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error estimates and convergence issues

Karine Beauchard*, Jérémy Le Borgne*, Frédéric Marbach*

April 14, 2022

Abstract

Explicit formulas expressing the solution to non-autonomous di�erential equations are of
great importance in many application domains such as control theory or numerical operator
splitting. In particular, intrinsic formulas allowing to decouple time-dependent features from
geometry-dependent features of the solution have been extensively studied.

First, we give a didactic review of classical expansions for formal linear di�erential equa-
tions, including the celebrated Magnus expansion (associated with coordinates of the �rst
kind) and Sussmann's in�nite product expansion (associated with coordinates of the second
kind). Inspired by quantum mechanics, we introduce a new mixed expansion, designed to
isolate the role of a time-invariant drift from the role of a time-varying perturbation.

Second, in the context of nonlinear ordinary di�erential equations driven by regular vector
�elds, we give rigorous proofs of error estimates between the exact solution and �nite approx-
imations of the formal expansions. In particular, we derive new estimates focusing on the role
of time-varying perturbations. For scalar-input systems, we derive new estimates involving
only a weak Sobolev norm of the input.

Third, we investigate the local convergence of these expansions. We recall known positive
results for nilpotent dynamics and for linear dynamics. Nevertheless, we also exhibit arbitrarily
small analytic vector �elds for which the convergence of the Magnus expansion fails, even in
very weak senses. We state an open problem concerning the convergence of Sussmann's in�nite
product expansion.

Eventually, we derive approximate direct intrinsic representations for the state and discuss
their link with the choice of an appropriate change of coordinates.
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1 Introduction

1.1 Motivations

There are multiple situations in which one desires to compute the solution to a di�erential equation
whose dynamics depend on time. One often looks for explicit formulas, depending preferentially on
intrinsic quantities, which describe the composition of �ows, or even the continuous composition
of �ows. Some important applications are listed below.
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� Control theory. Here, the dynamics depend on time mostly through the choice of time-
varying controls. One looks for explicit formulas of the continuous product of �ows in order
to be able to construct controls for which this resulting �ow drives a given initial state to a de-
sired target state. In order to establish necessary and su�cient conditions for controllability,
one is interested in intrinsic formulas. It is our main motivation.

� Numerical splitting methods. Here, the splitting algorithm applies sequentially a suc-
cession of basic �ows, composed with appropriate time steps. One is interested in choosing
correctly the base �ows and the time steps in order to approximate the most precisely possi-
ble the solution to the true complex �ow. Formulas concerning the composition of �ows are
essential to compute the order of the resulting numerical scheme. We refer to the survey [20]
and the introduction books [19, 58]. Composition of �ows formulas are also very useful in
particular settings like Hamiltonian systems [22] or in the presence of a small perturbation of
a reference �ow [81]. Concerning numerical methods, more generally, we refer to [82] (respec-
tively [37]) for a survey on Butcher series (resp. post-Lie algebras), algebraic tools related to
the algebras manipulated in the sequel.

� Stochastic di�erential equations. Here, the dynamics depend on time through the
sources of randomness, say Brownian motions. One wishes to investigate the in�uence of
the randomness on the �nal state and thus looks for explicit formulas involving iterated
Stratanovich integrals to construct a representation of the �ow, see e.g. [12, 15, 28, 32].

� Di�erential equations on Lie groups. Sometimes, the state itself of the di�erential
equation belongs to a Lie group, as in [64]. Then, looking for an intrinsic approximation of
the state helps to preserve structure which would be lost otherwise. In particular, writing the
product of multiple �ows as a single �ow is important. There are also control problems for
di�erential equations set on Lie groups, as in [67]. Some works, e.g. [30], also tackle the hard
question of obtaining Magnus-type expansions, which are intrinsically linear, for nonlinear
equations within matrix Lie groups.

� Analysis of time-periodic systems. When investigating the behavior of time-periodic
systems, some authors borrow tools from �chronological calculus� or expressions of the �log-
arithm of the �ow� (described below). For example, such techniques are used to study
stability and asymptotic stability of time-periodic systems of ODEs; see the non linear Flo-
quet Theorem 3.2 and the high-order averaging procedure Theorem 7.1 in [93], or the recent
higher-order averaging results of [79].

1.2 Short historical survey

We start with a short survey of some of the many approaches related with the computation of
solutions to formal linear di�erential equations, say

ẋ(t) = X(t)x(t), (1.1)

together with some initial condition x(0). We recall in Section 1.2.4 the consequences of such
results for nonlinear ordinary di�erential equations.

1.2.1 Iterated integration and Chen-Fliess expansion

A straightforward approach to solving (1.1) consists in what can be seen as a Picard itera-
tion. For small times, starting from the initial approximation x(t) ≈ x(0), one then enhances
the approximation iteratively by substituting it in the equation and obtains successively x(t) ≈
x(0) +

∫ t
0
X(s)x(0) ds, then x(t) ≈ x(0) +

∫ t
0
X(s)x(0) ds+

∫ t
0
X(s)

∫ s
0
X(s′)x(0) ds′ ds and so on.

In the context of control theory, this expansion is known as the Chen-Fliess expansion, after
being popularized by the works [33, 45]. Its main advantages are its simplicity and nice convergence
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properties (see Section 5.1). However, it also has some strong drawbacks, which we detail in
Remark 2.17 and Remark 8.8 and motivate the investigation of other expansions.

1.2.2 Magnus expansion

When X(t) is piecewise constant, for example with values X1 for t ∈ [0, 1] and X2 for t ∈ [1, 2],
one has formally, x(2) = eX2eX1x(0). Hence, the computation of solutions to (1.1) has a deep link
with the famous Campbell [29], Baker [11], Hausdor� [61], Dynkin [40] formula (�CBHD formula�
in the sequel).

This formula has a long and rich history which involves forgotten contributions of other authors
such as Schur, Poincaré, Pascal or Yosida. As noted by Bourbaki in [25], �chacun considère
que les démonstrations de ses prédécesseurs ne sont pas convaincantes� (each one considers that
the proofs of his predecessors are not convincing). We therefore encourage the reader to dive
into the fascinating retrospectives [2] and [23] to understand the progressive construction of its
proof throughout the decades. This formula is a formal identity expressing the product of the
exponentials of two (non-commutative) indeterminates X1 and X2 as the single exponential of a
series of Lie brackets (i.e. nested commutators) of these indeterminates, of which the �rst terms
are well-known:

eX2eX1 = exp

(
X1 +X2 +

1

2
[X2, X1] + . . .

)
. (1.2)

When more than two exponentials are multiplied, say eX1 through eXn , one can of course iterate the
formula (1.2) with itself to formally express the product of n exponentials as the single exponential
of a complicated series. Letting n → +∞, one is lead to computing a continuous product of
exponentials, which corresponds, heuristically, to solving (1.1).

Magnus performed a breakthrough by deriving in [80] the �rst formal representation of the
solution to (1.1) as the exponential of a series, of which the �rst terms are

x(t) = exp

(∫ t

0

X(τ1) dτ1 +
1

2

∫ t

0

∫ τ1

0

[X(τ1), X(τ2)] dτ2 dτ1 + · · ·
)
x(0). (1.3)

This formula can be seen as the continuous counterpart of the CBHD formula and highlights
important structural properties of the solutions to (1.1) (see Section 2.3).

1.2.3 In�nite products

The CBHD formula and the Magnus formula share the goal of expressing the desired quantity
as the exponential of a single, although complicated, object. Other approaches go the other way
around and try to express the desired quantity as a long (in�nite) product of exponentials of very
simple objects.

A well-known example is the Lie-Trotter product formula (see e.g. [101]), often used for numer-
ical splitting methods which attempts to give a meaning to the equality

eX1+X2 = lim
n→+∞

(
e
X1
n e

X2
n

)n
, (1.4)

the interest relying on the fact that the exponentials of X1 and X2 are assumed to be easier to
compute in some sense than the direct exponential of X1 +X2.

Another related formula is the Zassenhaus expansion, described by Magnus in [80], which
allows to decompose the same quantity eX1+X2 as an in�nite product of exponentials of linear
combinations of nested commutators of strictly increasing lengths, whose �rst terms are

eX1+X2 = eX1eX2 exp

(
−1

2
[X1, X2]

)
exp

(
1

3
[X2, [X1, X2]] +

1

6
[X1, [X1, X2]]

)
· · · (1.5)
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In the context of di�erential equations such as (1.1), a nice formula is Sussmann's in�nite
product expansion, introduced in [100]. When X(t) is given as a linear combination of elementary
generators, e.g. X(t) = a1(t)X1 + a2(t)X2, Sussmann's in�nite product expansion is given by a
product of exponentials of Lie monomials, such as

x(t) = eξ1X1eξ2X2eξ12[X1,X2]eξ112[X1,[X1,X2]]eξ212[X2,[X1,X2]] · · ·x(0), (1.6)

where the ξi are scalar functions of time given by explicit formulas from the functions a1 and a2.
Compared to other expansions, this formula is both intrinsic (such as the Magnus expansion) and
involves coe�cients which are easily computed by induction (such as the Chen-Fliess expansion).

1.2.4 Consequences for nonlinear ordinary di�erential equations

Although the expansions mentioned above concern linear formal di�erential equations, they can
be adapted to ordinary nonlinear di�erential equations on smooth manifolds governed by smooth
vector �elds. Indeed, one can identify vector �elds with linear operators acting on smooth functions,
and points of the manifold with the linear operator on smooth functions corresponding to evaluation
at this point. This method allows to recast the nonlinear equation into a linear equation set on a
larger space, for which the formal linear expansions can be used (see Section 4.1).

This linearization technique has been used by Sussmann in [99, Proposition 4.3] to prove the
convergence of the Chen-Fliess expansion for nonlinear ordinary di�erential equations driven by
analytic vector �elds, by Agrachev and Gamkrelidze in the context of control theory (see [3, 4, 49]
in which they derive an exponential representation of �ows, very similar to Magnus' expansion,
using the chronological calculus framework) and by Strichartz (see [97] and his derivation of the
generalized CBHD formula, with applications related to sub-Riemannian geometry).

At a formal level, all identities mentioned above (almost) always make sense. However, if
the indeterminates are replaced by objects coming from analysis (say vector �elds, matrices or
di�erential operators), convergence issues arise. Generally speaking, convergence often requires
that one either assumes that the objects are small enough or that the generated Lie algebra has
additional structure, like nilpotence.

1.3 Main goals and organization of this article

This article is both a survey on some classical expansions for nonlinear systems, a research article
containing new results and counter-examples and a toolbox for future works. In particular, we aim
at the following goals.

� In Section 2 we give a didactic review of classical expansions for formal linear di�er-

ential equations. Our introduction to this algebraic topic is written with a view to making
it understandable by readers with minimal algebraic background. We review the following
classical expansions:

1. the Chen-Fliess formula,

2. the Magnus or generalized CBHD formula (associated with coordinates of the �rst kind),

3. Sussmann's in�nite product formula (associated with coordinates of the second kind).

� We introduce a new formal mixed expansion, inspired by quantum mechanics, designed
to isolate the role of a time-invariant drift from the role of a time-varying perturbation (see
Theorem 2.41), which we nameMagnus expansion in the interaction picture and for which we
de�ne coordinates of the pseudo-�rst kind by analogy with �rst and second kind coordinates.

� We recall in Section 3 classical well-posedness results and estimates for products and
Lie brackets of analytic vector �elds, which are used throughout the article.
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� In the context of nonlinear ordinary di�erential equations driven by regular vector �elds,
we give in Section 4 rigorous proofs of error estimates between the exact solution and
�nite approximations of each of these four formal expansions. These estimates are part of
the mathematical folklore for the Chen-Fliess and Magnus expansions, but are new for our
mixed expansion (see Proposition 4.8) and for Sussmann's in�nite product expansion (see
Proposition 4.13). We strive towards providing estimates with similar structures for the four
expansions and which are valid under parsimonious regularity assumptions.

� We investigate the convergence of these expansions in Section 5. We recall known positive

convergence results for smooth vector �elds generating nilpotent Lie algebras and for small
linear dynamics (matrices). For our new expansion, we investigate the subtle convergence
under a natural partial nilpotency assumption (see Corollary 5.18). In this case, convergence
requires analyticity, contrary to the proofs we give for the other expansions under a full
nilpotency assumption.

� For analytic vector �elds, only the Chen-Fliess expansion is known to converge. We give
in Section 5.2 new strong counter examples to the convergence of CBHD and Magnus
expansions, which disprove the convergence of these expansions even for analytic vector
�elds and in very weak senses (see Proposition 5.10). We state an open problem concerning
the convergence of Sussmann's in�nite product for analytic vector �elds (see Open prob-
lem 5.31).

� When the system involves a time-invariant drift and a time-varying perturbation, we show
in Section 6 that only the Magnus expansion fails to provide well-behaved estimates

with respect to the perturbation size. For the three other expansions, it turns out to
be possible to obtain such estimates by summing well-de�ned in�nite partial series which
converge for analytical vector �elds (see mostly Propositions 6.4 and 6.8).

� In the particular case of scalar-input systems, we prove in Section 7 new errors estimates

involving a negative Sobolev norm of the time-varying input (see mostly Propo-
sitions 7.6 and 7.14). Such estimates are the best compatible with the regularity of the
input-to-state map and can be helpful for speci�c applications.

� Eventually, we derive in Section 8 approximate direct intrinsic representations of

the state for nonlinear systems, which don't require the computation of �ows (see Propo-
sition 8.2). Our formulas can be viewed as almost-di�eomorphisms and might be useful
for applications in control theory. Unfortunately, we also study a counter-example which
demonstrates that one cannot obtain an exact representation through a di�eomorphism.

2 Formal expansions for linear dynamics

In this section, we consider formal linear di�erential equations, recall classical expansions valid in
this formal setting (for which there is no convergence issue; see nevertheless Remark 2.12) and
introduce a new mixed expansion which isolates the role of a perturbation in the dynamics. Here
and in the sequel, the adjective formal denotes situations in which we work within the realm of
formal power series (see De�nition 2.11).

2.1 Notations

We recall classical de�nitions and notations for usual algebraic objects. In the sequel, K denotes
the �eld R or C. All statements and proofs hold for both base �elds. It will be implicit that all
vector spaces and algebras are constructed from the base �eld K.
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2.1.1 Free algebras

We refer to the books [65, 90] for thorough introductions to Lie algebras and free Lie algebras.

De�nition 2.1 (Indeterminates). Let I be a �nite set. At the formal level, we consider a set
X := {Xi; i ∈ I} of indeterminates, indexed by I. For applications, we will substitute in their
place matrices or vector �elds. Most often, we will write I = J1, qK for some q ∈ N∗, or I = J0, qK
when we want to isolate the role of the indeterminate X0.

De�nition 2.2 (Free monoid). For I as above, we denote by I∗ the free monoid over I, i.e. the
set of �nite sequences of elements of I endowed with the concatenation operation. More precisely,
if σ = (σi)1≤i≤` and σ′ = (σ′i)1≤i≤`′ are elements of I∗, then the concatenation of σ and σ′ is the
sequence σ · σ′ = (σ′′i )1≤i≤`+`′ where σ′′i = σi if 1 ≤ i ≤ ` and σ′′i = σ′i−` if `+ 1 ≤ i ≤ `+ `′. It is
common to write the elements of I∗ as words whose letters are elements of I, by juxtaposition of the
elements of the sequence. With this point of view, the concatenation operation is the juxtaposition
of words. For a more detailed exposition, see [26, �7.2].

For σ = (σ1, . . . σk) ∈ I∗, where k is the length of σ also denoted by |σ|, we let Xσ :=
Xσ1
· · ·Xσk . This operation de�nes an homomorphism from I∗ to X∗, the free monoid over X

(monomials over X).

De�nition 2.3 (Free algebra). For X as above, we consider A(X) the free associative algebra
generated by X over the �eld K, i.e. the unital associative algebra of polynomials of the non com-
mutative indeterminates X (see also [26, Chapter 3, Section 2.7, De�nition 2]). A(X) can be seen
as a graded algebra:

A(X) =
⊕
n∈N
An(X), (2.1)

where An(X) is the �nite-dimensional K-vector space spanned by monomials of degree n over X.
In particular A0(X) = K and A1(X) = spanK(X).

De�nition 2.4 (Free Lie algebra). For X as above, A(X) is endowed with a natural structure
of Lie algebra, the Lie bracket operation being de�ned by [a, b] = ab − ba. This operation satis�es
[a, a] = 0 and the Jacobi identity [a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0. We also write [a, b] as ada(b)
(respectively adb(a)) which allows for iterated left (resp. right) bracketing. We consider L(X), the
free Lie algebra generated by X over the �eld K, which is de�ned as the Lie subalgebra generated
by X in A(X). It can be seen as the smallest linear subspace of A(X) containing all elements of
X and stable by the Lie bracket (see also [90, Theorem 0.4]). L(X) is a graded Lie algebra:

L(X) =
⊕
n∈N
Ln(X), [Lm(X),Ln(X)] ⊂ Lm+n(X) (2.2)

where, for each n ∈ N, we de�ne Ln(X) := L(X) ∩ An(X).

De�nition 2.5 (Nilpotent Lie algebra). Let L be a Lie algebra. We de�ne recursively the following
two-sided Lie ideals: L1 := L and, for k ≥ 1, Lk+1 := [L,Lk] i.e. Lk+1 is the linear subspace of
L generated by brackets of the form [a, b] with a ∈ L and b ∈ Lk. Let m ∈ N∗. We say that L is
a nilpotent Lie algebra of index m when Lm = {0} and m is the smallest integer for which this
property holds.

De�nition 2.6 (Free nilpotent Lie algebra). Let m ∈ N∗. The freem-nilpotent Lie algebra over X
is the quotient Nm(X) := L(X)/L(X)m (with the notation of De�nition 2.5). Then the canonical
surjection σm : L(X)→ Nm(X) is an homomorphism of Lie algebras.

The universal properties of the various free algebras constructed above allow to transport on
algebras relations proved at the free level.

Lemma 2.7. The following universal properties hold.
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� For each unital associative algebra A and map Λ : X → A, there exists a unique homomor-
phism of algebras A(X)→ A that extends Λ.

� For each Lie algebra L and map Λ : X → L, there exists a unique homomorphism of Lie
algebras L(X)→ L that extends Λ.

� Let m ∈ N∗. For each nilpotent Lie algebra L of index m and map Λ : X → L, there exists
a unique homomorphism of Lie algebras Nm(X)→ L that extends Λ.

2.1.2 Iterated brackets and evaluation

De�nition 2.8 (Iterated brackets). For X as above, we consider Br(X) the set of iterated brackets
of elements of X. This set can be de�ned by induction: for Xi ∈ X, Xi ∈ Br(X) and if b1, b2 ∈
Br(X), then the ordered pair (b1, b2) belongs to Br(X). More rigorously, one can de�ne Br(X) as
the free magma over X or as the set of rooted full binary trees, with leaves labeled by X.

For b ∈ Br(X), we will use the following notations:

� |b| will denote the length of b (i.e. the number of leaves of the tree).

� If |b| > 1, there exists a unique pair b1 ∈ Br(X) and b2 ∈ Br(X) such that b = (b1, b2) (left
and right factors) which are denoted as λ(b) = b1 and µ(b) = b2. We also write (b1, b2) as
adb1(b2) (respectively adb2(b1)) which allows iterated left (resp. right) bracketing.

� For i ∈ I, ni(b) denotes the number of occurrences of the indeterminate Xi in b. When
I = J0, qK we will also write n(b) = n1(b) + · · ·+ nq(b) = |b| − n0(b).

Remark 2.9. There is a natural evaluation mapping e from Br(X) to L(X) de�ned by induction
by e(Xi) := Xi for Xi ∈ X and e((b1, b2)) := [e(b1),e(b2)]. Through this mapping, Br(X) spans
L(X) over K, i.e. L(X) = spanK e(Br(X)). This mapping is however not injective: for example,
(X1, X1) and (X2, (X1, X1)) are two di�erent elements of Br(X), both evaluated to zero in L(X).

More precisely, the e map extends to a surjective homomorphism of algebras from the nonasso-
ciative free algebra over X (which is the free vector space over Br(X), whose elements are (�nite)
linear combinations of elements of Br(X), endowed with the natural product map induced by the
product in Br(X)). Moreover the kernel of the extended e is precisely the ideal generated by the
relations that de�ne anticommutativity and the Jacobi identity in L(X). This gives an alternative
description of L(X) as a quotient of the free vector space over Br(X).

De�nition 2.10 (Subspaces of brackets). When I = J0, qK and M ∈ N, SM denotes the vector
subspace L(X) de�ned by

SM := spanK {e(b); b ∈ Br(X), n(b) ≤M} . (2.3)

2.1.3 Formal power series, exponential and logarithms

De�nition 2.11 (Formal power series). We consider the (unital associative) algebra Â(X) of
formal power series generated by A(X). An element a ∈ Â(X) is a sequence a = (an)n∈N written
a =

∑
n∈N an, where an ∈ An(X) with, in particular, a0 ∈ K being its constant term. We also

de�ne the Lie algebra of formal Lie series L̂(X) as the Lie algebra of formal power series a ∈ Â(X)

for which an ∈ L(X) for each n ∈ N. For a ∈ Â(X) and σ ∈ I∗, 〈a,Xσ〉 denotes the coe�cient of
Xσ in a: a =

∑
σ∈I∗〈a,Xσ〉Xσ.

Remark 2.12. The de�nition of Â(X) can be made more rigorous by considering val : A(X) →
N ∪ {∞} de�ned by val(a) := inf{n ∈ N; a ∈

⊕
k≥nAk(X)}. Then δ(a, b) := e− val(b−a) is a

distance on A(X), that induces the discrete topology on each An(X), and Â(X) is de�ned as
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the completion of the metric space A(X), to which the operations on A(X) naturally extend as
continuous operations, endowing it with a structure of topological algebra. This distance veri�es a
stronger triangular inequality: δ(a, b) ≤ max{δ(a, c), δ(b, c)} (usually referred to as the ultrametric

inequality). This construction allows to write, for a ∈ Â(X) with components an ∈ An(X),

a = lim
N→+∞

∑
n≤N

an, (2.4)

where the convergence holds with respect to the topology described above. This justi�es the notation
a =

∑
n∈N an used in De�nition 2.11. To avoid confusion with convergence issues associated with

the evaluation of formal power series when substituting the indeterminates by objects coming from
analysis we shall however not use the term convergence in this context.

If a ∈ Â(X) has zero constant term, we de�ne exp(a) ∈ Â(X) and log(1 + a) ∈ Â(X) as

exp(a) :=
∑
m≥0

am

m!
, (2.5)

log(1 + a) :=
∑
m≥1

(−1)m−1

m
am. (2.6)

Since a has zero constant term, one checks that the right-hand sides of (2.5) and (2.6) indeed de�ne

formal power series of Â(X) (and the sums converge in the sense of the topology constructed in
Remark 2.12). In particular, log(exp(a)) = a and exp(log(1 + a)) = 1 + a.

Lemma 2.13. Let a, b ∈ Â(X) with zero constant term. Then a = b if and only if exp(a) = exp(b).

Proof. The forward implication is obvious. Conversely, if exp(a) = exp(b) in Â(X), then, for every
r ≥ 1, their components in Ar are equal. Moreover, from (2.5), one has:

(exp(a))r =

r∑
k=1

∑
r1+...rk=r

ar1 . . . ark
k!

= ar + Θr (a1, . . . ar−1) , (2.7)

for some function Θr depending only on the ar′ for r
′ < r. Hence, we obtain by induction on r ≥ 1

that ar = br from the equalities (exp(a))r = (exp(b))r.

2.2 Formal di�erential equations and iterated integrals

Using the notations of Section 2.1, for i ∈ I, let ai ∈ L1(R+;K) and de�ne a by

a(t) :=
∑
i∈I

ai(t)Xi. (2.8)

In this section, we consider the following formal ordinary di�erential equation set on Â(X), driven
by a and associated with some initial data x?,{

ẋ(t) = x(t)a(t),

x(0) = x?,
(2.9)

whose solutions are precisely de�ned in the following way.

De�nition 2.14 (Solution to a formal di�erential equation). Let ai ∈ L1(R+;K) for i ∈ I and
de�ne a by (2.8). Let x? ∈ Â(X) with homogeneous components x?n ∈ An(X). The solution to

the formal di�erential equation (2.9) is the formal-series valued function x : R+ → Â(X), whose

9



homogeneous components xn : R+ → An(X) are the unique continuous functions that satisfy, for
every t ≥ 0, x0(t) = x?0 and, for every n ∈ N∗,

xn(t) = x?n +

∫ t

0

xn−1(τ)a(τ) dτ. (2.10)

De�nition 2.15 (Ordered simplex). For r ∈ N∗ and t > 0, we introduce

∆r(t) := {(τ1, . . . , τr) ∈ (0, t)r; 0 < τ1 < · · · < τr < t}. (2.11)

Iterating this integral formula yields the following power series expansion, which is the most
direct way to compute the solution to (2.9) and was introduced in [33, 34] and popularized in control
theory by [45]. In the �chronological calculus� terminology (not used in the present article), it is
called �(right) formal Volterra chronological series� [3, Section 1.5].

Lemma 2.16 (Chen series). In the context of De�nition 2.14, the solution to (2.9) with initial
data x? = 1 can be expanded as

x(t) =
∑
σ∈I∗

(∫ t

0

aσ

)
Xσ, (2.12)

where
∫ t

0
a∅ = 1 by convention and, for σ ∈ I∗ with |σ| ≥ 1, we introduce the notation∫ t

0

aσ :=

∫
∆n(t)

aσ1(τ1) · · · aσn(τn) dτ. (2.13)

Proof. Expansion (2.12) is a direct consequence of the iterated application of (2.10) and of the
de�nition of Xσ in De�nition 2.2 and can be proved by induction on the length of σ.

Remark 2.17. Despite its simplicity, the Chen series su�ers from a major drawback: it involves
non intrinsic quantities and is redundant. As an illustration, this has the following consequences:

� The functionals
∫ t

0
aσ for σ ∈ I∗ are not algebraically independent. For example, for every

solution to (2.9) and every t ≥ 0, one has the identity

〈x(t), X1X2〉+ 〈x(t), X2X1〉 − 〈x(t), X1〉〈x(t), X2〉 = 0 (2.14)

� In the context of nonlinear ordinary di�erential equations, the representation (2.12) can fail
to converge for smooth vector �elds despite strong structural assumptions (see Section 5.1.1).

� In the context of nonlinear ordinary di�erential equations, the representation (2.12) will not
be invariant by di�eomorphism (see Remark 8.8), which would be a desirable invariance.

This drawback motivates the search for more intrinsic representations of the solutions, which will
turn out to involve Lie algebras.

The Chen series give rise to Fliess operators (stemming from [45, 46]) which can be de�ned,

given some c ∈ Â(X), as a 7→
∑
σ∈I∗〈c,Xσ〉

∫ t
0
aσ. Such operators are well-de�ned (converge)

provided that the coe�cients 〈c,Xσ〉 satisfy an appropriate asymptotic behavior. Fliess operators
can be used to model input-output systems and feedback groups. For manipulations of such
operators thanks to an underlying Hopf algebra structure, we refer to [53, 54, 55, 56], which
investigate the question of whether an interconnection of such operators remains a Fliess operator,
and its convergence, both in scalar and multivariate settings. See also [57] for the investigation of
global convergence issues, and realization of such formal operators on concrete systems.
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2.3 Logarithm of �ows, coordinates of the �rst kind

In the particular case where a(t) is a constant element a ∈ A1(X), evaluating the iterated integrals
in (2.13) yields the elegant formula x(t) = x? exp(ta), with the notation of (2.5). Of course, it is
no longer valid for a time-varying dynamic (because the indeterminates do not commute), but one
can wish to �nd an object of which the �ow is the exponential, the logarithm of the �ow.

In this section, we recall and prove Theorem 2.27, which states that the logarithm of �ows
of formal linear di�erential equations is given by explicit Lie brackets. The key argument is the
structure result Theorem 2.20, which states that the logarithm of the �ow is a Lie series, and of
which we give an elementary proof based on the di�erential equation satis�ed by the logarithm
of the �ow. We rely on well-known algebraic results, which we recall, for the sake of giving a
self-contained presentation.

2.3.1 A di�erential equation for the logarithm of the �ow

We start by deriving the formal di�erential equation (2.17) satis�ed by the logarithm of the �ow.
This equation is well-known (see e.g. [80, Theorem III], [34, Theorem 4.1] or [3, formula (5.2)]).
We provide an elementary derivation (see Remark 2.19).

Proposition 2.18. The following statements hold.

1. Let T > 0 and z ∈ C1([0, T ]; Â(X)). Then, for every t ∈ [0, T ],

d

dt
exp(z(t)) = exp(z(t))

+∞∑
n=0

(−1)n

(n+ 1)!
adnz(t)(ż(t)). (2.15)

2. Let a be given by (2.8) and x denote the solution to (2.9) with initial data x? = 1. Then
z := log x satis�es, for almost every t ∈ R+,

+∞∑
n=0

(−1)n

(n+ 1)!
adnz(t)(ż(t)) = a(t), (2.16)

ż(t) =

+∞∑
n=0

(−1)nBn
n!

adnz(t)(a(t)), (2.17)

where the Bernoulli numbers (Bn)n∈N are de�ned in (B.1).

Proof. We prove the two claims successively.

1. The regularity assumption z ∈ C1([0, T ]; Â(X)) is to be understood component by compo-
nent, i.e. means that for each σ ∈ I∗, t 7→ 〈z(t), Xσ〉 belongs to C1([0, T ];K). We have

d

dt
exp(z(t)) =

d

dt

(
+∞∑
k=0

zk(t)

k!

)
=

+∞∑
k=0

1

(k + 1)!

k∑
j=0

zj(t)ż(t)zk−j(t)

= exp(z(t))

(
+∞∑
l=0

(−1)l

l!
zl(t)

)+∞∑
k=0

1

(k + 1)!

k∑
j=0

zj(t)ż(t)zk−j(t)

 .

(2.18)

Letting n := k + l and i := l + j, we obtain that

d

dt
exp(z(t)) = exp(z(t))

+∞∑
n=0

1

(n+ 1)!

n∑
i=0

zi(t)ż(t)zn−i(t)

i∑
l=0

(−1)l
(
n+ 1

l

)
(2.19)
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The following formulas, which can be proved by induction using Pascal's rule,

i∑
l=0

(−1)l
(
n+ 1

l

)
= (−1)i

(
n

i

)
, (2.20)

n∑
i=0

(−1)i
(
n

i

)
ziyzn−i = (−1)n adnz (y) (2.21)

give the conclusion. Of course, if z ∈ W 1,1((0, T ); Â(X)) (i.e. absolutely continuous), equa-

tions (2.15) remains true as an equality in L1((0, T ); Â(X)), i.e. holding for almost every
t ∈ (0, T ).

2. Since z = log x and ẋ = xa, (2.16) is an immediate consequence of (2.15), using the preceding
comment since both x and z have W 1,1 regularity in time when a has L1 regularity in time.

Starting from (2.16) and applying
∑
k(−1)kBk/k! adkz(t) to both sides yields (2.17) because

+∞∑
k=0

(−1)kBk
k!

+∞∑
`=0

(−1)`

(`+ 1)!
adk+`
z(t)(ż(t)) = ż(t). (2.22)

This follows from the change of index n := k + ` and the combinatorial relation (B.3).

Remark 2.19. The historical proofs of Proposition 2.18 are written using the Poisson bracket
notation {·, zk} := (−1)k adkz(·) which allows to write (2.17) as the nice equality

ż =

{
a,

z

ez − 1

}
, (2.23)

using the generating series (B.1) of the Bernoulli numbers. This approach allows elegant compu-
tations, but requires some setup (see [80, Section III] or [34, Section 1]), which is why we prefer
here the elementary computations used in the preceding proof.

2.3.2 The logarithm of the �ow is a Lie series

The fundamental result concerning the logarithm of the �ow is that it is a Lie series. We repeat here
the proof given in [34, Theorem 4.2] for the sake of completeness. At least two other approaches
can be used: one relying on shu�e relations and Ree's theorem (see Appendix A.1) and another
one relying on Friedrich's criterion (see Appendix A.2).

Theorem 2.20. Let a be given by (2.8) and x be the solution to (2.9) with initial data x? = 1.
Then, for every t > 0, log x(t) ∈ L̂(X).

Proof. The proof relies on an iterated integration of (2.17), where z = log x. More precisely,
writing z =

∑
zn where zn ∈ An(X), we prove by induction on n that, for every t, zn(t) ∈ L(X).

First, for every t > 0, since x0(t) = 1, one has z0(t) = 0 so z0(t) ∈ L(X). Then, for every n ≥ 1,
by (2.17),

żn(t) =

n−1∑
k=0

(−1)kBk
k!

∑
n1+···+nk=n−1

[zn1
(t), [zn2

(t), . . . [znk(t), a(t)] · · · ]], (2.24)

where the sum ranges over indexes ni ≥ 1. Moreover, for every T > 0 and y ∈ L1((0, T );L(X))

one checks that, for every t ∈ [0, T ],
∫ t

0
y ∈ L(X). By the induction assumption, zni(t) ∈ L(X)

for each ni ≤ n − 1 and every t. By the previous comment, this property is preserved by the
time-integration of (2.24), so zn(t) ∈ L(X) for every t.
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2.3.3 Notations

We start with an abstract de�nition of the truncated logarithm of a time-dependent dynamic.

De�nition 2.21. For m, r ∈ N∗, we de�ne the set of ordered positive partitions of size m of r,

Nmr := {r = (r1, . . . , rm) ∈ (N∗)m; r1 + · · ·+ rm = r} , (2.25)

where Nmr = ∅ when r < m. For each r ∈ Nmr and t > 0, we also de�ne the product of simplexes

∆r(t) := ∆r1(t)× · · · ×∆rm(t). (2.26)

Example 2.22. The sets ∆r(t) will be used as integration domains. As easy examples, one has

∆(3)(t) = {τ = (τ1, τ2, τ3) ∈ (0, t)3; 0 < τ1 < τ2 < τ3 < t}, (2.27)

∆(1,1,1)(t) = {τ = (τ1, τ2, τ3) ∈ (0, t)3}. (2.28)

A more complex example for r = 4, m = 2 and r = (2, 2) ∈ N2
4 is

∆(2,2)(t) = {τ = (τ1, τ2, τ3, τ4) ∈ (0, t)4; 0 < τ1 < τ2 < t and 0 < τ3 < τ4 < t}. (2.29)

We now give a notation for the (truncated or complete) logarithm of a time-dependent dynamic.
We will see in the sequel why this quantity indeed corresponds to a logarithm.

De�nition 2.23 (Abstract logarithm of a time-varying �eld). Let M ∈ N or M = +∞, t > 0 and
F be a map from [0, t] with values in some algebra. We introduce the notation

LogM{F}(t) :=

M∑
r=1

1

r

r∑
m=1

(−1)m−1

m

∑
r∈Nmr

∫
∆r(t)

[· · · [F (τ1), F (τ2)], . . . F (τr)] dτ. (2.30)

Remark 2.24. In such an abstract setting, the right-hand side of (2.30) does not make sense since
we are not able to de�ne an integral over an abstract algebra (without topology on the algebra and
without time-regularity on F ). At this stage, we see (2.30) as an abstract formula or notation. We
will check, each time we use it, that we can give a meaning to the integrals.

2.3.4 A preliminary algebraic result

Since the monomials form a basis of A(X), one can de�ne the following linear map β from A(X)
to L(X) by setting its values on the monomials by β(1) := 0, β(Xi) := Xi for 1 ≤ i ≤ q, and, for
1 ≤ i1, . . . , ik ≤ q with k ∈ N∗,

β(Xi1Xi2 · · ·Xik) := [· · · [Xi1 , Xi2 ], . . . , Xik ]. (2.31)

This process de�nes a standard way, the �left to right� or �left normed� bracketing, to associate a
Lie bracket to each monomial. The following important result, proved successively by Dynkin [39],
Specht [95] and Wever [104] states that, if a polynomial is a Lie element, then it is equal to its left
normed bracketing.

Lemma 2.25 (Dynkin's theorem). For a ∈ An(X), a ∈ L(X) if and only if β(a) = na.

Proof. This statement is contained in the equivalence between (i) and (v) of [90, Theorem 1.4].

Example 2.26. The element X1X2 does not belong to L(X). And indeed, β(X1X2) = X1X2 −
X2X1 6= 2X1X2. On the contrary, the element [X1, X2] = X1X2 − X2X1 belongs to L(X). And
indeed, β([X1, X2]) = (X1X2 −X2X1)− (X2X1 −X1X2) = 2[X1, X2].

13



2.3.5 An explicit formula for the logarithm of the �ow

We now state an explicit expansion of the state as the exponential of the logarithm of the �ow. It
is the continuous analogue of the well-known CBHD formula (which we recall in Section 2.3.7 as a
corollary). It was originally derived by Magnus in [80, Theorem III] and is thus often referred to
as the �Magnus expansion�.

Theorem 2.27. For t ∈ R+ and x? ∈ Â(X), the solution x to (2.9) satis�es

x(t) = x? exp (Log∞{a}(t)) , (2.32)

with the notation of De�nition 2.23.

Proof. First, by linearity, it su�ces to prove (2.32) for x? = 1. Repeated integration of (2.10)
yields the following formula (which is a slightly di�erent form of the Chen series of Lemma 2.16),

x(t) = 1 +
∑
r≥1

∫
∆r(t)

a(τ1) · · · a(τr) dτ. (2.33)

Hence, recalling the de�nitions (2.25) of Nmr and (2.26) of ∆r(t), one has

log(x(t)) =

+∞∑
r=1

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
∆r(t)

a(τ1)a(τ2) · · · a(τr) dτ. (2.34)

By Theorem 2.20, for each t ≥ 0, log(x(t)) ∈ L̂(X). Hence, applying Lemma 2.25 to each of its
homogeneous components in Ar proves that

log(x(t)) =

+∞∑
r=1

1

r

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
∆r(t)

[· · · [a(τ1), a(τ2)], . . . a(τr)] dτ. (2.35)

Recalling the notation (2.23) and taking the exponential concludes the proof of (2.32).

Magnus expansions (also called BCH expansions) have been extended to more general structures
than Lie algebras, for instance to pre-Lie (another name for �chronological algebras�) and post-Lie
algebras [47], Rota-Baxter algebras [6, 43] and dendriform algebras [41, 42].

2.3.6 Coordinates of the �rst kind

Although the expansion (2.35) already has some interest by itself, it is not written on a basis of
L(X), which has some drawbacks. In this paragraph, we de�ne canonical representations for this
expansion, in appropriate bases of L(X).

De�nition 2.28 (Monomial basis). Let B ⊂ L(X). We say that B is a basis of L(X) when each
element a ∈ L(X) can be written as a unique �nite linear combination of elements of B. We
say that B is a monomial basis of L(X) when moreover B ⊂ e(Br(X)). In particular, for such
bases, if b ∈ B, one can de�ne |b|, ni(b) for i ∈ I and n(b) as in Section 2.1.2 by importing these
notions from Br(X). In particular, for n ∈ N∗, we use the notations Bn := {b ∈ B; |b| = n} and
BJ1,nK := {b ∈ B; |b| ≤ n}.
Proposition 2.29. Let B be a monomial basis of L(X). There exists a unique set of functionals
(ζb)b∈B, with ζb ∈ C0

(
R+ × L1(R+;K)|I|;K

)
, such that, for every ai ∈ L1(R+;K), x? ∈ Â(X) and

t ≥ 0, the solution to (2.9) satis�es

x(t) = x? exp

(∑
b∈B

ζb(t, a)b

)
. (2.36)

Moreover, the functionals ζb are �causal� in the sense that, for every t ≥ 0, ζb(t, a) only depends
on the restrictions of the functions ai to [0, t].
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Proof. For each b ∈ B, since B is monomial, only a �nite number of summands of the right-
hand side of (2.35) have a non vanishing component along b (indeed, only terms sharing the same
homogeneity can be involved). Hence, it is clear that the functionals thereby de�ned are continuous
on R+×L1(R+;K)q, due to their explicit expression. The sum in (2.36) is understood in the sense
of a well-de�ned formal power series. Indeed, for each word σ ∈ I∗, only a �nite number of elements
b ∈ B have a non-vanishing component 〈b,Xσ〉.

