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On expansions for nonlinear systems,
error estimates and convergence issues

Karine Beauchard∗, Jérémy Le Borgne∗, Frédéric Marbach∗

April 21, 2021

Abstract

Explicit formulas expressing the solution to non-autonomous differential equations are of
great importance in many application domains such as control theory or numerical operator
splitting. In particular, intrinsic formulas allowing to decouple time-dependent features from
geometry-dependent features of the solution have been extensively studied.

First, we give a didactic review of classical expansions for formal linear differential equa-
tions, including the celebrated Magnus expansion (associated with coordinates of the first
kind) and Sussmann’s infinite product expansion (associated with coordinates of the second
kind). Inspired by quantum mechanics, we introduce a new mixed expansion, designed to
isolate the role of a time-invariant drift from the role of a time-varying perturbation.

Second, in the context of nonlinear ordinary differential equations driven by regular vector
fields, we give rigorous proofs of error estimates between the exact solution and finite approx-
imations of the formal expansions. In particular, we derive new estimates focusing on the role
of time-varying perturbations. For scalar-input systems, we derive new estimates involving
only a weak Sobolev norm of the input.

Third, we investigate the local convergence of these expansions. We recall known positive
results for nilpotent dynamics and for linear dynamics. Nevertheless, we also exhibit arbitrarily
small analytic vector fields for which the convergence of the Magnus expansion fails, even in
very weak senses. We state an open problem concerning the convergence of Sussmann’s infinite
product expansion.

Eventually, we derive approximate direct intrinsic representations for the state and discuss
their link with the choice of an appropriate change of coordinates.

∗Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
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1 Introduction

1.1 Motivations
There are multiple situations in which one desires to compute the solution to a differential equation
whose dynamics depend on time. One often looks for explicit formulas, depending preferentially on
intrinsic quantities, which describe the composition of flows, or even the continuous composition
of flows. Some important applications are listed below.

• Control theory. Here, the dynamics depend on time mostly through the choice of time-
varying controls. One looks for explicit formulas of the continuous product of flows in order
to be able to construct controls for which this resulting flow drives a given initial state to a de-
sired target state. In order to establish necessary and sufficient conditions for controllability,
one is interested in intrinsic formulas. It is our main motivation.

• Numerical splitting methods. Here, the splitting algorithm applies sequentially a suc-
cession of basic flows, composed with appropriate time steps. One is interested in choosing
correctly the base flows and the time steps in order to approximate the most precisely possi-
ble the solution to the true complex flow. Formulas concerning the composition of flows are
essential to compute the order of the resulting numerical scheme. We refer to the survey [15]
and the introduction books [14, 37]. Composition of flows formulas are also very useful in
particular settings like Hamiltonian systems [17] or in the presence of a small perturbation
of a reference flow [54].

• Stochastic differential equations. Here, the dynamics depend on time through the
sources of randomness, say Brownian motions. One wishes to investigate the influence of
the randomness on the final state and thus looks for explicit formulas involving iterated
Stratanovich integrals to construct a representation of the flow, see e.g. [9, 11, 22, 25].

• Differential equations on Lie groups. Sometimes, the state itself of the differential
equation belongs to a Lie group, as in [41]. Then, looking for an intrinsic approximation of
the state helps to preserve structure which would be lost otherwise. In particular, writing
the product of multiple flows as a single flow is important. There are also control problems
for differential equations set on Lie groups, as in [44].

1.2 Short historical survey
We start with a short survey of some of the many approaches related with the computation of
solutions to formal linear differential equations, say

ẋ(t) = X(t)x(t), (1.1)

together with some initial condition x(0). We recall in Section 1.2.4 the consequences of such
results for nonlinear ordinary differential equations.

1.2.1 Iterated Duhamel or Chen-Fliess expansion

One of the most straightforward approaches to solving (1.1) consists in what can be seen as an
iterated application of Duhamel’s principle. For small times, starting from the initial approxi-
mation x(t) ≈ x(0), one then enhances the approximation by plugging the approximation in the
equation and obtains successively x(t) ≈ x(0)+

∫ t
0
X(s)x(0) ds, then x(t) ≈ x(0)+

∫ t
0
X(s)x(0) ds+∫ t

0
X(s)

∫ s
0
X(s′)x(0) ds′ ds and so on.

In the context of control theory, this expansion is known as the Chen-Fliess expansion, after
being popularized by the works [26, 33]. Its main advantages are its simplicity and nice convergence
properties (see Section 5.1). However, it also has some strong drawbacks, which we detail in
Remark 2.16 and Remark 8.7 and motivate the investigation of other expansions.
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1.2.2 Magnus expansion

When X(t) is piecewise constant, for example with values X1 for t ∈ [0, 1] and X2 for t ∈ [1, 2],
one has formally, x(2) = eX2eX1x(0). Hence, the computation of solutions to (1.1) has a deep link
with the famous Campbell [23], Baker [8], Hausdorff [40], Dynkin [31] formula (“CBHD formula”
in the sequel).

This formula has a long and rich history which involves forgotten contributions of other authors
such as Schur, Poincaré, Pascal or Yosida. As noted by Bourbaki in [19], “chacun considère que les
démonstrations de ses prédécesseurs ne sont pas convaincantes”. We therefore encourage the reader
to dive into the fascinating retrospectives [1] and [18] to understand the progressive construction
of its proof throughout the decades. This formula is a formal identity expressing the product of
the exponentials of two (non-commutative) indeterminates X1 and X2 as the single exponential of
a series of Lie brackets (i.e. nested commutators) of these indeterminates, of which the first terms
are well-known:

eX2eX1 = exp

(
X1 +X2 +

1

2
[X2, X1] + . . .

)
. (1.2)

When more than two exponentials are multiplied, say eX1 through eXn , one can of course iterate the
formula (1.2) with itself to formally express the product of n exponentials as the single exponential
of a complicated series. Letting n → +∞, one is lead to computing a continuous product of
exponentials, which corresponds, heuristically, to solving (1.1).

Magnus performed a breakthrough by deriving in [53] the first formal representation of the
solution to (1.1) as the exponential of a series, of which the first terms are

x(t) = exp

(∫ t

0

X(τ1) dτ1 +
1

2

∫ t

0

∫ τ1

0

[X(τ1), X(τ2)] dτ2 dτ1 + · · ·
)
x(0). (1.3)

This formula can be seen as the continuous counterpart of the CBHD formula and highlights
important structural properties of the solutions to (1.1) (see Section 2.3).

1.2.3 Infinite products

The CBHD formula and the Magnus formula share the goal of expressing the desired quantity
as the exponential of a single, although complicated, object. Other approaches go the other way
around and try to express the desired quantity as a long (infinite) product of exponentials of very
simple objects.

A well-known example is the Lie-Trotter product formula (see e.g. [69]), often used for numerical
splitting methods which attempts to give a meaning to the equality

eX1+X2 = lim
n→+∞

(
e
X1
n e

X2
n

)n
, (1.4)

the interest relying on the fact that the exponentials of X1 and X2 are assumed to be easier to
compute in some sense than the direct exponential of X1 +X2.

Another related formula is the Zassenhaus expansion, described by Magnus in [53], which
allows to decompose the same quantity eX1+X2 as an infinite product of exponentials of linear
combinations of nested commutators of strictly increasing lengths, whose first terms are

eX1+X2 = eX1eX2 exp

(
−1

2
[X1, X2]

)
exp

(
1

3
[X2, [X1, X2]] +

1

6
[X1, [X1, X2]]

)
· · · (1.5)

In the context of differential equations such as (1.1), a nice formula is Sussmann’s infinite
product expansion, introduced in [68]. When X(t) is given as a linear combination of elementary
generators, e.g. X(t) = a1(t)X1 + a2(t)X2, Sussmann’s infinite product expansion is given by a
product of exponentials of Lie monomials, such as

x(t) = eξ1X1eξ2X2eξ12[X1,X2]eξ112[X1,[X1,X2]]eξ212[X2,[X1,X2]] · · ·x(0), (1.6)
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where the ξi are scalar functions of time given by explicit formulas from the functions a1 and a2.
Compared to other expansions, this formula is both intrinsic (such as the Magnus expansion) and
involves coefficients which are easily computed by induction (such as the Chen-Fliess expansion).

1.2.4 Consequences for nonlinear ordinary differential equations

Although the expansions mentioned above concern linear formal differential equations, they can
be adapted to ordinary nonlinear differential equations on smooth manifolds governed by smooth
vector fields. Indeed, one can identify vector fields with linear operators acting on smooth functions,
and points of the manifold with the linear operator on smooth functions corresponding to evaluation
at this point. This method allows to recast the nonlinear equation into a linear equation set on a
larger space, for which the formal linear expansions can be used (see Section 4.1).

