 0.
Straightforward explicit integration of (506) yields

x(t;u) =U(t)ey + V(t)ea + /0 U?(s)dseq + %VQ(t)eg + /0 U(s) /OS U?(s')ds’ dses,  (514)

where the five terms are respectively functionals homogeneous of degree 1 through 5 with respect to
time in the sense of Definition 168. Using a Taylor expansion of 8 at 0, one obtains (vector-valued)
functionals vy for k € [1,6], homogeneous of degree k with respect to time such that for every

M € [1,6]
M

0(x(t) = 0(0) + Y (t,u) + O ). (515)
k=1

In particular

) = 310000+ U(0) [ U20120(0) + 1v2(0)00(0)
2 0 2 (516)

UV (D00a0(0) + U (1970(0)
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and
t s t 2
v6(t,u) = U(t) /0 U(s) /0 U(s’)2ds’d38139(0)+%V3(t)8239(0)+% ( /0 U2> D226/(0)

+ U2 v2(0005000) + LUV () / 020,36(0) + V3 (6)03220(0)
4 2 0 6 (517)

1 ! 1
+ 6U3(t)/ U2811129(0) + EUQ(t)VQ(t)&lggG(O)
0

%V(t)U‘*(t)a;*aQe(O) + éUG(t)afe(O).

+
Step 3: Denying (504). We proceed by contradiction, assuming that there exists a local C® diffeo-
morphism 6 of R3 such that, for each M € [1,6], there exists Cis, Ths > 0 such that (504) holds
for every ¢ € [0, 7] and u € L>((0,Tps); R) with |Ju||p= < 1.

By induction on M, estimate (504), Lemma 169 and (513) imply that v = £10:0(0), v2 =
—$2020(0), v3 = —283020(0), 74 = 0, 75 = 2(B4 — B5)030(0) and v = 0.

On the one hand, by choosing u such that U(¢t) = 0 but V(t) # 0, the relation v4(¢t,u) = 0
implies that 0226(0) = —056(0) # 0 because 6 is a local diffeomorphism. On the other hand,
by choosing u such that U(t) = V(¢) = 0 but fg U? # 0, the relation 7(¢,u) = 0 implies that
0226(0) = 0. This concludes the proof, since we have found incompatible conditions on 0226(0). O

Remark 172. This section is written with a focus on time-based estimates. However, a similar
“false proposition” could be stated for control-based estimates. The same counter-example also
negates this possibility.
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A Proving that the logarithm of the flow is a Lie series

A.1 Using shuffle relations and Ree’s theorem

In this paragraph, we describe a proof of Theorem 20 relying on Ree’s theorem and shuffle relations
satisfied by the coefficients of the Chen series. This approach is notably used in [71, 74]. We start
with some definitions.

Definition 173 (Shuffle product). The shuffle product is the map from I* x I* to the free vector
space over I* defined by induction on the length of the words by ) W o = o W () := o for every
o € I'* (where () denotes the empty word) and, for every o,0’ € I* and ¢,¢ € I,

(al) W (a'l') := (o w (')l + ((c) o)l (518)

Intuitively, the shuffle product of two words is the sum of all the ways of riffle shuffling these
two words together, interleaving their letters (exactly as one would riffle shuffle two packets of a
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card deck). For example, the shuffle product of the words ab and cd (over the Latin alphabet) is
abed + acbd + acdb 4 cabd + cadb + cdab.
The following result was introduced in [89, Theorem 2.5] to prove Theorem 20.

Lemma 174 (Ree’s theorem). Let v : I* — K with vy = 1. We still denote by v its linear
extension to the free vector space over I*. Consider the formal series x := Y ;. Vo Xo. Then
logz € EA(X) iff (the linear extension of) v satisfies the so-called “shuffle relations”, i.e. iff for
every o,0’ € I*,

Yowo’ = Yo Yo!- (519)

Proof. This statement is item (#ii) in [90, Theorem 3.2]. O

Therefore, to show that logx(t) is a Lie series, it suffices to check that the coefficients fg G
(defined in (19)) of the Chen series satisfy these shuffle relations. We proceed as in [89, Section 2],
by induction on |o| + |¢’| in (519). Definition (19) can also be written as, for every o € I'* and
Lel,

/0 o = /0 ' ao(8)an(s) ds. (520)

Since we set fot ap = 1 by definition for the empty word @, (519) holds for every o,0’ € I*
when |o| + |o/| = 1. Assume now that it holds for |o| + |0’| < n for some n € N*. Let 0,0’ € I*
and ¢,¢ € I such that |of| + |0/'¢'| = n + 1. Applying successively, (518) and the linearity of the
extension of vy, (520), the induction hypothesis and eventually (520) again, we obtain, for every
t>0,

Yeoyw(oe) () = Yow(oe)et) + Y(oowee (t)
t

t
:/ fyam(a/g/)(s)ag(s) d8+/ V(UZ)LUJ'(S)GZ/(S) ds
0 0

t t 521
- / Yo ()70rer () (5) ds + / Yot(5)70r () (5) ds (321
0 0

t
— [ et (5) + Goe(sVi(5) s,
0
Whlch proves that ’Y(a.g)m(a/e/) = "}/G.['YU/Z/.

A.2 Using Friedrich’s criterion

In this paragraph, we describe a proof of Theorem 20 relying on Friedrich’s criterion. This approach
is notably used in [97, Section 3]. We start with some definitions.