De�nition 2.30 (Coordinates of the �rst kind). The functionals ζb are usually called coordinates
of the �rst kind associated to the (monomial) basis B of L(X).

The terminology coordinates of the �rst kind or �rst species and the opposition with coordinates
of the second kind (see Section 2.5.3) is classical, see e.g. [24, III.4.3]. See also Section 2.3.8 for
references concerning the computation of such coordinates in the context of control theory.

Remark 2.31. Thanks to the monomial nature of the basis, one does not need to specify the full
basis in order to de�ne a given functional. For example, if λ ∈ NI is a given homogeneity, let

Brλ(X) := {b ∈ Br(X); ∀i ∈ I, ni(b) = λi}. (2.37)

Then the coordinates of the �rst kind ζb for b ∈ B ∩ Brλ(X) only depend on B ∩ Brλ(X).

Remark 2.32. An important particular case for applications to control theory is the case X =
{X0, X1}, with a0(t) = 1 and a1(t) = u(t). This corresponds to formal scalar-input control-a�ne
systems ẋ(t) = x(t)(X0 + u(t)X1). One often writes ζb(t, u) (omitting the dependency on a0 ≡ 1)
to denote the coordinates of the �rst kind in this particular context.

2.3.7 Campbell Baker Hausdor� Dynkin formula

As a corollary, we obtain the classical �nite CBHD formula.

Corollary 2.33. Let X be a �nite set, n ∈ N∗ and y1, . . . , yn ∈ L̂(X) without constant term.
There exists a unique w ∈ L̂(X) such that

ey1 · · · eyn = ew. (2.38)

We will use the notation w = CBHD∞(y1, . . . , yn). Moreover, for each monomial basis B of
L({Y1, . . . , Yn}), there exists a unique sequence (αb)b∈B ⊂ KB such that, for every �nite set X and
y1, . . . , yn ∈ L̂(X)

CBHD∞(y1, . . . , yn) =
∑
b∈B

αbyb (2.39)

where yb := Λ(b) and Λ : L({Y1, . . . , Yn})→ L̂(X) is the homomorphism of Lie algebras such that
Λ(Yj) = yj for j ∈ J1, nK.

Proof. We prove that (2.38) holds with

w := Log∞


n∑
j=1

yj1[j−1,j]

 (n) (2.40)

in the sense of De�nition 2.23.

Step 1: Proof when X = {X1, . . . , Xn} and yj = Xj for j ∈ J1, nK. The solution to (2.9) with
a(t) =

∑n
j=1Xj1[j−1,j](t) is x(t) = x?eX1 · · · eXn . By Theorem 2.27, w satis�es (2.38). By

injectivity of the exponential (see Lemma 2.13), it is the unique solution. By Proposition 2.29, the
equality (2.39) holds with αb := ζb(n, 1[0,1], . . . , 1[n−1,n]).
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Step 2: Proof in the general case. Let X be a �nite set, n ∈ N∗, y1, . . . , yn ∈ L̂(X). Let
Y := {Y1, . . . , Yn} be another set of indeterminates.

The map Λ : Y → L̂(X) de�ned by Λ(Yj) = yj for j ∈ J1, nK extends into an homomorphism

of algebras Â(Y ) → Â(X), which is also an homomorphism of Lie algebras L̂(Y ) → L̂(X), that
we still denote Λ. Indeed Lemma 2.7 ensures the extension as an homomorphism of algebras
A(Y ) → Â(X) (resp. an homomorphism of Lie algebras L(Y ) → L̂(X)). The extension can be

done on Â(Y ) (resp. L̂(Y )) because y1, . . . , yn do not have constant terms and the target space

Â(X) (resp. L̂(X)) is a space of formal power series.

Let W := Log∞{
∑n
j=1 Yj1[j−1,j]}(n) ∈ L̂(Y ). Then Λ(W ) = w. By applying the homomor-

phism of algebras Λ to the relation eY1 · · · eYn = eW we get (2.38). By applying the homomorphism
of Lie algebras Λ to the relation W =

∑
b∈B αbb we get (2.39).

Despite the fact that the product ey1 · · · eyn is of course non-commutative, there is some struc-
ture and symmetry inside its logarithm, which we highlight for future use in the following result.

Proposition 2.34. There exists a family of elements Fq,h(Y1, . . . , Yq) ∈ L({Y1, . . . , Yq}) for q ∈ N∗
and h = (h1, . . . , hq) ∈ (N∗)q, such that

� for each i ∈ J1, qK, Fq,h(Y1, . . . , Yq) is of homogeneity hi with respect to Yi,

� for every n ≥ 2, y1, . . . , yn ∈ L̂(X) with zero constant term,

CBHD∞(y1, . . . , yn) =
∑

q∈J1,nK,h∈(N∗)q
j1<···<jq∈J1,nK

Fq,h(yj1 , . . . , yjq ), (2.41)

where Fq,h(yj1 , . . . , yjq ) denotes the image of Fq,h(Y1, . . . , Yq) by the homomorphism of alge-

bras from L({Y1, . . . , Yq}) to L̂(X) which sends Yi to yji for each i ∈ J1, qK.

For q = 1, F1,(1)(Y ) = Y1 and F1,(h1) = 0 for h1 ≥ 2. For q = 2 and h1 + h2 ≤ 4,

F2,(1,1)(Y ) =
1

2
[Y1, Y2] F2,(2,2)(Y ) = − 1

24
[Y2, [Y1, [Y1, Y2]]]

F2,(2,1)(Y ) =
1

12
[Y1, [Y1, Y2]] F2,(3,1)(Y ) = 0

F2,(1,2)(Y ) =
1

12
[Y2, [Y2, Y1]] F2,(1,3)(Y ) = 0.

(2.42)

For higher order terms, we state below a recursive formula.

Proof. Using the same Lie algebra homomorphism arguments as in the proof of Corollary 2.33, it
is su�cient to consider the case where yi = Yi is an indeterminate.

For n = 2, the statement is merely a rewriting of (2.39) where the terms are grouped by their
homogeneity with respect to y1 and y2. This de�nes the elements F1,(1)(Y1) = Y1 and F1,(h)(Y1) = 0
for h ≥ 2 and F2,h(Y1, Y2) for h ∈ (N∗)2 according to the usual two-variables formula, of which the
well-known low-order terms are recalled in (2.42).

We de�ne by induction on n ≥ 3 the functions Fn,h by the relations

Fn,h(Y1, . . . , Yn) :=
∑

m|h1,...,hn−1

F2,(m,hn)

(
F
n−1,(

h1
m ,...,

hn−1
m )

(Y1, . . . , Yn−1), Yn
)
. (2.43)

We now prove the result by induction on n. Let n ≥ 3. By associativity of the product, the formula
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for two indeterminates and the induction hypothesis at step n− 1, we obtain

CBHD∞(Y1, . . . , Yn)

= CBHD∞(CBHD∞(Y1, . . . , Yn−1), Yn)

= CBHD∞(Y1, . . . , Yn−1) + Yn +
∑

g∈(N∗)2
F2,g(CBHD∞(Y1, . . . , Yn−1), Yn)

= Yn +
∑

q∈J1,n−1K,h′∈(N∗)q
j1<···<jq∈J1,n−1K

Fq,h′(Yj1 , . . . , Yjq ) +
∑

g∈(N∗)2
F2,g(Fq,h′(Yj1 , . . . , Yjq ), Yn)

 .

(2.44)

We now check that the right-hand side of (2.44) is the same as the right-hand side of (2.41). Since
we are working in the free Lie algebra over Y1, . . . Yn, we can proceed by homogeneity.

� The terms not involving Yn are equal, since they have the same expression.

� The term involving only Yn on both sides is Yn itself, so they are equal.

� Now, let q ∈ J1, n − 1K, j1 < · · · < jq ∈ J1, n − 1K and h ∈ (N∗)q+1. We look for the
term involving hi times Yji for i ∈ J1, qK and hq+1 times Yn, which is Fq+1,h(Yj1 , . . . , Yjq , Yn)
in (2.41). In (2.44), it is ∑

h′∈(N∗)q

∑
g∈(N∗)2

F2,g(Fq,h′(Yj1 , . . . , Yjq ), Yn), (2.45)

where the sum is restricted to g1h
′
i = hi and g2 = hq+1. Hence, both terms are equal thanks

to the de�nition (2.43).

This concludes the proof and gives a way to compute the elements Fq,h iteratively.

Remark 2.35. In particular, the component of CBHD∞(y1, . . . , yn) homogeneous with degree
h = (h1, . . . , hq) with respect to (yj1 , . . . , yjq ) is Fq,h(yj1 , . . . , yjq ). It depends neither on the total
number n of arguments in the initial product, nor on the selection of indexes (j1, . . . , jq). This is
the natural symmetry that we wish to highlight.

Algorithms to compute iteratively the terms in the CBHD formula are investigated for instance
in [85, Section 4.a] or in [18, 31] within Hall bases, or in [10] for an expansion on right-nested
brackets, which uses fewer terms.

2.3.8 Computation of some coordinates of the �rst kind

In this paragraph, we focus on the case X = {X0, X1}. Computing the coordinates of the �rst
kind is of paramount interest for applications (see e.g. [70] where the �rst 14 such coordinates
are computed, and [31, 86] for e�cient algorithms and explicit formulas obtained by an approach
relying on rooted binary labeled trees).

Here, we calculate as an illustration (and because they will be used later) all coordinates of the
�rst kind on a basis of

Ṡ1 := spanK {e(b); b ∈ Br(X), n1(b) = 1} ⊂ L(X), (2.46)

where this notation is chosen so that S1 = KX0 ⊕ Ṡ1 (see De�nition 2.10). We de�ne moreover

S+
2 := spanK {e(b); b ∈ Br(X), n1(b) ≥ 2} ⊂ L(X), (2.47)

thanks to which we can write the direct sum decomposition L(X) = KX0 ⊕ Ṡ1 ⊕ S+
2 .
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Lemma 2.36. The family (adkX0
(X1))k∈N is a (monomial) basis of Ṡ1.

Proof. From (2.46), Ṡ1 is spanned by the evaluations in L(X) of the iterated brackets b ∈ Br(X)
involving X1 exactly once. Let b ∈ Br(X) be such an iterated bracket. We assume e(b) 6= 0
in L(X) and b 6= X1. Then e(b) = [e(λ(b)),e(µ(b))] thus e(λ(b)) and e(µ(b)) are non null in
L(X). Moreover, either λ(b) or µ(b) does not involve X1 and is thus equal to X0. Therefore
e(b) = ±[X0,e(b̄)] where b̄ ∈ Br(X) involves X1 exactly once and e(b̄) 6= 0. Working by induction
on the number k of occurrences of X0 in b, we obtain e(b) = ± adkX0

(X1).

The previous argument proves that the given family spans Ṡ1. Moreover, this family is linearly
independent in L(X) because two di�erent elements have di�erent lengths.

We now compute the coordinates of the �rst kind associated with these elements. Up to our
knowledge, the following explicit expression is new.

Proposition 2.37. Let B a monomial basis of L(X) containing X0 and the family (adkX0
(X1))k∈N.

The associated coordinates of the �rst kind satisfy, for each t > 0, a0, a1 ∈ L1((0, t);K) and k ∈ N,

ζadkX0
(X1)(t, a0, a1) = (−1)k

k∑
`=0

A0(t)k−`
Bk−`

(k − `)!

∫
∆`+1(t)

a1(τ1)a0(τ2) · · · a0(τ`+1) dτ, (2.48)

where A0(t) :=
∫ t

0
a0 and the Bernoulli numbers (Bn)n∈N are de�ned in (B.1).

Proof. First, the considered coordinates are well-de�ned independently on the exact choice of B
(see Remark 2.31). Let x be the solution to (2.9) starting from x? = 1. To simplify the notations
in this proof, we write x(t), ζk(t) and Z(t) instead of x(t, a), ζadkX0

(X1)(t, a0, a1) and Log∞{a}(t).
From (2.36),

Z(t) =
∑
b∈B

ζb(t, a)b = ζX0(t, a)X0 + Z1(t) + Z2(t), (2.49)

where Z2(t) ∈ S+
2 and

Z1(t) :=

+∞∑
k=0

ζk(t) adkX0
(X1). (2.50)

First, a straightforward identi�cation in (2.30) yields ζX0 = A0 and ζX1(t) =
∫ t

0
a1. Let k ∈ N∗.

The proof consists in computing 〈x(t), X1X
k
0 〉 in two ways: �rst by the di�erential equation (2.9),

then by the formula x(t) = eZ(t). By de�nition of the solution to (2.9), we have, for every word
σ ∈ I∗ and t > 0

〈x(t), XσX0〉 =

∫ t

0

〈x(τ), Xσ〉a0(τ) dτ. (2.51)

Taking into account that 〈x(t), X1〉 =
∫ t

0
a1, we obtain

〈x(t), X1X
k
0 〉 =

∫
∆k+1(t)

a1(τ1)a0(τ2) · · · a0(τk+1) dτ. (2.52)

On the other hand, we deduce from the expansion of x(t) = eZ(t) that

〈
x(t), X1X

k
0

〉
=
〈
Z(t), X1X

k
0

〉
+

k+1∑
`=2

1

`!

〈
Z(t)`, X1X

k
0

〉
(2.53)

because, for ` ≥ (k + 2), Z(t)` is a sum of words with length at least (k + 2). For ` ∈ J2, k + 1K,

Z(t)` =

`−1∑
j=0

(A0(t)X0)jZ1(t)(A0(t)X0)`−1−j + Z2,`(t), where Z2,`(t) ∈ S+
2 . (2.54)
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Thus 〈
Z(t)`, X1X

k
0

〉
=
〈
Z1(t)(A0(t)X0)`−1, X1X

k
0

〉
= A0(t)`−1(−1)k−`+1ζk−`+1(t), (2.55)

because the word X1X
k−`+1
0 appears in the decomposition of adnX0

(X1) i� k− `+ 1 = n and then
it appears with coe�cient (−1)n. We deduce from (2.53) and (2.55) that

〈
x(t), X1X

k
0

〉
= (−1)kζk(t) +

k+1∑
`=2

(−1)k+1−`

`!
A0(t)`−1ζk+1−`(t). (2.56)

Using (2.52) and the index change j = k + 1− ` ∈ J0, k − 1K, we obtain∫
∆k+1(t)

a1(τ1)a0(τ2) · · · a0(τk+1) dτ = (−1)kζk(t) +

k−1∑
j=0

(−1)jA0(t)k−j

(k + 1− j)!
ζj(t), (2.57)

When A0(t) = 0, this formula yields (2.48) immediately. When A0(t) 6= 0, let, for j ∈ N,

αj :=
〈x(t), X1X

j
0〉

A0(t)j+1
and βj :=

(−1)jζj(t)

A0(t)j+1
(2.58)

we deduce from (2.57) that

αk =

k∑
j=0

βj
(k + 1− j)!

. (2.59)

We have

z

∑
k≥0

αkz
k

 =
∑
k≥0

k∑
j=0

βjz
j zk+1−j

(k + 1− j)!
=

∑
j≥0

βjz
j

 (ez − 1) (2.60)

or equivalently ∑
j≥0

βjz
j =

z

ez − 1

∑
k≥0

αkz
k

 =
∑
n≥0

∑
k≥0

Bn
zn

n!
αkz

k. (2.61)

Thus, for every j ∈ N∗

βj =

j∑
k=0

Bj−k
(j − k)!

αk. (2.62)

Finally (2.58) and (2.52) give (2.48).

Remark 2.38. Formula (2.48) bears a strong similarity with the di�erential equation (2.17) sat-
is�ed by z(t), which also involves the Bernoulli numbers. Unfortunately, we have not been able to
obtain a shorter proof using this equation.

In particular, using Proposition 2.37, we recover the following very classical formula for the
partial coe�cients of the CBHD formula (see e.g. [103, equation (2)] or [90, Corollary 3.24]).

Corollary 2.39. One has eX1eX0 = eZ where Z = X0 + Z1 + Z2, Z2 ∈ S+
2 (see (2.47)) and

Z1 :=

+∞∑
n=0

Bn
n!

adnX0
(X1) = X1 −

1

2
[X0, X1] +

+∞∑
n=1

B2n

(2n)!
ad2n
X0

(X1). (2.63)
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Proof. We apply the previous result to the controls a0(t) = 1(1,2)(t) and a1(t) = 1(0,1)(t), for which
the solution to (2.9) with x? = 1 satis�es x(2) = eX1eX0 . For ` ∈ N∗ and 0 < τ1 < · · · < τ`+1 < 2,
the real number a1(τ1)a0(τ1) · · · a0(τ`+1) does not vanish i� 0 < τ1 < 1 and 1 < τ2 < · · · < τ`+1 < 2
and then it equals 1. Thus, for every k ≥ 2, using (2.48) and (B.2),

(−1)kζk(2) =

k∑
`=0

Bk−`
(k − `)!

1

`!
=

k∑
j=0

Bj
j!(k − j)!

=
Bk
k!

(2.64)

We conclude by noticing, thanks to (2.48), that ζ0(2) = 1 = B0 and ζ1(2) = − 1
2 = B1.

Example 2.40. As an example and for later use in the sequel, we compute the coordinates of the
�rst kind for the particular choice a0(t) := 1 and a1(t) := t. Let k ∈ N. Using formula (2.48) of
Proposition 2.37 and the identity (B.4) we obtain

ζadkX0
(X1)(t, a) = (−1)k

k∑
`=0

tk−`
Bk−`

(k − `)!
t`+2

(`+ 2)!

= (−1)ktk+2
k∑
`=0

Bk−`
(k − `)!(`+ 2)!

= (−1)k+1tk+2 Bk+1

(k + 1)!
.

(2.65)

2.4 Interaction picture, coordinates of the pseudo-�rst kind

In quantum mechanics, the interaction picture is an intermediate representation between the
Schrödinger picture (in which the state vectors are time-dependent and the operators are time-
independent) and the Heisenberg picture (in which the state vectors are time-independent and the
operators are time-dependent). The interaction picture is particularly useful when the dynam-
ics can be written as the sum of a time-independent part, which can be solved exactly, and a
time-dependent perturbation. In this section, we introduce and study a formal counterpart of this
situation, that can be useful for applications.

2.4.1 A new formal expansion

In this paragraph, we therefore consider I = J0, qK to isolate the role of X0. For some given
ai ∈ L1(R+;K) for i ∈ J1, qK, we assume that a takes the form

a(t) = X0 +

q∑
i=1

ai(t)Xi. (2.66)

Theorem 2.41. For t ∈ R+, x? ∈ Â(X) and a of the form (2.66), the solution x to (2.9) satis�es

x(t) = x? exp(tX0) exp (Z∞(t,X, a)) , (2.67)

where Z∞(t,X, a) := Log∞{bt}(t) with the notation of De�nition 2.23 and

bt(s) := e−(t−s)X0

(
q∑
i=1

ai(s)Xi

)
e(t−s)X0 =

q∑
i=1

+∞∑
k=0

(−1)k

k!
(t− s)kai(s) adkX0

(Xi) (2.68)

i.e.

Z∞(t,X, a) =
∑ (−1)m−1

mr

∫
∆r(t)

(τ1 − t)k1
k1!

· · · (τr − t)
kr

kr!
ai1(τ1) · · · air (τr) dτ

[· · · [adk1X0
(Xi1), adk2X0

(Xi2)], . . . adkrX0
(Xir )],

(2.69)
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where the sum is taken over r ∈ J1,∞K, m ∈ J1, rK, r ∈ Nmr , k1, . . . , kr ∈ N and i1, . . . , ir ∈ J1, qK.

Proof. First, note that the second equality in (2.68) stems from the fact that both functions g1(τ) :=

e−τX0Xie
τX0 and g2(τ) :=

∑+∞
k=0

(−τ)k

k! adkX0
(Xi) solve the Cauchy problem ġ(τ) = [g(τ), X0] and

g(0) = Xi, so they are equal.
Let t > 0. A key point is to remark that all the de�nitions and results from the previous

paragraphs which are stated for a �nite set I of indeterminates are still valid if I is an in�nite
set. For mathematicians with a background in analysis, all equalities can be understood �in the
weak sense� as equalities holding along each monomial. Therefore, for a set of indeterminates
{Yk,i}k∈N,i∈J1,qK, the solution to

ż(s) = z(s)γt(s) where γt(s) :=
∑
k,i

(−1)k

k!
(t− s)kai(s)Yk,i, (2.70)

with initial data z(0) = 1 satis�es, thanks to Theorem 2.27,

z(t) = exp (Log∞{γt}(t)) . (2.71)

Let Θ be the unique homomorphism of algebras from Â({Yk,i}k∈N,i∈J1,qK) to Â(X) de�ned by

Θ(Yk,i) := adkX0
(Xi). (2.72)

Then zΘ(s) = Θ(z(s)) satis�es on the one hand zΘ(0) = 1 and żΘ(s) = zΘ(s)bt(s), and on the
other hand zΘ(t) = exp (Log∞{bt}(t)).

We introduce the change of variables y(s) := x(s)e(t−s)X0 . Then,

ẏ(s) = ẋ(s)e(t−s)X0 − x(s)X0e
(t−s)X0 = x(s)

(
q∑
i=1

ai(s)Xi

)
e(t−s)X0 = y(s)bt(s). (2.73)

Hence
x(t) = y(t) = y(0)zΘ(t) = x?etX0 exp (Log∞{bt}(t)) , (2.74)

which concludes the proof of (2.67).

Remark 2.42. In the above proof, Z∞(t,X, a) is de�ned by the logarithm of the product of two
�ows: the one associated with −X0 and the one associated with a(t). It is a particular case of
the construction of the chronological logarithm of the product of two �ows associated with two
non-autonomous vector �elds, see [4, Section 2.2] or [72, p. 92].

Remark 2.43. In expansion (2.67), the choice to write exp(tX0) to the left of the formal logarithm
is arbitrary. One could obtain a similar formula with exp(tX0) to the right. Depending on the
application one has in mind, both choices can be helpful.

2.4.2 Coordinates of the pseudo-�rst kind

Proposition 2.44. Let q ∈ N∗, X = {X0, X1, . . . , Xq} and B be a monomial basis of L(X). There
exists a unique set of functionals (ηb)b∈B, with ηb ∈ C0

(
R+ × L1(R+;K)q;K

)
, such that, for every

ai ∈ L1(R+;K) and t ≥ 0

Z∞(t,X, a) =
∑
b∈B

ηb(t, a)b in L̂(X). (2.75)

Moreover, ηX0 = 0 and the functionals ηb are �causal� in the sense that, for every t ≥ 0, ηb(t, a)
only depends on the restrictions of the functions ai to [0, t].
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Proof. For every r ∈ N∗ and ν ∈ N we introduce the �nite sum of brackets

Zr,ν∞ (t,X, a) =
∑ (−1)m−1

mr

∫
∆r(t)

(τ1 − t)k1
k1!

· · · (τr − t)
kr

kr!
ai1(τ1) · · · air (τr) dτ

[· · · [adk1X0
(Xi1), adk2X0

(Xi2)], . . . adkrX0
(Xir )],

(2.76)

where the sum is taken over m ∈ J1, rK, r ∈ Nmr , k1, . . . , kr ∈ N such that k1 + · · · + kr = ν and
i1, . . . , ir ∈ J1, qK. For each term in this sum, the bracket

[· · · [adk1X0
(Xi1), adk2X0

(Xi2)], . . . adkrX0
(Xir )] (2.77)

has a unique expansion on the basis Br,ν = {b ∈ B; n(b) = r and n0(b) = ν}. By summing
these expansions we obtain causal functions (ηb)b∈Br,ν in C0

(
R+ × L1(R+;K)q;K

)
such that the

following equality holds in L(X)

Zr,ν∞ (t,X, a) =
∑
b∈Br,ν

ηb(t, a)b. (2.78)

By summing these relations, we get (2.75).

De�nition 2.45 (Coordinates of the pseudo-�rst kind). We call the functionals ηb coordinates of
the pseudo-�rst kind associated to the (monomial) basis B of L(X), by analogy with coordinates of
the �rst kind.

2.4.3 Structure constants and estimates for the coordinates

At the formal level, series such as (2.75) make sense. However, in the sequel, we will need to
give a meaning to such series where the indeterminates are replaced by true objects. To make
sure that the resulting series converge, it will be necessary to have estimates on the coordinates of
the pseudo-�rst kind. In this paragraph, we suggest a criterion based on the structure constants
of L(X) relative to the underlying monomial basis to obtain such estimates.

De�nition 2.46 (Structure constants). Let B be a basis of L(X). For every a, b ∈ B, since
[a, b] ∈ L(X), it can be written as a �nite linear combination of basis elements, say

[a, b] =
∑
c∈B

γca,bc, (2.79)

where the coe�cients γca,b ∈ K and only a �nite number of them are non-zero. The set of these
coe�cients are called the structure constants of L(X) relative to the basis B.

De�nition 2.47 (Geometric growth). Let X be a �nite set and B be a monomial basis of L(X).
We say that B has geometric growth when there exists Γ ≥ 1 such that, for every b1, b2 ∈ B,∑

c∈B
|γcb1,b2 | ≤ Γ|b1|+|b2|. (2.80)

De�nition 2.48 (Asymmetric geometric growth). Let q ∈ N∗, X = {X0, X1, . . . , Xq} and B be a
monomial basis of L(X). We say that B has geometric growth with respect to X0 when, for every
k ∈ N, there exists Γ(k) ≥ 1 such that, for every b1, b2 ∈ B with n(b1) + n(b2) ≤ k,∑

c∈B
|γcb1,b2 | ≤ Γ(k)|b1|+|b2|. (2.81)

Asymmetric geometric growth is a weaker notion than geometric growth (which can be seen
as asymmetric geometric growth with a constant Γ independent of k). These de�nitions therefore
lead to the following algebraic open problem:.
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Open problem 2.49. Which monomial bases B of L(X) have (asymmetric) geometric growth?

Remark 2.50. A family of examples of monomial bases of L(X) is given by Hall bases (see
Section 2.5.1, and in particular De�nition 2.56). In the paper [13] dedicated to studying the growth
of structure constants for Hall bases of L(X), we provide examples of Hall bases of L(X) that
have geometric growth (in particular, the classical examples of length-compatible Hall bases and the
Lyndon basis have geometric growth, see Theorem 1.5 and Theorem 1.6 in the cited work). More
importantly, we show that every Hall basis has asymmetric geometric growth (see Theorem 1.9 in
the cited work).

For such bases, we can prove nice estimates for the coordinates of the pseudo-�rst kind. We
start with an estimate concerning the decomposition of the Lie brackets involved in (2.76).

Lemma 2.51. Let q ∈ N∗, X = {X0, X1, . . . , Xq}, B be a monomial basis of L(X) with geometric
growth with respect to X0. For every r ≥ 1, there exists C(r) ≥ 1 such that, for every ` ≥ 2,
b1, . . . , b` ∈ B \ {X0} with n(b1) + · · ·+ n(b`) ≤ r and b ∈ B,

|〈[· · · [b1, b2], . . . b`], b〉B| ≤ C(r)|b|, (2.82)

where the bra-ket denotes the component of the Lie bracket along b in its decomposition on B.

Proof. Any a ∈ L(X) can be written as a linear combination of basis elements, say a =
∑
c∈B α

a
c c,

where the coe�cients αac ∈ K and only a �nite number of them are non-zero. We endow L(X)
with the norm ‖a‖B :=

∑
c∈B |αac |. Then, De�nition 2.48 gives, for every b1, b2 ∈ B, ‖[b1, b2]‖B ≤

Γ(n(b1) + n(b2))|b1|+|b2|. We prove by induction on ` ≥ 2 that, for every b1, . . . , b` ∈ B \ {X0},

‖[· · · [b1, b2], . . . b`]‖B ≤ Γ (n(b1) + · · ·+ n(b`))
(`−1)(|b1|+···+|b`|) (2.83)

which implies Lemma 2.51 with C(r) = Γ(r)r−1. The result for ` = 2 is already known. Let
` ≥ 2 and b1, . . . , b`+1 ∈ B \{X0}. Then [· · · [b1, b2], . . . b`] =

∑
d∈B αdd where the sum is �nite and∑

d∈B |αd| ≤ Γ(n(b1) + · · ·+ n(b`))
(`−1)(|b1|+···+|b`|). Then

[[· · · [b1, b2], . . . b`], b`+1] =
∑
d∈B

αd[d, b`+1] =
∑
d∈B

αd
∑
c∈B

γcd,b`+1
c =

∑
c∈B

(∑
d∈B

αdγ
c
d,b`+1

)
c, (2.84)

where the sums are �nite and indexed by d ∈ B such that n(d) + n(b`+1) = n(b1) + · · · + n(b`+1)
and |d|+ |b`+1| = |b1|+ · · ·+ |b`+1| thus

‖[[· · ·[b1, b2], . . . b`], b`+1]‖B =
∑
c∈B

∣∣∣∣∣∑
d∈B

αdγ
c
d,b`+1

∣∣∣∣∣ ≤∑
d∈B

|αd|
∑
c∈B
|γcd,b`+1

|

≤ Γ(n(b1) + · · ·+ n(b`))
(`−1)(|b1|+···+|b`|)Γ(n(b1) + · · ·+ n(b`+1))|b1|+···+|b`+1|

(2.85)

which gives the conclusion.

Proposition 2.52. Let q ∈ N∗, X = {X0, X1, . . . , Xq}, B be a monomial basis of L(X) with
geometric growth with respect to X0. Then, for every M ∈ N∗, there exists CM > 0 such that, for
every T ≥ 0, u ∈ L1((0, T );Kq), b ∈ B with n(b) ≤M and t ∈ [0, T ],

|ηb(t, u)| ≤
C
|b|
M

|b|!
tn0(b)‖u‖n(b)

L1(0,t). (2.86)

Proof. We may assume that (C(r))r∈N∗ given by Lemma 2.51 is non-decreasing. Then, for every
i1, . . . , ir ∈ J1, qK and k1, . . . , kr ∈ N, for every b ∈ B,∣∣∣〈[· · · [adk1X0

(Xi1), adk2X0
(Xi2)], . . . adkrX0

(Xir )], b
〉
B

∣∣∣ ≤ C(r)|b|. (2.87)
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Indeed, for each j ∈ J1, rK, there exists bj ∈ B with n(bj) = 1 and |bj | = kj + 1 such that

ad
kj
X0

(Xij ) = ±bj in L(X). Indeed, the homogeneous part of L(X) containing kj times X0 and
Xij once is of dimension one.

Let M ∈ N∗ and b ∈ B be such that n(b) ≤M . We deduce from (2.69) that

ηb(t, u) =
∑ (−1)m−1

mr

∫
∆r(t)

(τ1 − t)k1
k1!

· · · (τr − t)
kr

kr!
ui1(τ1) · · ·uir (τr) dτ〈

[· · · [adk1X0
(Xi1), adk2X0

(Xi2)], . . . adkrX0
(Xir )], b

〉 (2.88)

where the sum is taken over r ∈ J1,∞K, m ∈ J1, rK, r ∈ Nmr , k1, . . . , kr ∈ N and i1, . . . , ir ∈ J1, qK.
If the summand bra-ket in (2.88) does not vanish, then r = n(b) and k1 + · · ·+ kr = n0(b). Thus
the sum in (2.88) is taken over the �nite set r = n(b), m ∈ J1, n(b)K, k1, . . . , kr ∈ N such that
k1 + · · · + kr = n0(b) and i1, . . . , ir ∈ J1, qK, whose cardinal is bounded by M2|b|qM . Moreover,
for every r,m, k1, . . . , kr, i1, . . . , ir in this set, the associated term in (2.88) is bounded, thanks to
(2.87), by

tk1

k1!
· · · t

kr

kr!
‖u‖rL1(0,t)C(r)|b| ≤ tn0(b)‖u‖rL1 (2rC(r))

|b| n(b)!

|b|!
(2.89)

thanks to (3.2). Thus

|ηb(t, u)| ≤ 1

|b|!
M !MqM

(
2M+1C(M)

)|b|
tn0(b)‖u‖n(b)

L1 (2.90)

which gives the conclusion with, for instance, CM := M !MqM2M+1C(M).

2.5 In�nite product, coordinates of the second kind

In this section, we present an expansion for the formal power series x(t) solution to (2.9) as a
product of exponentials of the members of a Hall basis of L(X), multiplied by coe�cients that
have simple expressions as iterated integrals, called coordinates of the second kind. This in�nite
product is an extension, suggested in [69], of Sussmann's in�nite product on length-compatible Hall
bases [100] to all Hall bases (understood in the generalized sense of Viennot [102, Theorem 1.2] or
Shirshov [94, De�nition 1]).

2.5.1 Lazard sets, Hall sets and Hall bases

We start by de�ning Lazard sets and Hall sets, which are two equivalent notions, as proved by
Viennot in [102, Corollary 1.1]. They lead to the essential notion of Hall bases (see De�nition 2.56).

De�nition 2.53 (Lazard set). A Lazard set is a subset B of Br(X), totally ordered by a relation
< and such that, for every M ∈ N∗, the set BJ1,MK of elements of B with length at most M , labeled
as BJ1,MK = {b1, . . . , bk+1} with k ∈ N and b1 < · · · < bk+1 satis�es

b1 ∈ Y0 := X,

b2 ∈ Y1 := {adjb1(v); j ∈ N, v ∈ Y0 \ {b1}},
. . .

bk+1 ∈ Yk := {adjbk(v); j ∈ N, v ∈ Yk−1 \ {bk}}

(2.91)

and
BJ1,MK ∩ Yk = {bk+1}, (2.92)

where condition (2.92) can equivalently be written

BJ1,MK ∩ Yk+1 = ∅, (2.93)

where Yk+1 := {adjbk+1
(v); j ∈ N, v ∈ Yk \ {bk+1}}.
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The elements adjb`(v) for ` ∈ {0, . . . , k+ 1}, j ∈ N and v ∈ Y`−1 \ {b`} are all di�erent in Br(X)
(identify their left and right factors iteratively) and all belong to B.

De�nition 2.54 (Hall set). A Hall set is a subset B of Br(X), totally ordered by a relation < and
such that

� X ⊂ B,

� for b = (b1, b2) ∈ Br(X), b ∈ B i� b1, b2 ∈ B, b1 < b2 and either b2 ∈ X or λ(b2) ≤ b1,

� for every b1, b2 ∈ B such that (b1, b2) ∈ B then b1 < (b1, b2).

When b = (b1, (b3, b4)) ∈ B then b1 is �sandwiched� in between b3 and b, since b3 ≤ b1 < b.

Remark 2.55. A Hall set can be built by induction on the length. One starts with the set X as
well as an order on it. To �nd all Hall monomials with length n given those of smaller length,
one adds �rst all (b1, b2) with b1 ∈ B, |b1| = n − 1, b2 ∈ X and b1 < b2. Then for each bracket
b2 = (b′2, b

′′
2) ∈ B with length |b2| < n one adds all the (b1, b2) with b1 ∈ B with |b1| = n− |b2| and

b′2 ≤ b1 < b2. Finally, one inserts the newly generated monomials of degree n into an ordering,
maintaining the condition that b1 < (b1, b2).

Viennot proves in [102, Corollary 1.1] that a subset B of Br(X) is a Lazard set i� it is a Hall set.
He also proves in [102, Proposition 1.1 and Theorem 1.1] that properties (2.91) and (2.92) ensure
that e(B) is a linearly independent and generating family of L(X). This leads to the following
de�nition.

De�nition 2.56 (Hall basis). Given B a Hall set (or equivalently a Lazard set), B := e(B) is a
basis of L(X). Such bases are call Hall bases.

Remark 2.57. Historically, such bases where introduced by Marshall Hall in [59], based on ideas of
Philip Hall in [60]. In his historical narrower de�nition, the third condition in De�nition 2.54 was
replaced by the stronger condition: for every b1, b2 ∈ B, b1 < b2 ⇒ |b1| ≤ |b2|. To avoid confusion
with the generalized de�nition, we name them length-compatible Hall bases in the sequel.

Given a Hall set B, the evaluation mapping e is one to one from B to the associated Hall
basis B, so that the elements of the basis (belonging to L(X)) can be identi�ed with the bracket
of b ∈ B ⊂ Br(X) of which they are the evaluation. We will use this identi�cation in the sequel
when no confusion is possible.

Two famous families of Hall bases of L(X) are the Chen-Fox-Lyndon basis (see [102, Chapter 1])
and the historical length-compatible Hall bases, for which b1 < b2 ⇒ |b1| ≤ |b2|.

Example 2.58. For instance, with X = {X1, X2}, the elements with length at most 4 of each
Hall set B of L(X) with a length-compatible order < such that X1 < X2 are: X1, X2, (X1, X2),
ad2
X1

(X2), (X2, (X1, X2)), ad3
X1

(X2) and (X2, ad2
X1

(X2)), ad2
X2

((X1, X2)). Note that, however,
(X1, (X2, (X1, X2))) does not belong to B because λ((X2, (X1, X2))) = X2 is not smaller than X1,
and the following equality holds in L(X)

[X1, [X2, [X1, X2]]] = [[X1, X2], [X1, X2]] + [X2, [X1, [X1, X2]]] = [X2, ad2
X1

(X2)] (2.94)

This illustrates how De�nition 2.54 prevents elements from Br(X), whose evaluations in L(X) are
linked by Jacobi relations, to appear simultaneously in B.

Remark 2.59. Let X := {X0, X1} and B ⊂ Br(X) be a Hall set with an order such that X0 < X1.
The de�nition of a Hall set implies that, for every k ∈ N, adkX0

(X1) ∈ B. Moreover, these are all
the elements of B containing X1 exactly once. Since e(B) is a basis of L(X), e(B)∩ Ṡ1 is a basis
of Ṡ1 and this provides an alternative proof of Lemma 2.36.
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2.5.2 In�nite product on a Hall basis

De�nition 2.60 (In�nite product). Let J be a totally ordered set and (Sj)j∈J be a family of Â(X)
such that

� for every j ∈ J , 〈Sj , 1〉 = 1

� for every σ ∈ I∗ with σ 6= ∅, the set {j ∈ J ; 〈Sj , Xσ〉 6= 0} is �nite.

The in�nite product
←
Π
j∈J

Sj is the element of Â(X) de�ned by

←
Π
j∈J

Sj =
∑
σ∈I∗

PσXσ, (2.95)

where P∅ = 1 and Pσ is the �nite sum

Pσ :=

|σ|∑
n=0

∑
σ1,...,σn∈I∗,
Xσ1 ···Xσn=Xσ

∑
j1,...,jn∈J,
j1>···>jn

〈Sj1 , Xσ1〉 · · · 〈Sjn , Xσn〉. (2.96)

The following lemma is the key point to generalize rigorously Sussmann's in�nite product on
length-compatible Hall bases, to all Hall bases.

Lemma 2.61. Let B be a Hall basis and (αb)b∈B be a family of K. The in�nite product
←
Π
b∈B

eαbb is

well de�ned in Â(X). Moreover, for every σ ∈ I∗,〈
←
Π
b∈B

eαbb, Xσ

〉
=

〈
←
Π

b∈BJ1,|σ|K
eαbb, Xσ

〉
(2.97)

where BJ1,|σ|K is ordered by the induced order of B.