This linearization technique has been used by Sussmann in [67, Proposition 4.3] to prove the
convergence of the Chen-Fliess expansion for nonlinear ordinary differential equations driven by
analytic vector fields, by Agrachev and Gamkrelidze in the context of control theory (see [2, 3, 35]
in which they derive an exponential representation of flows, very similar to Magnus’ expansion,
using the chronological calculus framework) and by Strichartz (see [65] and his derivation of the
generalized CBHD formula, with applications related to sub-Riemannian geometry).

At a formal level, all identities mentioned above (almost) always make sense. However, if the
indeterminates are replaced by true objects (say matrices, operators or vector fields), convergence
issues arise. Generally speaking, convergence often requires that one either assumes that the objects
are small enough or that the generated Lie algebra has additional structure, like nilpotence.

1.3 Main goals and organization of this paper
This paper is both a survey on some classical expansions for nonlinear systems, a research paper
containing new results and counter-examples and a toolbox for future works. In particular, we aim
at the following goals.

• We give in Section 2 a didactic review of classical expansions for formal linear
differential equations. Our introduction to this algebraic topic is written with a view
to making it understandable by readers with minimal algebraic background. We review the
following classical expansions:

1. the iterated Duhamel or Chen-Fliess formula,

2. the Magnus or generalized CBHD formula (associated with coordinates of the first kind),

3. Sussmann’s infinite product formula (associated with coordinates of the second kind).

• We introduce a new formal mixed expansion, inspired by quantum mechanics, designed
to isolate the role of a time-invariant drift from the role of a time-varying perturbation (see
Section 2.4), which we name Magnus expansion in the interaction picture and for which we
define coordinates of the pseudo-first kind by analogy with first and second kind coordinates.

• We recall in Section 3 classical well-posedness results and estimates for products and
Lie brackets of analytic vector fields, which are used throughout the paper.

• In the context of nonlinear ordinary differential equations driven by regular vector fields,
we give in Section 4 rigorous proofs of error estimates between the exact solution and
finite approximations of each of these four formal expansions. These estimates are part
of the mathematical folklore for the Chen-Fliess and Magnus expansions, but are new for
our mixed expansion and for Sussmann’s infinite product expansion. We strive towards
providing estimates with similar structures for the four expansions and which are valid under
parsimonious regularity assumptions.
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• We investigate the convergence of these expansions in Section 5. We recall known positive
convergence results for smooth vector fields generating nilpotent Lie algebras and for small
linear dynamics (matrices). For our new expansion, we investigate the subtle convergence
under a natural partial nilpotent assumption. In this case, convergence requires analyticity,
contrary to the proofs we give for the other expansions under a full nilpotent assumption.

• For analytic vector fields, only the Chen-Fliess expansion is known to converge. We give
in Section 5.2 new strong counter examples to the convergence of Magnus expansions,
which disprove the convergence of these expansions even for analytic vector fields and in very
weak senses. We state an open problem concerning the convergence of Sussmann’s infinite
product for analytic vector fields.

• When the system involves a time-invariant drift and a time-varying perturbation, we show
in Section 6 that only the Magnus expansion fails to provide well-behaved estimates
with respect to the perturbation size. For the three other expansions, it turns out to
be possible to obtain such estimates by summing well-defined infinite partial series which
converge for analytical vector fields.

• In the particular case of scalar-input systems, we prove in Section 7 new errors estimates
involving a negative Sobolev norm of the time-varying input. Such estimates are the
best compatible with the regularity of the input-to-state map and can be helpful for specific
applications.

• Eventually, we derive in Section 8 approximate direct intrinsic representations of the
state for nonlinear systems, which don’t require the computation of flows. Our formulas can
be viewed as almost-diffeomorphisms and might be useful for applications in control theory.
Unfortunately, we also study a counter-example which demonstrates that one cannot obtain
an exact representation through a diffeomorphism.

2 Formal expansions for linear dynamics
In this section, we consider formal linear differential equations, recall classical expansions valid in
this formal setting (for which there is no convergence issue) and introduce a new mixed expansion
which isolates the role of a perturbation in the dynamics.

2.1 Notations
We recall classical definitions and notations for usual algebraic objects. In the sequel, K denotes
the field R or C. All statements and proofs hold for both base fields. It will be implicit that all
vector spaces and algebras are constructed from the base field K.

2.1.1 Free algebras

We refer to the books [42, 60] for thorough introductions to Lie algebras and free Lie algebras.

Definition 2.1 (Indeterminates). Let I be a finite set. At the formal level, we consider a set
X := {Xi; i ∈ I} of indeterminates, indexed by I. For applications, we will substitute in their
place matrices or vector fields. Most often, we will write I = J1, qK for some q ∈ N∗, or I = J0, qK
when we want to isolate the role of the indeterminate X0.

Definition 2.2 (Free monoid). For I as above, we denote by I∗ the free monoid over I, i.e.
the set of finite sequences of elements of I endowed with the concatenation operation. For σ =
(σ1, . . . σk) ∈ I∗, where k is the length of σ also denoted by |σ|, we let Xσ := Xσ1

· · ·Xσk . This
operation defines an homomorphism from I∗ to X∗, the free monoid over X (monomials over X).

6



Definition 2.3 (Free algebra). For X as above, we consider A(X) the free associative algebra
generated by X over the field K, i.e. the unital associative algebra of polynomials of the non com-
mutative indeterminates X (see also [20, Chapter 3, Section 2.7, Definition 2]). A(X) can be seen
as a graded algebra:

A(X) = ⊕
n∈N
An(X), (2.1)

where An(X) is the finite-dimensional K-vector space spanned by monomials of degree n over X.
In particular A0(X) = K and A1(X) = spanK(X).

Definition 2.4 (Free Lie algebra). For X as above, A(X) is endowed with a natural structure
of Lie algebra, the Lie bracket operation being defined by [a, b] = ab − ba. This operation satisfies
[a, a] = 0 and the Jacobi identity [a, [b, c]] + [c, [a, b]] + [b, [c, a]] = 0. We consider L(X), the free
Lie algebra generated by X over the field K, which is defined as the Lie subaglebra generated by X
in A(X). It can be seen as the smallest linear subspace of A(X) containing all elements of X and
stable by the Lie bracket (see also [60, Theorem 0.4]). L(X) is a graded Lie algebra:

L(X) = ⊕
n∈N
Ln(X), [Lm(X),Ln(X)] ⊂ Lm+n(X) (2.2)

where, for each n ∈ N, we define Ln(X) := L(X) ∩ An(X).

Definition 2.5 (Nilpotent Lie algebra). Let L be a Lie algebra. We define recursively the following
two-sided Lie ideals: L1 := L and, for k ≥ 1, Lk+1 := [L,Lk] i.e. Lk+1 is the linear subspace of
L generated by brackets of the form [a, b] with a ∈ L and b ∈ Lk. Let m ∈ N∗. We say that L is
a nilpotent Lie algebra of index m when Lm = {0} and m is the smallest integer for which this
property holds.

Definition 2.6 (Free nilpotent Lie algebra). Let m ∈ N∗. The freem-nilpotent Lie algebra over X
is the quotient Nm(X) := L(X)/L(X)m (with the notation of Definition 2.5. Then the canonical
surjection σm : L(X)→ Nm(X) is a Lie algebra homomorphism.

The universal properties of the various free algebras constructed above allow to transport on
algebras relations proved at the free level.

Lemma 2.7. The following universal properties hold.

• For each unital associative algebra A and map Λ : X → A, there exists a unique homomor-
phism of algebras A(X)→ A that extends Λ.

• For each Lie algebra L and map Λ : X → L, there exists a unique homomorphism of Lie
algebras L(X)→ L that extends Λ.

• Let m ∈ N∗. For each nilpotent Lie algebra L of index m and map Λ : X → L, there exists
a unique homomorphism of Lie algebras Nm(X)→ L that extends Λ.

2.1.2 Formal brackets and evaluation

Definition 2.8 (Formal brackets). For X as above, we consider Br(X) the set of formal brackets of
elements of X. This set can be defined by induction: for Xi ∈ X, Xi ∈ Br(X) and if b1, b2 ∈ Br(X),
then the ordered pair [b1, b2] belongs to Br(X). More rigorously, one can define Br(X) as the free
magma over X or as the set of binary trees, with leaves labeled by X.

For b ∈ Br(X), we will use the following notations:

• |b| will denote the length of b (i.e. the number of leaves of the tree).

• If |b| > 1, there exists a unique couple (b1, b2) ∈ Br(X)2 such that b = [b1, b2] (left and right
factors) which are denoted as λ(b) = b1 and µ(b) = b2. We also write [b1, b2] as adb1(b2)
which allows iterated left bracketing.
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• For i ∈ I, ni(b) denotes the number of occurrences of the indeterminate Xi in b. When
I = J0, qK we will also write n(b) = n1(b) + · · ·+ nq(b) = |b| − n0(b).