Let A(X)®.A(X) be the tensor product of the algebra A(X) with itself (i.e. the tensor product
of A(X) and A(X), endowed with the product rule (a ® b)(a’ @ V') := (aa’) @ (bV'), see [26,
Chapter 3, Section 4.1, Definition 1] for a precise construction). The algebra A(X) is the universal
enveloping algebra of the Lie algebra £(X), and as such is a Hopf algebra (see [1]). The coproduct
homomorphism A : A(X) — A(X) ® A(X) is defined by setting the values A(1) := 1® 1 and
AX;) =X, ®14+1® X; for 1 < i < g. This defines a unique homomorphism because A(X) is
freely generated by X as an algebra (see [90, Proposition 1.2] for more detail). The coproduct A
can then be used to characterize Lie elements, as in the following result, which was proposed by
Friedrichs in [48], then proved by multiple authors in the same period [35, 44, 78, 80].

Lemma 175 (Friedrichs’ criterion). For a € A(X), a € L(X) if and only if the condition A(a) =
a®1l+1®a holds.

Proof. This statement is the equivalence between (i) and (%i) in [90, Theorem 1.4]. O
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Example 176. The element X1 X does not belong to L. And indeed,
A(X1Xo) = A(X1)A(X2) = (X1 @14+ 10 X)(Xo @ 1+1® Xy)
= X1 X014+ X0 Xo+ X0 X1 +1® X1 Xo (522)
X1 Xo®1+1® X, X,.
On the contrary, the element [ X1, Xo] = X1 X2 — X2 X belongs to L. And indeed,
A([X1, Xa]) = A(X1X2) — A(X2X7)
=(X1Xo®1+ X190 X0+ Xo® X1 +1® X7 X5)
(XX 014+ Xo® X+ X, @ Xs +1® XaX))
=X, Xo]®1+1®[X1, Xa].
The tensor product A(X) ® A(X) also has a graded structure, with (A(X) ® A(X)), =
D, Ai(X) ® A,—;(X). Since the homomorphism A is linear and degree preserving, it can

be extended as an homomorphism from A(X) to A(X@(X ), the formal power series over
A(X) ® A(X). For such series with zero constant term, one can define, as in (11), an exponential,
say expg, which also verifies a uniqueness property such as Lemma 13. One can then derive a
criterion to determine whether the logarithm of a formal power series is a Lie element.

Corollary 177. Let a € ./Z(X) with agp = 1. Then log(a) € E(X) if and only if A(a) = a® a.

Proof. We follow [90, Theorem 3.2]. By linearity and degree preservation, Lemma 175 implies that,
for a € A(X), a € L(X) if and only if A(a) =a® 1+ 1® a. For a € A(X) with constant term 1,

(523)

loga € A(X) < A(log(a)) = log(a) ® 1 + 1 ® log(a)
< expg (A(log(a))) = expg, (log(a) ® 1+ 1 ® log(a))
<= A (exp(log(a))) = expg (log(a) @ 1) expg (1 ® log(a))
<= A(a) = ((exploga) ® 1)(1 ® (exploga)) = a ® a,

(524)

where we used the equality A(exp(-)) = expg(A(+)), because A is an homomorphism, and the fact
that expg(b® 1+ 1® ¢) = expg (b ® 1) expg (1 ® ¢), because b ® 1 and 1 ® ¢ commute.

O
Therefore, to show that log(z(t)) is a Lie series, it suffices to check that A(z(t)) = z(t) ® z(t).
This can be checked as in [97, Section 3] using the following argument. At the initial time A(z(0)) =
A(l)=1®1 =2(0) @ (0). On the one hand
d
dt

Az) = A(z) = A(za) = A(x)Aa) = A(z)(e® 1+ 1®a). (525)

On the other hand,

%(J;@x):¢®x+x®i‘:($a)®x+x®(1‘a):(x®x)(a®1+1®a). (526)

Hence, both quantities satisfy the same formal differential equation with the same initial condition,
so they are equal for every ¢ > 0.

B Elementary numerical identities

B.1 Bernoulli numbers

We use the notation (By,)nen to denote the Bernoulli numbers, which are defined (using the modern
NIST sign and indexing convention) by the identity

z = 2" PR Z2n
Vz € C,|z| < 2w, = B,—=1-—— By, ——. 527
: 2] < 2 e —1 7;) n! 2 + ; 2 (2n)! (527)
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Lemma 178. The Bernoulli numbers satisfy, for every n > 2

Tf (Z) By, =0, (528)

k=0
n 7’?,) Bk
> \)nin =" (529)
= <k n+1—k
- ank _ Bn+1
D o A ey (530)

Moreover, the odd Bernoulli numbers except By vanish and, for everyn > 1,

Ban = (-1 25 ) ~ (1) 2B () (531)

where C is the Riemann zeta function.

Proof. The first two identities are classical and can be proved using the generating series of the
Bernoulli numbers of (527), respectively by identification in z = (e* — 1) x (z/(e* — 1)) for (528)
and in 1 = ((e* —1)/z) x (z/(e* — 1)) for (529).

The third identity (530) follows from (529) and the computation

z": B,y 1 z”: n n+1 By
kzo(n—k)!(k+2)!’(n+1)!z “\n—t)n+1—tn—L{+2

1 "~ (n+1 By __ Bun
_(n—l—l)!Z( 1 )(n+1)—£+1_ (n+ 1)

Eventually, the relationship with the Riemann zeta function is proved in [9, equation (12.38)].
The asymptotic is a consequence of the Stirling’s approximation and ((s) — 1 as s > 1 tends to
+00 (which is a direct consequence of the formula ((s) = > n~*). O

(532)
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