Proof. B is a totally ordered set and, for every b ∈ B, 〈eαbb, 1〉 = 1. Let σ ∈ I∗ with |σ| ≥ 1. For
α ∈ K and b ∈ B, the property 〈eαb, Xσ〉 6= 0 requires |b| ≤ |σ|. Indeed

eαb − 1 =

+∞∑
k=1

αk

k!
bk (2.98)

has non vanishing coe�cients only on monomials Xσ′ with length |σ′| ≥ |b|. Thus the set {b ∈
B, 〈eαbb, Xσ〉 6= 0} is �nite. This proves that the in�nite product is well de�ned in Â(X) and, by
(2.96), the formula (2.97) holds.

2.5.3 Coordinates of the second kind

De�nition 2.62. Let B be a Hall basis of L(X). The coordinates of the second kind associated to
B is the unique family (ξb)b∈B of functionals R+ × L1

loc(R+;KI) → K de�ned by induction in the
following way: for every t > 0 and a ∈ L1

loc(R+;KI)

� ξXi(t, a) :=
∫ t

0
ai, for i ∈ I,

� for b ∈ B \ X, there exists a unique pair (b1, b2) of elements of B such that b1 < b2 and a
unique maximal integer m ∈ N∗ such that b = admb1(b2) and then

ξb(t, a) :=
1

m!

∫ t

0

ξmb1(τ, a)ξ̇b2(τ, a) dτ. (2.99)
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Formula (2.99) indeed de�nes continuous functionals on L1 and the following estimates hold.

Lemma 2.63. Let ai ∈ L1
loc(R+;K) for i ∈ I. For every b ∈ B and t ≥ 0,

|ξ̇b(t, a)| ≤ |b||a(t)|‖a‖|b|−1
L1(0,t), (2.100)

|ξb(t, a)| ≤ ‖a‖|b|L1(0,t). (2.101)

Proof. Estimate (2.100) is valid for b ∈ X because ξ̇Xi(t) = ai(t) for i ∈ I and propagated
by induction on b using the recursive de�nition (2.99). Estimate (2.101) is obtained by time-
integration of (2.100) for each b.

2.5.4 In�nite product expansion of the solution to the formal di�erential equation

The following result is due to Sussmann in [100]. The proof below follows Sussmann's argument.
It is recalled for sake of giving a self consistent presentation and also to treat the extension from
length-compatible Hall bases to all Hall bases (which were not included in Sussmann's original
statement).

Theorem 2.64. Let B be a Hall basis of L(X). Let T > 0 and ai ∈ L1((0, T );K) for i ∈ I. For
every x? ∈ Â(X), the solution to the formal di� (2.9) satis�es, for every t ∈ [0, T ],

x(t) = x?
←∏
b∈B

eξb(t,a)b. (2.102)

Proof. It is su�cient to prove the formula with x? = 1. To simplify the notations in this proof, we
write ξb(t) instead of ξb(t, a). By Lemma 2.61 it is su�cient to prove that, for every t ∈ [0, T ] and
σ ∈ I∗

〈x(t), Xσ〉 =

〈
←
Π

b∈BJ1,|σ|K
eξb(t)b, Xσ

〉
. (2.103)

Let σ ∈ I∗,M := |σ|, k ∈ N and b1, . . . , bk+1 and Y0, . . . , Yk+1 be as in (2.91). The equality (2.103)
can equivalently we written

〈x(t), Xσ〉 =
〈
eξbk+1

(t)bk+1 · · · eξb1 (t)b1 , Xσ

〉
. (2.104)

We de�ne x0(t) := x(t) and, for j ∈ J1, k + 1K,

xj(t) := x(t)e−ξb1 (t)b1 · · · e−ξbj (t)bj . (2.105)

We prove by induction on j ∈ J0, k + 1K that

ẋj(t) = xj(t)

∑
b∈Yj

ξ̇b(t)b

 and xj(0) = 1. (2.106)

It is clear for j = 0 because x0(t) = x(t), Y0 = X and ξ̇Xi(t) = ai(t) for i ∈ I. Let j ∈ J1, k + 1K.
We assume (2.106) holds at step j − 1. We deduce from the de�nition of xj(t) that

xj(t) = xj−1(t)e−ξbj (t)bj . (2.107)
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Since ξbj (0) = 0, xj(0) = 1. Moreover,

ẋj(t) = xj−1(t)

 ∑
b∈Yj−1

ξ̇b(t)b

 e−ξbj (t)bj − xj−1(t)ξ̇bj (t)bje
−ξbj (t)bj

= xj(t)e
ξbj (t)bj

 ∑
b∈Yj−1\{bj}

ξ̇b(t)b

 e−ξbj (t)bj

= xj(t)
∑
m∈N

∑
b∈Yj−1\{bj}

ξmbj (t)

m!
ξ̇b(t) admbj (b)

(2.108)

which ends the proof by induction.
We deduce from (2.93) and (2.106) for j = (k+1) that xk+1(t)−1 has non vanishing coe�cients

only on monomials Xσ′ with |σ′| > |σ|. Therefore, by (2.96),

〈x(t), Xσ〉 =
〈
xk+1(t)eξbk+1

(t)bk+1 · · · eξb1 (t)b1 , Xσ

〉
=
〈
eξbk+1

(t)bk+1 · · · eξb1 (t)b1 , Xσ

〉
, (2.109)

which concludes the proof.

3 Technical tools about functions and vector �elds

In this section, we state classical de�nitions and technical results about functions and vector �elds.
For the sake of completeness, the proofs, although classical, are provided.

Throughout the whole article, d ∈ N∗ denotes the dimension of the state space for the considered
ordinary di�erential equations. We work locally, in neighborhoods of the origin 0 ∈ Kd. For δ > 0,
Bδ denotes the closed ball of center 0 and radius δ in the state space Kd.

3.1 Functional spaces for �nite or analytic regularity

3.1.1 Conventions for multi-indexes

For a ∈ N∗ and a multi-index α = (α1, . . . , αa) ∈ Na, we use the notations |α| := α1 + · · · + αa,

∂α := ∂α
1

1 · · · ∂α
a

a and α! := α1! · · ·αa!.

Lemma 3.1. The following estimates hold:

∀n ∈ N, nne−ne ≤ n! ≤ (n+ 1)n+1e−(n+1)e, (3.1)

∀a ∈ N∗,∀α = (α1, . . . , αa) ∈ Na, 2−(a−1)|α||α|! ≤ α! ≤ |α|! (3.2)

Proof. The �rst inequality can be proved using classical series-integral comparison and the second
by iterating p!q! ≥ 2−(p+q)(p+ q)! for every p, q ∈ N.

3.1.2 Finite-regularity norms

De�nition 3.2 (Regular functions). Let a, b ∈ N∗ and K a compact subset of Ka. Let k ∈ N. We
endow Ck(K;Kb), the space of functions whose real-derivatives are well-de�ned and continuous up
to order k on an open neighborhood of K to Kb with the norm

‖f‖Ck :=

b∑
j=1

∑
|α|≤k

1

α!
‖∂αfj‖L∞(K), (3.3)

where the sum ranges over multi-indexes α ∈ Na whose sum is at most k and f1, . . . , fb are the
components of the vector-valued function f . We denote by C∞(K;Kb) the intersection of these
spaces over k ∈ N.
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Lemma 3.3 (Submultiplicativity). Let a ∈ N∗, K a compact subset of Ka and k ∈ N. For every
f, g ∈ Ck(K;K), one has

‖fg‖Ck ≤ ‖f‖Ck ‖g‖Ck . (3.4)

Proof. Using the multivariate Leibniz formula, one has

‖fg‖Ck =
∑
|α|≤k

1

α!
‖∂α(fg)‖L∞(K)

≤
∑
|α|≤k

1

α!

∑
β≤α

(
α

β

)
‖∂βf‖L∞(K)‖∂α−βg‖L∞(K) ≤ ‖f‖Ck ‖g‖Ck ,

(3.5)

where the sum ranges over all multi-indexes β ∈ Na such that βi ≤ αi for each i ∈ J1, aK.

Lemma 3.4 (Control of gradients). Let a ∈ N∗, K a compact subset of Ka and k ∈ N. For every
f ∈ Ck+1(K;K) and j ∈ J1, aK,

‖∂jf‖Ck ≤ (k + 1)‖f‖Ck+1 . (3.6)

Proof. By (3.3),

‖∂jf‖Ck =
∑
|α|≤k

1

α!
‖∂α+ejf‖L∞(K) =

∑
|α|≤k

αj + 1

(α+ ej)!
‖∂α+ejf‖L∞(K) ≤ (k + 1)‖f‖Ck+1 (3.7)

since αj ≤ |α| ≤ k.

3.1.3 Analytic norms

De�nition 3.5 (Analytic norms). Let a, b ∈ N∗ and K a compact subset of Ka. We de�ne
Cω(K;Kb) the space of real-analytic functions de�ned on an open neighborhood of K to Kb, as
the union for r > 0 of the spaces Cω,r(K;Kb), which are the subsets of C∞(K;Kb) for which the
following norm is �nite

|||f |||r :=

b∑
i=1

∑
α∈Nd

r|α|

α!
‖∂αfi‖L∞(K). (3.8)

Lemma 3.6 (Submultiplicativity). Let a ∈ N∗, K a compact subset of Ka, r > 0. Then, for every
f, g ∈ Cω,r(K;K), one has

|||fg|||r ≤ |||f |||r |||g|||r . (3.9)

Proof. Using the multivariate Leibniz formula, one has

|||fg|||r =
∑
α∈Na

r|α|

α!
‖∂α(fg)‖L∞(K)

≤
∑
α∈Na

r|α|

α!

∑
β≤α

(
α

β

)
‖∂βf‖L∞(K)‖∂α−βg‖L∞(K) = |||f |||r |||g|||r ,

(3.10)

where the sum ranges over all multi-indexes β ∈ Na such that βi ≤ αi for each i ∈ J1, aK.

Lemma 3.7 (Control of gradients). Let a ∈ N∗, K a compact subset of Ka. For every r2 > r1 > 0,
f ∈ Cω,r2(K;K) and j ∈ J1, aK,

|||∂jf |||r1 ≤
1

r1

(
e ln

r2

r1

)−1

|||f |||r2 . (3.11)

In particular, if r2 ≤ er1,

|||∂jf |||r1 ≤
1

r2 − r1
|||f |||r2 . (3.12)
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Proof. We start with the �rst estimate (3.11). One has

|||∂jf |||r1 =
∑
α∈Na

r
|α|
1

α!
‖∂α+ejf‖L∞(K) =

1

r1

∑
α∈Na

r
|α+ej |
1

(α+ ej)!

(α+ ej)!

α!
‖∂α+ejf‖L∞(K)

≤ 1

r1
|||f |||r2 sup

α∈Na

(
r1

r2

)|α+ej | (α+ ej)!

α!

≤ 1

r1
|||f |||r2 sup

n≥1
n

(
r1

r2

)n
.

(3.13)

For x ∈ (0, 1), let C(x) := supn≥1 nx
n = supn≥1 exp(lnn + n lnx). Considering that x is a �xed

parameter and di�erentiating the argument with respect to n ∈ [1,+∞) yields

d

dn
(lnn+ n lnx) =

1

n
+ lnx. (3.14)

Since x < 1, this derivative is negative for n large enough. For x ≥ 1/e, the global maximum is for
n = −1/ lnx. So its value yields the bound

C(x) ≤ (−e lnx)
−1
. (3.15)

For x ≤ 1/e, the supremum over n is achieved for n = 1 and its value is x. Since x ≤ (−e lnx)
−1

for x ∈ (0, 1), the bound (3.15) is looser and valid for every x ∈ (0, 1).

The second inequality is a consequence of the estimate ln(1 + σ) ≥ σ/(e− 1) for σ ≤ e− 1.

Remark 3.8. The �rst estimate (3.11) is classical (see e.g. [84]). The second estimate (3.11) is a
simpli�ed version, restricted to the case when the relative radius loss is small enough. This is the
form under which we will use Lemma 3.7 in the sequel since we consider small radius losses.

3.2 Estimates for di�erential operators and Lie brackets

3.2.1 Vector-valued functions, vector �elds and di�erential operators

As is usual, we will identify each smooth vector-valued function with the associated �rst-order
linear di�erential operator, and we will refer to both objects as a vector �eld. Let K be a compact
subset of Kd.

De�nition 3.9 (Vector �eld). Given coordinates a1, . . . , ad ∈ C∞(K;K), we de�ne the associated
vector �eld f indi�erently as the vector-valued function f = (a1, . . . , ad) of C∞(K;Kd) (mapping
each point of the state space to a vector of Kd), or as the �rst-order linear di�erential operator
f = a1∂1 + · · ·+ ad∂d (acting on smooth functions φ ∈ C∞(K;K)).

Remark 3.10 (Composition of vector �elds). Seen as linear operators, vector �elds can be com-
posed, yielding higher-order di�erential operators. Let f, g ∈ C∞(K;Kd) (denoting their coordinates
by a1, . . . , ad and b1, . . . bd) and φ ∈ C∞(K;K). We will hence write

fφ =

d∑
i=1

ai∂iφ (3.16)

and

fgφ =

d∑
i=1

d∑
j=1

ai (bj∂i∂jφ+ (∂ibj)(∂jφ)) . (3.17)

Similarly, for k ∈ N, fkφ will denote the composition of the linear di�erential operator f with itself
k times, applied to φ. Such formulas still make sense in a �nite regularity setting, as long as all
derivatives are well-de�ned.
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3.2.2 Estimates for products

Lemma 3.11. Let k ∈ N, n, b ∈ N∗, δ > 0, f1, . . . fn ∈ Ck+n−1(Bδ;Kd) and φ ∈ Ck+n(Bδ;Kb).
With the notations of Remark 3.10,

‖fn · · · f1φ‖Ck ≤
(k + n)!

k!
‖f1‖Ck+n−1 · · · ‖fn‖Ck+n−1‖φ‖Ck+n . (3.18)

Proof. For n = 1, it is a consequence of (3.3), Lemma 3.3 and Lemma 3.4. For n > 1, the estimate
follows by induction.

Lemma 3.12. Let r2 > 0, r1 ∈ [r2/e, r2), n, b ∈ N∗ and δ > 0. Let f1, . . . , fn ∈ Cω,r2(Bδ;Kd) and
φ ∈ Cω,r2(Bδ;Kb). With the notations of Remark 3.10,

|||fn · · · f1φ|||r1 ≤
n!

e

(
e

r2 − r1

)n
|||fn|||r2 · · · |||f1|||r2 |||φ|||r2 . (3.19)

In particular, under the same assumptions,

‖fn · · · f1φ‖C0 ≤ n!

(
5

r2

)n
|||fn|||r2 · · · |||f1|||r2 |||φ|||r2 . (3.20)

Proof. For n = 1, estimate (3.19) is a consequence of (3.8), (3.9) and (3.12). For n > 1, one applies
the n = 1 estimate n times with a radius increment (r2 − r1)/n at each step. This yields more
precisely

|||fn · · · f1φ|||r1 ≤
(

n

r2 − r1

)
|||fn|||r1 |||fn−1 · · · f1φ|||r1+

r2−r1
n

≤
(

n

r2 − r1

)n
|||φ|||r2

n∏
j=1

|||fj |||r1+(n−j) r2−r1n
,

(3.21)

which concludes the proof because the norm (3.8) is non-decreasing with respect to r, and we can
bound nn using (3.1). Estimate (3.20) is a direct consequence for the particular choice r1 = r2/e,
because e2/(e− 1) ≤ 5.

3.2.3 Lie brackets

De�nition 3.13 (Lie bracket of vector �elds). We de�ne the Lie bracket of smooth vector �elds
f and g as the usual commutator of the associated linear di�erential operators: [f, g] := fg − gf
(with the notations of Remark 3.10). By (3.17) and Schwarz's theorem, one checks that [f, g]
is also a �rst-order di�erential operator, which, as a vector-valued function, can be computed as
[f, g] = (Dg)f − (Df)g.

De�nition 3.14 (Evaluated Lie bracket). Let I be a �nite set of indices, X = {Xi; i ∈ I} be
indeterminates and {fi; i ∈ I} be C∞ vector �elds on a subset Ω of Kd. For an iterated bracket
b ∈ Br(X), we de�ne fb := Λ(e(b)), where Λ : L(X) → C∞(Ω;Kd) is the unique homomorphism
of Lie algebras such that Λ(Xi) = fi for every i ∈ I (see Remark 2.9 and Lemma 2.7).

The vector �eld fb is obtained by replacing the indeterminates Xi with the corresponding vector
�elds fi in the iterated bracket b, for instance f(X1,(X2,X3)) = [f1, [f2, f3]].

The notation fb will sometimes denote the same vector �eld, seen as a vector-valued function,
under weaker regularity assumptions, for instance fi ∈ C|b|−1 and then fb ∈ C0.

Lemma 3.15 (Finite regularity estimate). Let k ∈ N and δ > 0. Let b ∈ Br(X). For i ∈ I, let
fi ∈ Ck+|b|−1(Bδ;Kd). Then,

‖fb‖Ck ≤ 2|b|−1 (k + |b| − 1)!

k!

∏
i∈I
‖fi‖ni(b)Ck+|b|−1 . (3.22)
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Proof. This follows from (3.18) because, as can be checked by induction on |b|, fb is a sum of at
most 2|b|−1 terms of the form studied in Lemma 3.11, where φ is one of the vector �elds fi.

Lemma 3.16 (Analytic estimate). Let r2 > 0, r1 ∈ [r2/e, r2) and δ > 0. Let b ∈ Br(X). For
i ∈ I, let fi ∈ Cω,r2(Bδ;Kd). Then,

|||fb|||r1 ≤
(|b| − 1)!

e

(
2e

r2 − r1

)|b|−1∏
i∈I
|||fi|||ni(b)r2

. (3.23)

In particular, under the same assumptions,

‖fb‖C0 ≤ (|b| − 1)!

(
9

r2

)|b|−1∏
i∈I
|||fi|||ni(b)r2

. (3.24)

‖fb‖C1 ≤ max

{
1,

1

r2

}
(|b| − 1)!

(
9

r2

)|b|−1∏
i∈I
|||fi|||ni(b)r2

. (3.25)

Proof. Estimate (3.23) stems from (3.19) because, as can be checked by induction on |b|, fb is a
sum of at most 2|b|−1 terms of the form studied in Lemma 3.12, where φ is one of the vector �elds
fi. Estimates (3.24) and (3.25) are direct consequences of (3.23) for the particular choice r1 = r2/e
because 2e2/(e− 1) ≤ 9 and, for every r1 > 0, ‖fb‖C1 ≤ max{1, 1

r1
} |||fb|||r1 .

Remark 3.17. The fact that estimate (3.23) scales like the factorial of the length of the Lie bracket
is optimal, as illustrated by the following vector �elds. For x ∈ R2 with |x| < 1, de�ne

f0(x) := e1 and f1(x) :=
1

1− x1
e2. (3.26)

Using (3.8), one checks that these vector �elds belong in particular to Cω,r(Bδ;R2) for r = 1
4 and

δ = 1
2 , with |||f0|||r = 1 and |||f1|||r = 2. For k ∈ N, one has

adkf0(f1)(x) = ∂k1

(
1

1− x1

)
e2 =

k!

(1− x1)k+1
e2. (3.27)

Moreover, since f0 is constant and f1 depends only on x1 but is a multiple of e2, every Lie bracket
involving f1 at least twice vanishes identically. Since these analytic vector �elds �saturate� the
bounds and exhibit such a nice structure, we will use them repeatedly in our counter-examples.

3.3 Well-posedness of ordinary di�erential equations

The nonlinear di�erential equations

ẋ(t) = f(t, x(t)) and x(0) = p (3.28)

will be studied in the following classical frameworks.

Lemma 3.18. Let δ, T > 0 and f ∈ L1((0, T ); C1(B2δ;Kd)) such that ‖f‖L1((0,T );C0) < δ.

1. For each p ∈ Bδ, there exists a unique function x(·; f, p) ∈ C0([0, T ];B2δ) such that

∀t ∈ [0, T ], x(t; f, p) = p+

∫ t

0

f (τ, x(τ ; f, p)) dτ. (3.29)

2. If f ∈ C0([0, T ]×B2δ;Kd) then x(·; f, p) ∈ C1([0, T ];B2δ) and satis�es (3.28) pointwise.
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3. If f ∈ C∞([0, T ]×B2δ;Kd), the map p ∈ Bδ 7→ x(·; f, p) ∈ C0([0, T ];B2δ) is smooth.

4. If g satis�es the same assumptions as f , then, for each p ∈ Bδ and t ∈ [0, T ],

|x(t; f, p)− x(t; g, p)| ≤ ‖f − g‖L1((0,t);C0) exp
(
‖f‖L1((0,t);C1)

)
. (3.30)

Proof. We proceed step by step. Let E := C0([0, T ];B2δ).

1. De�ne Θ : E → E by Θ(x)(t) := p +
∫ t

0
f(τ, x(τ)) dτ for x ∈ E. Thanks to the smallness

assumption on f , Θ(x)(t) ∈ B2δ. Let n ∈ N∗ be such that ‖f‖nL1((0,T );C1)/n! < 1. By the
Banach �xed-point theorem, Θn has a unique �xed point, which is also a �xed point of Θ.

2. If f is continuous, then t 7→ Θ(x(t; f, p)) belongs to C1([0, T ];B2δ) and its derivative at time t
is f(t, x(t; f, p)).

3. If f is smooth, let p̄ ∈ Bδ, x̄ := x(·; f, p̄) and de�ne F : Bδ × E → E by

∀t ∈ [0, T ], F (p, x)(t) := x(t)− p−
∫ t

0

f(τ, x(τ)) dτ (3.31)

Then F is of class C∞, vanishes at (p̄, x̄) and ∂xF (p̄, x̄) is a bijection on E. By the implicit
function theorem, the map p 7→ x(·; f, p) is C∞ on a neighborhood of p̄.

4. This follows from a standard Grönwall's lemma argument.

Lemma 3.19. Let δ, δu > 0, q ∈ N∗ and f ∈ Cω(B2δ×BKq (0, δu);Kd). Let T := δ/‖f‖C0 . For each
p ∈ Bδ and u ∈ L∞((0, T );Kq) with ‖u‖L∞ ≤ δu, there exists a unique solution x ∈ C0([0, T ];B2δ)
to {

ẋ(t) = f(x(t), u(t)),

x(0) = p,
(3.32)

denoted x(t; f, u, p). Moreover, the map (u, p) 7→ x(·; f, u, p) ∈ C0([0, T ];B2δ) is real-analytic on
Bδ ×BL∞(0,T )(0, δu).

Proof. Existence stems from Lemma 3.18. Analyticity is a consequence of the implicit function
theorem, which yields the analyticity of the implicit function when the direct function is analytic
(see e.g. [27, Theorem 4.5.4]).

3.4 Flows, compositions and pushforwards

Here and in the sequel, when we manipulate �ows of vector �elds, we always make sure that an
appropriate smallness assumption ensures that the local �ow is well-de�ned up to the time at which
we evaluate it.

3.4.1 De�nitions and approximations

By applying Lemma 3.18 to a time-independent vector �eld we obtain the following object.

De�nition 3.20 (Flow of time-independent vector �elds). Let δ > 0. Let f ∈ C1(B2δ;Kd) such
that ‖f‖C0 < δ. We denote by ef the �ow at time one of the vector �eld f ,

ef :

{
Bδ → B2δ,

p 7→ x(1; f, p),
(3.33)

with the notations of Section 3.3. We write efp instead of ef (p) to allow easier composition of
�ows. When moreover f ∈ C∞(B2δ;Kd), ef can also be seen as the zero-order linear operator on
C∞(B2δ;K) de�ned by efφ : p 7→ φ(efp).
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Lemma 3.21. Let δ > 0 and f ∈ C1(Bδ;Kd). Assume that δ′ := δ − ‖f‖C0(Bδ) > 0. For each
p ∈ Bδ′ , efp is well-de�ned and efp ∈ Bδ. Moreover,

|efp− p| ≤ ‖f‖C0(Bδ), (3.34)

and
‖D(ef )‖C0(Bδ′ )

≤ e‖Df‖C0(Bδ) ≤ e‖f‖C1(Bδ) . (3.35)

Proof. The second estimate comes from the fact that D(ef )|p = R(1) where

Ṙ(t) = Df(etfp)R(t) and R(0) = Id. (3.36)

Thus, by Grönwall's lemma,

‖R(1)‖ ≤ ‖Id‖e
∫ 1
0
‖Df(etfp)‖ dt ≤ e‖Df‖, (3.37)

which concludes the proof.

The exponential notation is motivated by the possibility to approximate ef by partial sums
of the exponential series of the linear di�erential operator f . It is completely legitimate in the
analytic setting, as underlined by the following result.

Lemma 3.22 (Approximation of autonomous �ows). Let δ > 0, f ∈ C1(B2δ;Kd) with ‖f‖C0 < δ.
Using the notations of Remark 3.10:

1. For each M ∈ N, if f ∈ CM (B2δ;Kd) and φ ∈ CM+1(B2δ;K), for each p ∈ Bδ,∣∣∣∣∣
(
ef −

M∑
k=0

fk

k!

)
(φ)(p)

∣∣∣∣∣ ≤ ‖f‖M+1
CM ‖φ‖CM+1 . (3.38)

2. If f ∈ Cω(B2δ;Kd) and φ ∈ Cω(B2δ;K), for t small enough, for each p ∈ Bδ,

etf (φ)(p) =

+∞∑
k=0

tk

k!
fkφ(p) (3.39)

and the sum converges absolutely in the sense of analytic functions.

Proof. First statement. By the �rst point of Lemma 3.18, etf (p) is well de�ned for every t ∈ [0, 1]
and takes values in B2δ. For t ∈ [0, 1] and k ∈ J0,M + 1K, we have

dk

dtk
[
φ(etf (p))

]
=
(
fkφ

)
(etf (p)). (3.40)

Thus, the considered sum is the Taylor expansion of order M of the map t 7→ φ(etf (p)) at t = 0
and (

ef −
M∑
k=0

fk

k!

)
(φ)(p) =

∫ 1

0

(1− s)M

M !

(
fM+1φ

)
(esf (p)) ds. (3.41)

This concludes the proof of (3.38) thanks to the integration in (3.41) and Lemma 3.11.

Second statement. Let r > 0 be such that f ∈ Cω,r(B2δ;Kd) and φ ∈ Cω,r(B2δ;K). Let r′ ∈ [r/e, r).
By (3.19), for each k ∈ N, ∣∣∣∣∣∣∣∣∣∣∣∣ tkk!

fkφ

∣∣∣∣∣∣∣∣∣∣∣∣
r′
≤ |t|

k

k!

k!

e

(
e

r − r′

)k
|||f |||kr |||φ|||r , (3.42)
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so that the sum converges absolutely in Cω,r′ when |t|e |||f |||r < r − r′. Moreover, by (3.41) with
f ← tf and (3.19), ∥∥∥∥∥

(
etf −

M∑
k=0

tk

k!
fk

)
(φ)

∥∥∥∥∥
C0
≤ |t|M+1

(M + 1)!
‖fM+1φ‖C0 , (3.43)

where, using (3.42), the right-hand side tends to zero as M → +∞ under the same smallness
condition; so that the sum converges towards etfφ in Cω,r′ when |t|e |||f |||r < r − r′.

3.4.2 Pushforwards of vector �elds by di�eomorphisms

De�nition 3.23 (Pushforward of a vector �eld by a di�eomorphism). Let Ω,Ω′ be open subsets
of Kd. Let θ ∈ C1(Ω; Ω′) be a local di�eomorphism from Ω to Ω′. Let f ∈ C0(Ω;Kd) be a vector
�eld. We de�ne θ∗f ∈ C0(Ω′;Kd) the pushforward of f by θ as

(θ∗f)(q) := (Dθ)|θ−1(q)f(θ−1(q)) = (Dθ−1)−1
|q f(θ−1(q)). (3.44)

Lemma 3.24 (Chain rule for pushforwards). Let Ω,Ω′,Ω′′ be open subsets of Kd. Let θ ∈ C1(Ω; Ω′)
be a local di�eomorphism from Ω to Ω′ and θ′ ∈ C1(Ω′; Ω′′) be a local di�eomorphism from Ω′ to Ω′′.
Let f ∈ C0(Ω;Kd) be a vector �eld. Then, on Ω′′,

θ′∗(θ∗f) = (θ′ ◦ θ)∗f. (3.45)

Proof. This is a consequence of the chain rule for di�erentiation, see e.g. [77, Problem 12-10].

Lemma 3.25 (Lie brackets of pushforwards). Let Ω,Ω′ be open subsets of Kd. Let θ ∈ C2(Ω; Ω′)
be a local di�eomorphism from Ω to Ω′. Let f, g ∈ C1(Ω;Kd) be two vector �elds. Then, on Ω′,

[θ∗f, θ∗g] = θ∗[f, g]. (3.46)

Proof. This is a consequence of the chain rule for di�erentiation, see e.g. [77, Corollary 8.31].

3.4.3 Composition of vector �elds with �ows

Lemma 3.26. Let δ > 0, f0 ∈ C1(B2δ;Kd) and t ∈ R such that |t|‖f0‖C0 < δ. Denote by
Φ0(t, p) := etf0(p) the associated �ow for p ∈ Bδ.

1. For each M ∈ N, if f0, f1 ∈ CM+1(B2δ;Kd), then, for each p ∈ Bδ,∣∣∣∣∣(∂pΦ0(t, p))
−1
f1 (Φ0(t, p))−

M−1∑
k=0

tk

k!
adkf0(f1)(p)

∣∣∣∣∣ ≤ tM

M !

∥∥∥adMf0 (f1)
∥∥∥
C0
. (3.47)

2. For each M ∈ N, if f0, f1 ∈ CM+1(B2δ;Kd) and adMf0 (f1) ≡ 0, then, for each p ∈ Bδ,

(Φ0(−t)∗f1)(p) = (∂pΦ0(t, p))
−1
f1 (Φ0(t, p)) =

M−1∑
k=0

tk

k!
adkf0(f1)(p). (3.48)

This holds in particular when L({f0, f1}) is nilpotent with index at most (M + 1).

3. If r > 0, f0, f1 ∈ Cω,r(B2δ;Kd), then, for |t| < r
9|||f0|||r

, for each p ∈ Bδ,

(Φ0(−t)∗f1)(p) = (∂pΦ0(t, p))
−1
f1 (Φ0(t, p)) =

+∞∑
k=0

tk

k!
adkf0(f1)(p), (3.49)

where, for every r′ ∈ [r/e, r) the series converges in Cω,r′(B2δ;Kd) when |t| < r−r′
6|||f0|||r

.
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4. Let H0, H1 ∈Md(Kd) and M ∈ N∗. Then∥∥∥∥∥eH0H1e
−H0 −

M−1∑
k=0

1

k!
adkH0

(H1)

∥∥∥∥∥ ≤ (2‖H0‖)M

M !
‖H1‖e2‖H0‖ (3.50)

and

eH0H1e
−H0 =

+∞∑
k=0

1

k!
adkH0

(H1), (3.51)

where ad is the commutator of matrices adA(B) := [A,B] = AB − BA and ‖ · ‖ a sub-
multiplicative norm onMd(K) such that ‖Idd‖ = 1.

Proof. We proceed step by step.

1. First, for each τ ∈ [0, t], Φ0(τ, p) is well-de�ned. Taking into account that

d

dτ

[
(∂pΦ0(t, p))

−1
]

= −(∂pΦ0(t, p))
−1 d

dτ
[∂pΦ0(τ, p)] (∂pΦ0(t, p))

−1

= −(∂pΦ0(t, p))
−1
Df0|Φ0(τ,p),

(3.52)

one obtains by induction on k ∈ J0,M + 1K that

dk

dτk

[
(∂pΦ0(t, p))

−1
f1 (Φ0(τ, p))

]
= (∂pΦ0(t, p))

−1
adkf0(f1) (Φ0(τ, p)) . (3.53)

The Taylor formula

(∂pΦ0(t, p))
−1
f1 (Φ0(t, p))−

M−1∑
k=0

tk

k!
adkf0(f1)(p)

=

∫ t

0

(t− s)M−1

(M − 1)!
(∂pΦ0(s, p))

−1
adMf0 (f1) (Φ0(s, p)) ds

(3.54)

proves the �rst statement.

2. Equation (3.54) yields the conclusion.

3. Let r′ ∈ [r/e, r). Thanks to (3.23),∣∣∣∣∣∣∣∣∣∣∣∣ tkk!
adkf0(f1)

∣∣∣∣∣∣∣∣∣∣∣∣
r′
≤ |t|

k

k!

k!

e

(
2e

r − r′

)k
|||f0|||kr |||f1|||r , (3.55)

so the series converges absolutely in Cω,r′ when 2e|t| |||f0|||r < r − r′, which is the case when
6|t| |||f0|||r < r−r′ because 2e < 6. The weakest bound, for r′ = r/e is 2e|t| |||f0|||r < (1−1/e)r
and it holds when 9|t| |||f0|||r < r because 2e/(1− 1/e) < 9.

Moreover, thanks to (3.54) and (3.55),∣∣∣∣∣(Φ0(−t)∗f1)(p)−
M−1∑
k=0

tk

k!
adkf0(f1)(p)

∣∣∣∣∣ ≤ |t|MM !
‖ adMf0 (f1)‖C0 sup

s∈[0,t]

‖(∂pΦ0(s, ·))−1‖C0

≤ A0 |||f1|||r

(
2e|t| |||f0|||r
r − r′

)M
,

(3.56)

where A0 denotes the supremum in the right-hand side of (3.56) which is �nite. So the sum
converges towards the pushforward under the same smallness assumption on time.

4. The last statement is proved similarly, by considering the function t 7→ etH0H1e
−tH0 .
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3.4.4 Partial derivative of a �ow with respect to a parameter

In this paragraph, we compute the partial derivative of a �ow with respect to a parameter on which
the vector �eld depends, under a particular nilpotency assumption.

Lemma 3.27. Let J an interval of R. Let δ > 0 and f ∈ C∞(J × B4δ;Kd) such that ‖f‖C0 < δ.
Let λ0 ∈ J , M ∈ N and assume that, for each λ ∈ J , adMf(λ0)(f(λ)) ≡ 0. Then, for each p ∈ Bδ,

d

dλ

(
ef(λ)p

)
|λ=λ0

=

M−1∑
k=0

(−1)k

(k + 1)!
adkf(λ0) (∂λf(λ0))

(
ef(λ0)p

)
. (3.57)

This holds in particular when L(f(J)) is nilpotent with index at most M + 1.

Proof. Let Θ ∈ C∞([0, 1]× J ×Bδ) de�ned by Θ(t, λ, p) := etf(λ)(p). Let p0 ∈ Bδ and λ0 ∈ J . Let
x0(t) := etf(λ0)(p0) for t ∈ [0, 1]. Then, the desired derivative is ∂λΘ(1, λ0, p0) = z(1) where z is
the solution to z(0) = 0 and

ż(t) = ∂xf(λ0, x0(t))z(t) + ∂λf(λ0, x0(t)). (3.58)

Let R : (t, s) ∈ [0, 1]2 →Md(K) be the resolvent associated with the linearized system at p0, which
is the solution to R(s, s) = Id and

∂tR(t, s) = ∂xf(λ0, x0(t))R(t, s), (3.59)

i.e. R(t, s) = ∂pΘ(t− s, λ0, x0(s)). Then by Duhamel's principle

z(1) =

∫ 1

0

R(τ, 1)−1∂λf(λ0, x0(τ)) dτ

=

∫ 1

0

(∂pΘ(τ − 1, λ0, x0(1)))
−1
∂λf(λ0,Θ(τ − 1, λ0, x0(1))) dτ.

(3.60)

By (3.48) of Lemma 3.26 with t← τ − 1, f0 ← f(λ0, ·), f1 ← ∂λf(λ0, ·) and p← x0(1),

z(1) =

∫ 1

0

M−1∑
k=0

(τ − 1)k

k!
adkf(λ0) (∂λf(λ0)) (x0(1)) dτ, (3.61)

which gives the conclusion.

4 Error estimates in time for nonlinear vector �elds

Using a classical linearization principle (see Section 4.1), we show that the formal expansions for
linear equations of Section 2 can yield approximate formulas in the context of nonlinear ordinary
di�erential equations. We derive rigorous error bounds at every �xed order with respect to time,
involving �nite sums or products.

4.1 Linearization principle for nonlinear vector �elds

We explain how, by seeing vector �elds as �rst-order di�erential operators and points on the
manifold as the operator of evaluation at this point, one classically recasts a nonlinear ODE driven
by smooth vector �elds to a linear equation set on a larger space of operators on smooth functions.
This approach is notably used in [3, 4] (replacing nonlinear objects by in�nite-dimensional linear
ones is the foundation of the �chronological calculus�) and in [97]. More generally, the idea of
replacing the study of a space by the study of the ring of functions on that space is reminiscent of
the representation results of [50]. For readers with a background in PDE analysis, this linearization
principle can be seen as a �reversed method of characteristics�: it transforms a nonlinear ODE into
a linear transport PDE, considered at the level of evolution operators.
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4.1.1 De�nition of an operator acting on smooth functions

When T > 0 and f ∈ C∞c ([0, T ] × Kd;Kd) satis�es ‖f‖L1((0,T );C0) < 1, we take the nonlinear
ODE (3.28) back to a linear framework by considering, for every t ∈ [0, T ] the linear operator L(t)
on C∞c (Kd;K) de�ned, for ϕ ∈ C∞c (Kd;K), by

L(t)ϕ : p 7→ ϕ (x(t; f, p)) . (4.1)

L(t)ϕ is of class C∞ as a composition of C∞ functions, by the third statement of Lemma 3.18.
L(t)ϕ is compactly supported in Kd because ϕ is and |x(t; f, p)− p| ≤ 1 for every p ∈ Kd, by the
�rst statement of Lemma 3.18 (which is of course invariant by translation of the origin). We don't
specify the dependence of L(t) with respect to f to simplify the notations.

For every p ∈ Kd, the map t ∈ [0, T ] 7→
(
L(t)ϕ

)
(p) belongs to C1([0, T ];K) and satis�es, for

every t ∈ [0, T ], using the notations of Remark 3.10,

d

dt

(
L(t)ϕ

)
(p) = Dϕ

(
x(t; f, p)

)
f
(
t, x(t; f, p)

)
=
(
L(t)f(t)ϕ

)
(p). (4.2)

Thus, L satis�es the following linear equation

d

dt
L(t) = L(t)f(t) (4.3)

in the weak sense explicited above. For every �xed t ∈ [0, T ],

∀ϕ ∈ C∞c (Kd;K),∀p ∈ Kd,
(
L(t)ϕ

)
(p) = ϕ(p) +

∫ t

0

(
L(τ)f(τ)ϕ

)
(p) dτ, (4.4)

where the symbol
∫ t

0
is the Lebesgue integral on L1((0, t);K). We will use the following notation

to refer to this property:

L(t) = Id +

∫ t

0

L(τ)f(τ) dτ. (4.5)

In the sequel, all integral equalities between operators on C∞c (Kd;K) should be understood in this
weak sense (after evaluation on a test function and at a point). The right-hand side refers to
the composition of two operators on C∞c (Kd;K): L(τ) and f(τ), seen as a �rst-order di�erential
operator on smooth functions.

Equation (4.3) is now a linear di�erential equation satis�ed by the object L(t) (in a much larger
space), so one can hope to apply the linear results of the previous sections.