Definition 2.9 (Subspaces of brackets). When I = J0, qK and ` ∈ N, S` denotes the subset of
Br(X) defined by

S` := {b ∈ Br(X); n(b) ≤ `}. (2.3)
With this convention, S` is a subset of Br(X), which is different from a convention commonly used
in control theory where one refers to the vector space spanned by our S` in L(X).

Remark 2.10. There is a natural “evaluation” mapping eval from Br(X) to L(X) defined by
induction by eval(Xi) := Xi for Xi ∈ X and eval([b1, b2]) := [eval(b1), eval(b2)]. Through this
mapping, Br(X) spans L(X) over K, i.e. L(X) = spanK eval(Br(X)). This mapping is however
not injective: for example, [X1, X1] and [X2, [X1, X1]] are two different elements of Br(X), both
evaluated to zero in L(X). Nevertheless, we will sometimes implicitly evaluate the formal brackets
of Br(X) in L(X), omitting the mapping eval.

More precisely, the eval map extends to a surjective algebra homomorphism from the nonasso-
ciative free algebra over X (which is the free vector space over Br(X), whose elements are formal
(finite) linear combinations of elements of Br(X), endowed with the natural product map induced
by the product in Br(X)). Moreover the kernel of the extended eval is precisely the ideal generated
by the relations that define anticommutativity and the Jacobi identity in L(X).

2.1.3 Formal series, exponential and logarithms

Definition 2.11 (Formal series). We consider the (unital associative) algebra Â(X) of formal
series generated by A(X). An element a ∈ Â(X) is a sequence a = (an)n∈N written a =

∑
n∈N an,

where an ∈ An(X) with, in particular, a0 ∈ K being its constant term. We also define the Lie
algebra of formal Lie series L̂(X) as the Lie algebra of formal power series a ∈ Â(X) for which
an ∈ L(X) for each n ∈ N. For S ∈ Â(X) and σ ∈ I∗, 〈S,Xσ〉 denotes the coefficient of Xσ in S:
S =

∑
σ∈I∗〈S,Xσ〉Xσ.

Remark 2.12. The definition of Â(X) can be made more rigorous by considering val : A(X)→
N ∪ {∞} by val(a) = inf{n ∈ N | a ∈

⊕
k≥nAk(X)}. Then (a, b) 7→ e−val(b−a) is a distance on

A(X), that induces the discrete topology on each An(X), and Â(X) is defined as the completion of
the metric space A(X), to which the operations on A(X) naturally extend as continuous operations,
endowing it with a structure of topological algebra. A formal series

∑
n∈N an with an ∈ An(X)

thus converges in the metric space Â(X), which justifies the notations of Definition 2.11. To avoid
confusion, we shall however not use the term “convergence” in this context.

If a ∈ Â(X) has zero constant term, we define exp(a) ∈ Â(X) and log(1 + a) ∈ Â(X) as

exp(a) :=
∑
m≥0

am

m!
, (2.4)

log(1 + a) :=
∑
m≥1

(−1)m−1

m
am. (2.5)

Since a has zero constant term, one checks that the right-hand sides of (2.4) and (2.5) indeed define
formal series of Â(X). In particular, log(exp(a)) = a and exp(log(1 + a)) = 1 + a.

Lemma 2.13. Let a, b ∈ Â(X) with zero constant term. Then a = b if and only if exp(a) = exp(b).

Proof. The forward implication is obvious. Conversely, if exp(a) = exp(b) in Â(X), then, for every
r ≥ 1, their components in Ar are equal. Moreover, from (2.4), one has:

(exp(a))r =

r∑
k=1

∑
r1+...rk=r

ar1 . . . ark
k!

= ar + Θr (a1, . . . ar−1) , (2.6)
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for some function Θr depending only on the ar′ for r′ < r. Hence, we obtain by induction on r ≥ 1
that ar = br from the equalities (exp(a))r = (exp(b))r.

2.2 Formal differential equations and iterated integrals
Using the notations of Section 2.1, for i ∈ I, let ai ∈ L1(R+;K) and define a by

a(t) :=
∑
i∈I

ai(t)Xi. (2.7)

In this section, we consider the following formal ordinary differential equation set on Â(X), driven
by a and associated with some initial data x?,{

ẋ(t) = x(t)a(t),

x(0) = x?,
(2.8)

whose solutions are precisely defined in the following way.

Definition 2.14 (Solution to a formal ODE). Let ai ∈ L1(R+;K) for i ∈ I and define a by (2.7).
Let x? ∈ Â(X) with homogeneous components x?n ∈ An(X). The solution to the formal ODE (2.8)
is the formal-series valued function x : R+ → Â(X), whose homogeneous components xn : R+ →
An(X) are the unique continuous functions that satisfy, for every t ≥ 0, x0(t) = x?0 and, for every
n ∈ N∗,

xn(t) = x?n +

∫ t

0

xn−1(τ)a(τ) dτ. (2.9)

Iterating this integral formula yields the following series expansion, which is the most direct
way to compute the solution to (2.8) and was popularized by the works [26, 33].

Lemma 2.15 (Iterated Duhamel or Chen-Fliess series expansion). In the context of Defini-
tion 2.14, the solution to (2.8) with initial data x? = 1 can be expanded as

x(t) =
∑
σ∈I∗

(∫ t

0

aσ

)
Xσ, (2.10)

where
∫ t

0
a∅ = 1 by convention and, for σ ∈ I∗ with |σ| ≥ 1, we introduce the notation∫ t

0

aσ :=

∫
0<τ1<···<τn<t

aσ1
(τ1) · · · aσn(τn) dτ. (2.11)

Proof. Expansion (2.10) is a direct consequence of the iterated application of (2.9) and of the
definition of Xσ in Definition 2.2 and can be proved by induction on the length of σ.

Remark 2.16. Despite its simplicity, the Chen-Fliess series expansion suffers from a major draw-
back: it involves non intrinsic quantities and is redundant. As an illustration, this has the following
consequences:

• The functionals
∫ t

0
aσ for σ ∈ I∗ are not algebraically independent. For example, for every

solution to (2.8) and every t ≥ 0, one has the identity

〈x(t), X1X2〉+ 〈x(t), X2X1〉 − 〈x(t), X1〉〈x(t), X2〉 = 0 (2.12)

• In the context of nonlinear ordinary differential equations, the representation (2.10) can fail
to converge for smooth vector fields despite strong structural assumptions (see Section 5.1.1).

• In the context of nonlinear ordinary differential equations, the representation (2.10) will not
be invariant by diffeomorphism (see Remark 8.7), which would be a desirable invariance.

This drawback motivates the search for more intrinsic representations of the solutions, which will
turn out to involve Lie algebras.
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2.3 Logarithm of flows, coordinates of the first kind
In the particular case where a(t) is a constant element a ∈ A1(X), evaluating the iterated integrals
in (2.11) yields the elegant formula x(t) = x? exp(ta), with the notation of (2.4). Of course, it is no
longer valid for a time-varying dynamic (because the indeterminates do not commute a priori), but
one can wish to find an object of which the flow is the exponential, the so-called “ logarithm of the
flow ”. In this section, we recall and prove Theorem 2.26, which states that the logarithm of flows of
formal linear differential equations is given by explicit Lie brackets. Our proof follows the method
proposed in [65, Section 3] and relies on well-known algebraic results, which we recall, for the sake
of giving a self-contained presentation. Another related approach, relying on Ree’s theorem and
shuffle relations satisfied by the Chen-Fliess series coefficients is developed in [47, 48, 59, 60].

2.3.1 Notations for indexes

We start with an abstract definition of the truncated logarithm of a time-dependent dynamic.

Definition 2.17. For m, r ∈ N∗, we define the set of ordered positive partitions of size m of r,

Nmr := {r = (r1, . . . , rm) ∈ (N∗)m; r1 + · · ·+ rm = r} , (2.13)

where Nmr = ∅ when r < m. For each r ∈ Nmr and t > 0, we also define

Tr(t) :=
{
τ = (τ1, . . . , τr) ∈ (0, t)r; ∀j ∈ J1,mK, 0 < τRj < · · · < τRj−1+1 < t

}
, (2.14)

where, for j ∈ J1,mK,

Rj :=

j∑
i=1

ri. (2.15)

Example 2.18. The sets Tr(t) will be used as integration domains, and can be pictured as products
of pyramidal domains. As examples, we compute the integration domains for r ≤ 3. One has

T(1)(t) = {τ = (τ1) ∈ (0, t)1}, (2.16)

T(2)(t) = {τ = (τ1, τ2) ∈ (0, t)2; 0 < τ2 < τ1 < t}, (2.17)

T(1,1)(t) = {τ = (τ1, τ2) ∈ (0, t)2}, (2.18)

T(3)(t) = {τ = (τ1, τ2, τ3) ∈ (0, t)3; 0 < τ3 < τ2 < τ1 < t}, (2.19)

T(2,1)(t) = {τ = (τ1, τ2, τ3) ∈ (0, t)3; 0 < τ2 < τ1 < t}, (2.20)

T(1,2)(t) = {τ = (τ1, τ2, τ3) ∈ (0, t)3; 0 < τ3 < τ2 < t}, (2.21)

T(1,1,1)(t) = {τ = (τ1, τ2, τ3) ∈ (0, t)3}. (2.22)

A more complex example for r = 4, m = 2 and r = (2, 2) ∈ N2
4 is

T(2,2)(t) = {τ = (τ1, τ2, τ3, τ4) ∈ (0, t)4; 0 < τ2 < τ1 < t and 0 < τ4 < τ3 < t}. (2.23)

We now give a notation for the (truncated or complete) logarithm of a time-dependent dynamic.
We will see in the sequel why this quantity indeed corresponds to a logarithm.

Definition 2.19 (Abstract logarithm of a time-varying field). Let M ∈ N or M = +∞, t > 0 and
F be a map from [0, t] with values in some algebra. We introduce the notation

LogM{F}(t) :=

M∑
r=1

1

r

r∑
m=1

(−1)m−1

m

∑
r∈Nmr

∫
τ∈Tr(t)

[· · · [F (τr), F (τr−1)], . . . F (τ1)] dτ. (2.24)

Remark 2.20. In such an abstract setting, the right-hand side of (2.24) does not make sense since
we are not able to define an integral over an abstract algebra (without topology on the algebra and
without time-regularity on F ). At this stage, we see (2.24) as an abstract formula or notation. We
will check, each time we use it, that we can give a meaning to the integrals.
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2.3.2 Preliminary algebraic results

Define a linear map β from A(X) to L(X) by setting its values on the monomials by β(1) := 0,
β(Xi) := Xi for 1 ≤ i ≤ q, and, for 1 ≤ i1, . . . , ik ≤ q with k ∈ N∗,

β(Xi1Xi2 · · ·Xik) := [· · · [Xi1 , Xi2 ], . . . , Xik ]. (2.25)

This process defines a standard way, the “left to right” or “left normed” bracketing, to associate a
Lie bracket to each monomial. The following important result, proved successively by Dynkin [30],
Specht [63] and Wever [72] states that, if a polynomial is a Lie element, then it is equal to its left
normed bracketing.

Lemma 2.21 (Dynkin’s theorem). For a ∈ An(X), a ∈ L(X) if and only if β(a) = na.

Proof. This statement is contained in the equivalence between (i) and (v) of [60, Theorem 1.4].

Example 2.22. The element X1X2 does not belong to L(X). And indeed, β(X1X2) = X1X2 −
X2X1 6= 2X1X2. On the contrary, the element [X1, X2] = X1X2 − X2X1 belongs to L(X). And
indeed, β([X1, X2]) = (X1X2 −X2X1)− (X2X1 −X1X2) = 2[X1, X2].

Let A(X)⊗A(X) be the tensor product of algebra A(X) with itself (i.e. the tensor product of
A(X) and A(X), endowed with the product rule (a⊗b)(a′⊗b′) := (aa′)⊗ (bb′), see [20, Chapter 3,
Section 4.1, Definition 1] for a precise construction). Define an homomorphism ∆ from A(X) to
A(X) ⊗ A(X) by setting the values ∆(1) := 1 ⊗ 1 and ∆(Xi) := Xi ⊗ 1 + 1 ⊗Xi for 1 ≤ i ≤ q.
This defines a unique homomorphism because A(X) is freely generated by X as an algebra (see
[60, Proposition 1.2] for more detail). The homomorphism ∆ can then be used to characterize
Lie elements, as in the following result, which was proposed by Friedrichs in [34], then proved by
multiple authors in the same period [27, 32, 52, 53].

Lemma 2.23 (Friedrichs’ criterion). For a ∈ A(X), a ∈ L(X) if and only if the condition ∆(a) =
a⊗ 1 + 1⊗ a holds.

Proof. This statement is the equivalence between (i) and (iii) in [60, Theorem 1.4].

Example 2.24. The element X1X2 does not belong to L. And indeed,

∆(X1X2) = ∆(X1)∆(X2) = (X1 ⊗ 1 + 1⊗X1)(X2 ⊗ 1 + 1⊗X2)

= X1X2 ⊗ 1 +X1 ⊗X2 +X2 ⊗X1 + 1⊗X1X2

6= X1X2 ⊗ 1 + 1⊗X1X2.

(2.26)

On the contrary, the element [X1, X2] = X1X2 −X2X1 belongs to L. And indeed,

∆([X1, X2]) = ∆(X1X2)−∆(X2X1)

= (X1X2 ⊗ 1 +X1 ⊗X2 +X2 ⊗X1 + 1⊗X1X2)

− (X2X1 ⊗ 1 +X2 ⊗X1 +X1 ⊗X2 + 1⊗X2X1)

= [X1, X2]⊗ 1 + 1⊗ [X1, X2].

(2.27)

The tensor product A(X) ⊗ A(X) also has a graded structure, with (A(X) ⊗ A(X))n =⊕n
i=0Ai(X) ⊗ An−i(X). Since the homomorphism ∆ is linear and degree preserving, it can be

extended as an homomorphism from Â(X) to ̂A(X)⊗A(X), the formal series over A(X)⊗A(X).
For such series with zero constant term, one can define, as in (2.4), an exponential, say exp⊗,
which also verifies a uniqueness property such as Lemma 2.13. One can then derive a criterion to
determine whether the logarithm of a formal series is a Lie element.

Corollary 2.25. Let a ∈ Â(X) with a0 = 1. Then log(a) ∈ L̂(X) if and only if ∆(a) = a⊗ a.

11



Proof. We follow [60, Theorem 3.2]. By linearity and degree preservation, Lemma 2.23 implies
that, for a ∈ Â(X), a ∈ L̂(X) if and only if ∆(a) = a ⊗ 1 + 1 ⊗ a. For a ∈ Â(X) with constant
term 1,

log a ∈ Â(X)⇐⇒ ∆(log(a)) = log(a)⊗ 1 + 1⊗ log(a)

⇐⇒ exp⊗ (∆(log(a))) = exp⊗ (log(a)⊗ 1 + 1⊗ log(a))

⇐⇒ ∆ (exp(log(a))) = exp⊗(log(a)⊗ 1) exp⊗(1⊗ log(a))

⇐⇒ ∆(a) = ((exp log a)⊗ 1)(1⊗ (exp log a)) = a⊗ a,

(2.28)

where we used the equality ∆(exp(·)) = exp⊗(∆(·)), because ∆ is an homomorphism, and the fact
that exp⊗(b⊗ 1 + 1⊗ c) = exp⊗(b⊗ 1) exp⊗(1⊗ c), because b⊗ 1 and 1⊗ c commute.

2.3.3 Formal linear differential equations

Theorem 2.26. For t ∈ R+ and x? ∈ Â(X), the solution x to (2.8) satisfies

x(t) = x? exp (Log∞{a}(t)) , (2.29)

with the notation of Definition 2.19.

Proof. First, by linearity, it suffices to prove (2.29) for x? = 1. For t ∈ R+, to show that log(x(t))
is a Lie series, thanks to Corollary 2.25, it suffices to check that ∆(x(t)) = x(t)⊗x(t). We proceed
using the same trick as in [65]. At the initial time ∆(x(0)) = ∆(1) = 1 ⊗ 1 = x(0) ⊗ x(0). Then,
on the one hand

d

dt
∆(x) = ∆(ẋ) = ∆(xa) = ∆(x)∆(a) = ∆(x)(a⊗ 1 + 1⊗ a). (2.30)

On the other hand,

d

dt
(x⊗ x) = ẋ⊗ x+ x⊗ ẋ = (xa)⊗ x+ x⊗ (xa) = (x⊗ x)(a⊗ 1 + 1⊗ a). (2.31)

Hence, both quantities satisfy the same formal differential equation with the same initial condition,
so they are equal for every t ∈ R+ and log(x(t)) ∈ L̂(X).

Repeated integration of (2.9) yields, for every t ∈ R+,

x(t) = 1 +
∑
r≥1

∫
0<τr<···<τ1<t

a(τr) · · · a(τ1) dτ. (2.32)

Hence, recalling the definitions (2.13) of Nmr and (2.14) of Tr(t), one has

log(x(t)) =

+∞∑
r=1

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
Tr(t)

a(τr)a(τr−1) · · · a(τ1) dτ. (2.33)

Since log(x(t)) ∈ L̂(X), applying Lemma 2.21 to each of its homogeneous components in Ar proves

log(x(t)) =

+∞∑
r=1

1

r

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
Tr(t)

[· · · [a(τr), a(τr−1)], . . . a(τ1)] dτ. (2.34)

Recalling the notation (2.19) and taking the exponential concludes the proof of (2.29).
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2.3.4 Coordinates of the first kind

Although the expansion (2.34) already has some interest by itself, it is not written on a basis of
L(X), which has some drawbacks. In this paragraph, we define canonical representations for this
expansion, in appropriate bases of L(X).