4.1.2 Approximating sequence

In order to approximate the operator L(t), it is natural to introduce the sequence (Lj)j∈N of
time-dependent operators on C∞c (Kd;K) de�ned, for every t ∈ [0, T ], by L0(t) := Id and, for j ∈ N,

Lj+1(t) :=

∫ t

0

Lj(τ)f(τ) dτ, (4.6)

where this de�nition should be understood in the weak sense. Hence, recalling Remark 3.10,

Lj(t) =

∫
∆j(t)

f(τ1) · · · f(τj) dτ, (4.7)

where the integration domain is the ordered simplex of De�nition 2.15. Then, for every j ∈ N,
Lj is �of order j with respect to f �, and a di�erential operator of order at most j (with respect
to x) on C∞c (Kd;K). And this sequence indeed allows to approximate L(t) in the sense exposed in
Proposition 4.1 below, in a �nite regularity setting.
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4.2 Chen-Fliess expansion

The approximating sequence for the operator L(t) yields the following straight-forward estimate
for the Chen-Fliess expansion of the state, which can also be found in [3, Proposition 2.3].

Proposition 4.1. For every M ∈ N, δ > 0, T > 0, f ∈ L1((0, T ); Cmax(M,1)(B2δ;Kd)), with
‖f‖L1((0,T );C0) < δ and ϕ ∈ CM+1(B2δ;K), for each t ∈ [0, T ], with the notations of Remark 3.10,∣∣∣∣∣∣ϕ (x(t; f, p))−

M∑
j=0

∫
∆j(t)

(
f(τ1) · · · f(τj)ϕ

)
(p) dτ

∣∣∣∣∣∣ ≤ (M + 1)!‖f‖M+1
L1((0,t);CM )

‖ϕ‖CM+1 . (4.8)

In particular, for each p ∈ Bδ,∣∣∣∣∣∣x(t; f, p)−
M∑
j=0

∫
∆j(t)

(
f(τ1) · · · f(τj)Idd

)
(p) dτ

∣∣∣∣∣∣ ≤ (M + 1)!‖f‖M+1
L1((0,t);CM )

. (4.9)

Hence, if f ∈ L∞((0, T ); CM ), both estimates correspond to a bound scaling like tM+1.

Proof. Let p ∈ Bδ. Thanks to Lemma 3.18, x(τ ; f, p) is well-de�ned for τ ∈ [0, T ] and x(·; f, p) ∈
C1([0, T ];Kd). Thus, for each τ ∈ [0, T ],

ϕ(x(τ ; f, p)) = ϕ(p) +

∫ τ

0

(
f(τ1)ϕ

)
(x(τ1; f, p)) dτ1. (4.10)

By iterating this formula, we obtain for t ∈ [0, T ],

ϕ (x(t; f, p))− ϕ(p)−
M∑
j=1

∫
∆j(t)

(
f(τ1) · · · f(τj)ϕ

)
(p) dτ

=

∫
∆M+1(t)

(
f(τ1) · · · f(τM+1)ϕ

)
(x(τM+1; f, p)) dτ,

(4.11)

which concludes the proof of (4.8) using Lemma 3.11. Then (4.9) follows by applying (4.8) to
coordinate functions.

4.3 Magnus expansion in the usual setting

In Section 4.3.1, we state a precise estimate of the di�erence between the exact �ow and the
exponential of its truncated logarithm. In Section 4.3.2, we show that this estimate implies a
similar estimate for the CBHD formula. Section 4.3.3 is devoted to a technical result used in the
proof, which transposes to vector �elds a formal integral identity.

4.3.1 Standard error estimate in time

The following estimate can be viewed as a re�ned version of classical time-focused estimates (see
e.g. [87, Proposition 4.3]). It bears a lot of similarity with [38, Theorem 1.32], but is both easier to
state and to prove in our �at setting since [38] is concerned with the truncated logarithm of �ows
in general Riemannian manifolds. We propose a proof for sake of completeness, and because this
precise estimate is the founding principle of the new estimate, proved in the next section. It relies
on the usual arguments, used for instance in [97] and [3, Proposition 4.1] (which states a slightly
tighter estimate).
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Proposition 4.2. For every M ∈ N, there exists δM , CM > 0 such that, for every δ > 0, T > 0,
f ∈ L1((0, T ); Cmax(M2,1)(B2δ;Kd)) with ‖f‖L1((0,T );CM2 ) ≤ δM min{1; δ}, p ∈ Bδ and t ∈ [0, T ],∣∣∣x(t; f, p)− eZM (t,f)p

∣∣∣ ≤ CM‖f‖M+1

L1((0,t);CM2 )
, (4.12)

where ZM (t, f) := LogM{f}(t) is the vector �eld introduced in De�nition 2.23.
Hence, if f ∈ L∞((0, T ); CM2

(B2δ;Kd)) this estimate corresponds to a bound scaling like tM+1.
Moreover, if f(t, x) =

∑
i∈I ui(t)fi(x) with ui ∈ L1((0, T );K) and fi ∈ CM

2

(B2δ;Kd), then, for
each monomial basis B of L(X),

ZM (t, f) =
∑

b∈BJ1,MK

ζb(t, u)fb (4.13)

where the functionals ζb are the associated coordinates of the �rst kind and fb are the evaluated
Lie brackets (see De�nitions 2.28, 2.30 and 3.14).

Proof. For M = 0, Z0(t, f) = 0 thus (4.12) holds with C0 = 1 because |x(t; f, p)− p| ≤ ‖f‖L1(C0).
From now on M ∈ N∗ is �xed. By De�nition 2.23, there exists C ′M > 0 such that, for every δ > 0,
T > 0, f ∈ L1((0, T ); CM−1) with ‖f‖L1(CM−1) ≤ 1 and t ∈ [0, T ],

‖LogM{f}(t)‖C0 ≤ C ′M‖f‖L1(CM−1). (4.14)

In particular, for every δ > 0, T > 0, f ∈ L1((0, T ); CM−1) with ‖f‖L1(CM−1) ≤ min{1; δ; δ/C ′M},
for every p ∈ Bδ and t ∈ [0, T ],

� x(t; f, p) is well de�ned and belongs to B2δ,

� for every s ∈ [0, 1], esLogM{f}(t)p is well de�ned belongs to B2δ.

This happens, in particular, when ‖f‖L1(CM−1) ≤ δM min{1; δ} with δM := min{1; 1/C ′M}.

From now on, we �x δ, T > 0 and f ∈ L1((0, T ); CM2

) with ‖f‖L1(CM2 ) ≤ δM min{1; δ}.

In order to use the operators L(t) de�ned in Section 4.1, we assume that f ∈ C∞c ([0, T ]×Kd;Kd).
This is not restrictive because this space is dense in L1((0, T ); CM2

(B2δ;Kd)) and both sides

of (4.12) are continuous for the L1((0, T ); CM2

) topology on f (see the fourth item of Lemma 3.18).
Moreover, this regularization procedure is merely an heuristical convenience, since all the compu-
tations performed below make perfect sense even in our �nite regularity setting.

Step 1: Construction of the formal logarithm. We introduce ZM (t, f) the �nite sum of
terms �of order at mostM with respect to f � in the following formal power series (recall the formal
power series for log(1 + x)):

log L(t) =
∑
m∈N∗

(−1)m−1

m

∑
j∈N∗

Lj(t)

m

, (4.15)

with the notation of (4.6), i.e. we de�ne

ZM (t, f) :=

M∑
r=1

M∑
m=1

(−1)m−1

m

∑
r∈Nmr

Lrm(t) · · ·Lr1(t), (4.16)

where Nmr is de�ned in (2.25). For instance,

Z3 = L1 +

(
L2 −

1

2
L2

1

)
+

(
L3 −

1

2
(L1L2 + L2L1) +

1

3
L3

1

)
. (4.17)
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Then, by (4.7),

ZM (t, f) =

M∑
r=1

M∑
m=1

(−1)m−1

m

∑
r∈Nmr

∫
∆r(t)

f(τ1) · · · f(τr) dτ, (4.18)

A priori, ZM (t, f) is thus an inhomogeneous di�erential operator on C∞c (Kd;K), of order at
most M . Using Lemma 4.5 (see below in the next paragraph) and De�nition 2.23, ZM (t, f) =
LogM{f}(t) and satis�es (4.13). Thus ZM (t, f) is a smooth vector �eld, i.e. both a vector-valued
function and a �rst-order di�erential operator.

Step 2: Strategy for the proof of the estimate. The key observation is that it is su�cient
to prove that there exists CM > 0 (independent of δ, T, f) such that, for every p ∈ Bδ, t ∈ [0, T ]
and ϕ ∈ C∞c (Kd;K), ∣∣∣(L(t)− eZM (t,f)

)
(ϕ)(p)

∣∣∣ ≤ CM‖f‖M+1

L1(CM2 )
‖ϕ‖CM2+1 . (4.19)

Then, the conclusion follows by considering an appropriate C∞c truncation of the coordinate func-
tions ϕj : x ∈ Kd 7→ xj ∈ K. To prove (4.19), we will decompose the di�erence in three terms

L− eZM =

L− M∑
j=0

Lj

+

 M∑
j=0

Lj −
M∑
k=0

ZkM
k!

+

(
M∑
k=0

ZkM
k!
− eZM

)
, (4.20)

with the notation of (4.6). The �rst term is estimated in Proposition 4.1.

Step 3: Bound for
∑
Lj −

∑ ZkM
k! . By (4.16), this operator is a (�nite) linear combination of

terms of the form Lj1(t) · · ·Ljp(t) where p ∈ N∗, j1, . . . , jp ∈ J1,MK andM+1 ≤ j1+. . .+jp ≤M2.
Indeed, ZM (t, f) is also the �nite sum of terms �of order at mostM with respect to f � in the formal
power series (4.15). Thus, there exists C ′′M > 0 (independent of δ, T, f) such that, for every p ∈ Bδ,
t ∈ [0, T ] and ϕ ∈ C∞c (Kd;K),∣∣∣∣∣∣

 M∑
j=0

Lj(t)−
M∑
k=0

ZM (t, f)k

k!

 (ϕ)(p)

∣∣∣∣∣∣ ≤ C ′′M‖f‖M+1

L1(CM2−1)
‖ϕ‖CM2 . (4.21)

Step 4: Bound for
∑ ZkM

k! − e
ZM . Using Lemma 3.22 for the time-independent vector �eld

ZM (t, f) (where t ∈ [0, T ] has been �xed), estimate (3.38) yields for every p ∈ Bδ, t ∈ [0, T ] and
ϕ ∈ C∞c (Kd;K), ∣∣∣∣∣

(
eZM (t,f) −

M∑
k=0

ZM (t, f)k

k!

)
(ϕ)(p)

∣∣∣∣∣ ≤ ‖ZM (t, f)‖M+1
CM ‖ϕ‖CM+1 . (4.22)

We deduce from (2.30) the existence of C ′′′M > 0 (independent of δ, T, f) such that for every t ∈ [0, T ]

‖ZM (t, f)‖CM ≤ C ′′′M‖f‖L1((0,t);C2M−1). (4.23)

Hence, for every p ∈ Bδ, t ∈ [0, T ] and ϕ ∈ C∞c (Kd;K)∣∣∣∣∣
(
eZM (t,f) −

M∑
k=0

ZM (t, f)k

k!

)
(ϕ)(p)

∣∣∣∣∣ ≤ (C ′′′M )M+1‖f‖M+1
L1(C2M−1)

‖ϕ‖CM+1 . (4.24)

Gathering (4.8), (4.21) and (4.24) concludes the proof of (4.12).
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4.3.2 Campbell Baker Hausdor� Dynkin formula

We deduce from Proposition 4.2 the following estimate for the classical CBHD formula with q
time-independent vector �elds.

Corollary 4.3. For every M ∈ N∗, there exists δM , CM > 0 such that, for every δ > 0, q ∈ N∗,
f1, . . . , fq ∈ CM

2

(B2δ;Kd) with
∑

1≤j≤q ‖fj‖CM2 ≤ δM min{1; δ},∥∥∥efq · · · ef1 − eCBHDM (f1,...,fq)
∥∥∥
C0
≤ CM‖f‖M+1 (4.25)

where CBHDM (f1, . . . , fq) = LogM{f}(q), where the time-dependent vector �eld f is de�ned by
f : (t, x) ∈ [0, q]×B2δ 7→

∑q
j=1 1[j−1,j](t)fj(x) and ‖f‖ := ‖f‖L1(CM2 ) =

∑
1≤j≤q ‖fj‖CM2 .

Moreover, for each monomial basis B of L({X1, . . . , Xq})

CBHDM (f1, . . . , fq) =
∑

b∈BJ1,MK

αbfb (4.26)

where (αb)b∈B ⊂ KB is given by Corollary 2.33.

Proof. Because of the particular form of f , we have x(t; f, p) = efq · · · ef1p. Thus the estimate
(4.25) is an application of Proposition 4.2. Let Λ : L({X1, . . . , Xq}) → L({f1, . . . , fq}) be the
homomorphism of Lie algebras such that Λ(Xj) = fj . The map CBHDM is de�ned by a �nite sum
of Lie brackets, thus it commutes with Λ

CBHDM (f1, . . . , fq) = Λ(CBHDM (X1, . . . , Xq)) = Λ

 ∑
b∈BJ1,MK

αbb

 =
∑

b∈BJ1,MK

αbΛ(b), (4.27)

which proves (4.26).

4.3.3 Replacing products with brackets in logarithm integrals

The goal of this section is to prove Lemma 4.5, which is a key point in the proof of Proposition 4.2,
as it allows to replace products of di�erential operators with Lie brackets in the integrals involved
in the computation of the logarithm of the �ow.

We �rst state and prove a corollary of Theorem 2.27 in algebras. Indeed, Theorem 2.27 is a
statement about formal di�erential equations, but it has consequences for concrete realizations,
e.g. for systems governed by vector �elds or matrices (this will be used in Section 5.2.2).

Corollary 4.4. Let A be a unital associative algebra over K and A1 be a �nite dimensional linear
subspace of A. Then, for every r ∈ N∗, t > 0 and a ∈ L1((0, t);A1), one has

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
∆r(t)

a(τ1)a(τ2) · · · a(τr) dτ =

1

r

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
∆r(t)

[· · · [a(τ1), a(τ2)], . . . a(τr)] dτ,

(4.28)

where the equality should be seen as an equality between elements of a �nite dimensional linear
subspace of A (generated by monomials of terms in A1 of degree r), so that one can give a meaning
to the integrals without introducing any topology on A.

Moreover, if a(τ) =
∑
i∈I αi(τ)yi with αi ∈ L1((0, t);K) and yi ∈ A then, for each monomial

basis Br of Lr(X),

1

r

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
∆r(t)

[· · · [a(τ1), a(τ2)], . . . a(τr)] dτ =
∑
b∈Br

ζb(t, α)yb, (4.29)
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where the functionals ζb are the associated coordinates of the �rst kind and yb = Υ(b) where
Υ : A(X) → A is the homomorphism of algebras such that Υ(Xi) = yi (see De�nition 2.30 and
Lemma 2.7).

Proof. Let q ∈ N∗ be the dimension of A1 (as a linear subspace) and y1, . . . yq be a linear basis of A1.
Let αi ∈ L1((0, t);K) denote the components of a(·) in the basis y1, . . . yq, i.e. a(τ) = α1(τ)y1+. . .+
αq(τ)yq for almost every τ ∈ [0, t]. Then a(t) = Υ(a(t)) where a(τ) := α1(τ)X1 + . . .+ αq(τ)Xq ∈
A1(X). From (2.34) and (2.35), one obtains that (4.28) holds for a(·). Applying the homomorphism
Υ of algebras to both sides proves (4.28) for a(·). The same strategy proves (4.29).

Lemma 4.5. For every r ∈ N∗, t > 0 and f ∈ C∞c ([0, t]×Kd;Kd),

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
∆r(t)

f(τ1)f(τ2) · · · f(τr) dτ =

1

r

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
∆r(t)

[· · · [f(τ1), f(τ2)], . . . f(τr)] dτ,

(4.30)

which should be seen as an equality between linear operators on C∞c (Kd;K), hence only valid after
evaluation at a function ϕ at a point p, so that the integrals are integrals of scalar-valued functions.

Moreover, if f(τ, x) =
∑
i∈I ui(τ)fi(x) with ui ∈ L1((0, t);K) and fi ∈ C∞c (Kd;Kd) then

1

r

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
∆r(t)

[· · · [f(τ1), f(τ2)], . . . f(τr)] dτ =
∑
b∈Br

ζb(t, u)fb, (4.31)

where Br is a monomial basis of Lr(X), the functionals ζb are the associated coordinates of the
�rst kind and fb are the evaluated Lie brackets (see De�nitions 2.4, 2.30 and 3.14).

Proof. Let (fn)n∈N∗ be a sequence of functions in C∞c ([0, t]×Kd;Kd) such that fn takes values in
an at-most n-dimensional vector subspace En of C∞c (Kd;Kd) and ‖fn − f‖L1((0,t);Cr) → 0 when
n → ∞. For example, one can choose an n-points trapezoidal approximation of f . For each
�xed n, applying Corollary 4.4 with A = Op(C∞c (Kd;K)) and A1 = En proves (4.30) for fn. Let
ϕ ∈ C∞c (Kd;K) and p ∈ Kd. For each n ∈ N∗, we deduce that

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
∆r(t)

(fn(τ1) · · · fn(τr)ϕ)(p) dτ =

1

r

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
∆r(t)

([· · · [fn(τ1), fn(τ2)], . . . fn(τr)]ϕ)(p) dτ.

(4.32)

For each �xed ϕ and p, both sides converge as n → +∞ towards the same quantities for f . This
proves that (4.30) holds as an equality between linear operators. Applying (4.29) gives (4.31).

Remark 4.6. Although most algebraic results of Section 2 remain valid for in�nite alphabets (sets
of indeterminates), there is a di�culty when one wishes to �evaluate� equalities in the free algebra
over an in�nite alphabet towards some target algebra (one must somehow introduce compatible
topologies on both sides). Our approach to prove Lemma 4.5, where f is allowed to take values
in the in�nite-dimensional space C∞c , therefore relies on a discretization scheme to return to a
�nite alphabet, and the convergence of the involved integrals in a weak sense. Another approach,
followed in [91, 92], consists in introducing de�nitions allowing an in�nite (continuous) number of
generators and proving analogous algebraic results in such a setting.
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4.4 Magnus expansion in the interaction picture

In this section, we consider the nonlinear ordinary di�erential equation

ẋ(t) = f0(x) + f](t, x) (4.33)

We show how the formal expansion introduced in Section 2.4 allows to obtain error bounds at every
order in the size of the time-varying perturbation f], provided that the �ow of f0 is known. Such
estimates can be useful for example to design splitting methods in the case of a small perturbation
(see e.g. [20, Section 3.6] or [21, Section 2]).

The results of this section can be seen as quite natural, but we are not aware of references
containing the same statements. We adopt the notations speci�ed in the following de�nition.

De�nition 4.7. Let M ∈ N, δ > 0, T > 0 and f0 ∈ CM
2+1(B5δ;Kd) such that T‖f0‖C0 < δ. Let

f] ∈ L1((0, T ); CM2

(B5δ;Kd)) and t ∈ [0, T ]. We consider

� Φ0 ∈ CM
2+1([0, T ]×B4δ;B5δ) the �ow associated with f0 i.e. Φ0(τ ; p) = eτf0(p),

� gt ∈ L1((0, T ); CM2

(B4δ;Kd)) de�ned by

gt(τ, y) := (Φ0(t− τ)∗f](τ))(y) = (∂pΦ0(τ − t, y))
−1
f]
(
τ,Φ0(τ − t, y)

)
, (4.34)

� ZM (t, f0, f]) := LogM{gt}(t) ∈ CM
2−M+1(B4δ;Kd) in the sense of De�nition 2.23.

4.4.1 Error bound

Proposition 4.8. Let M, δ, T, f0, f] as in De�nition 4.7. There exists γ = γ(M, δ, ‖f0‖CM2+1) > 0
such that, if

‖f]‖L1((0,T );CM2 ) ≤ γ (4.35)

then, for every p ∈ Bδ and t ∈ [0, γ],∣∣∣x(t; f0 + f], p)− eZM (t,f0,f])etf0p
∣∣∣ ≤ CM‖gt‖M+1

L1((0,t);CM2 )
(4.36)

where CM > 0 is the constant of Proposition 4.2.
Hence, if f] ∈ L∞((0, T ); CM2

(B5δ;Kd)), estimate (4.36) scales like tM+1.

Proof. Let ηM , CM > 0 be as in Proposition 4.2. There exists T ∗ = T ∗(δ, ‖f0‖CM2+1) ∈ (0, T ] such

that, for every f] ∈ L1((0, T ); CM2

(B5δ;Kd)) and t ∈ [0, T ∗]

‖gt‖L1((0,t),CM2 ) ≤ 2‖f]‖L1((0,t),CM2 ). (4.37)

Let γ := min{T ∗, δ, δM2 min{1, δ}}. Let f] ∈ L1((0, T ); CM2

(B5δ;Kd)) with ‖f]‖L1(CM2 ) < γ. Then,

for every p ∈ Bδ and τ ∈ [0, T ], x(τ ; f0 + f], p) is well de�ned and belongs to B3δ. To simplify
the notations in this proof, we write x(τ) instead of x(τ ; f0 + f], p). Let t ∈ [0, γ]. The function
y : [0, t]→ Kd de�ned by

y(τ) := Φ0

(
t− τ ;x(τ)

)
(4.38)

takes values in B4δ and satis�es, for every τ ∈ [0, t],

ẏ(τ) = gt (τ, y(τ)) . (4.39)

By (4.37), ‖gt‖L1(CM2) < 2η ≤ δM min{1, δ} thus, by Proposition 4.2

|y(t)− eZM (t,f0,f])y(0)| ≤ CM‖gt‖M+1

L1((0,t);CM2 )
(4.40)

which is exactly (4.36) because y(t) = x(t) and y(0) = etf0p.
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4.4.2 Expansions of ZM
Proposition 4.9. Let M, δ, T, f0, f] as in De�nition 4.7. Let r > 0. If f0 ∈ Cω,r(B5δ;Kd) and
f] ∈ C0([0, T ]; Cω,r(B5δ;Kd)) then, for 0 ≤ τ ≤ t ≤ min{T ; r

9|||f0|||r
}

gt(τ, ·) = e(τ−t) adf0 (f](τ)) =

+∞∑
k=0

(τ − t)k

k!
adkf0(f](τ)) (4.41)

and

ZM (t, f0, f]) =
∑ (−1)m−1

rm

∫
∆r(t)

(τ1 − t)k1
k1!

· · · (τr − t)
kr

kr![
· · ·
[
adk1f0 (f](τ1)), adk2f0 (f](τ2))

]
, . . . , adkrf0 (f](τr))

]
dτ,

(4.42)

where the sum is taken over r ∈ J1,MK, m ∈ J1, rK, r ∈ Nmr , and k1, . . . , kr ∈ N. Moreover,
for every r′ ∈ [r/e, r) and 0 ≤ τ ≤ t ≤ min{T ; r−r′

6|||f0|||r
}, the series (4.41) and (4.42) converge

absolutely in Cω,r′(B5δ;Kd).

Proof. We apply the third statement of Lemma 3.26 to f0 and f](τ) to get (4.41). The absolute
convergence in this series allows to interchange the sums and the integrals.

When the perturbation f](t, x) is a�ne, i.e. of the form
∑q
i=1 ui(t)fi(x), by analogy with Theo-

rem 2.41, we use the notation ZM (t, f, u) instead of ZM (t, f0,
∑q
i=1 uifi), with f = (f0, f1, . . . , fq)

and u = (u1, . . . , uq). In this context, we have the following result, that emphasizes that ZM is a
truncated version of Z∞.

Proposition 4.10. Let M, δ, T, f0, f] as in De�nition 4.7. Let r > 0. If f0 ∈ Cω,r(B5δ;Kd) and
f](t, x) =

∑q
i=1 ui(t)fi(x) where ui ∈ L1(0, T ) and fi ∈ Cω,r(B5δ;Kd). Then

ZM (t, f, u) = lim
N→∞

∑
b∈B

n(b)≤M
n0(b)≤N

ηb(t, u)fb (4.43)

where, for every r′ ∈ [r/e, r] the limit holds in Cω,r′(B5δ;Kd) when 0 ≤ t ≤ min{T ; r−r′
6|||f0|||r

}.

Proof. Let X = {X0, X1, . . . Xq} and Λ : L(X) → Cω,r(B5δ;Kd) be the homomorphism of Lie
algebras such that Λ(Xi) = fi for i ∈ J0, qK (see Lemma 2.7). By applying Λ to each term in the
equality (2.78) (where Zr,ν∞ (t,X, a) is the �nite sum de�ned in (2.76)), we obtain for every r ∈ N∗
and ν ∈ N

Zr,ν∞ (t, f, u) =
∑
b∈Br,ν

ηb(t, u)fb. (4.44)

By Proposition 4.9

ZM (t, f, u) = lim
N→∞

N∑
ν=0

M∑
r=1

Zr,ν∞ (t, f, u) (4.45)

where for every r′ ∈ [r/e, r] the limit holds in Cω,r′(B5δ;Kd) when 0 ≤ t ≤ min{T ; r−r′
6|||f0|||r

}. This
proves (4.43).

Remark 4.11. Although the family ηb(t, u)fb for b ∈ B ∩ SM = {b ∈ B;n(b) ≤ M} (using
De�nition 2.10) is not proved to be absolutely summable, equality (4.43) gives a sense to the
expression

ZM (t, f, u) =
∑

b∈B∩SM

ηb(t, u)fb. (4.46)
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Indeed, the proof above justi�es the absolute summability of appropriate packages Zr,ν∞ (t, f, u) for
r ∈ J1,MK and ν ∈ N of this family. The full absolute summability over B ∩ SM is investigated in
the next subsection.

4.4.3 Absolute convergence for coordinates of the pseudo-�rst kind

Continuing the discussion started in Section 2.4.3 we state a criterion on the basis B which entails
the absolute summability for analytic vector �elds of the family ηb(t, u)fb for b ∈ B ∩ SM = {b ∈
B;n(b) ≤M} (using De�nition 2.10).

Proposition 4.12. Let q ∈ N∗, X = {X0, X1, . . . , Xq} and B a Hall basis of L(X); or more
generally a monomial basis of L(X) with geometric growth with respect to X0 (see De�nition 2.48
and Remark 2.50).

Let M, δ, T, f0, f] as in De�nition 4.7. Let r > 0. We assume f0 ∈ Cω,r(B5δ;Kd) and f](t, x) =∑q
i=1 ui(t)fi(x) where ui ∈ L1(0, T ) and fi ∈ Cω,r(B5δ;Kd).
Let r′ ∈ [r/e, r). There exists T ∗ = T ∗(M, q,r, r′, |||f0|||r) > 0 such that, for every t ∈ (0, T ∗)

and u ∈ L1((0, t),Kq)
ZM (t, f, u) =

∑
b∈B∩SM

ηb(t, u)fb (4.47)

where the series converges absolutely in Cω,r′(Bδ;Kd).

Proof. By (2.86) of Proposition 2.52 and (3.23), for every b ∈ B ∩ SM and t ∈ [0, T ]

|ηb(t, u)| |||fb|||r′ ≤
r − r′

2e2

(
2eCM t|||f0|||r

r − r′

)n0(b)(
2eCM
r − r′

‖u‖L1(0,t) |||f |||r

)n(b)

(4.48)

where |||f |||r := max{|||fj |||r ; j ∈ J0, qK}. In particular, if |t| < T ∗(M, r, r′) := r−r′
4(q+1)eCM |||f0|||r

then

the series
∑
ηb(t, a)fb converges absolutely in Cω,r′ because

∑
b∈B∩SM

(2(q + 1))−n0(b) ≤
M∑
n=1

+∞∑
n0=0

(q + 1)n0+n(2(q + 1))−n0 ≤M(q + 1)M . (4.49)

4.5 Sussmann's in�nite product expansion

Let T > 0. In this section, we consider a�ne systems of the form

ẋ(t) =
∑
i∈I

ui(t)fi(x(t)) and x(0) = p, (4.50)

where, for i ∈ I, fi is a vector �eld and ui ∈ L1((0, T );K). When well-de�ned, its solution is
denoted x(t; f, u, p). For every norm ‖ · ‖ on vector �elds, ‖f‖ denotes

∑
i∈I ‖fi‖.

Proposition 4.13. Let B be a Hall basis of L(X) and (ξb)b∈B be the associated coordinates of the
second kind. For every M ∈ N∗, there exist CM , ηM > 0 such that the following property holds.
Let T, δ > 0, fi ∈ C2M (B3δ;Kd) and ui ∈ L1((0, T );K) for i ∈ I. Assume that

‖u‖L1(0,T )‖f‖CM ≤ ηM min{1, δ}. (4.51)

Then, for each t ∈ [0, T ] and p ∈ Bδ,∣∣∣∣x(t; f, u, p)−
→
Π

b∈BJ1,MK

eξb(t,u)fbp

∣∣∣∣ ≤ CM‖u‖M+1
L1(0,t)‖f‖

M+1
C2M

(
1 + ‖f‖M−1

C2M
)
, (4.52)
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where the arrow above the product symbol designates the order for the product, i.e. with the notations
of De�nition 2.53

→
Π

b∈BJ1,MK

eξb(t,u)fb = eξb1 (t,u)fb1 · · · eξbk+1
(t,u)fbk+1 . (4.53)

Proof. Let M ∈ N∗. We adopt the notations b1, . . . , bk+1 and Y0, . . . , Yk+1 of De�nition 2.53.
For j ∈ J1, k + 1K, we denote by Φj the �ow associated with fbj , i.e. Φj(t, p) := etfbj (p). To
simplify the notations in this proof, we write x(t) and ξb(t) instead of x(t; f, u, p) and ξb(t, u). Let
ηM := 1/(4|I|M !). For brevity, we use the shorthand notation F := ‖f‖C2M−1 .

Step 1: Well-de�nition of the �ows. Using (4.51),∥∥∥∥∥∑
i∈I

uifi

∥∥∥∥∥
L1((0,T );C0)

≤ ηM min{1, δ} ≤ δ. (4.54)

Thus, for t ∈ [0, T ], x(t) is well-de�ned and x(t) ∈ B2δ. For b ∈ B, using (2.101) and Lemma 3.15,
we obtain, for each t ∈ [0, T ],

‖ξb(t)fb‖C1 ≤ `!2
`−1‖u‖`L1(0,t)‖f‖

`
C` , (4.55)

where ` := |b|. Hence, using the crude estimate |B`| ≤ |I|`, we obtain, for each t ∈ [0, T ],

∑
b∈BJ1,MK

‖ξb(t)fb‖C1 ≤
M∑
`=1

|B`|`!2`−1‖u‖`L1‖f‖`C`

≤M !

+∞∑
`=1

(2|I|‖u‖L1‖f‖C`)
`

≤ 2M !|I|‖u‖L1‖f‖CM
1− 2|I|‖u‖L1‖f‖CM

≤ min{1, δ}.

(4.56)

Thus, for every j ∈ J1, k + 1K,

xj(t) := e−ξbj (t)fbj · · · e−ξb1 (t)fb1 (x(t)) (4.57)

is well-de�ned and belongs to B3δ.

Step 2: Estimates along a Lazard elimination. We prove by induction on j ∈ J0, k+1K the existence
of a numerical constant Cj > 0 such that

(Hj) :

{
ẋj(t) =

∑
b∈BJ1,MK∩Yj ξ̇b(t)fb(xj(t)) + εj(t),

xj(0) = p,
(4.58)

where
|εj(t)| ≤ Cj |u(t)|‖u‖ML1FM+1(1 + FM−1). (4.59)

First, letting x0(t) := x(t) by convention, (H0) holds with ε0 = 0, C0 = 0 because ξ̇Xi(t) = ui(t)
for i ∈ I. Let j ∈ J1, k+ 1K and assume that (Hj−1) holds. We deduce from the de�nition of xj(t)
that

xj(t) = e−ξbj (t)fbj (xj−1(t)) = Φj
(
−ξbj (t), xj−1(t)

)
(4.60)

and, using (Hj−1), that

ẋj(t) = −ξ̇bj (t)fbj (xj(t)) +
∑

b∈BJ1,MK∩Yj−1

ξ̇b(t)∂pΦj
(
−ξbj (t), xj−1(t)

)
fb(xj−1(t)) + ε̃j(t) (4.61)
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where ε̃j−1(t) := ∂pΦj
(
−ξbj (t), xj−1(t)

)
εj−1(t). By (4.56), ‖ξbj (t)fbj‖C1 ≤ 1, so, using (3.35),

|ε̃j−1(t)| ≤ e|εj−1(t)|. (4.62)

Moreover, for each b ∈ B

∂pΦj
(
−ξbj (t), xj−1(t)

)
fb(xj−1(t)) =

(
Φj
(
−ξbj (t)

)
∗ fb
)

(xj(t)), (4.63)

thus,

ẋj(t) =
∑

b∈BJ1,MK∩Yj−1\{bj}

ξ̇b(t)
(
Φj
(
−ξbj (t)

)
∗ fb
)

(xj(t)) + ε̃j(t). (4.64)

For b ∈ BJ1,MK ∩ Yj \ {bj}, we introduce the maximal integer h(b) ∈ N∗ such that

|b|+ (h(b)− 1)|bj | ≤M. (4.65)

Then, by the �rst statement of Lemma 3.26 and De�nition 2.62

ξ̇b(t)
(
Φj
(
−ξbj (t)

)
∗ fb
)

(xj(t)) =

h(b)−1∑
m=1

ξmbj (t)

m!
ξ̇b(t)fadmbj

(b)(xj(t)) + εjb(t)

=

h(b)−1∑
m=1

ξ̇admbj
(b)(t)fadmbj

(b)(xj(t)) + εjb(t)

(4.66)

where

|εjb(t)| ≤ |ξ̇b(t)|
|ξbj (t)|h(b)

h(b)!
‖f

ad
h(b)
bj

(b)
‖C0 . (4.67)

By de�nition of h(b) we have M + 1 ≤ |b|+ h(b)|bj | ≤ M + |bj | ≤ 2M . Thus, using Lemma 3.15,
(2.100) and (2.101), we get

|εjb(t)| ≤ |u(t)|‖u‖|b|+h(b)|bj |−1

L1

|b|
h(b)!

22M (2M − 1)!FM+1(1 + FM−1)

≤ |u(t)|‖u‖ML1M22M (2M − 1)!FM+1(1 + FM−1).

(4.68)

By de�nition of Yj in De�nition 2.53, we obtain (Hj) with

εj(t) := ε̃j−1(t) +
∑

b∈BJ1,MK∩Yj−1\{bj}

εjb(t). (4.69)

that satis�es (4.59) with, for instance Cj+1 := eCj + |I|M+1M22M (2M − 1)!.

Step 3: Conclusion. Taking into account that BJ1,MK ∩ Yk+1 = {0}, we get ẋk+1(t) = εk+1(t) thus

|xk+1(t)− p| ≤ Ck+1‖u‖M+1
L1 FM+1(1 + FM−1), i.e.∣∣∣∣ ←

Π
b∈BJ1,MK

e−ξb(t,u)fbx(t)− p
∣∣∣∣ ≤ Ck+1‖u‖M+1

L1 FM+1(1 + FM−1). (4.70)

Applying the locally Lipschitz map eξb1 (t,u)fb1 · · · eξbk+1
(t,u)fbk+1 to the two terms in the left-hand

side, we get another constant CM > 0 such that (4.52) holds. Note that (4.56) and (3.35) ensure
that CM ≤ eCk+1, so that CM depends indeed only on M .

48



5 Convergence results and issues

The formal expansions of Section 2 generally exhibit poor convergence properties for smooth vector
�elds without any additional assumption. Nevertheless, one can hope to obtain convergence results
in the following particular contexts:

� Nilpotent Lie algebras. Here, one assumes that the Lie algebra generated by the set of
smooth vector �elds {f(t, ·); t ∈ [0, T ]} is nilpotent (see De�nition 2.5). This structural
assumption turns most of the involved in�nite expansions into �nite ones, and it is thus
reasonable to expect convergence properties.

� Banach algebras. Here, one assumes that the vector �elds are actually linear in the space
variable, e.g. that f(t, x) = A(t)x for some A(t) ∈ Md(K). This assumption yields better
estimates for Lie brackets (since products of matrices behave more nicely than di�erentiation
of nonlinear vector �elds) and it is thus reasonable to expect convergence properties. In this
section, we give statements for matrices for consistence, but similar results can be obtained
for linear operators in a Banach algebra.

� Analytic vector �elds. Here, one assumes that the vector �elds are locally real-analytic,
i.e. than their k-th derivative grows roughly no more that k!. This bound is compatible with
the 1/k! factors which come out of the corresponding time integrals, and it is thus reasonable
to expect convergence properties.

In the following paragraphs, we investigate the convergence properties of each expansion in each
of these three reasonable contexts and encounter some surprises. We summarize the results in the
following table.

Expansion Lie-Nilpotent Banach Analytic

Chen-Fliess
No

(Section 5.1.1)
Global

(Section 5.1.2)
Yes

(Section 5.1.3)
Magnus in the
usual setting

Yes for C∞
(Section 5.2.1)

Small time
(Section 5.2.2)

No
(Section 5.2.3)

Magnus in the
interaction picture

Yes for Cω
(Section 5.3.1)

Small perturbation
(Section 5.3.2)

No
(Section 5.3.3)

Sussmann's
in�nite product

Yes for C∞
(Section 5.4.1)

Small time
(Section 5.4.2)

Open problem
(Section 5.4.3)

5.1 Chen-Fliess expansion

5.1.1 Counter-example for nilpotent vector �elds

As already discussed in Remark 2.17, the Chen-Fliess expansion is not an intrinsic representation
of the �ow and involves quantities which are not Lie brackets of the dynamics. Therefore, this
expansion is not expected to converge under a Lie-nilpotency assumption. The following counter-
example (where the dynamic does not depend on time, thereby obviously generating a nilpotent
Lie algebra of order 2) proves that this expansion indeed relies on quantities which are not Lie
brackets.

Proposition 5.1. There exists f0 ∈ C∞(R;R) such that, for every t ∈ (0, 1], the solution x(t; f, 0)
to (3.28) with f(t, x) := f0(x) satis�es, with the notations of Remark 3.10,

lim
N→+∞

∣∣∣∣∣x(t; f, 0)−
N∑
n=0

tn

n!
(fn0 Id1) (0)

∣∣∣∣∣ = +∞. (5.1)
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Proof. For every sequence (αn)n∈N ∈ RN, there exists fα ∈ C∞(R;R) ∩ L∞(R;R) with fα(0) = 1
such that

∀n ≥ 2, (fnα Id1) (0) = αn. (5.2)

This is an easy consequence of Borel's lemma. Indeed, for n ≥ 2 and fα(0) = 1,

(fnα Id1) (0) = f (n−1)
α (0) + Pn

(
fα(0), . . . , f (n−2)

α (0)
)
, (5.3)

for some polynomial Pn. Thus, given a sequence (αn)n∈N, one can prescribe an appropriate value

for f
(n−1)
α and recursively ensure (5.2). Let f0 be a vector �eld constructed following this process

for αn := n!2. On the one hand, since f0 ∈ L∞(R;R), x(t; f, 0) is bounded for t ∈ [0, 1]. On the
other hand, thanks to (5.2), for each t > 0

N∑
n=0

tn

n!
(fn0 Id1) (0) =

N∑
n=0

n!tn → +∞, (5.4)

which proves (5.1).

Remark 5.2. In this counter-example, the local change of coordinates which transforms f0(x)e1

into the constant vector �eld e1 allows to transform the ODE on x to a new ODE for which
the Chen-Fliess expansion is �nite (and thus convergent). It would be even more interesting to
construct a counter-example, probably in dimension d ≥ 2, for which no local change of coordinates
can restore the convergence of the Chen-Fliess expansion.

5.1.2 Global convergence for matrices

Let T > 0. In this paragraph, we study linear systems of the form

ẋ(t) = A(t)x(t) and x(0) = p, (5.5)

where A ∈ L1((0, T );Md(K)). The solution is denoted x(t;A, p).