Definition 2.27 (Monomial basis). Let B ⊂ L(X). We say that B is a basis of L(X) when each
element a ∈ L(X) can be written as a unique finite linear combination of elements of B. We say
that B is a monomial basis when the elements of B are the evaluation of formal brackets in Br(X),
that will be identified. Then, for every n ∈ N∗, we use the following notations Bn = {b ∈ B; |b| = n}
and BJ1,nK = {b ∈ B; |b| ≤ n}.
Proposition 2.28. Let B be a monomial basis of L(X). There exists a unique set of functionals
(ζb)b∈B, with ζb ∈ C0

(
R+ × L1(R+;K)|I|;K

)
, such that, for every ai ∈ L1(R+;K), x? ∈ Â(X) and

t ≥ 0, the solution to (2.8) satisfies

x(t) = x? exp

(∑
b∈B

ζb(t, a)b

)
. (2.35)

Moreover, the functionals ζb are “causal” in the sense that, for every t ≥ 0, ζb(t, a) only depends
on the restrictions of the functions ai to [0, t].

Proof. For each b ∈ B, since B is monomial, only a finite number of summands of the right-
hand side of (2.34) have a non vanishing component along b (indeed, only terms sharing the same
homogeneity can be involved). Hence, it is clear that the functionals thereby defined are continuous
on R+×L1(R+;K)q, due to their explicit expression. The sum in (2.35) is understood in the sense
of a well-defined formal series. Indeed, for each word σ ∈ I∗, only a finite number of elements
b ∈ B have a non-vanishing component 〈b,Xσ〉.

Definition 2.29 (Coordinates of the first kind). The functionals ζb are usually called coordinates
of the first kind associated to the (monomial) basis B of L(X).

Remark 2.30. Thanks to the monomial nature of the basis, one does not need to specify the full
basis in order to define a given functional. For example, if λ ∈ NI is a given homogeneity, let

Brλ(X) := {b ∈ Br(X); ∀i ∈ I, ni(b) = λi}. (2.36)

Then the coordinates of the first kind ζb for b ∈ B ∩ Brλ(X) only depend on B ∩ Brλ(X).

Remark 2.31. An important particular case for applications to control theory is the case X =
{X0, X1}, with a0(t) = 1 and a1(t) = u(t). This corresponds to formal scalar-input control-affine
systems ẋ(t) = x(t)(X0 + u(t)X1). One often writes ζb(t, u) (omitting the dependency on a0 ≡ 1)
to denote the coordinates of the first kind in this particular context.

2.3.5 Campbell Baker Hausdorff Dynkin formula

Corollary 2.32. Let X be a finite set, n ∈ N∗ and y1, . . . , yn ∈ L̂(X) without constant term.
There exists a unique w ∈ L̂(X) such that

ey1 · · · eyn = ew. (2.37)

We will use the notation w = CBHD∞(y1, . . . , yn). Moreover, for each monomial basis B of
L({Y1, . . . , Yn}), there exists a unique sequence (αb)b∈B ⊂ KB such that, for every finite set X and
y1, . . . , yn ∈ L̂(X)

CBHD∞(y1, . . . , yn) =
∑
b∈B

αbyb (2.38)

where yb := Λ(b) and Λ : L({Y1, . . . , Yn}) → L̂(X) is the homomorphism of Lie algebra such that
Λ(Yj) = yj for j ∈ J1, nK.
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Proof. We prove that (2.37) holds with

w := Log∞


n∑
j=1

yj1[j−1,j]

 (n) (2.39)

in the sense of Definition 2.19.

Step 1: Proof when X = {X1, . . . , Xn} and yj = Xj for j ∈ J1, nK. The solution to (2.8) with
a(t) =

∑n
j=1Xj1[j−1,j](t) is x(t) = x?eX1 · · · eXn . By Theorem 2.26, w solves (2.37). By injectivity

of the exponential (see Lemma 2.13), it is the unique solution. By Proposition 2.28, the equality
(2.38) holds with αb := ζb(n, 1[0,1], . . . , 1[n−1,n]).

Step 2: Proof in the general case. Let X be a finite set, n ∈ N∗, y1, . . . , yn ∈ L̂(X). Let
Y := {Y1, . . . , Yn} be another set of indeterminates.

The map Λ : Y → L̂(X) defined by Λ(Yj) = yj for j ∈ J1, nK extends into an algebra homo-
morphism Â(Y )→ Â(X), which is also a Lie algebra homomorphism L̂(Y )→ L̂(X), that we still
denote Λ. Indeed Lemma 2.7 ensures the extension as an algebra homomorphism A(Y ) → Â(X)

(resp. a Lie algebra homomorphism L(Y ) → L̂(X)). The extension can be done on Â(Y ) (resp.
L̂(Y )) because y1, . . . , yn do not have constant terms and the target space Â(X) (resp. L̂(X)) is a
space of formal series.

Let W := Log∞{
∑n
j=1 Yj1[j−1,j]}(n) ∈ L̂(Y ). Then Λ(W ) = w. By applying the algebra

homomorphism Λ to the relation eY1 · · · eYn = eW we get (2.37). By applying the Lie algebra
homomorphism Λ to the relation W =

∑
b∈B αbb we get (2.38).

Despite the fact that the product ey1 · · · eyn is of course non-commutative, there is some struc-
ture and symmetry inside its logarithm, which we highlight for future use in the following result.

Proposition 2.33. There exists a family of maps Fq,h : L̂(X)q → L̂(X) for q ∈ N∗ and h =
(h1, . . . , hq) ∈ (N∗)q such that

• Fq,h(y1, . . . , yq) is a linear combination of brackets of y1, . . . , yq involving yj exactly hj times,
for j ∈ J1, qK,

• for every n ≥ 2, y1, . . . , yn ∈ L̂(X),

CBHD∞(y1, . . . , yn) =
∑

q∈J1,nK
j1<···<jq∈J1,nK

h=(h1,...,hq)∈(N∗)q

Fq,h(yj1 , . . . , yjq ). (2.40)

For q = 1, F1,(1)(y1) = y1 and F1,(h1)(y1) = 0 for h1 ≥ 2. For q = 2 and h1 + h2 ≤ 4,

F2,(1,1)(y1, y2) =
1

2
[y1, y2] F2,(2,2)(y1, y2) = − 1

24
[y2, [y1, [y1, y2]]]

F2,(2,1)(y1, y2) =
1

12
[y1, [y1, y2]] F2,(3,1)(y1, y2) = 0

F2,(1,2)(y1, y2) =
1

12
[y2, [y2, y1]] F2,(1,3)(y1, y2) = 0.

(2.41)

For higher order terms, there is no elegant general closed form.

Proof. Using the same Lie algebra homomorphism arguments as in the proof of Corollary 2.32, it
is sufficient to consider the case where yi = Yi is an indeterminate.

For n = 2, the statement is merely a rewriting of (2.38) where the terms are grouped by their
homogeneity with respect to y1 and y2. This defines the maps F1,(1)(y1) = y1 and F1,(h)(y1) = 0
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for h ≥ 2 and F2,h(y1, y2) for h ∈ (N∗)2 according to the usual two-variables formula, of which the
well-known low-order terms are recalled in (2.41).

We define by induction on n ≥ 3 the functions Fn,h by the relations

Fn,h(y1, . . . , yn) :=
∑

m|h1,...,hn−1

F2,(m,hn)

(
F
n−1,(

h1
m ,...,

hn−1
m )

(y1, . . . , yn−1), yn
)
. (2.42)

We now prove the result by induction on n. Let n ≥ 3. By associativity of the product, the formula
for two indeterminates and the induction hypothesis at step n− 1, we obtain

CBHD∞(y1, . . . , yn)

= CBHD∞(CBHD∞(y1, . . . , yn−1), yn)

= CBHD∞(y1, . . . , yn−1) + yn +
∑

g∈(N∗)2
F2,g(CBHD∞(y1, . . . , yn−1), yn)

= yn +
∑

q∈J1,n−1K
j1<···<jq∈J1,n−1K

h′∈(N∗)q

Fq,h′(yj1 , . . . , yjq ) +
∑

g∈(N∗)2
F2,g(Fq,h′(yj1 , . . . , yjq ), yn)

 .

(2.43)

We now check that the right-hand side of (2.43) is the same as the right-hand side of (2.40). Since
we are working in the free Lie algebra over Y1, . . . Yn, we can proceed by homogeneity.

• The terms not involving yn are equal, since they have the same expression.

• The term involving only yn on both sides is yn itself, so they are equal.

• Now, let q ∈ J1, n − 1K, j1 < · · · < jq ∈ J1, n − 1K and h ∈ (N∗)q+1. We look for the
term involving hi times yji for i ∈ J1, qK and hq+1 times yn, which is Fq+1,h(yj1 , . . . , yjq , yn)
in (2.40). In (2.43), it is ∑

h′∈(N∗)q

∑
g∈(N∗)2

F2,g(Fq,h′(yj1 , . . . , yjq ), yn), (2.44)

where the sum is restricted to g1h
′
i = hi and g2 = hq+1. Hence, both terms are equal thanks

to the definition (2.42).

This concludes the proof and gives a way to compute the maps Fq,h iteratively.

In particular, the component of CBHD∞(y1, . . . , yn) homogeneous with degree h = (h1, . . . , hq)
with respect to (yj1 , . . . , yjq ) is Fq,h(yj1 , . . . , yjq ). It depends neither on the total number n of
arguments in the initial product, nor on the selection of indexes (j1, . . . , jq). This is the natural
symmetry that we wish to highlight.

2.3.6 Computation of some coordinates of the first kind

In this paragraph, we focus on the case X = {X0, X1}. Computing the coordinates of the first
kind is of paramount interest for applications (see e.g. [46] where the first 14 such coordinates
are computed, and [24, 57] for efficient algorithms and explicit formulas obtained by an approach
relying on rooted binary labeled trees).

Here, we calculate as an illustration (and because they will be used later) all coordinates of the
first kind on a basis of

W1 := spanK {eval(b); b ∈ Br(X), n1(b) = 1} ⊂ L(X). (2.45)

Lemma 2.34. The family (adkX0
(X1))k∈N is a basis of W1.
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Proof. From (2.45), W1 is spanned by the evaluations in L(X) of the formal brackets B ∈ Br(X)
involving X1 exactly once. Let B ∈ Br(X) be such a formal bracket. We assume eval(B) 6= 0 in
L(X) and B 6= X1. There exists a unique couple (B′, B′′) ∈ Br(X)2 such that B = [B′, B′′]. Then
eval(B) = [eval(B′), eval(B′′)] thus eval(B′) and eval(B′′) are non null in L(X). Moreover, either
B′ or B′′ does not involve X1 and is thus equal to X0. Therefore eval(B) = ±[X0, eval(B)] where
B ∈ Br(X) involves X1 exactly once and eval(B) 6= 0. Working by induction on the number k of
occurrences of X0 in B, we obtain eval(B) = ± adkX0

(X1).
The previous argument proves that the given family spansW1. Moreover, this family is linearly

independent in L(X) because two different elements have different lengths.

To express the coordinates of the first kind on this basis, we introduce (using the modern NIST
sign and indexing convention) the Bernoulli numbers (Bn)n∈N, defined by the identity

∀z ∈ C, |z| < 2π,
z

ez − 1
=

+∞∑
n=0

Bn
zn

n!
= 1− z

2
+

+∞∑
n=1

B2n
z2n

(2n)!
. (2.46)

Moreover, we introduce

W2+ := spanK {eval(b); b ∈ Br(X), n1(b) ≥ 2} ⊂ L(X), (2.47)

thanks to which we can write the direct sum decomposition L(X) = KX0 ⊕W1 ⊕W2+ .

Proposition 2.35. Let B a monomial basis of L(X) containing X0 and the family (adkX0
(X1))k∈N.

The associated coordinates of the first kind satisfy, for each t > 0, a0, a1 ∈ L1((0, t);K) and k ∈ N,

ζadkX0
(X1)(t, a0, a1) = (−1)kA0(t)k

Bk
k!
A1(t)

+ (−1)k
k∑
`=1

A0(t)k−`
Bk−`

(k − `)!

∫
0<τ`<···<τ1<t

a0(τ1) · · · a0(τ`)A1(τ`) dτ,
(2.48)

where A0(t) :=
∫ t

0
a0 and A1(t) :=

∫ t
0
a1 and the sum is empty by convention for k = 0.

Proof. First, the considered coordinates are well-defined independently on the exact choice of B
(see Remark 2.30). Let x be the solution to (2.8) starting from x? = 1. To simplify the notations
in this proof, we write x(t), ζk(t) and Z(t) instead of x(t, a), ζadkX0

(X1)(t, a0, a1) and Log∞{a}(t).
From (2.35),

Z(t) =
∑
b∈B

ζb(t, a)b = ζX0(t, a)X0 + Z1(t) + Z2(t), (2.49)

where Z2(t) ∈W2+ and

Z1(t) :=

+∞∑
k=0

ζk(t) adkX0
(X1). (2.50)

First, a straightforward identification in (2.24) yields ζX0
= A0 and ζX1

= A1. Let k ∈ N∗. The
proof consists in computing 〈x(t), X1X

k
0 〉 in two ways: first by the ODE (2.8), then by the formula

x(t) = eZ(t). By definition of the solution to (2.8), we have, for every word σ ∈ I∗ and t > 0

〈x(t), XσX0〉 =

∫ t

0

〈x(τ), Xσ〉a0(τ) dτ. (2.51)

Taking into account that 〈x(t), X1〉 = A1(t), we obtain

〈x(t), X1X
k
0 〉 =

∫
0<τk<···<τ1<t

a0(τ1) · · · a0(τk)A1(τk) dτ. (2.52)
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On the other hand, we deduce from the expansion of x(t) = eZ(t) that

〈
x(t), X1X

k
0

〉
=
〈
Z(t), X1X

k
0

〉
+

k+1∑
`=2

1

`!

〈
Z(t)`, X1X

k
0

〉
(2.53)

because, for ` ≥ (k + 2), Z(t)` is a sum of words with length at least (k + 2). For ` ∈ J2, k + 1K,

Z(t)` =

`−1∑
j=0

(A0(t)X0)jZ1(t)(A0(t)X0)`−1−j + Z2,`(t), where Z2,`(t) ∈W2+ . (2.54)

Thus 〈
Z(t)`, X1X

k
0

〉
=
〈
Z1(t)(A0(t)X0)`−1, X1X

k
0

〉
= A0(t)`−1(−1)k−`+1ζk−`+1(t), (2.55)

because the word X1X
k−`+1
0 appears in the decomposition of adnX0

(X1) iff k− `+ 1 = n and then
it appears with coefficient (−1)n. We deduce from (2.53) and (2.55) that

〈
x(t), X1X

k
0

〉
= (−1)kζk(t) +

k+1∑
`=2

(−1)k+1−`

`!
A0(t)`−1ζk+1−`(t). (2.56)

Using (2.52) and the index change j = k + 1− ` ∈ J0, k − 1K, we obtain∫
0<τk<···<τ1<t

a0(τ1) · · · a0(τk)A1(τk) dτ = (−1)kζk(t) +

k−1∑
j=0

(−1)jA0(t)k−j

(k + 1− j)!
ζj(t), (2.57)

When A0(t) = 0, this formula yields (2.48) immediately. When A0(t) 6= 0, let, for j ∈ N,

αj :=
〈x(t), X1X

j
0〉

A0(t)j+1
and βj :=

(−1)jζj(t)

A0(t)j+1
(2.58)

we deduce from (2.57) that

αk =

k∑
j=0

βj
(k + 1− j)!

. (2.59)

We have

z

∑
k≥0

αkz
k

 =
∑
k≥0

k∑
j=0

βjz
j zk+1−j

(k + 1− j)!
=

∑
j≥0

βjz
j

 (ez − 1) (2.60)

or equivalently ∑
j≥0

βjz
j =

z

ez − 1

∑
k≥0

αkz
k

 =
∑
n≥0

∑
k≥0

Bn
zn

n!
αkz

k. (2.61)

Thus, for every j ∈ N∗

βj =

j∑
k=0

Bj−k
(j − k)!

αk. (2.62)

Finally (2.58) and (2.52) give (2.48).

In particular, we recover the following very classical formula for the partial coefficients of the
CBHD formula (see e.g. [71, equation (2)] or [60, Corollary 3.24]).
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Corollary 2.36. There holds eX1eX0 = eZ where Z = X0 + Z1 + Z2, Z2 ∈W2+ and

Z1 :=

+∞∑
n=0

Bn
n!

adnX0
(X1) = X1 −

1

2
[X0, X1] +

+∞∑
n=1

B2n

(2n)!
ad2n
X0

(X1). (2.63)

Proof. We apply the previous result to the controls a0(t) = 1(1,2)(t) and a1(t) = 1(0,1)(t), for which
the solution to (2.8) with x? = 1 satisfies x(2) = eX1eX0 . For ` ∈ N∗ and 0 < τ` < · · · < τ1 < 2,
the real number a0(τ1) · · · a0(τ`)A1(τ`) does not vanish iff 1 < τ` < · · · τ1 < 2 and then it equals 1.
Thus, for every k ≥ 2, using (2.48) and (2.65),

(−1)kζk(2) =

k∑
`=0

Bk−`
(k − `)!

1

`!
=

k∑
j=0

Bj
j!(k − j)!

=
Bk
k!

(2.64)

We conclude by noticing, thanks to (2.48), that ζ0(2) = A1(2) = 1 and ζ1(2) = − 1
2 = B1.