Proposition 5.3. Let T > 0 and A ∈ L1((0, T );Md(K)). For each t ∈ [0, T ] and p ∈ Kd,

x(t;A, p) = p+

+∞∑
j=1

∫
∆j(t)

A(τj) · · ·A(τ1)p dτ, (5.6)

where the series converges absolutely.

Proof. To simplify the notations, we write x(t) instead of x(t;A, p). By Grönwall's lemma, we have

|x(τ)| ≤ |p|e‖A‖L1(0,τ) for every τ ∈ [0, T ]. By iterating the formula

x(τ) = p+

∫ τ

0

A(τ ′)x(τ ′) dτ ′ (5.7)

we obtain, for every M ∈ N∗∣∣∣∣∣∣x(t)− p−
M−1∑
j=1

∫
∆j(t)

A(τj) · · ·A(τ1)pdτ

∣∣∣∣∣∣ =

∣∣∣∣∣
∫

∆M (t)

A(τM ) · · ·A(τ1)x(τ) dτ

∣∣∣∣∣
≤
∫

∆M (t)

‖A(τM )‖ · · · ‖A(τ1)‖ dτ |p|e‖A‖L1(0,t) =
‖A‖ML1(0,t)

M !
|p|e‖A‖L1(0,t) ,

(5.8)

which proves the convergence. Similar estimates prove the absolute convergence.
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5.1.3 Local convergence for analytic vector �elds

For analytic vector �elds, it is well known that the Chen-Fliess series (also called �(right) chrono-
logical exponential� in [3, Section 2.1]) converges locally in time (see e.g. [3, Proposition 2.1], or
[99, Proposition 4.3] for slightly di�erent assumptions). The analyticity assumption is necessary,
as highlighted by the counter-example of Section 5.1.1.

Proposition 5.4. Let T, δ, r > 0. There exists η > 0 such that, for f ∈ L1([0, T ]; Cω,r(B2δ;Kd))
with ‖f‖L1(Cω,r) ≤ η, ϕ ∈ Cω,r(B2δ;Kd), t ∈ [0, T ] and p ∈ Bδ,

ϕ (x(t; f, p)) = ϕ(p) +

+∞∑
j=1

∫
∆j(t)

(f(τ1) · · · f(τj))(ϕ)(p) dτ, (5.9)

where the sum converges absolutely. In particular,

x(t; f, p) = p+

+∞∑
j=1

∫
∆j(t)

(f(τ1) · · · f(τj))(Idd)(p) dτ. (5.10)

Proof. Let η := min{δ/2, r/10}. By Lemma 3.18, x(t; f, p) is well de�ned for t ∈ [0, T ], p ∈ Bδ
and belongs to B2δ. Moreover, by Lemma 3.12, we have, for every j ∈ N∗∫

∆j(t)

|(f(τ1) · · · f(τj))(ϕ)(p)| dτ ≤ j!
(

5

r

)j
· ‖f‖

j

j!
|||ϕ|||r , (5.11)

where ‖f‖ := ‖f‖L1((0,t);Cω,r), which proves the absolute convergence because the right-hand side
is bounded by 2−j |||ϕ|||r. Eventually, we deduce from (4.11) and Lemma 3.12 that∣∣∣∣∣∣ϕ (x(t; f, p))−

M−1∑
j=0

∫
∆j(t)

(f(τ1) · · · f(τj))(ϕ)(p) dτ

∣∣∣∣∣∣ ≤ 2−M |||ϕ|||r , (5.12)

which proves (5.9).

5.2 Magnus expansion in the usual setting

5.2.1 Equality for nilpotent systems

The goal of this section is to prove that the Magnus expansion is an exact expansion for regular
vector �elds generating a nilpotent Lie algebra (see Proposition 5.6).

If the vector �elds are analytic in space, a simple proof can be given (see e.g. [66, Remark A.1]
for the case of the CBHD formula), with the following steps. First, by density, one can assume that
the dynamic depends analytically on time. Then, the maps t 7→ x(t) and t 7→ eZM (t) are analytic.
Because of the nilpotency assumption, ZM = ZM ′ for every M

′ ≥ M and estimate (4.12) proves
that both functions have the same Taylor expansion at t = 0, and are thus equal.

For non-analytic vector �elds, the proof is much more intricate. A sketch of proof is brie�y
suggested in [4, Proposition 2.4]. In this paragraph, we write the proof completely. The di�culty
is to formulate the question in the nilpotent Lie algebra generated by the vector �elds, in order to
conclude with the universal property of free nilpotent Lie algebras (Lemma 2.7).

To that end, we start with the following statement.

Lemma 5.5. Let a be given by (2.8), M ∈ N∗, ZM (t) := LogM{a}(t) with the notation of
De�nition 2.23. Then for every t ∈ R, the following equality holds in NM+1(X)

M−1∑
n=0

(−1)n

(n+ 1)!
adnZM (t)(ŻM (t)) = a(t), (5.13)

where ZM (t) belongs to the space ⊕
r∈J1,MK

L(X)r which is identi�ed with NM+1(X) as a vector space.
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Proof. The canonical surjection σM+1 : L(X) → NM+1(X) is an homomorphism of Lie alge-
bras. Applying this homomorphism to (2.16), where z(t) = Log∞{a}(t) thanks to Theorem 2.27,
proves (5.13).

Proposition 5.6. Let M ∈ N∗. There exists ηM > 0 such that, for every T, δ > 0 and every
time-varying vector �eld f : [0, T ]→ C∞(B4δ;Kd) such that L(f([0, T ])) is nilpotent with index at
most M + 1 and f ∈ L1((0, T ); CM (B4δ;Kd)) with

‖f‖L1((0,T );CM ) + ‖f‖ML1((0,T );CM ) ≤ ηMδ, (5.14)

then, for each p ∈ Bδ and t ∈ [0, T ], one has x(t; f, p) = eZM (t,f)(p) where ZM (t, f) := LogM{f}(t)
is the vector �eld de�ned in De�nition 2.23.

Proof. Let M ∈ N∗. By De�nition 2.23 and Lemma 3.15, there exists ηM > 0 such that,

‖ZM (t, f)‖C1 ≤
1

ηM

(
‖f‖L1(CM ) + ‖f‖ML1(CM )

)
. (5.15)

In particular, for every p ∈ Bδ, eZM (t,f)(p) is well-de�ned thanks to Eq. (5.14).

Step 1: Proof for f(t, x) =
∑q
j=1 aj(t)fj(x) with q ∈ N∗, aj ∈ C∞([0, T ];K) and fj ∈ C∞c (Kd;Kd).

By uniqueness in the Cauchy-Lipschitz theorem, it is su�cient to prove that for every t ∈ [0, T ]
and p ∈ Bδ,

d

dt
(eZM (t,f)(p)) = f

(
t, eZM (t,f)(p)

)
. (5.16)

By De�nition 2.23, the map (t, p) 7→ ZM (t, f)(p) belongs to C∞([0, T ] × B4δ;Kd). Thanks to the
nilpotency assumption, adMZM (t,f)(ZM (τ, f)) = 0 on B4δ for every t, τ ∈ [0, T ]. Thus Lemma 3.27
yields

d

dt

(
eZM (t,f)(p)

)
=

M∑
k=0

(−1)k

(k + 1)!
adkZM (t,f)

(
ŻM (t, f)

)(
eZM (t,f)(p)

)
. (5.17)

Let Λ : NM+1(X) → L(f1, . . . , fq) be the homomorphism of nilpotent Lie algebras such that
Λ(Xj) = fj for j = 1, . . . , q. By applying Λ to the equality (5.13), we obtain that the right-hand
side of the above equality is f(t, eZM (t,f)(p)).

Step 2: Proof for a general time-dependent vector �eld f . We apply Step 1 to a sequence fn of
simple functions, taking values in f([0, T ]), converging towards f in L1((0, T ); CM (B4δ;Kd)). We
get the conclusion by passing to the limit in both sides, using the fourth item of Lemma 3.18.

5.2.2 Convergence for linear systems

In this paragraph, we consider linear systems of the form (5.5). Since the Magnus expansion was
designed for linear systems, its convergence in this context has received much attention. Depending
on the exact convergence notion that one considers and on the way one groups terms, di�erent
su�cient conditions for the convergence can be derived. In [97], T‖A‖L∞(0,T ) ≤ 1 is shown to be
a su�cient condition for convergence on [0, T ] thanks to a careful estimate of the combinatorial
terms. In [83], ‖A‖L1(0,T ) < π is shown to be a su�cient condition for convergence using complex
analysis.

We give below a short elementary proof with a sub-optimal constant, for the sake of com-
pleteness and because it will be used in the sequel. Let ‖ · ‖ be a sub-multiplicative norm on
Md(K).
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Proposition 5.7. Let T > 0 and A ∈ L1((0, T );Md(K)) such that ‖A‖L1(0,T ) <
1
4 . For each

t ∈ [0, T ],

Z∞(t) :=

+∞∑
r=1

1

r

r∑
m=1

(−1)m−1

m

∑
r∈Nmr

∫
∆r(t)

[· · · [A(τ1), A(τ2)], . . . A(τr)] dτ (5.18)

is well de�ned inMd(K) and, for every p ∈ Kd, x(t;A, p) = e−Z∞(t)p, where the brackets refer to
commutators of matrices, i.e. [A,B] = AB −BA.

Proof. Step 1: Absolute convergence of Z∞(t). Let r ∈ N∗. For every m ∈ J1, rK and r ∈ Nmr ,∫
∆r(t)

‖[· · · [A(τ1), A(τ2)], . . . A(τr)]‖ dτ

≤
∫

∆r(t)

2r‖A(τ1)‖ . . . ‖A(τr)‖dτ ≤ 2r
(∫ t

0

‖A(τ)‖ dτ

)r
.

(5.19)

Moreover, recalling the de�nition of (2.25), |Nmr | =
(
r−1
m−1

)
and

∑r
m=1

(
r−1
m−1

)
= 2r−1. Thus,

+∞∑
r=1

1

r

r∑
m=1

1

m

∑
r∈Nmr

∫
∆r(t)

‖[· · · [A(τ1), A(τ2)], . . . A(τr)]‖ dτ ≤
+∞∑
r=1

(4‖A‖L1)
r
<∞. (5.20)

Step 2: Formula for the solution L ∈ C1([0, t];Md(K)) of{
L′(τ) = L(τ)A(τ)

L(0) = Idd.
(5.21)

By working as in the proof of Proposition 5.3, we obtain

L(t) = Idd +

+∞∑
r=1

∫
∆r(t)

A(τ1) · · ·A(τr) dτ (5.22)

where the series converges absolutely. Moreover, we have∥∥∥∥∥
+∞∑
r=1

∫
∆r(t)

A(τ1) · · ·A(τr) dτ

∥∥∥∥∥ ≤
+∞∑
r=1

‖A‖rL1

r!
< e

1
4 − 1 < 1. (5.23)

Thus

log (L(t)) =

+∞∑
m=1

(−1)m

m

(
+∞∑
r=1

∫
∆r(t)

A(τ1) · · ·A(τr) dτ

)m
(5.24)

is well de�ned inMd(K) and L(t) = elog(L(t)). By applying Corollary 4.4 with A = A1 =Md(K),
we get log(L(t)) = Z∞(t).

Step 3: Conclusion. The resolvent R(τ) associated to the linear system ẋ = A(τ)x with initial
condition at τ = 0 is R(τ) = L(τ)−1. Thus x(t) = R(t)p = e−Z∞(t)p.

Remark 5.8. For X,Y ∈ Md(K) such that ‖X‖ + ‖Y ‖ < 1
8 , the previous statement implies the

convergence of the CBHD formula, yielding a matrix Z∞ such that eXeY = eZ∞ . Some authors
have investigated the optimal convergence domain in di�erent contexts for the CBHD formula.
Such a domain sometimes depends on the summation process (i.e. the way terms are grouped
together) and the exact question one asks (existence of a logarithm, absolute summability of the
series, convergence of the remainder, etc.). Better su�cient conditions than ours can be found
for instance in [18], for instance, ‖X‖ + ‖Y ‖ < ln 2

2 . We refer to [16] for a nice survey of the
convergence questions regarding the CBHD formula.
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Remark 5.9. The smallness assumption (on time or on the matrices) is in general necessary, both
for the CBHD formula (see [16, Example 2.3] or [103, Section II]) and for the Magnus expansion
(see [83], where the authors also prove that, although the condition ‖A‖L1(0,T ) < π is not necessary
for convergence, there exists A with ‖A‖L1(0,T ) = π for which the Magnus series at time π does
not converge).

5.2.3 Divergence for arbitrarily small analytic vector �elds

The convergence of Magnus expansions is deeply linked with the convergence of the CBHD series.
For analytic vector �elds, it is expected that both series diverge (see e.g. [4, p.1671] or [97, p.335] for
statements without examples). Some authors nevertheless suggested that, despite the divergence
of the series, the �ows could converge for analytic vector �elds (see [97, p.335] and [71, p.241]).

In this paragraph, we give explicit counter-examples to the convergence, even in the weak
sense of the �ows, for arbitrarily small analytic vector �elds, of both the CBHD series and the
Magnus expansion. Similarly to counter-examples concerning the convergence of the CBHD series
for large matrices (see e.g. [16, Theorem 2.5]), our construction relies on the choice of generators for
which many brackets vanish thanks to their particular structure, and the remaining non-vanishing
brackets are associated with coordinates of the �rst kind involving Bernoulli numbers.

Proposition 5.10. There exists δ > 0 and f0, f1 ∈ Cω(Bδ;R2) such that,

∀M ∈ N,∃CM , εM > 0,∀ε ∈ [0, εM ],
∣∣∣eεf0eεf1(0)− eCBHDM (εf1,εf0)(0)

∣∣∣ ≤ CMεM+1, (5.25)

where CBHDM (εf1, εf0) is de�ned in Corollary 4.3, but, simultaneously, for every ε > 0,

lim
M→+∞

|CBHDM (εf1, εf0)(0)| = +∞ (5.26)

and
lim

M→+∞

∣∣∣eεf0eεf1(0)− eCBHDM (εf1,εf0)(0)
∣∣∣ = +∞. (5.27)

Proof. Let f0, f1 as in Remark 3.17. For these vector �elds, estimate (5.25) comes from Corol-
lary 4.3. Due to their structure, the only non vanishing brackets are those containing f1 at most
once. Therefore, formula (2.63) of Corollary 2.39 yields, for M ≥ 1,

CBHDM (εf1, εf0) = εf0 +

M−1∑
k=0

Bk
k!
εk+1 adkf0(f1). (5.28)

Hence, using (3.27),
CBHDM (εf1, εf0)(x) = εe1 + εΘε

M (x1)e2, (5.29)

where we introduce, for q ∈ R,

Θε
M (q) :=

M−1∑
k=0

Bkε
k(1− q)−k−1. (5.30)

In particular,
|CBHDM (εf1, εf0)(0)| ≥ |εΘε

M (0)| . (5.31)

Since the odd Bernoulli numbers except B1 are zero, when M = 2M ′ + 2 with M ′ ≥ 1, Θε
2M ′+2 =

Θε
2M ′+1. Then,

Θε
2M ′+1(q) =

1

1− q
− ε

2(1− q)2
+

M ′∑
k=1

B2kε
2k(1− q)−2k−1. (5.32)
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In particular, using (B.5),

Θε
2M ′+1(0) = 1− ε

2
+

M ′∑
k=1

B2kε
2k = 1− ε

2
+

M ′∑
k=1

(−1)k+1 2(2k)!

(2π)2k
ζ(2k)ε2k. (5.33)

Thus, for every �xed ε > 0, |Θε
M (0)| → +∞ when M → +∞, because it involves a sum of the

form
∑M ′

k=1 ak where |ak+1|/|ak| → +∞ when k → +∞. Using (5.31), this proves (5.26).
For p ∈ R2 close enough to the origin, one can also compute the �ow eCBHDM (εf1,εf0)(p), which

is y(1) where y is the solution to the ODE y(0) = p and

ẏ1(s) = ε and ẏ2(s) = εΘε
M (y1(s)) . (5.34)

Solving successively for y1 then y2 yields y1(s) = p1 + sε and

y2(s) = p2 +

∫ y1(s)

y1(0)

Θε
M (h) dh. (5.35)

Thus,

eCBHDM (εf1,εf0)(p) = (p1 + ε)e1 +

(
p2 +

∫ p1+ε

p1

Θε
M (h) dh

)
e2. (5.36)

In particular,

eCBHDM (εf1,εf0)(0) = εe1 +

(∫ ε

0

Θε
M (h) dh

)
e2. (5.37)

When M = 2M ′ + 2 with M ′ ≥ 1, using (5.32), we get

eCBHDM (εf1,εf0)(0) = εe1 +

− ln(1− ε)− ε

2

(
1

1− ε
− 1

)
+

M ′∑
k=1

B2k

2k
ε2k

(
1

(1− ε)2k
− 1

) e2.

(5.38)
Hence, for the same reason as above, the �ow satis�es |eCBHDM (εf1,εf0)(0)| → +∞ whenM → +∞,
which proves (5.27).

Remark 5.11. If one sees (x1, x2) as (q, p) in an Hamiltonian setting, one checks that the vector
�elds de�ned in (3.26) and used in this counter-example are associated with the Hamiltonians
H0(q, p) := p and H1(q, p) := ln(1 − q). Therefore, assuming an Hamiltonian structure on the
considered vector �elds does not provide enough structure to yield convergence.

One could wonder if assuming even more structure on the dynamics, for example assuming that
it is time-reversible, prevents the construction of such counter-examples.

Open problem 5.12. Do there exist Hamiltonians H0 and H1 on R2d, which are time-reversible
(i.e. satisfy Hi(q, p) = Hi(q,−p) for every q, p ∈ Rd), locally real-analytic near zero and for which
the convergence of the CBHD series fails as in Proposition 5.10?

The counter-example of Proposition 5.10 for the convergence of the CBHD series allows to build
counter-examples to the convergence of the Magnus expansion which blow up instantly, despite
analytic regularity in both time and space.

Proposition 5.13. There exist T, δ > 0 and f ∈ Cω([0, T ] × Bδ;R2) such that, for every ε > 0
and t ∈ (0, T ],

lim
M→+∞

|ZM (t, εf)(0)| = +∞ (5.39)

and
lim

M→+∞

∣∣∣x(t; εf, 0)− eZM (t,εf)(0)
∣∣∣ = +∞, (5.40)

where x is the solution to ẋ(t) = εf(t, x(t)) with x(0) = 0 and ZM (t, εf) = LogM{εf}(t).
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Proof. Let T = 1. We de�ne f(t, x) := f0(x)+ tf1(x), where f0 and f1 are de�ned in Remark 3.17.
Similarly as for the previous construction, only Lie brackets involving f1 at most once are non-
vanishing. Moreover, the coordinates of the �rst kind associated with the controls a0(t) = 1 and
a1(t) = t have been computed in Example 2.40. Hence, recalling (3.27), we have

ZM (t, εf) = εte1 +

M−1∑
k=0

εk+1 (−1)k+1tk+2

(k + 1)!
Bk+1

k!

(1− x1)k+1
e2. (5.41)

Proceeding along the same lines as in the proof of Proposition 5.10 allows to conclude that both
ZM (t, εf)(0) and eZM (t,ε)(0) diverge when M → +∞.

5.3 Magnus expansion in the interaction picture

5.3.1 Nilpotent systems

For ODEs of the form (4.33), the starting point of the interaction picture is to factorize the �ow
of f0. Hence, the roles of f0 and f1 are asymmetric. One can expect that, under the assumption
that Lie brackets of f0 and f1 containing at least M + 1 times f1 identically vanish, the Magnus
expansion in the interaction picture should yield an equality of the form

x(t; f0 + f1, p) = eZM (t,f0,f1)etf0p, (5.42)

where ZM (t, f0, f1) is de�ned in Proposition 4.8. We prove in this paragraph that it is indeed the
case, when f0 and f1 are analytic. However, contrary to the case of the usual Magnus expansion
(see Section 5.2.1), we give examples highlighting the fact that the analyticity assumption cannot
be removed, which is quite surprising but stems from the mixing induced by pushforwards.

We therefore start with the following de�nition.

De�nition 5.14 (Semi-nilpotent family of vector �elds). Let Ω be an open subset of Kd. Let
F ⊂ C∞(Ω;Kd), f0 ∈ C∞(Ω;Kd) and M ∈ N∗. We say that the family of vector �elds F is
semi-nilpotent of index M with respect to f0 if every bracket of elements of F ∪ {f0} involving
M elements of F vanishes identically on Ω and M is the smallest positive integer for which this
property holds.

Remark 5.15. Some authors (see e.g. [62, Section 3]) refer to this situation by saying that L(S1)
is nilpotent of index M , where S1 := {adkf0(f); f ∈ F , k ∈ N}. Both de�nitions are equivalent,
thanks to the Jacobi identity for Lie brackets.

Proposition 5.16. Let T, δ > 0. Let M ∈ N. Let f0 ∈ C∞(B4δ;Kd) with T‖f0‖C0 ≤ δ. There
exists η > 0 such that, for every f1 : [0, T ] → C∞(B4δ;Kd) with f1 ∈ L1([0, T ]; CM+1(B4δ;Kd))
and ‖f1‖L1(CM ) ≤ η, the following family is well-de�ned

G := {Φ0(−t)∗f1(t); t ∈ [0, T ]} ⊂ C∞(Bδ;Kd). (5.43)

and, assuming moreover that G is nilpotent of index M + 1, then, for each t ∈ [0, T ] and p ∈ Bδ,
the solution to (4.33) satis�es (5.42).

Proof. Let t > 0. As in the proof of Proposition 4.8, we introduce the new variable y(s) :=
Φ0(t − s, x(s)). Then ẏ(s) = gt(s, y(s)), where gt is de�ned in (4.34). Thanks to Lemma 3.24,
gt(s) = Φ0(t)∗Φ0(−s)∗f1(s). Thanks to the assumption and to Lemma 3.25, the family {gt(s); s ∈
[0, t]} is nilpotent of index M + 1. Thus, by Proposition 5.6, y(t) = eZM (t,f0,f1)y(0). Since
x(t) = y(t) and y(0) = Φ0(t, p), this concludes the proof of (5.42).

Lemma 5.17. Let T, δ > 0, F ⊂ C∞(B4δ;Kd), f0 ∈ C∞(B4δ;Kd) such that T‖f0‖C0 ≤ δ. The
following family is well-de�ned

G := {Φ0(−t)∗f ; t ∈ [0, T ], f ∈ F} ⊂ C∞(Bδ;Kd). (5.44)
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Assume that the family F is semi-nilpotent of index M with respect to f0 and that there exists
r > 0 such that F ∪ {f0} ⊂ Cω,r(Bδ;Kd). Then G is nilpotent of index M .

Proof. For t ∈ [0, T ] and f ∈ F , equation (3.49) of Lemma 3.26 implies that

Φ0(−t)∗f =

+∞∑
k=0

tk

k!
adkf0(f) (5.45)

and that the series converges absolutely in CM (Bδ;Kd) (in particular). Hence, if t1, . . . , tM ∈ [0, T ]
and f1, . . . fM ∈ F , the bracket

[Φ0(−tM )∗fM ,[· · · [Φ0(−t2)∗f2,Φ0(−t1)∗f1] · · · ]]

=
∑

k1,...kM∈N

tk11 · · · t
kM
M

k1! · · · kM !
[adkMf0 (fM ), [· · · [adk2f0 (f2), adk1f0 (f1)] · · · ]] (5.46)

vanishes thanks to the assumption and the absolute convergence of the sums. The same is true for
every other bracket structure, which proves that G is nilpotent of index M .

Corollary 5.18. Let T, δ, r > 0. Let f0 ∈ Cω,r(B4δ;Kd) such that T‖f0‖C0 ≤ δ and f1 ∈
L1([0, T ]; Cω,r(B4δ;Kd)). Assume moreover that F := {f1(t, ·); t ∈ [0, T ]} is semi-nilpotent of
index M+1 with respect to f0. Then, for each t ∈ [0, T ] and p ∈ Bδ, the solution to (4.33) satis�es
(5.42), where ZM (t, f0, f1) is de�ned in Proposition 4.8.

Proof. This corollary is a direct consequence of Proposition 5.16 and Lemma 5.17.

The analyticity assumption in Lemma 5.17 is necessary, as illustrated by the following counter-
example for smooth functions.

Example 5.19. We consider smooth vector �elds on R3. Let χ ∈ C∞(R;R) with χ ≡ 0 on R−
and χ(x) > 0 for x > 0. Let f0 and F := {f1, f2} where

f0(x) := e2, (5.47)

f1(x) := χ(x2)x1e3, (5.48)

f2(x) := χ(−x2)e1. (5.49)

Heuristically, f1 and f2 commute because they have disjoint (touching) supports, but the �ow of f0

involved in (5.44) mixes these supports for every positive time. This is possible only because χ is
not analytic.

First, we check that F is semi-nilpotent of order 2 with respect to f0. Indeed, for every j ∈ N,

adjf0(f1)(x) = χ(j)(x2)x1e3, (5.50)

adjf0(f2)(x) = (−1)jχ(j)(−x2)e1. (5.51)

Thus, for j, k ∈ N, [adjf0(f1), adkf0(f1)] (resp. [adjf0(f2), adkf0(f2)]) vanishes because both vector �elds
are multiples of e3 but independent of x3 (resp. multiples of e1 but independent of x1). Moreover,

[adjf0(f1), adkf0(f2)](x) = −(−1)kχ(k)(−x2)χ(j)(x2)e3 = 0, (5.52)

because the supports of χ(·) and χ(−·) only touch at x2 = 0 where all derivatives vanish.
Second, let us check however that the family G de�ned in (5.44) is not nilpotent of index 2.

Indeed, for t ≥ 0 and x ∈ R3, Φ0(t)(x) = x + te2. Thus, for f ∈ C∞(R3;R3), (Φ0(−t)∗f)(x) =
f(x+ te2). Therefore, for every T > 0, G is well-de�ned on R3. Moreover,

[f2, (Φ0(−t)∗f1)](x) = χ(−x2)χ(x2 + t)e3. (5.53)

In particular, for every ε > 0, [f2, (Φ0(−2ε)∗f1)](−εe2) = χ(ε)2e3 6= 0, which prevents the family
G from being nilpotent of index 2 (even locally in time and space).
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The analyticity assumption in Corollary 5.18 is also necessary, as illustrated by the following
counter-example for smooth functions, inspired by the previous one.

Example 5.20. We consider smooth vector �elds on R3. Let χ ∈ C∞(R;R) with χ ≡ 0 on R−
and χ(x) > 0 for x > 0. Let f0(x) := e2 and f1(t, x) := f1(x) (independent of time) with

f1(x) := 2χ(1)(x2)x1e3 + χ(1)(−x2)e1. (5.54)

For j ∈ N, one has

adjf0(f1)(x) = ∂j2f1(x) = 2χ(j+1)(x2)x1e3 + (−1)jχ(j+1)(−x2)e1. (5.55)

Thus, for every j1, j2 ∈ N,

[adj1f0(f1), adj2f0(f1)](x) = 2(−1)j1χ(j1+1)(−x2)χ(j2+1)(x2)e3

− 2(−1)j2χ(j2+1)(−x2)χ(j1+1)(x2)e3 = 0
(5.56)

because the supports of χ(·) and χ(−·) only touch at x2 = 0, where all derivatives vanish. Hence
each bracket of f0 and f1 involving f1 at least twice vanishes identically on R3. Thus, for every
T > 0, the family F := {f1(t, ·); t ∈ [0, T ]} = {f1} is semi-nilpotent of index 2 with respect to f0.
Let us prove that, despite this property, equality (5.42) with M = 1 fails.

Computation of the state. We solve ẋ = f0(x) + f1(x) for some initial data p. Solving the
ODE successively for x2, x1 and x3, we obtain

x1(t) = p1 + χ(−p2)− χ(−p2 − t), (5.57)

x2(t) = p2 + t, (5.58)

x3(t) = p3 + 2 (χ(p2 + t)− χ(p2)) (p1 + χ(−p2)). (5.59)

In particular, with t = 2ε and p = −εe2, x(2ε; f0 + f1,−εe2) = (χ(ε), ε, 2χ(ε)2).

Computation of the �ow. We compute eZ1(t,f0,f1)etf0(p) for some initial data p. One has
Φ0(τ, q) = q + τe2. Hence, in particular (Φ0(τ)∗f1)(q) = f1(q − τe2). Moreover Z1(t, f0, f1)(q) =∫ t

0
gt(s, q) ds where gt(s, q) = (Φ0(t− s)∗f1)(q). Hence gt(s, q) = f1(q − (t− s)e2) and

Z1(t, f0, f1)(q) =

∫ t

0

f1(q + (s− t)e2) ds

= 2q1(χ(q2)− χ(q2 − t))e3 + (χ(−q2 + t)− χ(−q2))e1.

(5.60)

Then eZ1(t,f0,f1)etf0p = eZ1(t,f0,f1)(p + te2) is y(1) where y is the solution to y(0) = p + te2 and
ẏ(s) = Z1(t, f0, f1)(y(s)). Solving the ODE successively for y2, y1 and y3, we obtain

y1(s) = p1 + s(χ(−p2)− χ(−p2 − t)), (5.61)

y2(s) = p2 + t, (5.62)

y3(s) = p3 + (χ(p2 + t)− χ(p2))
(
2p1s+ s2(χ(−p2)− χ(−p2 − t))

)
. (5.63)

In particular, with with t = 2ε and p = −εe2, eZ1(2ε,f0,f1)e2εf0(−εe2) = (χ(ε), ε, χ(ε)2). Thus, for
every ε > 0, ∣∣∣x(2ε, f0 + f1,−εe2)− eZ1(2ε,f0,f1)e2εf0(−εe2)

∣∣∣ = χ2(ε) > 0. (5.64)
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5.3.2 Convergence for linear systems

Let T > 0. In this paragraph, we study linear systems of the form

ẋ(t) = (H0 +H1(t))x(t) and x(0) = p, (5.65)

where H0 ∈Md(K) and H1 ∈ L1((0, T );Md(K)). Let ‖·‖ be a sub-multiplicative norm onMd(K).

Proposition 5.21. Let T > 0, H0 ∈Md(K) and H1 ∈ L1((0, T );Md(K)) such that ‖H1‖L1(0,T ) <
e−2T‖H0‖

8 . Then, for each t ∈ [0, T ] and p ∈ Kd the solution to (5.65) satis�es x(t) = e−Z∞(t)etH0p
where Z∞(t) is de�ned by (5.18) with

At(τ) = e(t−τ)H0H1(τ)e(τ−t)H0 =

+∞∑
k=0

(t− τ)k

k!
adkH0

(H1). (5.66)

Proof. The function y : τ ∈ [0, t] 7→ e(t−τ)H0x(τ) satis�es y′(τ) = A(τ), y(0) = etH0p. Thus, by
Proposition 5.7, y(t) = e−Z∞(t)etH0p, which gives the conclusion because y(t) = x(t).

Remark 5.22. The Magnus expansion in the usual setting (Proposition 5.7), when applied di-
rectly to A(t) = H0 + H1(t) requires a smallness assumption on T‖H0‖ (through the condition
‖A‖L1(0,T ) <

1
8), even for small perturbations H1. On the contrary, the Magnus expansion in the

interaction picture (Proposition 5.21) holds even when T‖H0‖ is large, provided that the perturba-
tion H1 is small enough.

Remark 5.23. More generally, in [4, p. 1671], the authors consider the formal power series
expressing the chronological logarithm of two �ows, associated to two non-autonomous vector �elds.
They explain that, when the vector �elds take values in a Banach algebra, and one of them is small
enough, then this series converges. Proposition 5.21 is an illustration.

5.3.3 Divergence for arbitrary small analytic vector �elds

Generally speaking, since, as illustrated in Section 5.2.3, the Magnus expansion does not converge
for analytic vector �elds, one cannot expect that the Magnus expansion in interaction picture
converges for analytic vector �elds.

For instance, if f0 = 0, or if, for some a ∈ J1, dK, f0(x) is a linear combination of e1, . . . , ea with
coe�cients depending only on x1, . . . , xa and f1(t, x) is a linear combination of ea+1, . . . ed, with
coe�cients depending only on xa+1, . . . xd, then the vector �eld gt(τ) = Φ0(t − τ)∗f1(τ) de�ned
in (4.34) and involved in the Magnus in the interaction picture formula satis�es gt(τ) = f1(τ).

Hence, each counter-example to the convergence of the usual Magnus expansion also yields
counter-examples to the convergence of the Magnus expansion in the interaction picture.

More generally, in [4, p. 1671], the authors consider the formal power series expressing the
chronological logarithm of two �ows, associated to two non-autonomous vector �elds. They claim
that, even for analytic vector �elds, this series does not converge in general. The counter examples
of the present article illustrate this assertion.

5.4 Sussmann's in�nite product expansion

5.4.1 Equality for nilpotent systems

In this section, we study a�ne systems of the form (4.50).

Proposition 5.24. Let B be a Hall basis of L(X) and (ξb)b∈B be the associated coordinates of
the second kind. For every M ∈ N∗, there exist ηM > 0 such that the following property holds.
Let T, δ > 0, fi ∈ C∞(B3δ;Kd) and ui ∈ L1((0, T );K) for i ∈ I. Assume that the Lie algebra
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generated by the fi for i ∈ I is nilpotent of index at most M + 1. Then, under the smallness
assumption (4.51), for each t ∈ [0, T ] and p ∈ Bδ,

x(t; f, u, p) =
→
Π

b∈BJ1,MK

eξb(t,u)fbp. (5.67)

Proof. The proof strategy is the same as for Proposition 4.13. We apply the second statement of
Lemma 3.26 instead of the �rst one, which gives εj = 0 for each j ∈ J0, k + 1K. The smallness
assumption guarantees that all �ows are well-de�ned.

5.4.2 Bilinear systems

Let T > 0. In this paragraph, we study the convergence of Sussmann's in�nite product expansion
for bilinear systems of the form

ẋ(t) =

(∑
i∈I

ui(t)Ai

)
x(t) and x(0) = p (5.68)

where Ai ∈ Md(K) are time-invariant and ui ∈ L1((0, T );K). When well-de�ned, its solution is
denoted x(t;A, u, p). Local convergence is proved in Proposition 5.27 while an example illustrating
the lack of global convergence is proposed in Proposition 5.28.

Local convergence. The main goal of this paragraph is to prove Proposition 5.27 which as-
serts that Sussmann's in�nite product expansion for system (5.68) converges locally (i.e. for small
matrices, small controls or small time).

Before proving this result, we need a de�nition for an ordered in�nite product (given in De�-
nition 5.25 below) and a su�cient condition for its convergence (given in Lemma 5.26 below).

De�ning the ordered product of a family of matrices indexed by a length-compatible Hall basis
is straightforward, because there exists an indexation of the family by N which is compatible with
the order induced by the Hall basis (since it does not involve in�nite segments). Hence, one is
brought back to the classical case of a sequence of products and usual de�nitions and convergence
criteria can be used.

For arbitrary Hall bases (in the generalized sense of De�nition 2.54), the situation is more
intricate, due to the potential in�nite segments which can prevent the order of the basis from
being compatible with the order of natural integers. For example, in the Lyndon basis of L(X) for
X = {X0, X1} with X0 < X1, adkX0

(X1) < (X0, X1) for all k ≥ 2, so there is an in�nite segment
before (X0, X1). This problem already appears for a product which would be indexed by N2 with
the lexicographic order

(0, 0) < (0, 1) < (0, 2) < · · · < (1, 0) < (1, 1) < (1, 2) < · · · < (2, 0) < · · · (5.69)

We therefore propose a natural de�nition and a basic su�cient condition for convergence based
on absolute convergence. In what follows, ‖ · ‖ is a submultiplicative norm on Md(K) such that
‖Id‖ = 1, for instance a subordinated norm.

De�nition 5.25. Let J be a totally ordered set and (Aj)j∈J matrices ofMd(K). We say that the
ordered product of the eAj over J converges when there exists M ∈ Md(K) such that, for every
ε > 0, there exists a �nite subset J0 of J such that, for every �nite subset J1 of J containing J0,
one has ∥∥∥∥M − ←

Π
j∈J1

eAj
∥∥∥∥ ≤ ε. (5.70)

When such an M exists, it is unique and we write

M =
←
Π
j∈J

eAj . (5.71)
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The following natural convergence criteria also appears in [68].

Lemma 5.26. Let J be a totally ordered set and (Aj)j∈J matrices ofMd(K) such that∑
j∈J
‖Aj‖ < +∞. (5.72)

Then the ordered product of the eAj over J converges in the sense of De�nition 5.25.

Proof. Let α be the left-hand side of (5.72).

Step 1: Basic claims. We start with straightforward claims. First, for every j ∈ J , one has

‖eAj − Id‖ ≤ e‖Aj‖ − 1 ≤ ‖Aj‖e‖Aj‖ ≤ ‖Aj‖eα. (5.73)

Second, for every �nite part J ′ ⊂ J , one has∥∥∥∥ ←Πj∈J′eAj
∥∥∥∥ ≤ Π

j∈J′
e‖Aj‖ ≤ eα. (5.74)

Third, for every �nite parts J0 ⊂ J1 ⊂ J , one has∥∥∥∥ ←Πj∈J1eAj − ←
Π
j∈J0

eAj
∥∥∥∥ ≤ e3α

∑
j∈J1\J0

‖Aj‖. (5.75)

Indeed, writing J1 \ J0 = {j1 > · · · > jn}, we have the following telescopic decomposition

←
Π
j∈J1

eAj −
←
Π
j∈J0

eAj =

n∑
k=1

←
Π
j∈J0
j>jk

eAj
(
eAjk − Id

) ←
Π
j∈J1
j<jk

eAj , (5.76)

which, together with the two �rst claims, proves estimate (5.75).

Step 2: Construction of a limit. We construct a possible limit. For each n ≥ 2, let

Jn :=

{
j ∈ J, ‖Aj‖ >

1

n

}
. (5.77)

Thanks to assumption (5.72), the sets Jn are �nite and, moreover,

εn :=
∑

j∈J\Jn

‖Aj‖ → 0. (5.78)

Now, for each n ≥ 2, we de�ne the matrix

Mn :=
←
Π

j∈Jn
eAj . (5.79)

This de�nes a Cauchy sequence in the complete spaceMd(K). Indeed, for every n < p, thanks to
estimate (5.75), one has

‖Mn −Mp‖ ≤ e3αεn. (5.80)

Hence, there exists M ∈ Md(K) towards which the sequence (Mn)n≥2 converges. By letting
[p→∞] in the previous inequality we obtain, for every n ≥ 2

‖Mn −M‖ ≤ e3αεn. (5.81)

Step 3: Proof of convergence. We now prove that the ordered product of the eAj over J converges
to M in the sense of De�nition 5.25. Let ε > 0. Let n ≥ 2 large enough such that e3αεn < ε/2.
For every �nite set J1 containing Jn, condition (5.70) holds thanks to (5.81) and (5.75).
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Proposition 5.27. Let B be a Hall basis of L(X), (ξb)b∈B be the coordinates of the second kind
associated to B. There exists η > 0 such that the following property holds. Let Ai ∈ Md(K) for
i ∈ I. For b ∈ B, we de�ne the matrix Ab := Λ(b) where Λ : L(X)→Mn(K) is the homomorphism
of Lie algebras such that Λ(Xi) = Ai for i ∈ I (see Lemma 2.7). Let T > 0 and ui ∈ L1((0, T );K)
for i ∈ I. Assume that

‖u‖L1(0,T )‖A‖ ≤ η. (5.82)

Then, for each t ∈ [0, T ] and p ∈ Kd, the ordered product of the eξb(t,u)Ab over b ∈ B converges.
Moreover, for every p ∈ Kd,

x(t;A, u, p) =
→
Π
b∈B

eξb(t,u)Abp. (5.83)

Proof. Let η := 1/(8|I|2). Let T > 0. Below, the variable t implicitly belongs to [0, T ]. To simplify
the notations we write ξb(t) instead of ξb(t, u).