The following lemma states properties about Bernoulli numbers (and thus about coordinates
of the first kind) that will be used later in this article.

Lemma 2.37. The Bernoulli numbers defined in (2.46) satisfy, for every n ≥ 2

n−1∑
k=0

(
n

k

)
Bk = 0, (2.65)

n∑
k=0

(
n

k

)
Bk

n+ 1− k
= 0. (2.66)

Moreover, the odd Bernoulli numbers except B1 vanish and, for every n ≥ 1,

B2n = (−1)n+1 2(2n)!

(2π)2n
ζ(2n) ∼ (−1)n+12

√
2πn

(n
π

)2n

, (2.67)

where ζ is the Riemann zeta function.

Proof. Both sum equalities are classical and can be proved using the generating series of the
Bernoulli numbers of (2.46), respectively by identification in z = (ez − 1)× (z/(ez − 1)) for (2.65)
and in 1 = ((ez − 1)/z)× (z/(ez − 1)) for (2.66).

The relationship with the Riemann zeta function is proved in [7, equation (12.38)]. The asymp-
totic is a consequence of the Stirling’s approximation and ζ(s)→ 1 as s ≥ 1 tends to +∞ (which
is a direct consequence of the formula ζ(s) =

∑
n−s).

Example 2.38. As an example and for later use in the sequel, we compute the coordinates of the
first kind for the particular choice a0(t) := 1 and a1(t) := t. Let k ∈ N. Using formula (2.48) of
Proposition 2.35 we obtain

ζadkX0
(X1)(t, a) = (−1)ktk

Bk
k!

t2

2
+ (−1)k

k∑
`=1

tk−`
Bk−`

(k − `)!
t`+2

(`+ 2)!

= (−1)ktk+2
k∑
j=0

Bk−j
(k − j)!(j + 2)!

= (−1)k+1tk+2 Bk+1

(k + 1)!
,

(2.68)
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where we used that

k∑
j=0

Bk−j
(k − j)!(j + 2)!

=
1

(k + 1)!

k∑
`=0

(
k

k − `

)
k + 1

k + 1− `
B`

k − `+ 2

=
1

(k + 1)!

k∑
`=0

(
k + 1

`

)
B`

(k + 1)− `+ 1
= − Bk+1

(k + 1)!
,

(2.69)

thanks to (2.66).

2.4 Interaction picture, coordinates of the pseudo-first kind
In quantum mechanics, the interaction picture is an intermediate representation between the
Schrödinger picture (in which the state vectors are time-dependent and the operators are time-
independent) and the Heisenberg picture (in which the state vectors are time-independent and the
operators are time-dependent). It is particularly useful when the dynamics can be written as the
sum of a time-independent part, which can be solved exactly, and a time-dependent perturbation.
In this section, we introduce and study a formal counterpart of this situation, that can be useful
for applications.

2.4.1 A new formal expansion

In this paragraph, we therefore consider I = J0, qK to isolate the role of X0. For some given
ai ∈ L1(R+;K) for i ∈ J1, qK, we assume that a takes the form

a(t) = X0 +

q∑
i=1

ai(t)Xi. (2.70)

Theorem 2.39. For t ∈ R+, x? ∈ Â(X) and a of the form (2.70), the solution x to (2.8) satisfies

x(t) = x? exp(tX0) exp (Z∞(t,X, a)) , (2.71)

where Z∞(t,X, a) := Log∞{bt}(t) with the notation of Definition 2.19 and

bt(s) := e−(t−s)X0

(
q∑
i=1

ai(s)Xi

)
e(t−s)X0 =

q∑
i=1

+∞∑
k=0

(−1)k

k!
(t− s)kai(s) adkX0

(Xi) (2.72)

i.e.

Z∞(t,X, a) =
∑ (−1)m−1

mr

∫
τ∈Tr(t)

(τr − t)kr
kr!

· · · (τ1 − t)
k1

k1!
air (τr) · · · ai1(τ1) dτ

[· · · [adkrX0
(Xir ), ad

kr−1

X0
(Xir−1

)], . . . adk1X0
(Xi1)]

(2.73)

where the sum is taken over r ∈ J1,∞K, m ∈ J1, rK, r ∈ Nmr , k1, . . . , kr ∈ N and i1, . . . , ir ∈ J1, qK.

Proof. Let t > 0. A key point is to remark that all the definitions and results from the previous
paragraphs which are stated for a finite set I of indeterminates are still valid if I is an infinite set.
For mathematicians with a background in analysis, all equalities can be understood “in the weak
sense” as equalities holding along each monomial. Therefore, for a set of unknowns {Yk,i}k∈N,i∈J1,qK,
the solution to

ż(s) = z(s)γt(s) where γt(s) :=
∑
k,i

(−1)k

k!
(t− s)kai(s)Yk,i, (2.74)
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with initial data z(0) = 1 satisfies, thanks to Theorem 2.26,

z(t) = exp (Log∞{γt}(t)) . (2.75)

Let Θ be the unique algebra homomorphism from Â({Yk,i}k∈N,i∈J1,qK) to Â(X) defined by

Θ(Yk,i) := adkX0
(Xi). (2.76)

Then zΘ(s) = Θ(z(s)) satisfies on the one hand zΘ(0) = 1 and żΘ(s) = zΘ(s)bt(s), and on the
other hand zΘ(t) = exp (Log∞{bt}(t)).

We introduce the change of unknown y(s) := x(s)e(t−s)X0 . Then,

ẏ(s) = ẋ(s)e(t−s)X0 − x(s)X0e
(t−s)X0 = x(s)

(
q∑
i=1

ai(s)Xi

)
e(t−s)X0 = y(s)bt(s). (2.77)

Hence
x(t) = y(t) = y(0)zΘ(t) = x?etX0 exp (Log∞{bt}(t)) , (2.78)

which concludes the proof of (2.71).

Remark 2.40. In expansion (2.71), the choice to write exp(tX0) to the left of the formal logarithm
is arbitrary. One could obtain a similar formula with exp(tX0) to the right. Depending on the
application one has in mind, both choices can be helpful.

2.4.2 Coordinates of the pseudo-first kind

Proposition 2.41. Let q ∈ N∗, X = {X0, X1, . . . , Xq} and B be a monomial basis of L(X). There
exists a unique set of functionals (ηb)b∈B, with ηb ∈ C0

(
R+ × L1(R+;K)q;K

)
, such that, for every

ai ∈ L1(R+;K) and t ≥ 0

Z∞(t,X, a) =
∑
b∈B

ηb(t, a)b in L̂(X). (2.79)

Moreover, ηX0
= 0 and the functionals ηb are “causal” in the sense that, for every t ≥ 0, ηb(t, a)

only depends on the restrictions of the functions ai to [0, t].

Proof. For every r ∈ N∗ and ν ∈ N we introduce the finite sum of brackets

Zr,ν∞ (t,X, a) =
∑ (−1)m−1

mr

∫
τ∈Tr(t)

(τr − t)kr
kr!

· · · (τ1 − t)
k1

k1!
air (τr) · · · ai1(τ1) dτ

[· · · [adkrX0
(Xir ), ad

kr−1

X0
(Xir−1

)], . . . adk1X0
(Xi1)]

(2.80)

where the sum is taken over m ∈ J1, rK, r ∈ Nmr , k1, . . . , kr ∈ N such that k1 + · · · + kr = ν and
i1, . . . , ir ∈ J1, qK. For each term in this sum, the bracket

[· · · [adkrX0
(Xir ), ad

kr−1

X0
(Xir−1

)], . . . adk1X0
(Xi1)] (2.81)

has a unique expansion on the basis Br,ν = {b ∈ B; n(b) = r and n0(b) = ν}. By summing
these expansions we obtain causal functions (ηb)b∈Br,ν in C0

(
R+ × L1(R+;K)q;K

)
such that the

following equality holds in L(X)

Zr,ν∞ (t,X, a) =
∑
b∈Br,ν

ηb(t, a)b. (2.82)

By summing these relations, we get (2.79).

Definition 2.42 (Coordinates of the pseudo-first kind). We call the functionals ηb coordinates of
the pseudo-first kind associated to the (monomial) basis B of L(X), by analogy with coordinates of
the first kind.
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2.4.3 Structure constants and estimates for the coordinates

At the formal level, series such as (2.79) make sense. However, in the sequel, we will need to
give a meaning to such series where the indeterminates are replaced by true objects. To make
sure that the resulting series converge, it will be necessary to have estimates on the coordinates of
the pseudo-first kind. In this paragraph, we suggest a criterion based on the structure constants
of L(X) relative to the underlying monomial basis to obtain such estimates.

Definition 2.43 (Structure constants). Let B be a basis of L(X). For every a, b ∈ B, since
[a, b] ∈ L(X), it can be written as a finite linear combination of basis elements, say

[a, b] =
∑
c∈B

γca,bc, (2.83)

where the coefficients γca,b ∈ K and only a finite number of them are non-zero. The set of these
coefficients are called the structure constants of L(X) relative to the basis B.