Step 1: Convergence of the ordered product of the eξb(t)Ab over b ∈ B. One obtains, by induction
on |b|, that for every b ∈ B, ‖Ab‖ ≤ (2‖A‖)|b|. Thus, recalling (2.101),

‖ξb(t)Ab‖ ≤
(
2‖A‖‖u‖L1(0,t)

)|b|
. (5.84)

Taking into account that |B`| ≤ |I|`, we obtain, using (5.82),

∑
b∈B

‖ξb(t)Ab‖ ≤
+∞∑
`=1

(
2|I|‖A‖‖u‖L1(0,t)

)` ≤ 1 (5.85)

and Lemma 5.26 gives the conclusion.

Step 2: Estimates along a Lazard elimination in BJ1,MK. Let M ∈ N∗. We adopt the notations
b1, . . . , bk+1 and Y0, . . . , Yk+1 of De�nition 2.53 and we de�ne x0(t) := x(t) and, for j ∈ J1, k + 1K

xj(t) := e−ξbj (t,u)Abj · · · e−ξb1 (t,u)Ab1x(t). (5.86)

We prove by induction on j ∈ J0, k + 1K that

(Hj) :

{
ẋj(t) =

(∑
b∈BJ1,MK∩Yj ξ̇b(t)Ab + εj(t)

)
xj(t),

xj(0) = p,
(5.87)

where ε0 = 0 and

‖εj(t)‖ ≤
(
M |I|‖A‖|u(t)|(4|I|‖A‖‖u‖L1(0,t))

M + ‖εj−1(t)‖
)
e2‖ξbj (t)Abj ‖. (5.88)

First, (H0) holds with ε0 = 0 because x0(t) = x(t) and ξ̇Xi(t) = ui(t) for i ∈ I. Let j ∈ J1, k+1K
and assume that (Hj−1) holds. We deduce from the de�nition of xj that

xj(t) = e−ξbj (t)Abj xj−1(t) (5.89)

and from (Hj−1) that

ẋj(t) = −ξ̇bj (t)Abjxj(t) + e−ξbj (t)Abj

 ∑
b∈BJ1,MK∩Yj−1

ξ̇b(t)Ab + εj−1(t)

 eξbj (t)Abj xj(t)

=

 ∑
b∈BJ1,MK∩Yj−1\{bj}

ξ̇b(t)e
−ξbj (t)AbjAbe

ξbj (t)Abj + ε̃j−1(t)

xj(t)

(5.90)
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where ε̃j−1(t) := e−ξbj (t)Abj εj−1(t)eξbj (t)Abj satis�es,

‖ε̃j−1(t)‖ ≤ ‖εj−1(t)‖e2‖ξbj (t)Abj ‖. (5.91)

For b ∈ BJ1,MK ∩ Yj−1 \ {bj}, let h(b) ∈ N∗ be the maximal integer such that (4.65) holds and

εjb(t) := ξ̇b(t)e
−ξbj (t)AbjAbe

ξbj (t)Abj −
h(b)−1∑
m=0

ξ̇b(t)
ξmbj (t)

m!
Aadmbj

(b). (5.92)

Then, by de�nition of Yj , (Hj) holds with εj de�ned by (4.69). Using the fourth statement of
Lemma 3.26, (2.100), (5.84), we obtain

‖εjb(t)‖ ≤ |ξ̇b(t)|
(2‖ξbj (t)Abj‖)h(b)

h(b)!
‖Ab‖e2‖ξbj (t)Abj ‖

≤ |b||u(t)|‖u‖|b|−1
L1 · (2‖A‖‖u‖L1)h(b)|bj |2h(b)

h(b)!
· (2‖A‖)|b|

≤M |u(t)|(4‖A‖‖u‖L1)M‖A‖,

(5.93)

taking into account M + 1 ≤ |b|+ h(b)|bj | ≤ 2M and ‖A‖‖u‖L1 ≤ 1.
We deduce from (4.69), (5.91), (5.93) and the relation |BJ1,MK| ≤ |I|M+1 that (5.88) holds.

Step 4: Proof of an estimate on the ordered product of the eξb(t)Ab over BJ1,MK. We deduce
from (5.88), (5.85) and the relation k + 1 = |BJ1,MK| ≤ |I|M+1 that

‖εk+1(t)‖ ≤ eM‖A‖|I|2|u(t)|(4|I|2‖A‖‖u‖L1(0,t))
M . (5.94)

Hence, using (5.82),

‖εk+1‖L1(0,t) ≤
e

4
(4|I|2‖A‖‖u‖L1(0,t))

M+1 ≤ 2−M . (5.95)

We deduce from (Hk+1), (2.93) and Grönwall's lemma that∣∣∣∣ ←
Π

b∈BJ1,MK

e−ξb(t,u)Abx(t)− p
∣∣∣∣ = |xk+1(t)− p| ≤

∫ t

0

|εk+1(τ)xk+1(τ)|dτ ≤ 2−Me|p| (5.96)

Multiplying both sides by the �nite product
→
Π

b∈BJ1,MK

eξb(t,u)Ab gives

∣∣∣∣x(t)−
→
Π

b∈BJ1,MK

eξb(t,u)Abp

∣∣∣∣ ≤ e22−M |p| (5.97)

Passing to the limit [M →∞] in the previous estimate gives (5.83).

Lack of global convergence. The goal of this paragraph is to illustrate that the smallness
assumption (5.82) in Proposition 5.27 is necessary because the equality does not hold globally.

Proposition 5.28. Consider the constant control u : t ∈ R+ 7→ (1, 1) ∈ R2.

1. There exist a Hall basis B of L({X1, X2}) and a subsequence (bk)k∈N of B such that

∃γ > 0,∀k ∈ N, t ≥ 0, ξbk(t, u) ≥
(
t

γ

)|bk|
(5.98)

63



2. There exists A1, A2 ∈ M3(C) and t > γ such that (eξbk (t,u)Abk )k∈N does not converge to Id3

inM3(C). Thus, the ordered product of the eξb(t,u)Ab over B does not converge inM3(C).

Proof. For the �rst point we adapt an argument due to Sussmann in [100, pages 333-335]. We
de�ne by induction two sequences (b1k)k∈N and (b2k)k∈N of Br({X1, X2}) by

b10 = X1, b20 = X2, b1k+1 := [b2k, [b
1
k, b

2
k]], b2k+1 := [b1k, [b

1
k, b

2
k]]. (5.99)

There exists a Hall basis of L({X1, X2}), whose order, denoted <, is compatible with length and
such that, for every k ∈ N, b1k, b2k ∈ B and b1k < b2k. It su�ces to choose, on the brackets with length
3k, some order such that b1k < b2k. Then, automatically, [b1k, b

2
k] ∈ B and thus b1k+1, b

2
k+1 ∈ B. Such

a process indeed allows to construct a Hall basis (see Remark 2.55), provided that one chooses an
arbitrary length-compatible order on all other brackets.

To lighten the notations, we write ξb(t), instead of ξb(t, u). We have ξX1
(t) = ξX2

(t) = t. An
easy induction shows that, for every b ∈ B, ξ̇b(t) = t|b|−1/αb, where αb ∈ N∗. The constants αb can
be computed recursively: αX1 = αX2 = 1 and, if b = admb1(b2) with m ∈ N∗, b1 < b2 and λ(b2) < b1
then αb = αmb1 |b1|

mm!αb2 . In particular, for every k ∈ N,

αb1k+1
= αb1kα

2
b2k
|b2k||b1k| = αb1kα

2
b2k

32k, αb2k+1
= 2α2

b1k
αb2k |b

1
k|2 = 2α2

b1k
αb2k32k. (5.100)

Let βk = max{αb1k , αb2k}. Then, β0 = 1 and, by the previous relations,

βk+1 ≤ 32k+1β3
k. (5.101)

Thus θk := 3−k ln(βk) satis�es θ0 = 0 and

θk+1 ≤ θk + (2k + 1)3−(k+1) ln(3), (5.102)

which leads to θk ≤ η :=
∑+∞
j=1(2j + 1)3−(j+1) ln(3) i.e. βk ≤ (γ′)3k where γ′ = eη. Therefore, for

every k ∈ N and j ∈ {1, 2} we have

∣∣∣ξbjk(t)
∣∣∣ ≥ 1

|bjk|

(
t

γ′

)|bjk|
. (5.103)

Let γ > γ′ be such that, for every k ∈ N, 1
3k

(
γ
γ′

)3k

≥ 1. Then (5.98) holds, for instance with

bk = b1k.

For the second point, let, for j ∈ {1, 2, 3}, Fj ∈ M3(R) be the matrix of the linear map
x ∈ R3 7→ ej ∧ x. Then [F1, F2] = F3, [F2, F3] = F1 and [F3, F1] = F2. In particular

[F2, [F1, F2]] = F1, [F1, [F1, F2]] = −F2. (5.104)

We consider A1 = ei
π
6 F1 and A2 = ei

π
6 F2 in M3(C). One easily proves by induction on k ∈ N∗

that Ab1k = (−1)k+1iF1 and Ab2k = −iF2. We have, for every k ∈ N and t ∈ R

eξbk (t)Abk =

1 0 0
0 cosh(ξbk(t)) i(−1)k sinh(ξbk(t))
0 i(−1)k+1 sinh(ξbk(t)) cosh(ξbk(t))

 (5.105)

By (5.98), this sequence of matrices diverges for every t > γ.
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5.4.3 Investigation for analytic vector �elds

In this paragraph, we study a�ne systems (4.50). Our goal is to explain the di�culty of the
convergence question for Sussmann's in�nite product for arbitrary analytic vector �elds. First, we
state a de�nition (De�nition 5.29) and a su�cient condition for the convergence (Lemma 5.30), in
the same spirit as for matrices. Then we show that they do not provide convergence for general
analytic vector �elds and we formulate an open problem.

De�nition 5.29. Let J be a totally ordered set, δ > 0 and (fj)j∈J a family of C1(B2δ;Kd). We say
that the ordered product of the efj over J converges uniformly on Bδ if there exists g ∈ C0(Bδ;Kd)
such that, for every ε > 0, there exists a �nite subset J0 of J such that, for every �nite subset J1

of J containing J0, and for every p ∈ Bδ one has∥∥∥∥g(p)−
←
Π
j∈J1

efjp

∥∥∥∥ ≤ ε. (5.106)

When such a g exists, it is unique and we write

g =
←
Π
j∈J

efj . (5.107)

Lemma 5.30. Let J be a totally ordered set, δ > 0 and (fj)j∈J a family of C1(B2δ;Kd) such that∑
j∈J
‖fj‖C0 < δ and α :=

∑
j∈J
‖fj‖C1 <∞. (5.108)

Then the ordered product of the efj over J converges uniformly on Bδ and is eα-Lipschitz.

Proof. We proceed as in the proof of Lemma 5.26.

Step 1: Basic claims. First, for every �nite subset J ′ ⊂ J and p ∈ Kd with |p| ≤ 2δ−
∑
j∈J′ ‖fj‖C0 ,

then
←
Π
j∈J′

efjp ∈ B2δ and

∥∥∥∥∂p [ ←Πj∈J′efjp
]∥∥∥∥ ≤ Π

j∈J′
e‖f
′
j‖C0 ≤ eα (5.109)

because of Lemma 3.21 and the chain rule.
Second, for every �nite parts J0 ⊂ J1 ⊂ J and p ∈ Kd with |p| ≤ 2δ −

∑
j∈J1 ‖fj‖C0 one has∥∥∥∥ ←Πj∈J1efjp− ←

Π
j∈J0

efjp

∥∥∥∥ ≤ eα ∑
j∈J1\J0

‖fj‖C0 . (5.110)

Indeed, writing J1 \ J0 = {j1 > · · · > jn}, we have the following telescopic decomposition

←
Π
j∈J1

efjp−
←
Π
j∈J0

efjp =

n∑
k=1


 ←

Π
j∈J0
j>jk

efj

 efjk

 ←
Π
j∈J1
j<jk

efj

 p−

 ←
Π
j∈J0
j>jk

efj

 ←
Π
j∈J1
j<jk

efj

 p

 . (5.111)

For k ∈ J1, nK, let xk :=
←
Π
j∈J1
j<jk

efjp which is a point in B2δ−‖fjk‖C0 . By (5.109) and (3.34), the term

with index k in the previous sum is bounded by∣∣∣∣∣∣
 ←

Π
j∈J0
j>jk

efj

 efjkxk −

 ←
Π
j∈J0
j>jk

efj

xk

∣∣∣∣∣∣ ≤ eα ∣∣efjkxk − xk∣∣ ≤ eα‖fjk‖C0 . (5.112)

which, together with (5.111) proves (5.110).
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Step 2: Construction of a limit. We construct a possible limit. For each n ≥ 2, let

Jn :=

{
j ∈ J, ‖fj‖C1 >

1

n

}
. (5.113)

Thanks to assumption (5.108), the sets Jn are �nite and, moreover,

εn :=
∑

j∈J\Jn

‖fj‖C1 → 0. (5.114)

Now, for each n ≥ 2, we de�ne gn ∈ C0(Bδ;Kd) by

gn(p) :=
←
Π

j∈Jn
efjp. (5.115)

This de�nes a Cauchy sequence in the complete space C0(Bδ;Kd). Indeed, for every n < n′ and
p ∈ Bδ, thanks to estimate (5.110), one has

|gn(p)− gn′(p)| ≤ eαεn. (5.116)

Hence, there exists g ∈ C0(Bδ;Kd) towards which the sequence (gn)n≥2 uniformly converges on
Bδ. By (5.109), gn is eα-Lipschitz on Bδ for every n ∈ N, thus so is g. By letting [n′ →∞] in the
previous inequality we obtain, for every n ≥ 2 and p ∈ Bδ

|gn(p)− g(p)| ≤ eαεn. (5.117)

Step 3: Proof of convergence. We now prove that the ordered product of the efj over J converges
uniformly to g on Bδ in the sense of De�nition 5.29. Let ε > 0. Let n ≥ 2 large enough such that
eαεn < ε/2. For every �nite set J1 containing Jn, condition (5.106) holds thanks to (5.117) and
(5.110).

Now, let us emphasize that, by using estimates on ξb(t, u) and fb depending only on the length
of the Lie bracket b, it is not possible to prove the convergence of

∑
|ξb(t, u)|‖fb‖C1 , where the

sum ranges over b ∈ B, an arbitrary Hall basis of L(X).
On the one hand, one easily proves by induction on |b| that, for every b ∈ B and u ∈ L∞

with ‖u‖L∞ ≤ 1, there holds |ξb(t, u)| ≤ t|b|. However, by the �rst statement of Proposition 5.28,
when X contains at least two indeterminates, there are Hall bases (even compatible with length)
for which one may not expect an upper bound, function of |b| alone, that behaves better than
geometrically. Hence, we should consider the t|b| bound to be sharp, when one restricts to bounds
depending only on |b|.

On the other hand, if the vector �elds are locally analytic, there exists r, δ > 0 such that
fi ∈ Cω,r(Bδ;Kd) for i ∈ I. By (3.25) with r1 ← r and r2 ← r/e for every b ∈ B,

‖fb‖C1 ≤
(

1 +
e

r

)
(|b| − 1)!

(
9

r

)|b|−1

F |b|, (5.118)

where F := maxi∈I |||fi|||r. However, by Remark 3.17, the dependence in (|b|−1)! is optimal (again,
if one restricts to bounds involving only |b|).

We deduce from the previous estimates that there exists C > 0 such that

|ξb(t, u)|‖fb‖C1 ≤ (Ct)|b||b|!. (5.119)

This bound does not provide the convergence of the considered series. Indeed, for every t > 0,
(Ct)|b||b|!→ +∞ as |b| → +∞, so an argument depending on |b| alone doesn't even prove that the
general term tends to zero.

To prove the convergence of Sussmann's in�nite product expansion, one therefore either needs
a better su�cient condition than Lemma 5.30 or one needs to prove estimates on ξb and fb that
take into account the structure of the bracket b, and not only its length.
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Open problem 5.31. Does Sussmann's in�nite product converge for analytic vector �elds?

In Section 6.4, we prove the convergence (for analytic vector �elds) of some in�nite subproducts,
by applying Lemma 5.30 with estimates on ξb that depend on the structure of b.

6 Error estimates for control systems

In this section, we consider control-a�ne systems with drift, i.e. of the form

ẋ(t) = f0(x(t)) +

q∑
i=1

ui(t)fi(x(t)) and x(0) = p, (6.1)

where f0, . . . , fq are vector �elds and u = (u1, . . . , uq) ∈ L1(R;Kq). When well-de�ned, the solution
is denoted x(t; f, u, p) where f = (f0, . . . , fq) and u = (u1, . . . , uq).

We prove error formulas at every order in ‖u‖L1 for the Chen-Fliess expansion, the Magnus
expansion in the interaction picture and for Sussmann's in�nite product expansion. In each case,
the error formula involves an in�nite sum or an in�nite product which turns out to be well-de�ned.
We also propose a counter-example for the validity of such error estimates for the usual Magnus
expansion, for which the in�nite sum involved is not well-de�ned.

6.1 Chen-Fliess expansion

The convergence of the Chen-Fliess series, for control a�ne systems (6.1) with analytic vector
�elds, under a smallness assumption on t and a uniform bound on u, is a classical result, see for
instance [36, Proposition 3.37] or [99, Proposition 4.3]. In this section we prove the convergence
of the Chen-Fliess expansion, (Proposition 6.1) under a smallness assumption on ‖u‖L1 . We also
generalize the Chen-Fliess expansion to nonlinear systems (not necessarily a�ne) with scalar input
(Proposition 6.2), because this fact will be used in Section 7.2.

In the following statement q ∈ N∗, I = J0, qK. For a word σ = σ1 · · ·σ` ∈ I∗, with ` ∈ N∗,
σ1, . . . , σ` ∈ I, and vector �elds f0, f1, . . . , fq, we denote by fσ the di�erential operator fσ1 · · · fσ`
(with the notations of Remark 3.10). For t > 0 and u = (u1, . . . , uq) ∈ L1(0, t), the quantity

∫ t
0
uσ

is de�ned in (2.13), with u0 = 1.

Proposition 6.1. Let δ, r > 0 and f0, f1, . . . , fq ∈ Cω,r(B2δ;Kd). There exists η > 0 such that,
for every ϕ ∈ Cω,r(B2δ;K), t ∈ [0, η] and u ∈ L1((0, t);Kq) such that ‖u‖L1 ≤ η and p ∈ Bδ, then

ϕ(x(t; f, u, p)) =
∑
σ∈I∗

(∫ t

0

uσ

)
(fσϕ) (p) (6.2)

where the sum converges absolutely, uniformly with respect to (t, u, p). Moreover, for every ϕ ∈
Cω,r(B2δ;K), there exists C > 0 such that, for everyM ∈ N, p ∈ Bδ, t ∈ [0, η] and u ∈ L1((0, t);Kq)
such that ‖u‖L1 ≤ η, then∣∣∣∣∣∣ϕ(x(t; f, u, p))−

∑
n(σ)≤M

(∫ t

0

uσ

)
(fσϕ) (p)

∣∣∣∣∣∣ ≤ (C‖u‖L1)
M+1

, (6.3)

where the sum ranges over words σ ∈ I∗ such that the number of non-zero letters is at most M .

Proof. For σ = σ1 · · ·σ` ∈ I∗, let n(σ) be the number of non zero letters in σ, i.e. n(σ) = |{i ∈
J1, `K;σi 6= 0}| and n0(σ) be the number of occurrences of the letter zero in σ, i.e. n0(σ) = |{i ∈
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J1, `K;σi = 0}|. Then ` = n(σ) + n0(σ). One proves by induction on the length ` of σ ∈ I∗ the
following estimate, for every t > 0 and u ∈ L1((0, t);Kq),∣∣∣∣(∫ t

0

uσ

)∣∣∣∣ ≤ ‖u‖n(σ)
L1(0,t)

n(σ)!

tn0(σ)

n0(σ)!
. (6.4)

Let ‖f‖ =
∑q
i=0 |||fi|||r, η = r/(10‖f‖), ϕ ∈ Cω,r(B2δ;K), t ∈ [0, η] and u ∈ L1((0, t);Kq) such

that ‖u‖L1(0,t) =
∑q
i=1 ‖ui‖L1(0,t) ≤ η and p ∈ Bδ. Using (6.4) and (3.20), we get∣∣∣∣(∫ t

0

uσ

)
(fσϕ) (p)

∣∣∣∣ ≤ ‖u‖n(σ)
L1(0,t)t

n0(σ)

(
10

r
‖f‖

)`
|||ϕ|||r (6.5)

which proves the absolute convergence of the sum in (6.2), uniformly with respect to (t, u, p)
The proof of the equality in (6.2) consists in applying (5.9) to f(t, x) = f0(x)+

∑q
i=1 ui(t)fi(x).

In particular the sum involved in (6.3) is the Taylor expansion of order M of u 7→ ϕ(x(t; f, u, p))
at u = 0. By adapting Lemma 3.19 to a�ne systems with L1 controls, we get the real-analyticity
of the map u 7→ ϕ(x(t; f, u, p)) on BL1(0,t)(0, η) uniformly with respect to (t, p) ∈ [0, η]×Bδ which
ends the proof of (6.3).

The last statement of this section focuses on nonlinear control systems with scalar input

ẋ = f(x, u) (6.6)

where f : Kd × K → Kd, When well-de�ned, the solution of this ODE, with initial condition
x(0) = p is denoted x(t; f, u, p). We introduce the notation∫ t

0

uk :=

∫
∆n(t)

u(τ1)k1 · · ·u(τn)kn dτ (6.7)

for every t > 0, u ∈ L1((0, t);K), and every multi-index k = (k1, . . . , kn) ∈ Nn with n ∈ N∗.

Proposition 6.2. Let r, δ, δu > 0, f ∈ Cω,r(B2δ × [−δu, δu];Kd) and fk := 1
k!∂

k
uf(·, 0) for every

k ∈ N. There exists T ∗, η > 0 such that, for every ϕ ∈ Cω,r(B2δ;K), t ∈ [0, T ∗], u ∈ L∞((0, t);K)
with ‖u‖L∞ ≤ η and p ∈ Bδ, with the notations of Remark 3.10,

ϕ (x(t; f, u, p)) =
∑
n∈N
k∈Nn

(∫ t

0

uk
)

(fk1 · · · fkn)(ϕ)(p), (6.8)

where the sum converges absolutely, uniformly with respect to (t, u, p). Moreover, for every ϕ ∈
Cω,r(B2δ;K), there exists C > 0 such that, for every M ∈ N, t ∈ [0, T ∗], u ∈ L∞((0, t);K) with
‖u‖L∞ ≤ η and p ∈ Bδ∣∣∣∣∣∣∣∣ϕ (x(t; f, u, p))−

∑
n∈N

k∈Nn,|k|≤M

(∫ t

0

uk
)

(fk1 · · · fkn)(ϕ)(p)

∣∣∣∣∣∣∣∣ ≤ (C‖u‖L∞)
M+1

(6.9)

where the sum is taken over n ∈ N and k = (k1, . . . , kn) ∈ Nn such that k1 + · · ·+ kn ≤M .

Proof. We de�ne r′ = r/e,

T ∗ := min

{
r′

10 |||f |||r
,

δ

‖f‖C0

}
, η := min

{
δu,

r

10

}
. (6.10)
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Let ϕ ∈ Cω,r(B2δ;K), t ∈ [0, T ∗], u ∈ L∞((0, t);Kq) with ‖u‖L∞ ≤ η and p ∈ Bδ. Then
x(t; f, u, p) ∈ B2δ.

Step 1: Uniform absolute convergence of the sum in (6.8). Using the iterated version of (3.12) and
(3.1), we get, for every k ∈ N,

|||fk|||r′ ≤
1

k!

(
k

r − r′

)k
|||f |||r ≤

(
e

r − r′

)k
|||f |||r ≤

(
5

r

)k
|||f |||r . (6.11)

For every n ∈ N∗ and k1, . . . , kn ∈ N, we have, using (3.20) and (6.11)

|(fk1 · · · fkn)(ϕ)(p)| ≤ n!

(
5

r′

)n
|||fkn |||r′ · · · |||fk1 |||r′ |||ϕ|||r′

≤ n!

(
5

r′

)n(
5

r

)k1+···+kn
|||f |||nr |||ϕ|||r′

(6.12)

and ∣∣∣∣∫ t

0

uk
∣∣∣∣ =

∣∣∣∣∣
∫

∆n(t)

u(τ1)k1 · · ·u(τn)kn dτ

∣∣∣∣∣ ≤ tn

n!
‖u‖k1+···+kn

L∞ . (6.13)

By de�nition of T ∗ and η we have 5t
r′ |||f |||r ≤

1
2 and 5

r‖u‖L∞ ≤
1
2 , which gives the conclusion.

Step 2: Equality in (6.8) and error formula (6.9). We have f(·, u) =
∑+∞
j=0 u

jfj with convergence

in Cω,r′(B2δ;Kd) uniformly with respect to u ∈ BKq (0, η). Thus, the equality (6.8) is a consequence
of Fubini theorem and (5.9) applied to (t, x) 7→ f(x, u(t)). In particular the �nite sum involved
in (6.9) is the Talyor expansion of order M of u 7→ ϕ(x(t; f, u, p)) at u = 0. By Lemma 3.19
u 7→ ϕ(x(t; f, u, p)) is analytic on BL∞(0,T∗)(0, η) uniformly with respect to (t, p) ∈ [0, T ∗] × Bδ,
which ends the proof of (6.9).

6.2 Magnus expansion in the usual setting: a counter-example

Contrary to other expansions, the usual Magnus expansion does not yield, in general, error es-
timates involving the size of the control. Indeed, the in�nite segments which would need to be
summed do not converge, even for analytic vector �elds, arbitrarily small times and even when the
drift vector �eld vanishes at the origin. The following statement illustrates that even the series
de�ning the terms which are linear with respect to the control does not converge.

Proposition 6.3. Let d := 2. There exists T, δ > 0, f0, f1 ∈ Cω,δ(Bδ;Kd) with f0(0) = 0 and a
control u ∈ C∞([0, T ]), such that, if one de�nes, for t ∈ (0, T ), the sequence of vector �elds

Fn(t) :=

n∑
k=0

ζadkX0
(X1)(t, u) adkf0(f1), (6.14)

then, for each δ∗ ∈ (0, δ) and t ∈ (0, T ), Fn(t) ∈ C∞(Bδ;Kd) does not converge in C0(Bδ∗ ;Kd).

Proof. We de�ne the following vector �elds for x ∈ R2 with |x| < 1,

f0(x) := x2e1 and f1(x) :=
1

1− x1
e2. (6.15)

Then,

adkf0(f1)(x) = xk2∂
k
1

(
1

1− x1

)
e2 =

k!xk2
(1− x1)k+1

e2. (6.16)

We now choose the particular control u(t) := t for t ∈ (0, T ) with T = 1 (the simpler choice,
u(t) := 1, would not produce a diverging counter-example). Using the expression (2.65) from
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Example 2.40 for the coordinates of the �rst kind along the brackets adkX0
(X1) for this particular

control, we obtain, for t ∈ (0, T ),

Fn(t)(x) =

n∑
k=0

(−1)k+1tk+2Bk+1

k + 1

xk2
(1− x1)k+1

. (6.17)

Thus, for each t, δ∗ > 0, the sequence of vector �elds Fn(t) does not converge in C0(Bδ∗ ;Kd), since
for every x2 6= 0, the general term of the series does not tend to zero because of the asymptotic
(B.5) for Bernoulli numbers.

6.3 Magnus expansion in the interaction picture

The following statement is an immediate consequence of Proposition 4.8. It illustrates that, con-
trary to the classical Magnus expansion, our �Magnus in the interaction picture� expansion allows
to obtain error estimates involving the size of the control, at any order.

Proposition 6.4. Let M ∈ N, δ > 0, T > 0, f0 ∈ CM
2+1(B5δ;Kd) with T‖f0‖C0 ≤ δ and

f1, . . . , fq ∈ CM
2

(B5δ;Kd). There exists γ,C > 0 such that, for every u = (u1, . . . , uq) ∈
L1((0, T );K) with

‖u‖L1 ≤ γ (6.18)

p ∈ Bδ and t ∈ [0, γ] then ∣∣∣x(t; f, u, p)− eZM (t,f,u)etf0p
∣∣∣ ≤ C‖u‖M+1

L1(0,t). (6.19)

In (6.19), ZM (t, f, u) (where implicitly f = (f0, f1, . . . , fq) and u = (u1, . . . , uq)) is a nota-
tion for the vector �eld ZM (t, f0,

∑q
i=1 uifi), de�ned in De�nition 4.7 for the a�ne perturbation

f](t, x) =
∑q
i=1 ui(t)fi(x). This notation is chosen by analogy with Theorem 2.41.

6.4 Sussmann's in�nite product expansion

The goal of this section is to prove Proposition 6.8 which states that, despite the di�culties men-
tioned in Section 5.4.3 concerning the full convergence of Sussmann's in�nite product expansion,
some (in�nite) subproducts of it do converge and yield error estimates at every order in the size
of the control for control-a�ne systems with drift of the form (6.1).

We start with an elementary remark (Lemma 6.5) on the structure of brackets of a Hall set
which allows to prove nice asymmetric estimates on the associated coordinates of the second kind
(see Lemma 6.6). The following result proves that, when one tries to factorize the lateral X0 factors
outside of a bracket of a Hall set B ⊂ Br(X) with X0 ∈ X, these X0 factors cannot alternate sides
more than once.

Lemma 6.5. Let q ∈ N∗, X = {X0, X1, . . . , Xq} and B ⊂ Br(X) be a Hall set. For each b ∈ B,
there exist m,m ∈ N such that

b = admX0
admX0

(b∗), (6.20)

where admX0
denotes the iterated right bracketing m times by X0 and b∗ ∈ B is such that either

b∗ ∈ X or b = (b1, b2) with b1 6= X0 and b2 6= X0.

Proof. The key point is that, by the third condition in De�nition 2.54, for each b ∈ B \X, λ(b) < b.
Let b ∈ B. We disjunct cases.

� If b ∈ X or (λ(b) 6= X0 and µ(b) 6= X0), then (6.20) holds with m = m = 0 and b∗ = b.

� If λ(b) = X0, there exists a unique m ∈ N∗ and b̃ ∈ B such that b = admX0
(b̃) where b̃ ∈ X or

λ(b̃) 6= X0.
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� If b̃ ∈ X or µ(b̃) 6= X0, (6.20) holds with m = 0 and b∗ = b̃.

� Otherwise, there exists a unique m ∈ N∗ and b∗ ∈ B such that b̃ = admX0
(b∗) where

b∗ ∈ X or µ(b∗) 6= X0.

* If b∗ ∈ X, (6.20) holds.

* Else µ(b∗) 6= X0. one has λ(b∗) < b∗ as recalled. Moreover, since m ≥ 1,
(b∗, X0) ∈ B so b∗ < X0 (by the second point of De�nition 2.54). Hence λ(b∗) < X0.
So we also have λ(b∗) 6= X0 and (6.20) holds.

� If µ(b) = X0, there exists a unique m ∈ N∗ and b̃ ∈ B such that b = admX0
(b̃) where b̃ ∈ X or

µ(b̃) 6= X0.

� If b̃ ∈ X, (6.20) holds with m = 0 and b∗ = b̃.

� Else µ(b̃) 6= X0. Since m ≥ 1, (b̃, X0) ∈ B, so b̃ < X0. Since λ(b̃) < b̃, this proves
λ(b̃) 6= X0. So (6.20) holds with m = 0 and b∗ = b̃.

Hence, the decomposition (6.20) always holds.

We now turn to asymmetric estimates for the coordinates of the second kind, which, contrary
to Lemma 2.63, isolate the role of X0 associated with the implicit control u0 = 1.

Lemma 6.6. Let q ∈ N∗, X = {X0, X1, . . . , Xq}, B ⊂ Br(X) a Hall set and (ξb)b∈B the associated
coordinates of the second kind. For every k ∈ N∗, there exists ck ≥ 1 such that, for each b ∈ B
with n(b) = k, T > 0, u ∈ L1((0, T );Kq) and t ∈ [0, T ],

|ξb(t, 1, u)| ≤ ‖u‖kL1(0,t)

(ckt)
n0(b)

n0(b)!
(6.21)

and

|ξ̇b(t; 1, u)| ≤

k|u(t)|‖u‖k−1
L1(0,t) when n0(b) = 0,

‖u‖k−1
L1(0,t)

(
kt|u(t)|+ n0(b)‖u‖L1(0,t)

)
ck(ckt)

n0(b)−1

n0(b)! when n0(b) > 0.
(6.22)

Proof. In this proof, we write ξb(t) instead of ξb(t, 1, u) by concision for the value at time t ∈ [0, T ]
of the coordinate of the second kind associated with the control u0 = 1 and ui for i ∈ J1, qK. First,
when (6.22) holds on [0, T ], then so does (6.21) by time-integration (with the same constant).
Hence, we only need to prove the bound on the time derivative of the coordinates.

Step 1: Persistence of the estimates by right bracketing with X0. Let k ∈ N∗ and b ∈ B such that
n(b) = k. We assume that (6.21) holds and we prove that b̃ := (b,X0) satis�es both estimates with
the same constant. Since ξ̇X0

(t) = 1, we have

|ξ̇b̃(t)| = |ξb(t)ξ̇X0
(t)| ≤ ‖u‖kL1(0,t)

(ckt)
n0(b)

n0(b)!
. (6.23)

Hence b̃ satis�es (6.22) (and (6.21) by integration) because ck ≥ 1 and n0(b̃) > 0.

Step 2: Persistence of the estimates by arbitrary long left bracketing with X0, up to ck ← 2ck. Let
k ∈ N∗ and b ∈ B with n(b) = k. We assume that (6.22) holds and we prove that, for everym ∈ N∗,
b̃ := admX0

(b) satis�es both estimates with a constant ck ← 2ck. If n0(b) = 0, it is straightforward
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to check that b̃ satis�es (6.22) with ck ← 1. If n0(b) = 1, we have

|ξ̇b̃(t)| =
1

m!
|ξmX0

(t)ξ̇b(t)|

≤ tm

m!
‖u‖k−1

L1

(
kt|u(t)|+ n0(b)‖u‖L1

)ck(ckt)
n0(b)−1

n0(b)!

≤ ‖u‖k−1
L1

(
kt|u(t)|+ (m+ n0(b))‖u‖L1

)
2m+n0(b)c

n0(b)
k

tm+n0(b)−1

(m+ n0(b))!

≤ ‖u‖k−1
L1

(
kt|u(t)|+ n0(b̃)‖u‖L1

)
(2ck)n0(b̃) t

n0(b̃)−1

n0(b̃)!

(6.24)

because n0(b̃) = m+ n0(b) and ck ≥ 1. So b̃ satis�es (6.22) with a constant ck ← 2ck.

Step 3: Proof of the estimates by induction on k ∈ N∗.

Initialization for k = 1. For i ∈ J1, qK, ξ̇Xi(t) = ui(t) so both estimates are satis�ed with
constant 1 when b ∈ {X1, . . . , Xq}. By Lemma 6.5, Step 1 and Step 2, we deduce that (6.21) and
(6.22) hold for k = 1 with c1 = 2.

Induction (k − 1) → k. Let k ≥ 2 and let us assume that the estimates are proved for every
b ∈ B with n(b) ≤ (k − 1). Let b ∈ B with n(b) = k. By Lemma 6.5, Step 1 and Step 2, we can
assume that b = admb1(b2) with b1, b2 ∈ B, b1 6= X0 and (b2 ∈ X or λ(b2) < b1) and (b2 6= X0 or
m > 1). Assume that b2 6= X0. Then the induction assumption applies to both b1 and b2. Let
k1 := n(b1) and k2 := n(b2). Then k = mk1 + k2, n0(b) = mn0(b1) + n0(b2) ≥ n0(b2). Using the
induction assumption and (3.2) with a← (m+ 1), we obtain, when n0(b2) > 0,∣∣∣ξ̇b(t)∣∣∣ =

∣∣∣∣ 1

m!
ξmb1(t)ξ̇b2(t)

∣∣∣∣
≤ 1

m!

(
‖u‖k1L1

(ck1t)
n0(b1)

n0(b1)!

)m
‖u‖k2−1

L1

(
k2t|u(t)|+ n0(b2)‖u‖L1

)ck2(ck2t)
n0(b2)−1

n0(b2)!

≤ ‖u‖k−1
L1

(
kt|u(t)|+ n0(b)‖u‖L1

)
2mn0(b)c

mn0(b1)
k1

c
n0(b2)
k2

tn0(b)−1

n0(b)!
.

(6.25)

Since m ≤ k, we have the two desired estimates with ck := 2 · 2k max{cj ; j ∈ J1, k − 1K}, where
the �rst factor 2 comes from Step 2. When n0(b2) = 0, the proof is similar and easier. When
b2 = X0, the induction hypothesis applies because m > 1 so n(b1) < n(b) and the proof is
straightforward.

Remark 6.7. The �persistence� of the estimates with respect to left or right bracketing by X0, as
mentioned and derived in Steps 1 and 2 of the proof of Lemma 6.6 might be linked with su�cient
conditions for small-time local controllability which �ignore� the number of leading (or trailing) X0

factors (see [17], [63, Theorem 6] or [73, Theorem 3.7]).

These estimates allow to prove the main result of this section.

Proposition 6.8. Let q ∈ N∗, X = {X0, X1, . . . , Xq}, B a Hall basis of L(X) and (ξb)b∈B the
associated coordinates of the second kind. Let M ∈ N, r, δ > 0, f0, . . . , fq ∈ Cω,r(B4δ;Kd). There
exists η, CM > 0 such that, for every u ∈ L1((0, T );Kq) with T ≤ η and ‖u‖L1(0,T ) ≤ η, the ordered
product of the eξb(t,1,u)fb over the in�nite set B ∩ SM = {b ∈ B;n(b) ≤M} (using De�nition 2.10)
converges uniformly on Bδ and, for each t ∈ [0, T ] and p ∈ Bδ,∣∣∣∣x(t; f, u, p)−

→
Π

b∈B∩SM
eξb(t,1,u)fbp

∣∣∣∣ ≤ CM‖u‖M+1
L1(0,t). (6.26)
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Proof. In this proof, to simplify the notations, we write x(t), ξb(t) and ‖u‖ instead of x(t; f, u, p),
ξb(t, 1, u) and ‖u‖L1(0,t). Let (ck)k∈N∗ be the increasing sequence of constants of Lemma 6.6. We
de�ne

C∗ :=
18 |||f |||r

r
max

k∈J1,2MK
ck, (6.27)

η := min

{
δ

2‖f‖C1
,

min{1, δ}
2C∗(q + 1)M !(1 + r)

}
(6.28)

CM := e2δ(1 + r)(2M)!(q + 1)M+1CM+1
∗ . (6.29)

For t ∈ [0, T ] and u ∈ L1((0, T );Kq) with T ≤ η and ‖u‖ ≤ η, using (6.28),

t‖f0‖C0 +

q∑
i=1

‖ui‖L1(0,t)‖fi‖C0 ≤ η‖f‖C0 ≤ δ. (6.30)

Hence, for each p ∈ Bδ, x(t; f, u, p) ∈ B2δ.

Strategy. Since the product involved in (6.26) is indexed by the in�nite set B ∩ SM , the proof
strategy consists in considering the sequence of �nite products BJ1,LK ∩ SM for L ∈ N∗ and let
L→ +∞. The error between the true solution and the �nite product contains both a term scaling
like ‖u‖M+1 which will persist in the limit and a transitory error term which vanishes as L→ +∞.
Each bracket in b ∈ B is either, not involved at all in the process, involved in the �nal error,
involved in the transitory error term, or involved in the �nite product, depending on L,M, n(b)
and n0(b) as pictured in Fig. 1. In Steps 2, 3 and 4, L ≥ M + 1 is �xed. In Step 5, we take the
limit L→ +∞.

n0(b)

n(b)

M < n(b) ≤ 2M

2M < n(b)

n(b) ≤M and |b| ≤ L

Never part of the process

Part of the �nal error

Finite product Transitory
error

Figure 1: Decomposition of B along the Lazard elimination process for the product on B ∩ SM .

Step 0: Preliminary estimates. First, using estimate (6.22) from Lemma 6.6, for each b ∈ B with
n(b) = k, one has in particular

‖ξ̇b‖L1 ≤ ‖u‖k (ckt)
n0(b)

n0(b)!
. (6.31)

Taking into account that for every m ∈ N∗, |Bm| ≤ (q+1)m and using the analytic estimate (3.25),
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we obtain the following estimate for the terms which can be part of the �nal error∑
b∈B∩(S2M\SM )

‖ξ̇b‖L1‖fb‖C1

≤
2M∑

k=M+1

+∞∑
n0=0

|Bk+n0 |‖u‖k
(ckt)

n0

n0!
(1 + r)

(
9 |||f |||r
r

)k+n0

(k + n0 − 1)!

≤ (1 + r)(2M − 1)!

2M∑
k=M+1

((q + 1)C∗‖u‖)k
+∞∑
n0=0

((q + 1)C∗T )n0

≤ (1 + r)(2M)!(q + 1)M+1CM+1
∗ ‖u‖M+1,

(6.32)

because ‖u‖ ≤ η, T ≤ η and (q+ 1)C∗η ≤ 1
2 . For the terms which can be part of the �nite product

or of the transitory error, there holds similarly∑
b∈B∩SM

‖ξ̇b‖L1‖fb‖C1

≤ T‖f0‖C1 +

M∑
k=1

+∞∑
n0=0

|Bk+n0 |‖u‖k
(ckt)

n0

n0!
(1 + r)

(
9 |||f |||r
r

)k+n0

(k + n0 − 1)!

≤ T‖f0‖C1 + (1 + r)(M − 1)!

M∑
k=1

((q + 1)C∗‖u‖)k
+∞∑
n0=0

((q + 1)C∗T )n0

≤ T‖f0‖C1 + (1 + r)M !(q + 1)C∗‖u‖ ≤ δ.

(6.33)

Step 1: Convergence of the ordered product of the eξb(t)fb over B ∩ SM , uniformly on Bδ, towards
a Lipschitz map. Thanks to (6.33), we have∑

b∈B∩SM

|ξb(t)| ‖fb‖C1 ≤
∑

b∈B∩SM

‖ξ̇b‖L1‖fb‖C1 ≤ δ (6.34)

and Lemma 5.30 gives the conclusion of Step 1.

Step 2: Lazard structure on BJ1,LK∩SM . We use the notations of De�nition 2.53 to describe BJ1,LK.
There exists m ∈ N and an extraction φ such that

BJ1,LK ∩ SM = {bφ(1) < · · · < bφ(m+1)}. (6.35)

Let i ∈ J1,m+ 1K and n = φ(i). By De�nition 2.53, there exists a unique factorization

bφ(i) = bn = ad
jn−1

bn−1
· · · adj1b1(b0) (6.36)

where b0 ∈ X, j1, . . . , jn−1 ∈ N (one just identi�es left and right factors in Br(X)). For every
j ∈ J1, n − 1K \ φ(J1, i − 1K), bj contains at least (L + 1) occurrences of the variables X1, . . . , Xq,
thus it cannot be involved in the factorization of bn. This proves that

bφ(1) ∈ Ỹ0 := X,

bφ(2) ∈ Ỹ1 := {adjbφ(1)(v); j ∈ N, v ∈ Ỹ0 \ {bφ(1)}},

. . .

bφ(m+1) ∈ Ỹm := {adjbφ(m)
(v); j ∈ N, v ∈ Ỹm−1 \ {bφ(m)}},

(6.37)
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BJ1,LK ∩ SM ∩ Ỹm+1 = ∅, (6.38)

where Ỹm+1 := {adjbφ(m+1)
(v); j ∈ N, v ∈ Ỹm \ {bφ(m+1)}}.

Step 3: Proof of estimates along the Lazard elimination on BJ1,LK∩SM . To simplify the notations,
from now on, we write BJ1,LK ∩SM = {b1 < · · · < bm+1} and we use (6.37) and (6.38) with φ = Id.
Let x0(t) := x(t). By (6.34), for every j ∈ J1,m+ 1K,

xj(t) := e−ξbj (t)fbj · · · e−ξb1 (t)fb1x(t) (6.39)

is well-de�ned and belongs to B3δ. The goal of Step 3 is to prove by induction on j ∈ J0,m + 1K
that

(Hj) :

{
ẋj(t) =

∑
b∈BJ1,LK∩SM∩Ỹj ξ̇b(t)fb(xj(t)) + εj(t),

xj(0) = p,
(6.40)

where
‖εj‖L1 ≤ e|ξbj (t)|‖fbj ‖C1‖εj−1‖L1 +

∑
b̃∈Zj

‖ξ̇b̃‖L1‖fb̃‖C0 , (6.41)

where Zj ⊂ (B ∩ S2M ) \ (BJ1,LK ∩ SM ) is de�ned in (6.48).

First (H0) holds with ε0 = 0 because ξ̇X0
(t) = 1 and ξ̇Xi(t) = ui(t) for i ∈ J1, qK. Now, let

j ∈ J1,m+ 1K and assume that (Hj−1) holds. We deduce from the de�nition of xj that

xj(t) = e−ξbj (t)fbj (xj−1(t)) = Φj
(
−ξbj (t), xj−1(t)

)
(6.42)

and thus that

ẋj(t) =
∑

b∈BJ1,LK∩SM∩Ỹj−1\{bj}

ξ̇b(t)
(
Φj
(
−ξbj (t)

)
∗ fb
)

(xj(t)) + ε̃j−1(t), (6.43)

where ε̃j−1(t) = ∂pΦj
(
−ξbj (t), xj−1(t)

)
εj−1(t). We get (Hj) with

εj(t) :=
∑

b∈BJ1,LK∩SM∩Ỹj−1\{bj}

εjb(t) + ε̃j−1(t) (6.44)

where, for every b ∈ BJ1,LK ∩ SM ∩ Ỹj−1 \ {bj},

εjb(t) := ξ̇b(t)
(
Φj
(
−ξbj (t)

)
∗ fb
)

(xj(t))−
h(b)−1∑
k=0

ξ̇b(t)
ξkbj (t)

k!
fadkbj

(b)(xj(t)) (6.45)

where h(b) ∈ N∗ is the maximal integer such that

n(b) + (h(b)− 1)n(bj) ≤M and |b|+ (h(b)− 1)|bj | ≤ L. (6.46)

By (3.47),

|εjb(t)| ≤ |ξ̇b(t)|
|ξbj (t)|h(b)

h(b)!
‖f

ad
h(b)
bj

(b)
‖C0 = |ξ̇b̃(t)|‖fb̃‖C0 , (6.47)

for b̃ := ad
h(b)
bj

(b). Hence, (6.41) holds with

Zj := {ad
h(b)
bj

(b); b ∈ BJ1,LK ∩ SM ∩ Ỹj−1 \ {bj}}. (6.48)

This yields Zj ⊂ (B ∩ S2M ) \ (BJ1,LK ∩ SM ) thanks to (6.46).
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Step 4: Proof of an estimate on the �nite product over BJ1,LK ∩ SM . By (6.41), (6.34) and (6.32),
we have

‖εm+1‖L1 ≤ eδ
∑

b∈B∩(S2M\SM )

‖ξ̇b‖L1‖fb‖C0 + eδ
∑

b∈(B∩SM )\BJ1,LK

‖ξ̇b‖L1‖fb‖C0

≤ e−δCM‖u‖M+1 + oL→+∞(1),

(6.49)

because the series in (6.33) converges. We deduce from (6.40) and (6.38) that∣∣∣∣ ←
Π

b∈BJ1,LK∩SM
e−ξb(t,1,u)fbx(t)− p

∣∣∣∣ = |xm+1(t)− p| ≤ e−δCM‖u‖M+1 + oL→+∞(1) (6.50)

By (6.34), the map
→
Π

b∈BJ1,LK∩SM
e−ξb(t,u)fb is eδ Lipschitz on B3δ. Then, by (6.50),

∣∣∣∣x(t)−
→
Π

b∈BJ1,LK∩SM
e−ξb(t,1,u)fbp

∣∣∣∣ ≤ CM‖u‖M+1 + oL→+∞(1) (6.51)

Step 5: In�nite subproduct limit. By Step 1, the in�nite product over B ∩ SM is well-de�ned. By
letting L→ +∞ in estimate (6.51), we obtain the conclusion of Proposition 6.8.

7 Re�ned error estimates for scalar-input a�ne systems

In this section, we consider scalar-input a�ne systems with drift, i.e. of the form

ẋ(t) = f0(x(t)) + u(t)f1(x(t)) and x(0) = p, (7.1)

where f0, f1 are vector �elds on Kd and u ∈ L1((0, T );K). When well-de�ned, its solution is
denoted x(t; f, u, p). Such systems have been extensively studied in control theory, as toy models
for more complex situations.

The goal of this section is to improve, in this particular framework, the error estimates of the
previous section: the new bound is not expressed in terms of ‖u‖L1 but in terms of the L∞ norm
of the time-primitive of the input, which heuristically corresponds to the W−1,∞ norm of u.

This re�ned estimate is somehow optimal in the scale of Sobolev spaces (as shown by the one
dimensional system ẋ(t) = u(t)) and speci�c to the scalar-input case (see Section 7.5).

Lowering the Sobolev regularity required on the input is of paramount interest for applications
in control theory (see e.g. [14]) and might also be useful for applications to stochastic di�erential
equations where the input is a noise with low regularity (see e.g. [15]).

De�nition 7.1 (Integrated input). Let T > 0 and u ∈ L1((0, T );K). In this section, U always
denotes the time-primitive of u vanishing at zero, i.e. de�ned by U(t) :=

∫ t
0
u(s) ds for t ∈ [0, T ].

7.1 Auxiliary system trick

Enhancing the estimates relies on the following trick which factorizes the dependence of the input
and introduces an auxiliary system involving the time-primitive U of the input (and not u itself).

Proposition 7.2. Let δ > 0, f0, f1 ∈ Cω(B3δ;Kd) and η∗ > 0 small enough so that the two
following maps are well de�ned and (globally) analytic

Φ1 :

{
[−η∗, η∗]×B2δ → B3δ

(τ, q) 7→ eτf1(q)
and F :

{
B2δ × [−η∗, η∗] → Kd

(q, τ) 7→ (Φ1(−τ)∗f0)(q).
(7.2)

Let T > 0 be such that T‖F‖C0 ≤ δ.
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1. For every p ∈ Bδ and U ∈ C0([0, T ];K) with ‖U‖L∞ ≤ η∗, there exists a unique solution
x1 ∈ C1([0, T ];Kd) to {

ẋ1(t) = F (x1(t), U(t)),

x1(0) = p,
(7.3)

denoted x1(t;F,U, p). It takes values in B2δ. Moreover, the map (p, U) 7→ x1(·;F,U, p) is
analytic from Bδ ×BC0[0,T ](0, η

∗) to C1([0, T ];Kd).

2. For every p ∈ Bδ, t ∈ [0, T ] and u ∈ L1((0, T );K) such that ‖U‖L∞ ≤ η∗,

x(t; f, u, p) = Φ1

(
U(t);x1(t;F,U, p)

)
. (7.4)

Proof. The existence of η∗ such that Φ1 and F are well de�ned and globally analytic results from
the third statement of Lemma 3.26. The analytic dependence of x1 with respect to (p, U) is given
by Lemma 3.19. By de�nition of x1, the right-hand side of (7.4) satis�es the same Cauchy problem
as x thus the two functions are equal.

7.2 A new formulation of the Chen-Fliess expansion

The goal of this section is to derive of a new formulation of the Chen-Fliess expansion for scalar-
input a�ne systems (7.1).

Proposition 7.3. Let δ, r > 0 and f0, f1 ∈ Cω,r(B3δ;Kd). There exists η > 0 such that for every
ϕ ∈ Cω,r(B3δ;K), t ∈ [0, η], u ∈ L1((0, t);K) such that ‖U‖L∞ ≤ η and p ∈ Bδ, with the notations
of Remark 3.10,

ϕ(x(t; f, u, p)) =
∑

`∈N,n∈N
k∈Nn

U(t)`

`!k!

(∫ t

0

Uk
)(

f `1(adk1f1 (f0)) · · · (adknf1 (f0))
)

(ϕ)(p) (7.5)

with the notation (6.7), where the sum converges absolutely, uniformly with respect to (t, u, p).
Moreover, for every ϕ ∈ Cω,r(B3δ;K), there exists C > 0 such that, for every M ∈ N∗, t ∈ [0, η],
u ∈ L1((0, t);K) such that ‖U‖L∞ ≤ η and p ∈ Bδ,∣∣∣∣∣∣∣∣ϕ(x(t; f, u, p))−

∑
`∈N,n∈N
`+|k|≤M

U(t)`

`!k!

(∫ t

0

Uk
)(

f `1(adk1f1 (f0)) · · · (adknf1 (f0))
)

(ϕ)(p)

∣∣∣∣∣∣∣∣
≤ CM+1

(
|U(t)|M+1 +

∫ t

0

|U |M+1

) (7.6)

where the sum is taken over ` ∈ N, n ∈ N and k = (k1, . . . , kn) ∈ Nn such that `+k1+· · ·+kn ≤M .

Proof. Let η∗, T, x1 be as in Proposition 7.2, ‖f‖ := |||f0|||r + |||f1|||r and

η := min

{
T, η∗,

δ

‖f‖
,

r

28‖f‖

}
. (7.7)

Let ϕ ∈ Cω,r(B3δ;K), t ∈ [0, η], u ∈ L1((0, t);K) such that ‖U‖L∞ ≤ η and p ∈ Bδ. Then
x1(t;F,U, p) ∈ B2δ and, by (7.4) and (7.7), x(t; f, u, p) ∈ B3δ.

Step 1: Proof of the absolute convergence in (7.5) uniformly with respect to p ∈ Bδ. Let r′ := r/e.
Then, by Lemma 3.16, for every k ∈ N, adkf1(f0) ∈ Cω,r′(B3δ;Kd) and∣∣∣∣∣∣∣∣∣adkf1(f0)

∣∣∣∣∣∣∣∣∣
r′
≤ k!

e

(
9

r

)k
‖f‖k+1. (7.8)
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Thus, by (3.20),∣∣∣(f `1(adk1f1 (f0))· · · (adknf1 (f0))
)

(ϕ)(p)
∣∣∣

≤(n+ `)!

(
5

r′

)n+`

|||f1|||`r′
∣∣∣∣∣∣∣∣∣adk1f1 (f0)

∣∣∣∣∣∣∣∣∣
r′
· · ·
∣∣∣∣∣∣∣∣∣adknf1 (f0)

∣∣∣∣∣∣∣∣∣
r′

≤(n+ `)!

(
14

r

)n+`

‖f‖` k1!

e

(
9

r

)k1
‖f‖k1+1 . . .

kn!

e

(
9

r

)kn
‖f‖kn+1

≤e−n(n+ `)!k1! · · · kn!

(
14‖f‖
r

)n+`+k1+···+kn
.

(7.9)

Moreover, recalling notation (6.7),∣∣∣∣U(t)`

`!k!

∫ t

0

Uk
∣∣∣∣ =

∣∣∣∣∣U(t)`

`!

∫
∆n(t)

U(τ1)k1 · · ·U(τn)kn

k1! · · · kn!
dτ

∣∣∣∣∣ ≤ ‖U‖`+k1+···+kn
L∞

tn

n!

1

`!k1! · · · kn!
. (7.10)

Thus it is su�cient to prove the summability over ` ∈ N, n ∈ N∗, k1, . . . , kn ∈ N of the following
quantity (

t

e

)n
(n+ `)!

n!`!

(
14‖f‖
r

)n+`+k1+···+kn
‖U‖`+k1+···+kn

L∞

≤
(
t

e

)n
2n+`

(
14‖f‖
r

)n+`+k1+···+kn
‖U‖`+k1+···+kn

L∞

≤
(

28t‖f‖
er

)n(
28‖f‖
r
‖U‖L∞

)`+k1+···+kn

(7.11)

which is ensured by (7.7).

Step 2: Proof of (7.5) and (7.6). Applying Lemma 3.22 and Proposition 6.2 we get

ϕ(x(t; f, u, p)) = ϕ
(
eU(t)f1x1(t;F,U, p)

)
=

+∞∑
`=0

U(t)`

`!
f `1ϕ(x1(t;F,U, p))

=

+∞∑
`=0

U(t)`

`!
f `1
∑
n∈N
k∈Nn

1

k!

(∫ t

0

Uk
)(

(adk1f1 (f0)) · · · (adknf1 (f0))
)(
ϕ
)

(p)

(7.12)

The bound proved in Step 1 allows to exchange the di�erential operator f `1 and the second sum,
which proves (7.5). To prove (7.6), one bounds the queue of the series thanks to (7.9) and the
following consequence of Hölder's inequality, valid when `+ |k| ≥ (M + 1)∣∣∣∣∣U(t)`

∫
∆n(t)

U(τ1)k1 · · ·U(τn)kn dτ

∣∣∣∣∣ ≤ C(η)

(
|U(t)|M+1 +

∫ t

0

|U |M+1

)
. (7.13)

One of the ingredients of the above proof is the Chen-Fliess expansion of the auxiliary sys-
tem x1(t;F,U, p), which appears in [3, Section 3] under the denomination �representation of the
perturbation �ow�.
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Remark 7.4. The bound (7.6) between the exact solution and the truncated Chen-Fliess series (in
its' original formulation) is used by Stefani in [96, Lemma 3.1 and Corollary 3.1]. Our proof is
both di�erent and shorter.

Remark 7.5. Equality (7.5) where the sum converges absolutely proves that appropriate packages
of the Chen-Fliess expansion are absolutely summable under a smallness assumption on ‖U‖L∞ ,
which is weaker than the smallness assumption on ‖u‖L1 which is used in Proposition 6.1 for
multi-input systems.

7.3 Magnus expansion in the interaction picture

In this section, we prove the following enhanced error estimate for the magnus expansion in the
interaction picture with scalar input. Our proof relies on an appropriate approximation for the
auxiliary system x1 introduced in Section 7.1.

Proposition 7.6. Let δ > 0 and f0, f1 ∈ Cω(B3δ;Kd). For every M ∈ N, there exist ηM , CM > 0
such that, for every T ∈ [0, ηM ], u ∈ L1((0, T );K) such that ‖U‖L∞ ≤ ηM , t ∈ [0, T ] and p ∈ Bδ,∣∣∣x(t; f, u, p)− eZM (t,f,u)etf0p

∣∣∣ ≤ CM (|U(t)|M+1 +

∫ t

0

|U |M+1

)
. (7.14)

Proof. In Section 7.3.1, we introduce a vector �eld YM (t, f, U) such that eYM (t,f,U)etf0(p) is a good
approximation of the auxiliary state x1 de�ned in (7.3). Since, by (7.4), x(t) = eU(t)f1(x1(t)), the
desired estimate then relies on the following decomposition

x(t; f, u, p)− eZM (t,f,u)etf0p = x(t; f, u, p)− eU(t)f1eYM (t,f,U)etf0p

+ eU(t)f1eYM (t,f,U)etf0p− eZM (t,f,u)etf0p.
(7.15)

Using Proposition 7.7 and Proposition 7.11 (see further) for the �rst and second lines, we get∣∣∣x(t; f, u, p)− eZM (t,f,u)etf0p
∣∣∣ ≤ CM (‖U‖M+1

L1 + |U(t)|M+1 + ‖U‖M+1
LM+1

)
(7.16)

which gives the conclusion since ‖U‖L1(0,t) ≤ t
M
M+1 ‖U‖LM+1(0,t).

In Section 7.3.1, we de�ne YM (t, f, U) and prove in Proposition 7.7 that it indeed provides
a good approximation of the auxiliary state. In Section 7.3.2, we explain the link between
eU(t)X1eYM (t,X,U) and eZM (t,X,u) at the formal level. In Section 7.3.3, we show in Proposition 7.11
that this formal link entails that eU(t)f1eYM (t,f,U) is close to eZM (t,f,u).

7.3.1 An approximation of the auxiliary state

We use the error formula of Proposition 4.8 for the Magnus expansion in the interaction picture
to obtain an approximation of the auxiliary state.

Proposition 7.7. Let δ, ρ > 0, f0, f1 ∈ Cω,ρ(B3δ;Kd). For every M ∈ N, there exist ηM , CM > 0
such that, for every p ∈ Bδ, t ∈ [0, ηM ], u ∈ L1((0, t);K) such that ‖U‖L∞ ≤ ηM ,∣∣∣x(t; f, u, p)− eU(t)f1eYM (t,f,U)etf0p

∣∣∣ ≤ CM‖U‖M+1
L1(0,t) (7.17)

where YM (t, f, U) := LogM{Gt}(t), and Gt : [0, t]×B3δ → Kd is de�ned by

Gt(s, y) :=
∑
k∈N∗
`∈N

(s− t)`

`!

U(s)k

k!
ad`f0 adkf1(f0)(y) (7.18)
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and this sum converges absolutely in Cω,ρ′(B3δ;Kd) with ρ′ = ρ/e. Moreover,

YM (t, f, U) =
∑ (−1)m−1

rm

∫
∆r(t)

(τ1 − t)`1
`1!

U(τ1)k1

k1!
· · · (τr − t)

`r

`r!

U(τr)
kr

kr!
dτ[

· · ·
[
ad`1f0(adk1f1 (f0)), ad`2f0(adk2f1 (f0))

]
, . . . , ad`rf0(adkrf1 (f0))

]
,

(7.19)

where the sum is taken over r ∈ J1,MK, m ∈ J1, rK, r ∈ Nmr , `1, . . . , `r ∈ N, k1, . . . , kr ∈ N∗ and
the sum converges absolutely in Cω,ρ′(B3δ;Kd).

Proof. Step 1: Convergence in (7.18) and (7.19). By (3.23), for every s ∈ [0, t],∣∣∣∣∣∣∣∣∣∣∣∣ (s− t)``!

U(s)k

k!
ad`f0 adkf1(f0)

∣∣∣∣∣∣∣∣∣∣∣∣
ρ′
≤ t`‖U‖kL∞

(k + `)!

`!k!

(
9

ρ

)k+`

|||f |||k+`+1
ρ (7.20)

thus the sum in (7.18) converges absolutely in Cω,ρ′(B3δ;Kd) when t and ‖U‖L∞ are smaller than
ρ

18|||f |||ρ
.

For every r ∈ J1,MK, m ∈ J1, rK, r ∈ Nmr , `1, . . . , `r ∈ N, k1, . . . , kr ∈ N∗, using (3.2) and the
non-decreasing of q ∈ J1,∞K 7→ ‖ · ‖Lq(0,t) for t ∈ [0, 1], we get∣∣∣∣ ∫

∆r(t)

(τ1 − t)`1
`1!

U(τ1)k1

k1!
· · · (τr − t)

`r

`r!

U(τr)
kr

kr!
dτ

∣∣∣∣(r + |`|+ |k| − 1)!

(
9‖f‖
ρ

)r+|`|+|k|−1

≤ (2r−1t)|`|(2r−1‖U‖L|k|(0,t))|k|
(

36‖f‖
ρ

)r+|`|+|k|−1

(r − 1)!

(7.21)

Thus, by (3.23), the sum in (7.19) converges absolutely in Cω,ρ′(B3δ;Kd) when t and ‖U‖L∞ are

smaller than ρ2−M

18|||f |||ρ
.

Step 2: Proof of (7.17). Let T, η∗ and F as in Proposition 7.2. We introduce the function
F1 : [0, T ]×B2δ → Kd de�ned by

F1(t, y) := F (y, U(t))− f0(y) =

+∞∑
j=1

U(t)j

j!
adjf1(f0)(y) (7.22)

where the sum converges in Cω,ρ′(B2δ;Kd) when ‖U‖L∞ < ρ
9|||f |||ρ

. Let M ∈ N. There exists C > 0

such that, for every t ∈ [0, T ], U ∈ C0([0, T ];K) with ‖U‖L∞ ≤ η∗, the function F1 de�ned by
(7.22) satis�es

‖F1‖L1((0,t);CM2 ) ≤ C‖U‖L1(0,t) ≤ CT‖U‖L∞(0,t). (7.23)

Let CM > 0 and γ = γ(M, δ, ‖f0‖CM2+1) > 0 be as in Proposition 4.8 and

ηM := min

{
1, η∗,

ρ2−M

36 |||f |||ρ
,
γ

CT

}
. (7.24)

Let p ∈ Bδ, t ∈ [0, ηM ] and u ∈ L1((0, t);K) such that ‖U‖L∞ ≤ ηM . Then, the convergences of
Step 1 hold and ‖F1‖L1((0,t);CM2 ) ≤ γ thus we can apply Proposition 4.8 and Proposition 4.9 to

the equation ẋ1 = f0(x1) + F1(t, x1)∣∣∣x1(t;F,U, p)− eYM (t,f,U)etf0p
∣∣∣ ≤ CM‖Gt‖M+1

L1((0,t);CM2 )
. (7.25)

Moreover, there exists C ′ (depending only on η∗, f0, f1) such that

‖Gt‖L1((0,t);CM2 ) ≤ C
′‖U‖L1(0,t). (7.26)

Thus, we get (7.17) by applying the eη
∗‖f1‖C1 -Lipschitz map eU(t)f1 to (7.25).
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In the next paragraphs, we will use the following technical result about YM (t, f, U) and its
decomposition in homogeneous components with respect to U .

Lemma 7.8. Let δ, ρ > 0, f0, f1 ∈ Cω,ρ(B3δ;Kd). For every M ∈ N∗, there exists ηM , CM > 0
such that, for every j ∈ N∗, t ∈ [0, ηM ], u ∈ L1((0, t),K) such that ‖U‖L∞ ≤ ηM , the sum in
the right-hand side of (7.19) taken over r ∈ J1,MK, m ∈ J1, rK, r ∈ Nmr , `1, . . . , `r ∈ N and
k1, . . . , kr ∈ N∗ such that k1 + . . . + kr = j, converges absolutely in Cω,ρ′(B3δ;Kd) and its sum,
denoted YjM (t, f, U), satis�es

∣∣∣∣∣∣∣∣∣YjM (t, f, U)
∣∣∣∣∣∣∣∣∣
ρ′
≤ CM

(‖U‖Lj(0,t)
2ηM

)j
(7.27)

where ρ′ = ρ/e. Moreover, YM (t, f, U) =
∑
j∈N∗ Y

j
M (t, f, U) where the sum converges absolutely

in Cω,ρ′(B3δ;Kd).

Proof. Let ηM > 0 be as in Proposition 7.7, t ∈ [0, ηM ] and u ∈ L1((0, t);K) such that ‖U‖L∞ <
ηM . The sum involved in YjM (t, f, U) converges absolutely in Cω,ρ′(B3δ;Kd) because it is a sub-
family of the one considered in Proposition 7.7. By (7.21), there exists CM > 0 (independent of t
and U) such that, for every j ∈ N∗, (7.27) holds. The non-decreasing of q ∈ J1,∞K 7→ ‖ · ‖Lq(0,t)
(since t ≤ 1) gives the last conclusion.

7.3.2 Identi�cation procedure at the formal level

In this paragraph, we highlight at the formal level the link between eU(t)X1eYM (t,X,U) and eZM (t,X,u)

in L̂(X). We start with a new formal factorization, well adapted to estimates with respect to the
primitive of the scalar input.

Proposition 7.9. Let X = {X0, X1} and u ∈ L1(R+;K). For every x? ∈ Â(X), the solution x
to the formal di�erential equation{

ẋ(t) = x(t)(X0 + u(t)X1),

x(0) = x?,
(7.28)

satis�es, for every t ∈ R+,

x(t) = x? exp (tX0) exp (Y∞(t,X,U)) exp (U(t)X1) (7.29)

where Y∞(t,X,U) ∈ L̂(X) is de�ned by Y∞(t,X,U) = Log∞{βt}(t) and βt : [0, t] → L̂(X) is
de�ned by

βt(s) = e−(t−s)X0

(
eU(s)X1X0e

−U(s)X1 −X0

)
e(t−s)X0 =

∑
k∈N∗
`∈N

(s− t)`

`!

U(s)k

k!
ad`X0

adkX1
(X0)

(7.30)
i.e.

Y∞(t,X,U) =
∑ (−1)m−1

rm

∫
∆r(t)

(τ1 − t)`1
`1!

U(τ1)k1

k1!
· · · (τr − t)

`r

`r!

U(τr)
kr

kr!
dτ[

· · ·
[
ad`1X0

(adk1X1
(X0)), ad`2X0

(adk2X1
(X0))

]
, . . . , ad`rX0

(adkrX1
(X0))

]
(7.31)

where the sum is taken over r ∈ N∗, m ∈ J1, rK, r ∈ Nmr , `1, . . . , `r ∈ N, k1, . . . , kr ∈ N∗.
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Proof. First, in the same way as Theorem 2.27 has been generalized to an in�nite alphabet in the
proof of Theorem 2.41, it is possible to generalize Theorem 2.41 to an in�nite alphabet.

The function x1 : [0, T ]→ Â(X) de�ned by x1(t) := x(t)e−U(t)X1 satis�es x1(0) = x? and

ẋ1 = x1(t)eU(t)X1X0e
−U(t)X1 = x1(t)

(
X0 +

∑
k∈N∗

U(t)k

k!
adkX1

(X0)

)
. (7.32)

This equation is of the form ẋ1(t) = x1(t)(X0 +
∑
k∈N∗ ak(t)Yk) for some indeterminates Yk. Thus,

Theorem 2.41 (adapted to an in�nite alphabet) and the homomorphism of algebras sending Yk to
adkX1

(X0) prove that
x1(t) = x? exp(tX0) exp(Y∞(t,X,U)). (7.33)

which gives the conclusion.

We now use the formal expansion (7.29) to obtain an alternative formula for Z∞(t,X, u) de�ned
by Theorem 2.41, in terms of the primitive of the scalar input. For r, ν ∈ N, we introduce the �nite
dimensional subspace of L(X)

Lr,ν(X) := span{e(b); b ∈ Br(X), n0(b) = ν, n1(b) = r} (7.34)

and Pr,ν : L̂(X)→ Lr,ν(X) the associated canonical projection.

Proposition 7.10. Let X = {X0, X1}, T > 0, u ∈ L1((0, T );K), t ∈ [0, T ], Y∞(t,X,U) de�ned
by Proposition 7.9 and Z∞(t,X, u) de�ned by Theorem 2.41. Then, in L̂(X),

Z∞(t,X, u) = CBHD∞ (Y∞(t,X,U), U(t)X1) . (7.35)

In particular, for every M ∈ N∗, r ∈ J1,MK and ν ∈ N,

Pr,νZM (t,X, u) = Pr,ν CBHDM (YM (t,X,U), U(t)X1) . (7.36)

In this statement, CBHD∞ is de�ned in Corollary 2.33, CBHDM is its truncation used in Corol-
lary 4.3 and ZM (t,X, u) is de�ned in Theorem 2.41 and used in Proposition 4.8.

Proof. We deduce from Proposition 7.9 and Theorem 2.41 that

exp(Z∞(t,X, u)) = exp(Y∞(t,X,U)) exp(U(t)X1). (7.37)

Thus Corollary 2.33 proves (7.35). Let M ∈ N∗, r ∈ J1,MK, ν ∈ N. We deduce from (7.35) that

Pr,νZ∞(t,X, u) = Pr,ν CBHD∞ (Y∞(t,X,U), U(t)X1) . (7.38)

By de�nition, Z∞(t,X, u) − ZM (t,X, u) is a linear combination of brackets all involving at least
(M + 1) occurrences of X1, thus Pr,νZ∞(t,X, u) = Pr,νZM (t,X, u). By de�nition, Y∞(t,X,U) is
a sum of brackets involving all at least one occurrence of X1, thus

Pr,ν CBHD∞ (Y∞(t,X, U), U(t)X1) = Pr,ν CBHDM (Y∞(t,X,U), U(t)X1) . (7.39)

Moreover Y∞(t,X,U)−YM (t,X,U) is a linear combination of brackets involving all at least (M+1)
occurrences of X1 thus

Pr,ν CBHDM (Y∞(t,X,U), U(t)X1) = Pr,ν CBHDM (YM (t,X,U), U(t)X1) , (7.40)

which ends the proof of (7.36).
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7.3.3 Error formula for analytic vector �elds

We prove in Proposition 7.11 an error bound between eU(t)f1eYM (t,f,U) and eZM (t,f,u).

Proposition 7.11. Let δ, ρ > 0, f0, f1 ∈ Cω,ρ(B3δ;Kd). For every M ∈ N, there exist ηM , CM > 0
such that, for every t ∈ [0, ηM ], p ∈ Bδ and u ∈ L1((0, t);K) such that ‖U‖L∞ ≤ ηM ,∣∣∣eU(t)f1eYM (t,f,U)etf0p− eZM (t,f,u)etf0p

∣∣∣ ≤ CM (|U(t)|M+1 +

∫ t

0

|U |M+1

)
. (7.41)

Proof. We split the di�erence as

eU(t)f1eYM (t,f,U)etf0p− eCBHDM (YM (t,f,U),U(t)f1)etf0p

+ eCBHDM (YM (t,f,U),U(t)f1)etf0p− eZM (t,f,u)etf0p.
(7.42)

Taking into account that ‖YM (t, f, U)‖CM2 ≤ C‖U‖L1(0,t), the �rst line is bounded by Corol-
lary 4.3. Using Grönwall's lemma and Proposition 7.12 bounds the second line.

Proposition 7.12. Let δ, ρ > 0, f0, f1 ∈ Cω,ρ(B3δ;Kd) and ρ′ := ρ/e. For every ρ′′ ∈ (0, ρ′),
M ∈ N, there exist ηM , CM > 0 such that, for every t ∈ [0, ηM ], u ∈ L1((0, t);K) such that
‖U‖L∞ ≤ ηM ,

|||ZM (t, f, u)− CBHDM (YM (t, f, U), U(t)f1)|||ρ′′ ≤ CM
(
|U(t)|M+1 +

∫ t

0

|U |M+1

)
. (7.43)

In particular, ZM (t, f, u) is the sum of the terms homogeneous with degree at most M with respect
to U in CBHDM (YM (t, f, U), U(t)f1).

Proof. Step 1: Finite approximation of YM (t, f, U). First, by Lemma 7.8, one can write

YM (t, f, U) =

M∑
j=1

YjM (t, f, U) +
∑
j>M

YjM (t, f, U) =: YM (t, f, U) +RM (t, f, U), (7.44)

where the remainder satis�es |||RM (t, f, U)|||ρ′ ≤ C‖U‖M+1
LM+1(0,t)

. By the triangular and Young

inequalities, it is therefore su�cient to prove (7.43) with YM replaced by the �nite truncation
YM (t, f, U).

Step 2: Identi�cation at the free level. Let Λ : L(X)→ Cω(B3δ;Kd) be the homomorphism of Lie
algebras such that Λ(Xi) = fi. The relation (7.36) is made of �nite linear combinations of brackets
of X0 and X1. Let M ∈ N. By applying Λ to this equality, we get, for every r ∈ J1,MK, ν ∈ N

Pr,νZM (t, f, u) = Pr,ν CBHDM

(
YM (t, f, U), U(t)f1

)
. (7.45)

By de�nition

ZM (t, f, u) =
∑
ν∈N

M∑
r=1

Pr,νZM (t, f, u) (7.46)

where the sum converges in Cω,ρ′(B3δ;Kd) for appropriate ρ′ ∈ (0, ρ), by Proposition 4.9. Thus,
with the notations of (2.41),

ZM (t, f, u)− CBHDM

(
YM (t, f, U), U(t)f1

)
=

∑
jh1+h2>M

F2,h(YjM (t, f, U), U(t)f1), (7.47)

where the sum is taken over j, h1, h2 ∈ J1,MK.
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Step 3: Proof of (7.43). From now on, ηM > 0 is given by Proposition 7.7 and Lemma 7.8,
t ∈ [0, ηM ], u ∈ L1((0, t);K) is such that ‖U‖L∞ < ηM and ρ′′ ∈ (0, ρ′). For each term in the �nite
sum (7.47), one has, thanks to Lemma 7.8,∣∣∣∣∣∣∣∣∣F2,h(YjM (t, f, U), U(t)f1)

∣∣∣∣∣∣∣∣∣
ρ′′
≤ C

∣∣∣∣∣∣∣∣∣YjM (t, f, U)
∣∣∣∣∣∣∣∣∣h1

ρ′
|||U(t)f1|||h2

ρ′

≤ C ′‖U‖jh1

Lj(0,t)|U(t)|h2 ≤ C ′‖U‖jh1

LM+1(0,t)
th1− jh1

M+1 |U(t)|h2

(7.48)

which concludes the proof thanks to Young's inequality since jh1 + h2 ≥M + 1.

7.4 Sussmann's in�nite product expansion

When the input is scalar, the estimates of the coordinates obtained in Lemma 6.6 can be enhanced
to involve only the primitive of the input, at least for Hall bases where X1 is minimal, which in
turn improves the estimate of Proposition 6.8 (see Proposition 7.14 below). The hypothesis that
X1 is the minimal element can be seen as the formal counterpart of the auxiliary system trick of
Section 7.1.

Lemma 7.13. Let X = {X0, X1}, B be a Hall basis of L(X) for which X1 is the minimal element
and (ξb)b∈B the associated coordinates of the second kind. For every k ≥ 1, there exists ck ≥ 1
such that, for each b ∈ B \X with n(b) = k, T > 0, u ∈ L1((0, T );K) and t ∈ [0, T ],

|ξb(t, 1, u)| ≤ ck‖U‖kLk(0,t)

(ckt)
n0(b)−1

(n0(b)− 1)!
(7.49)

and

|ξ̇b(t; 1, u)| ≤

{
ck|U(t)|k when n0(b) = 1,

ck|U(t)|k (ckt)
n0(b)−1

(n0(b)−1)! + c2k‖U‖kLk(0,t)
(ckt)

n0(b)−2

(n0(b)−2)! when n0(b) ≥ 2.
(7.50)

Proof. As for Lemma 6.6, estimate (7.49) is obtained, for each b, by time integration of (7.50).
Moreover, still as in Lemma 6.6, both estimates are invariant by right-bracketing with X0, and
also by arbitrary long left-bracketing with X0, up to ck ← 2ck. Let us prove (7.49) and (7.50) by
induction on k.

Initialization for k = 1. We have ξX1
(t) = U(t) and ξ̇[X1,X0](t) = U(t). Hence [X1, X0] ∈ B

(because X1 < X0) satis�es both estimates. By Lemma 6.5, when n(b) = 1, there exist m,m ∈ N
such that b = admX0

admX0
(X1). Since X1 is minimal, if b 6= X1, m > 0. Thus, by the previous

invariant properties, we get the conclusion with c1 := 2.

Induction (k − 1) → k. Let k ≥ 2 and let us assume that the two estimates are proved for every
b ∈ B \X with n(b) ≤ (k− 1). Let b ∈ B with n(b) = k. By Lemma 6.5 and the previous invariant
properties, we may assume that b = admb1(b2) with m ∈ N∗, b1 < b2 ∈ B, b1 6= X0, (b2 ∈ X or
λ(b2) < b1) and (b2 6= X0 or m > 1).

� If b1 = X1, then b2 = X0 (otherwise, if b2 /∈ X, λ(b2) < X1, which is impossible since X1 is
minimal). Thus

|ξ̇b(t)| =
|U(t)|m

m!
(7.51)

so (7.50) with ck = 1 holds since n0(b) = 1 and k = m.

� If b1 6= X1, then b1 satis�es (7.50) for some k1 ∈ J1, k − 1K. Moreover, either b2 = X0 or
b2 /∈ X (because it cannot be X1). The case (b2 = X0 and m > 1) is easier and left to the
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reader. Thus we are left with the case where b2 satis�es (7.50) for some k2 ∈ J1, k− 1K. One
has k = mk1 + k2 and ν := n0(b) = mn0(b1) + n0(b2) =: mν1 + ν2. Thus,

|ξ̇b(t)| ≤
cmk1‖U‖

mk1
Lk1

m!

(ck1t)
mν1−m

(ν1 − 1)!m

(
ck2 |U(t)|k2 (ck2t)

ν2−1

(ν2 − 1)!
+ c2k2‖U‖

k2
Lk2

(ck2t)
ν2−2

(ν2 − 2)!
1ν2≥2

)
.

(7.52)
Thanks to Hölders' inequality,

‖U‖mk1
Lk1
‖U‖k2

Lk2
≤ ‖U‖kLkt

m. (7.53)

Thanks to Hölder's inequality and Young's inequality,

‖U‖mk1
Lk1
|U(t)|k2 ≤ tm

(
‖U‖kLkt

−1 + |U(t)|k
)
. (7.54)

Moreover, thanks to (3.2), for i ∈ J1, 2K,

1

m!

1

(ν1 − 1)!m
1

(ν2 − i)!
≤ 2(m+1)(ν−i) 1

(ν − i)!
. (7.55)

Combining these inequalities proves (7.50) with ck := 2k+2 max{cj ; j ∈ J1, k − 1K}.

These enhanced estimates yield the following result.

Proposition 7.14. Let X = {X0, X1}, B a Hall basis of L(X) for which X1 is the minimal element
and (ξb)b∈B the associated coordinates of the second kind. Let r, δ > 0, f0, f1 ∈ Cω,r(B4δ;Kd). For
each M ∈ N∗, there exist ηM , CM > 0 such that, for every u ∈ L1((0, T );K) with T ≤ ηM and
‖U‖LM+1(0,T ) ≤ ηM , the ordered product of the eξb(t,1,u)fb over the in�nite set B ∩ SM = {b ∈
B;n(b) ≤ M} (using De�nition 2.10) converges uniformly on Bδ and, for each t ∈ [0, T ] and
p ∈ Bδ, ∣∣∣∣x(t; f, u, p)−

→
Π

b∈B∩SM
eξb(t,1,u)fbp

∣∣∣∣ ≤ CM‖U‖M+1
LM+1(0,t)

. (7.56)

Proof. The proof is the same as the proof of Proposition 6.8. The only di�erence is that we use
estimates of Lemma 7.13 instead of those of Lemma 6.6. The fact that these enhanced estimates
are not valid for b ∈ X doesn't come into play. Indeed, neither X0 nor X1 are involved in the �nal
error term (6.32).

7.5 Failure of the primitive estimate for multiple inputs

Proposition 7.6 relying only on the primitive of the input is speci�c to the scalar-input case and
fails for multiple inputs. As an illustration, for δ > 0 and f0, f1 ∈ C∞(Bδ;Kd), in the degenerate
case M = 0 and the particular case f0(0) = 0, p = 0, estimate (7.14) implies that, for every T > 0,
there exists CT > 0 such that, for t ∈ [0, T ] and u ∈ L1(0, T ) with ‖U‖L∞ ≤ 1,

|x(t;u, 0)| ≤ CT ‖U‖L∞ . (7.57)

As illustrated by the following example, even this very crude estimate fails for multiple inputs,
because the W−1,∞ norms are not su�cient to bound the nonlinear terms arising in the dynamic.

Example 7.15. Let T > 0 and consider the following system on R2:{
ẋ1 = u,

ẋ2 = vx1,
(7.58)
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where u and v are two scalar inputs. There exists un, vn ∈ L1(0, T ) such that

‖Un‖L∞ + ‖Vn‖L∞ → 0 and |x(t; (un, vn), 0)| 6→ 0, (7.59)

where Un is the primitive of un and Vn the primitive of Vn. Indeed, let n ∈ N∗ and de�ne
un(t) := n cosn2t and vn(t) := n sinn2t. Then one has

‖Un‖L∞ + ‖Vn‖L∞ ≤
2

n
. (7.60)

Moreover, x1(t) = Un(t) = (sinn2t)/n and

x2(T ) =

∫ T

0

vn(t)Un(t) dt =

∫ T

0

sin2(n2t) dt→ T

2
, (7.61)

as n→ +∞. This proves (7.59).

Remark 7.16. Although Proposition 7.6 does not hold for multiple inputs, we expect that the proof
method can be adapted to obtain asymmetric estimates, involving for example ‖U‖L∞ + ‖v‖L∞ in
the two-inputs case (or the converse). Such asymmetric estimates have been used successfully to
obtain sharp results for particular control systems in [51].

8 On direct intrinsic representations of the state

The expansions studied above in this article unfortunately don't provide a direct intrinsic repre-
sentation of the state. The Magnus and Sussmann expansions are given with intrinsic quantities
(Lie brackets of the vector �elds) but they require to compute one or multiple �ows in order to
recover the state. The Chen-Fliess expansion gives directly a formula for the state, but it depends
on non-intrinsic quantities (see Remark 2.17 and Remark 8.8). In this section, we investigate the
possibility of �nding a direct intrinsic formula for the state. We discuss this possibility in the
context of a�ne systems.

8.1 Approximate direct intrinsic representations

We prove in this section approximate direct intrinsic representations which achieve the desired goal
up to a small error. We believe that the formulas we derive can be of interest for applications to
control theory as they give approximate expressions for the state in terms of the inputs and Lie
brackets of the vector �elds evaluated at the origin.

We start with an elementary result, which bounds the error when replacing a �ow by the value
of the vector �eld.

Lemma 8.1. Let δ > 0 and z ∈ C1(Bδ;Kd) such that ‖z‖C0 ≤ δ. Then

|ez(0)− z(0)| ≤ |z(0)|‖Dz‖C0e‖Dz‖C0 . (8.1)

Proof. Let x(t) := etz(0) for t ∈ [0, 1]. Then, for every t ∈ [0, 1],

|x(t)− tz(0)| ≤
∫ t

0

|z(x(τ))− z(0)|dτ ≤ t2

2
‖Dz‖C0 |z(0)|+

∫ t

0

‖Dz‖C0 |x(τ)− τz(0)|dτ (8.2)

and by Grönwall's lemma, |x(t)− tz(0)| ≤ t2

2 ‖Dz‖C0 |z(0)|et‖Dz‖C0 .

This elementary estimate allows to obtain approximate direct intrinsic representations from the
various Magnus expansions described above.
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Proposition 8.2. Let M ∈ N∗, δ > 0 and q ∈ N∗.

1. Let I = J0, qK or I = J1, qK. Let fi ∈ CM
2

(Bδ;Kd) for i ∈ I. For T > 0 and u ∈
L∞((0, T );Kq), if x(t; f, u, 0) denotes the solution to (4.50) with p = 0 and ZM (t, f, u) de-
notes the vector �eld de�ned in Proposition 4.2 (called ZM (t,

∑
i∈I uifi) in this statement),

then, as T → 0,

x(t; f, u, 0) = ZM (t, f, u)(0) +O
(
tM+1 + t|x(t; f, u, 0)|

)
. (8.3)

in the following sense: there exist C, η > 0 such that, for every T ∈ (0, η] and u ∈
L∞((0, T );Kq) with ‖u‖L∞ ≤ 1, for each t ∈ [0, T ],

|x(t; f, u, 0)− ZM (t, f, u)(0)| ≤ C
(
tM+1 + t|x(t; f, u, 0)|

)
. (8.4)

2. Let T > 0, f0, . . . , fq ∈ CM
2+1(B2δ;Kd) with f0(0) = 0 and T‖f0‖C0 ≤ δ. For u ∈

L1((0, T );Kq), if x(t; f, u, 0) denotes the solution to (6.1) with p = 0 and Z(t; f, u) denotes
the vector �eld de�ned in Proposition 6.4, then, as ‖u‖L1 → 0,

x(t; f, u, 0) = ZM (t, f, u)(0) +O
(
‖u‖M+1

L1(0,t) + |x(t; f, u, 0)|1+ 1
M

)
. (8.5)

3. Let f0, f1 ∈ Cω(B3δ;Kd) with f0(0) = 0. Let T > 0 as in Proposition 7.2. For u ∈
L1((0, T );K), if x(t; f, u, 0) denotes the solution to (7.1) with p = 0 and Z(t, f, u) denotes
the vector �eld de�ned in Proposition 6.4 (with q = 1), then, as (T, ‖U‖L∞)→ 0,

x(t; f, u, 0) = ZM (t, f, u)(0) +O
(
‖U‖M+1

LM+1(0,t)
+ |x(t; f, u, 0)|1+ 1

M

)
, (8.6)

Proof. Proof of the �rst statement. By Proposition 4.2, there exists C1 > 0 and T ∗ > 0 such that
for every u ∈ L∞((0, T ∗);Kq) with ‖u‖L∞ ≤ 1 and t ∈ [0, T ∗],∣∣∣x(t; f, u, 0)− eZM (t,f,u)(0)

∣∣∣ ≤ C1t
M+1. (8.7)

By the explicit expression of ZM (t, f, u), there exists C2 > 0 such that for every u ∈ L∞((0, T ∗);Kq)
with ‖u‖L∞ ≤ 1 and t ∈ [0, T ∗],

‖ZM (t, f, u)‖C1 ≤ C2t. (8.8)

Thus, by Lemma 8.1, there exists C3 > 0 such that, for every for every u ∈ L∞((0, T ∗);Kq) with
‖u‖L∞ ≤ 1 and t ∈ [0, T ∗],∣∣∣eZM (t,f,u)(0)− ZM (t, f, u)(0)

∣∣∣ ≤ C3t |ZM (t, f, u)(0)| . (8.9)

Then, by triangular inequality, for every u ∈ L∞((0, T ∗);Kq) with ‖u‖L∞ ≤ 1 and t ∈ [0, T ∗]

|x(t; f, u, 0)− ZM (t, f, u)(0)| ≤ C1t
M+1 + C3t|ZM (t, f, u)(0)| (8.10)

and in particular, for t ≤ T ≤ 1/(2C3)

|ZM (t, f, u)(0)| ≤ 2 |x(t; f, u, 0)|+ 2C1t
M+1. (8.11)

This gives (8.4) with C = max{2C1; 2C3} and η := min{T ∗, 1/(2C3)}.

Proof of the second statement. The strategy is the same: one starts from the estimate in Propo-
sition 6.4, then applies Lemma 8.1 to ZM (t, f, u) and concludes thanks to the following estimate,
implied by the explicit expressions of the vector �eld

‖ZM (t, f, u)‖C1 = O
‖u‖L1→0

(
‖u‖L1(0,t)

)
, (8.12)
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and Young's inequality.

Proof of the third statement. First, one can assume that f1(0) 6= 0. Indeed, otherwise, both
x and ZM vanish identically, so the desired estimate is void. Using Proposition 7.12 and the
explicit expression of the vector �eld CBHDM (YM (t, f, U), U(t)f1), we obtain in the asymptotics
(t, ‖U‖L∞)→ 0

‖ZM (t, f, u)‖C1 = O
(
|U(t)|+ ‖U‖L1(0,t)

)
. (8.13)

Thus, using f0(0) = 0, Proposition 7.6 and the same strategy as above, we obtain in the asymptotics
(t, ‖U‖L∞)→ 0

x(t; f, u, 0) = ZM (t, f, u)(0) +O

(
|U(t)|M+1 +

∫ t

0

|U |M+1 + (|U(t)|+ ‖U‖L1) |x(t; f, u, 0)|
)
.

(8.14)
The following proposition and Young's inequality give the conclusion.

Proposition 8.3. Let δ > 0, f0, f1 ∈ Cω(Bδ;Kd) with f0(0) = 0 and f1(0) 6= 0. There exists
T, η, C > 0 such that, for every u ∈ L1((0, T ),K) with ‖U‖L∞ < η and t ∈ [0, T ],

|U(t)| ≤ C
(
|x(t; f, u, 0)|+ ‖U‖L1(0,t)

)
. (8.15)

Proof. With the notations of Proposition 7.2, x(t; f, u, 0) = eU(t)f1x1(t;F,U, 0) tends to zero when
‖U‖L∞ → 0. A Taylor expansion of order 2 in x(t; f, u, 0) = eU(t)f1x1(t;F,U, 0) provides C1 > 0
such that, for every t ∈ [0, T ] and u ∈ L1((0, T );K) such that ‖U‖L∞ ≤ η∗,

|x(t; f, u, 0)− x1(t;F,U, 0)− U(t)f1(0)| ≤ C1|U(t)|2 + C1|U(t)||x1(t;F,U, 0)|. (8.16)

Moreover, by Grönwall's lemma, there exists C2 > 0 such that

|x1(t;F,U, 0)| ≤ C2‖U‖L1(0,t). (8.17)

Let P : Kd → Kd de�ned by P (y) = 〈y, f1(0)〉/|f1(0)|2. Applying P to the vector in the left-hand
side of (8.16) and using (8.17), we get the conclusion, when ‖U‖L∞ is small enough.

Under additional nilpotency assumptions, one can omit the truncation errors in the represen-
tation formulas of Proposition 8.2.

Corollary 8.4. Under the same assumptions as in Proposition 8.2.

1. Assume moreover that L({fi; i ∈ I}) is nilpotent of index at most M + 1. Then, as T → 0,

x(t; f, u, 0) = ZM (t, f, u)(0) +O (t|x(t; f, u, 0)|) . (8.18)

2. Assume moreover that fi ∈ Cω(B4δ;Kd) for i ∈ I := J0, qK and that {fi; i ∈ J1, qK} is semi-
nilpotent of index at most M + 1 with respect to f0. Then, as ‖u‖L1 → 0,

x(t; f, u, 0) = ZM (t, f, u)(0) +O
(
‖u‖L1(0,t)|x(t; f, u, 0)|

)
. (8.19)

3. Assume moreover that f0, f1 ∈ Cω(B4δ;Kd) and that {f1} is semi-nilpotent of index at most
M + 1 with respect to f0. Then, as (T, ‖U‖L∞)→ 0,

x(t; f, u, 0) = ZM (t, f, u)(0) +O
(
(‖U‖L1(0,t) + |U(t)|)|x(t; f, u, 0)|

)
. (8.20)

Proof. These are straightforward consequences of Proposition 5.6 (for the �rst item) and Corol-
lary 5.18 (for the second and third item, thanks to the analyticity assumption), using the same
approach as in the proof of Proposition 8.2.

Remark 8.5. Estimate (8.6) proves that, for a situation in which
∫ t

0
|U |M+1 is negligible, the state

is well approximated by ZM (t, f, u)(0), which is a convergent series of iterated Lie brackets of f0

and f1 evaluated at 0. We expect that this representation can be useful for applications to control
theory, where one tries to relate controllability of the system with geometric relations on the Lie
brackets evaluated at zero.
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8.2 Di�eomorphisms and Lie brackets

Lie brackets behave very nicely with respect to local changes of coordinates. Let fi be smooth
vector �elds for i ∈ I, p ∈ Kd and θ be a smooth local di�eomorphism near p. If x(t) denotes the
solution to (4.50), we de�ne y(t) := θ(x(t)). Then, one checks that y is the solution to

ẏ(t) =
∑
i∈I

ui(t)gi(y(t)) and y(0) = p′, (8.21)

where gi := θ∗fi and p
′ := θ(p). By iterating Lemma 3.25, Lie brackets of the vector �elds de�ning

the dynamics for y can be computed explicitly from those of x. More precisely, for every b ∈ Br(X),

gb = θ∗fb (8.22)

with the notation of De�nition 3.14. In particular, there exists a linear invertible map Lp : Kd →
Kd, Lp := Dθ(p), such that, for every b ∈ Br(X),

gb(p
′) = Lfb(p). (8.23)

Conversely, if the fi and gi for i ∈ I are analytic vector �elds, the existence of points p and
p′ and a linear invertible map Lp such that (8.23) holds is a su�cient condition for the existence
of a local smooth di�eomorphism θ with θ(p) = p′ and such that, for all controls ui, there holds
y(t) = θ(x(t)) where x and y denote the solutions to (4.50) and (8.21) for the same set of controls.
This nice property is proved in [75, Theorem 1] and was then extended with a more general
geometric viewpoint in [98] (see also [5, Theorem 5.5] for a modern presentation).

When (8.23) only holds for brackets up to some length M ∈ N and the controls are uniformly
bounded in L∞, one can prove (see [76]) the existence of a local smooth di�eomorphism θ and a
constant C such that

|y(t)− θ(x(t))| ≤ CtM+1. (8.24)

Up to our knowledge, the converse, which is conjectured to be true in [76], is a nice open problem.

Open problem 8.6. Let I = J1, qK and X = {X1, . . . Xq}. Let p, p′ ∈ Kd. Assume that there
exists a smooth di�eomorphism θ from a neighborhood of p to a neighborhood of p′ and M ∈ N such
that, for all controls u1, . . . uq ∈ L∞(0, T ) with ‖ui‖ ≤ 1, estimate (8.24) holds for the trajectories
x and y corresponding to the same controls. Does this imply that there exists a linear invertible
map such that, for each b ∈ Br(X) with |b| ≤M , (8.23) holds?

Open problem 8.7. Same question in the context of a�ne systems with drift, i.e. when I = J0, qK,
X = {X0, X1, . . . Xq} and the �rst control u0 is constrained to be identically equal to 1. This
question might be harder because one gets less information from (8.24) as it is valid for less choices
of controls since u0 is heavily constrained.

Remark 8.8. Property (8.23) is speci�c to Lie brackets and does not hold for products of di�er-
ential operators. As an illustration, consider the case K = R, d = 2, X = {X0, X1}, p = p′ = 0
with L0 := Dθ(0) = Id2. Then, for every φ ∈ C∞(R2;R), (gbφ)(0) = (fbφ)(0), but this relation
does not extend to a similar relation between products of f0 and f1 and those of g0 and g1. For
example, with the vector �elds f0(x) := (0, x1) and f1(x) := (1, 0) and the smooth di�eomorphism
θ(x) := (x1, x2+x2

1), one has g0(y) = (0, y1) and g1(y) = (1, 2y1). In particular, (f2
1φ)(0) = ∂11φ(0)

but (g2
1φ)(0) = ∂11φ(0) + 2∂12φ(0). This explains why we consider that the Chen-Fliess expansion

is not an intrinsic representation of the state, as it depends on quantities which are not invariant
through local changes of coordinates.
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8.3 Replacing the Magnus �ow by a di�eomorphism

Let fi for i ∈ I be smooth vector �elds. We consider the solution x(t;u) to (4.50) with p =
0. Let ZM (t, u) be the vector �eld de�ned in Proposition 4.2 (and called ZM (t,

∑
i∈I uifi) in

this statement). By Proposition 4.2, for each M ∈ N, x(t;u) is given by the time-one �ow of
the autonomous vector �eld ZM (t, u), up to an error scaling like tM+1 when the controls ui are
uniformly bounded in L∞.

In this paragraph, inspired by the nice properties of Lie brackets with respect to di�eomorphisms
recalled above, we attempt to replace the computation of the time-one �ow by a di�eomorphism.
This can be seen as being related with the converse of the classical question of whether a given
di�eomorphism can be represented as the time-one �ow of an autonomous vector �eld (see e.g.
[7, 8] for positive answers in particular cases, [7, Section 2] for an elementary necessary condition,
and [52] or [88] for statements highlighting that the answer is only rarely positive).

This also corresponds to replacing the terms x(t;u)+o(|x(t;u)|) in Proposition 8.2 by θ(x(t;u)),
where θ is a smooth local di�eomorphism of Kd.

We start with a de�nition.

De�nition 8.9. Let T > 0 and n ∈ N. We say that a functional β : [0, T ]× L∞((0, T );Kq) → K
is homogeneous of degree n with respect to time when, for every u ∈ L∞((0, T );Kq), λ ∈ (0, 1]
and t ∈ [0, T ],

β(λt, uλ) = λnβ(t, u) (8.25)

where uλ is de�ned by uλ(λt) := u(t) for t ∈ [0, T ] and uλ(λt) := 0 for t > T .

In particular, the product of two homogeneous functionals of degree n and m with respect to
time is an homogeneous functional of degree n + m. The coordinates of the �rst kind ζb(t, u),
pseudo-�rst kind ηb(t, u) and second kind ξb(t, u) are all homogeneous of degree |b| with respect to
time. An interesting property of homogeneous functionals is given by the following statement.

Lemma 8.10. Let T > 0, n ∈ N and β : [0, T ] × L∞((0, T );Kq) → K, homogeneous of degree n
with respect to time. Assume that there exists C > 0 such that, for every u ∈ L∞((0, T );Kq) with
‖u‖L∞(0,T ) ≤ 1 and each t ∈ [0, T ],

|β(t, u)| ≤ Ctn+1. (8.26)

Then β ≡ 0.

Proof. Let t ∈ [0, T ] and u ∈ L∞((0, T );Kq) such that ‖u‖L∞(0,T ) ≤ 1. On the one hand, for

each λ ∈ (0, 1], β(λt, uλ) = λnβ(t, u). On the other hand, |β(λt, uλ)| ≤ Cλn+1tn+1 because
‖uλ‖L∞ = ‖u‖L∞ ≤ 1. Hence |β(t, u)| ≤ Cλtn+1 for each λ ∈ (0, 1] so β(t, u) = 0.

One could wonder if the following proposition holds.

False proposition 8.11. Let X = {Xi; i ∈ I}, B be a monomial basis of L(X). Let T > 0. There
exists a family (βb)b∈B of functionals from [0, T ] × L∞((0, T );Kq) to K, with βb homogeneous
of degree |b| with respect to time, such that the following statement holds. Let δ > 0 and fi ∈
C∞(Bδ;Kd) for i ∈ I. There exists a smooth di�eomorphism θ of Kd near p = 0 such that, for
each M > 0, there exists CM , TM > 0 such that, for every u ∈ L∞((0, T );Kq) with ‖u‖L∞ ≤ 1, for
each t ∈ [0, TM ],

|θ(x(t;u))− yM (t;u)| ≤ CM tM+1, (8.27)

and
yM (t;u) = θ(0) +

∑
|b|≤M

βb(t, u)gb(θ(0)), (8.28)

where gb = θ∗fb and x(t;u) is the solution to (4.50) starting from p = 0.
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The functionals βb would be the analog of the coordinates of the �rst and second kind described
earlier. A formula such as (8.28) would be ideal for applications to control theory for example, since
it is expressed on intrinsic quantities (Lie brackets) and allows to compute x(t;u) directly without
solving for �ows (one recovers x(t;u) ≈ θ−1(y(t;u))). In some sense, it corresponds to asking if
there exists a local change of coordinates for which the Chen-Fliess expansion only involves Lie
bracket terms (and all the non-Lie bracket terms vanish).

Unfortunately, it is impossible in general, as illustrated by the following counter-example.

Proposition 8.12. Let X = {X0, X1}. Let T > 0 and consider, in R3, f0(x) := (0, x1 +x2
1, x1x2)

and f1(x) := (1, 0, 0), i.e. the following a�ne system with drift
ẋ1 = u,

ẋ2 = x1 + x2
1,

ẋ3 = x1x2,

(8.29)

together with the initial data x(0) = 0. There exists a monomial basis B of L(X), such that, for
all functionals βb : [0, T ] × L∞((0, T );R) → R for b ∈ B, homogeneous of degree |b| with respect
to time and for every local C6 di�eomorphism θ of R3, there exists M ∈ J1, 6K and a control
u ∈ L∞((0, T );R) with ‖u‖L∞ ≤ 1 such that (8.27) does not hold, even for small times.

Proof. Let B be a length-compatible Hall basis of L(X) with X0 < X1.

Step 1: Computation of y6(t). We de�ne Ḃ` = {b ∈ B;n1(b) = `} for every ` ∈ N. Then
Ḃ1 = {adkX0

(X1); k ∈ N}. The computation shows that the only elements b ∈ Ḃ1 such that fb 6= 0
are

b1 = X1, b2 = [X0, X1], c1 = [X0, [X0, X1]], (8.30)

fb1(x) = e1, fb2(x) = −(1 + 2x1)e2 − x2e3, fc1(x) = x2
1e3. (8.31)

Thus, the only elements b ∈ Ḃ2 that could satisfy fb 6= 0 are [b1, b2], [b1, c1], [b2, c1]. The compu-
tation shows that, among them, only the two �rst ones do satisfy the condition:

b3 = [X1, [X0, X1]], c2 = [X1, ad2
X0

(X1)], (8.32)

fb3(x) = −2e2, fc2(x) = 2x1e3. (8.33)

Thus, the only elements b ∈ Ḃ3 with length at most 6 that could satisfy fb 6= 0 are [b1, b3], [b1, c2],
[b2, b3], [b2, c2], [c1, b3]. The computation shows that, among them, only the second and the third
ones do satisfy the condition:

b4 = ad2
X1

ad2
X0

(X1), b5 = [[X0, X1], [X1, [X0, X1]]], (8.34)

fb4(x) = 2e3, fb5(x) = −2e3. (8.35)

Thus the only elements b ∈ Ḃ4 with length at most 6 that could satisfy fb 6= 0 are [b1, b4] and
[b1, b5], but the computation shows that they satisfy fb = 0. Therefore, for every b ∈ Ḃ4 ∪ Ḃ5 ∪ Ḃ6,
fb = 0. In conclusion, b1, . . . , b5 are the only elements b ∈ B such that fb(0) 6= 0. In particular,
none of them have length 4 or 6, thus

y6(t) = θ(0) +Dθ(0)
(
β1(t, u)e1 − β2(t, u)e2 − 2β3(t, u)e2 + 2(β4(t, u)− β5(t, u))e3

)
(8.36)

is the sum of 4 homogeneous functionals of degree 1, 2, 3 and 5. Here and below we write βj instead
of βbj for brevity.

Step 2: Computation of homogeneous terms with degree 4 and 6 in θ(x(t)). In this step, we consider
a local C6 di�eomorphism θ of R3 de�ned on a neighborhood of p = 0. For u ∈ L∞((0, T );R), we
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denote by U the primitive of u such that U(0) = 0 and V the primitive of U such that V (0) = 0.
Straightforward explicit integration of (8.29) yields

x(t;u) = U(t)e1 + V (t)e2 +

∫ t

0

U2(s) dse2 +
1

2
V 2(t)e3 +

∫ t

0

U(s)

∫ s

0

U2(s′) ds′ dse3, (8.37)

where the �ve terms are respectively functionals homogeneous of degree 1 through 5 with respect to
time in the sense of De�nition 8.9. Using a Taylor expansion of θ at 0, one obtains (vector-valued)
functionals γk for k ∈ J1, 6K, homogeneous of degree k with respect to time such that for every
M ∈ J1, 6K

θ(x(t)) = θ(0) +

M∑
k=1

γk(t, u) +O(tM+1). (8.38)

In particular

γ4(t, u) =
1

2
V 2(t)∂3θ(0) + U(t)

∫ t

0

U2∂12θ(0) +
1

2
V 2(t)∂22θ(0)

+
1

2
U2(t)V (t)∂112θ(0) +

1

4!
U4(t)∂4

1θ(0)

(8.39)

and

γ6(t, u) = U(t)

∫ t

0

U(s)

∫ s

0

U(s′)2ds′ds∂13θ(0) +
1

2
V 3(t)∂23θ(0) +

1

2

(∫ t

0

U2

)2

∂22θ(0)

+
1

4
U2(t)V 2(t)∂113θ(0) +

1

2
U(t)V (t)

∫ t

0

U2∂122θ(0) +
1

6
V 3(t)∂222θ(0)

+
1

6
U3(t)

∫ t

0

U2∂1112θ(0) +
1

4
U2(t)V 2(t)∂1122θ(0)

+
1

4!
V (t)U4(t)∂4

1∂2θ(0) +
1

6!
U6(t)∂6

1θ(0).

(8.40)

Step 3: Denying (8.27). We proceed by contradiction, assuming that there exists a local C6

di�eomorphism θ of R3 such that, for each M ∈ J1, 6K, there exists CM , TM > 0 such that (8.27)
holds for every t ∈ [0, TM ] and u ∈ L∞((0, TM );R) with ‖u‖L∞ ≤ 1.

By induction on M , estimate (8.27), Lemma 8.10 and (8.36) imply that γ1 = β1∂1θ(0), γ2 =
−β2∂2θ(0), γ3 = −2β3∂2θ(0), γ4 = 0, γ5 = 2(β4 − β5)∂3θ(0) and γ6 = 0.

On the one hand, by choosing u such that U(t) = 0 but V (t) 6= 0, the relation γ4(t, u) = 0
implies that ∂22θ(0) = −∂3θ(0) 6= 0 because θ is a local di�eomorphism. On the other hand,

by choosing u such that U(t) = V (t) = 0 but
∫ t

0
U2 6= 0, the relation γ6(t, u) = 0 implies that

∂22θ(0) = 0. This concludes the proof, since we have found incompatible conditions on ∂22θ(0).

Remark 8.13. This section is written with a focus on time-based estimates. However, a similar
�false proposition� could be stated for control-based estimates. The same counter-example also
negates this possibility.
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A Proving that the logarithm of the �ow is a Lie series

A.1 Using shu�e relations and Ree's theorem

In this paragraph, we describe a proof of Theorem 2.20 relying on Ree's theorem and shu�e
relations satis�ed by the coe�cients of the Chen series. This approach is notably used in [71, 74].
We start with some de�nitions.

De�nition A.1 (Shu�e product). The shu�e product is the map from I∗ × I∗ to the free vector
space over I∗ de�ned by induction on the length of the words by ∅ � σ = σ � ∅ := σ for every
σ ∈ I∗ (where ∅ denotes the empty word) and, for every σ, σ′ ∈ I∗ and `, `′ ∈ I,

(σ`)� (σ′`′) := (σ� (σ′`′))`+ ((σ`)� σ′)`′ (A.1)

Intuitively, the shu�e product of two words is the sum of all the ways of ri�e shu�ing these
two words together, interleaving their letters (exactly as one would ri�e shu�e two packets of a
card deck). For example, the shu�e product of the words ab and cd (over the Latin alphabet) is
abcd+ acbd+ acdb+ cabd+ cadb+ cdab.

The following result was introduced in [89, Theorem 2.5] to prove Theorem 2.20.

Lemma A.2 (Ree's theorem). Let γ : I∗ → K with γ∅ = 1. We still denote by γ its linear
extension to the free vector space over I∗. Consider the formal series x :=

∑
σ∈I∗ γσXσ. Then

log x ∈ L̂(X) i� (the linear extension of) γ satis�es the so-called �shu�e relations�, i.e. i� for
every σ, σ′ ∈ I∗,

γσ�σ′ = γσγσ′ . (A.2)

Proof. This statement is item (iii) in [90, Theorem 3.2].

Therefore, to show that log x(t) is a Lie series, it su�ces to check that the coe�cients
∫ t

0
aσ

(de�ned in (2.13)) of the Chen series satisfy these shu�e relations. We proceed as in [89, Section 2],
by induction on |σ| + |σ′| in (A.2). De�nition (2.13) can also be written as, for every σ ∈ I∗ and
` ∈ I, ∫ t

0

aσ` =

∫ t

0

aσ(s)a`(s) ds. (A.3)

Since we set
∫ t

0
a∅ = 1 by de�nition for the empty word ∅, (A.2) holds for every σ, σ′ ∈ I∗

when |σ| + |σ′| = 1. Assume now that it holds for |σ| + |σ′| ≤ n for some n ∈ N∗. Let σ, σ′ ∈ I∗
and `, `′ ∈ I such that |σ`| + |σ′`′| = n + 1. Applying successively, (A.1) and the linearity of the
extension of γ, (A.3), the induction hypothesis and eventually (A.3) again, we obtain, for every
t ≥ 0,

γ(σ`)�(σ′`′)(t) = γ(σ�(σ′`′))`(t) + γ((σ`)�σ′)`′(t)

=

∫ t

0

γσ�(σ′`′)(s)a`(s) ds+

∫ t

0

γ(σ`)�σ′(s)a`′(s) ds

=

∫ t

0

γσ(s)γσ′`′(s)a`(s) ds+

∫ t

0

γσ`(s)γσ′(s)a`′(s) ds

=

∫ t

0

γ̇σ`(s)γσ′`′(s) + γσ`(s)γ̇σ′`′(s) ds,

(A.4)

which proves that γ(σ`)�(σ′`′) = γσ`γσ′`′ .
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A.2 Using Friedrich's criterion

In this paragraph, we describe a proof of Theorem 2.20 relying on Friedrich's criterion. This
approach is notably used in [97, Section 3]. We start with some de�nitions.

Let A(X)⊗A(X) be the tensor product of the algebra A(X) with itself (i.e. the tensor product
of A(X) and A(X), endowed with the product rule (a ⊗ b)(a′ ⊗ b′) := (aa′) ⊗ (bb′), see [26,
Chapter 3, Section 4.1, De�nition 1] for a precise construction). The algebra A(X) is the universal
enveloping algebra of the Lie algebra L(X), and as such is a Hopf algebra (see [1]). The coproduct
homomorphism ∆ : A(X) → A(X) ⊗ A(X) is de�ned by setting the values ∆(1) := 1 ⊗ 1 and
∆(Xi) := Xi ⊗ 1 + 1 ⊗Xi for 1 ≤ i ≤ q. This de�nes a unique homomorphism because A(X) is
freely generated by X as an algebra (see [90, Proposition 1.2] for more detail). The coproduct ∆
can then be used to characterize Lie elements, as in the following result, which was proposed by
Friedrichs in [48], then proved by multiple authors in the same period [35, 44, 78, 80].

Lemma A.3 (Friedrichs' criterion). For a ∈ A(X), a ∈ L(X) if and only if the condition ∆(a) =
a⊗ 1 + 1⊗ a holds.

Proof. This statement is the equivalence between (i) and (iii) in [90, Theorem 1.4].

Example A.4. The element X1X2 does not belong to L. And indeed,

∆(X1X2) = ∆(X1)∆(X2) = (X1 ⊗ 1 + 1⊗X1)(X2 ⊗ 1 + 1⊗X2)

= X1X2 ⊗ 1 +X1 ⊗X2 +X2 ⊗X1 + 1⊗X1X2

6= X1X2 ⊗ 1 + 1⊗X1X2.

(A.5)

On the contrary, the element [X1, X2] = X1X2 −X2X1 belongs to L. And indeed,

∆([X1, X2]) = ∆(X1X2)−∆(X2X1)

= (X1X2 ⊗ 1 +X1 ⊗X2 +X2 ⊗X1 + 1⊗X1X2)

− (X2X1 ⊗ 1 +X2 ⊗X1 +X1 ⊗X2 + 1⊗X2X1)

= [X1, X2]⊗ 1 + 1⊗ [X1, X2].

(A.6)

The tensor product A(X) ⊗ A(X) also has a graded structure, with (A(X) ⊗ A(X))n =⊕n
i=0Ai(X) ⊗ An−i(X). Since the homomorphism ∆ is linear and degree preserving, it can

be extended as an homomorphism from Â(X) to ̂A(X)⊗A(X), the formal power series over
A(X)⊗A(X). For such series with zero constant term, one can de�ne, as in (2.5), an exponential,
say exp⊗, which also veri�es a uniqueness property such as Lemma 2.13. One can then derive a
criterion to determine whether the logarithm of a formal power series is a Lie element.

Corollary A.5. Let a ∈ Â(X) with a0 = 1. Then log(a) ∈ L̂(X) if and only if ∆(a) = a⊗ a.

Proof. We follow [90, Theorem 3.2]. By linearity and degree preservation, Lemma A.3 implies

that, for a ∈ Â(X), a ∈ L̂(X) if and only if ∆(a) = a ⊗ 1 + 1 ⊗ a. For a ∈ Â(X) with constant
term 1,

log a ∈ Â(X)⇐⇒ ∆(log(a)) = log(a)⊗ 1 + 1⊗ log(a)

⇐⇒ exp⊗ (∆(log(a))) = exp⊗ (log(a)⊗ 1 + 1⊗ log(a))

⇐⇒ ∆ (exp(log(a))) = exp⊗(log(a)⊗ 1) exp⊗(1⊗ log(a))

⇐⇒ ∆(a) = ((exp log a)⊗ 1)(1⊗ (exp log a)) = a⊗ a,

(A.7)

where we used the equality ∆(exp(·)) = exp⊗(∆(·)), because ∆ is an homomorphism, and the fact
that exp⊗(b⊗ 1 + 1⊗ c) = exp⊗(b⊗ 1) exp⊗(1⊗ c), because b⊗ 1 and 1⊗ c commute.
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Therefore, to show that log(x(t)) is a Lie series, it su�ces to check that ∆(x(t)) = x(t)⊗ x(t).
This can be checked as in [97, Section 3] using the following argument. At the initial time ∆(x(0)) =
∆(1) = 1⊗ 1 = x(0)⊗ x(0). On the one hand

d

dt
∆(x) = ∆(ẋ) = ∆(xa) = ∆(x)∆(a) = ∆(x)(a⊗ 1 + 1⊗ a). (A.8)

On the other hand,

d

dt
(x⊗ x) = ẋ⊗ x+ x⊗ ẋ = (xa)⊗ x+ x⊗ (xa) = (x⊗ x)(a⊗ 1 + 1⊗ a). (A.9)

Hence, both quantities satisfy the same formal di�erential equation with the same initial condition,
so they are equal for every t ≥ 0.

B Elementary numerical identities

B.1 Bernoulli numbers

We use the notation (Bn)n∈N to denote the Bernoulli numbers, which are de�ned (using the modern
NIST sign and indexing convention) by the identity

∀z ∈ C, |z| < 2π,
z

ez − 1
=

+∞∑
n=0

Bn
zn

n!
= 1− z

2
+

+∞∑
n=1

B2n
z2n

(2n)!
. (B.1)

Lemma B.1. The Bernoulli numbers satisfy, for every n ≥ 2

n−1∑
k=0

(
n

k

)
Bk = 0, (B.2)

n∑
k=0

(
n

k

)
Bk

n+ 1− k
= 0, (B.3)

n∑
k=0

Bn−k
(n− k)!(k + 2)!

= − Bn+1

(n+ 1)!
. (B.4)

Moreover, the odd Bernoulli numbers except B1 vanish and, for every n ≥ 1,

B2n = (−1)n+1 2(2n)!

(2π)2n
ζ(2n) ∼ (−1)n+12

√
2πn

(n
π

)2n

, (B.5)

where ζ is the Riemann zeta function.

Proof. The �rst two identities are classical and can be proved using the generating series of the
Bernoulli numbers of (B.1), respectively by identi�cation in z = (ez − 1) × (z/(ez − 1)) for (B.2)
and in 1 = ((ez − 1)/z)× (z/(ez − 1)) for (B.3).

The third identity (B.4) follows from (B.3) and the computation

n∑
k=0

Bn−k
(n− k)!(k + 2)!

=
1

(n+ 1)!

n∑
`=0

(
n

n− `

)
n+ 1

n+ 1− `
B`

n− `+ 2

=
1

(n+ 1)!

n∑
`=0

(
n+ 1

`

)
B`

(n+ 1)− `+ 1
= − Bn+1

(n+ 1)!
.

(B.6)

Eventually, the relationship with the Riemann zeta function is proved in [9, equation (12.38)].
The asymptotic is a consequence of the Stirling's approximation and ζ(s) → 1 as s ≥ 1 tends to
+∞ (which is a direct consequence of the formula ζ(s) =

∑
n−s).
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