Definition 2.44 (Geometric growth). Let X be a finite set and B be a monomial basis of L(X).
We say that B has geometric growth when there exists Γ ≥ 1 such that, for every b1, b2 ∈ B,∑

c∈B
|γcb1,b2 | ≤ Γ|b1|+|b2|. (2.84)

Definition 2.45 (Asymmetric geometric growth). Let q ∈ N∗, X = {X0, X1, . . . , Xq} and B be a
monomial basis of L(X). We say that B has geometric growth with respect to X0 when, for every
k ∈ N, there exists Γ(k) ≥ 1 such that, for every b1, b2 ∈ B with n(b1) + n(b2) ≤ k,∑

c∈B
|γcb1,b2 | ≤ Γ(k)|b1|+|b2|. (2.85)

Asymmetric geometric growth is a weaker notion than geometric growth (which can be seen
as asymmetric geometric growth with a constant Γ independent on k). Up to our knowledge, it is
not known if the usual bases of L(X) have these properties. These definitions therefore lead to the
following algebraic open problem, which will be studied in a forthcoming paper, where we intend
to prove, in particular, that there exist bases, useful for control theory, satisfying these properties.

Open problem 2.46. Which monomial bases B of L(X) have (asymmetric) geometric growth?

For such bases, we can prove nice estimates for the coordinates of the pseudo-first kind. We
start with an estimate concerning the decomposition of the Lie brackets involved in (2.80).

Lemma 2.47. Let q ∈ N∗, X = {X0, X1, . . . , Xq}, B be a monomial basis of L(X) with geometric
growth with respect to X0. For every r ≥ 1, there exists C(r) ≥ 1 such that, for every i1, . . . , ir ∈
J1, qK and k1, . . . , kr ∈ N, for every b ∈ B,∣∣∣〈[· · · [adkrX0

(Xir ), ad
kr−1

X0
(Xir−1

)], . . . adk1X0
(Xi1)], b

〉
B

∣∣∣ ≤ C(r)|b|, (2.86)

where the bra-ket denotes the component of the Lie bracket along b in its decomposition on B.

Proof. Since the basis is monomial, by homogeneity, the bra-ket vanishes when |b| 6= k1+· · ·+kr+r.
Moreover, for each j ∈ J1, qK, there exists bj ∈ B with n(bj) = 1 and |bj | = kj + 1 such that
ad
kj
X0

(Xij ) = ±bj in L(X). Indeed, the homogeneous part of L(X) containing kj times X0 and
Xij once is of dimension one. Then, repeated nested application of (2.85) yields

|〈[· · · [br, br−1], . . . b1], b〉B| ≤ Γ(2)kr+kr−1+2Γ(3)kr+kr−1+kr−2+3 · · ·Γ(r)kr+···+k1+r

≤ Γ(r)(r−1)(k1+···+kr+r),
(2.87)

since the sequence Γ is non-decreasing. This proves the desired estimate with C(r) := Γ(r)r−1.
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Proposition 2.48. Let q ∈ N∗, X = {X0, X1, . . . , Xq}, B be a monomial basis of L(X) with
geometric growth with respect to X0. Then, for every M ∈ N∗, there exists CM > 0 such that, for
every T ≥ 0, u ∈ L1((0, T );Kq), b ∈ B with n(b) ≤M and t ∈ [0, T ],

|ηb(t, u)| ≤
C
|b|
M

|b|!
tn0(b)‖u‖n(b)

L1(0,t). (2.88)

Proof. We may assume that (C(r))r∈N∗ given by Lemma 2.47 is non-decreasing. Let M ∈ N∗ and
b ∈ B be such that n(b) ≤M . We deduce from (2.73) that

ηb(t, u) =
∑ (−1)m−1

mr

∫
τ∈Tr(t)

(τr − t)kr
kr!

· · · (τ1 − t)
k1

k1!
ujr (τr) · · ·uj1(τ1) dτ〈

[· · · [adkrX0
(Xjr ), ad

kr−1

X0
(Xjr−1)], . . . adk1X0

(Xj1)], b
〉 (2.89)

where the sum is taken over r ∈ J1,∞K, m ∈ J1, rK, r ∈ Nmr , k1, . . . , kr ∈ N and j1, . . . , jr ∈ J1, qK.
If the summand bra-ket in (2.89) does not vanish, then r = n(b) and k1 + · · ·+ kr = n0(b). Thus
the sum in (2.89) is taken over the finite set r = n(b), m ∈ J1, n(b)K, k1, . . . , kr ∈ N such that
k1 + · · · + kr = n0(b) and j1, . . . , jr ∈ J1, qK, whose cardinal is bounded by M2|b|qM . Moreover,
for every r,m, k1, . . . , kr, j1, . . . , jr in this set, the associated term in (2.89) is bounded, thanks to
Lemma 2.47, by

tk1

k1!
· · · t

kr

kr!
‖u‖rL1(0,t)C(r)|b| ≤ tn0(b)‖u‖rL1 (2rC(r))

|b| n(b)!

|b|!
(2.90)

thanks to (3.2). Thus

|ηb(t, u)| ≤ 1

|b|!
M !MqM

(
2M+1C(M)

)|b|
tn0(b)‖u‖n(b)

L1 (2.91)

which gives the conclusion with, for instance, CM := M !MqM2M+1C(M).

2.5 Infinite product, coordinates of the second kind
In this section, we present an expansion for the formal power series x(t) solution to (2.8) as
a product of exponentials of the members of a generalized Hall basis of L(X), multiplied by
coefficients that have simple expressions as iterated integrals, called coordinates of the second kind.
This infinite product is an extension to generalized Hall bases of Sussmann’s infinite product on
length-compatible Hall bases [68], suggested in [45].

2.5.1 Lazard sets, Hall sets and generalized Hall bases

Definition 2.49. A Lazard set is a subset B of Br(X), totally ordered by a relation < and such
that, for every M ∈ N∗, the set BJ1,MK of elements of B with length at most M , denoted BJ1,MK =
{b1, . . . , bk+1} with k ∈ N and b1 < · · · < bk+1 satisfies

b1 ∈ Y0 := X,

b2 ∈ Y1 := {adjb1(v); j ∈ N, v ∈ Y0 \ {b1}},
. . .

bk+1 ∈ Yk := {adjbk(v); j ∈ N, v ∈ Yk−1 \ {bk}}

(2.92)

and
BJ1,MK ∩ Yk = {bk+1}, (2.93)
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where condition (2.93) can equivalently be written

BJ1,MK ∩ Yk+1 = ∅, (2.94)

where Yk+1 := {adjbk+1
(v); j ∈ N, v ∈ Yk \ {bk+1}}.

The elements adjb`(v) for ` ∈ {0, . . . , k+ 1}, j ∈ N and v ∈ Y`−1 \ {b`} are all different in Br(X)
(identify their left and right factors iteratively) and all belong to B.

Viennot proves in [70, Proposition 1.1 and Theorem 1.1] that properties (2.92) and (2.93) ensure
that eval(B) is a linearly independent and generating family of L(X). In particular, eval : Br(X)→
L(X) is one to one on B, thus B can be regarded as a set of Lie monomials.

Definition 2.50 (Hall set). A Hall set is a subset B of Br(X), totally ordered by a relation < and
such that

• X ⊂ B,

• if b, b1, b2 ∈ Br(X) and b = [b1, b2] then b ∈ B iff b1, b2 ∈ B, b1 < b2 and either b2 ∈ X or
λ(b2) ≤ b1,

• for every b1, b2 ∈ B such that [b1, b2] ∈ B then b1 < [b1, b2].

When b = [b1, [b3, b4]] ∈ B then b1 is “sandwiched” in between b3 and b, since b3 ≤ b1 < b.

Remark 2.51. A Hall set can be built by induction on the length. One starts with the set X as
well as an order on it. To find all Hall monomials with length n given those of smaller length,
one adds first all [b1, b2] with b1 ∈ B, |b1| = n − 1, b2 ∈ X and b1 < b2. Then for each bracket
b2 = [b′2, b

′′
2 ] ∈ B with length |b2| < n one adds all the [b1, b2] with b1 ∈ B with |b1| = n − |b2| and

b′2 ≤ b1 < b2. Finally, one inserts the newly generated monomials of degree n into an ordering,
maintaining the condition that b1 < [b1, b2].

Viennot proves in [70, Corollary 1.1] that a subset B of Br(X) is a Lazard set iff it is a Hall
set. With a slight abuse of naming, we call B a “generalized Hall basis of L(X)".

Definition 2.52 (Generalized Hall basis). B is a generalized Hall basis of L(X) if B is a Hall set
or equivalently a Lazard set.

Remark 2.53. Historically, Hall bases where introduced by Marshall Hall in [38], based on ideas of
Philip Hall in [39]. In his historical narrower definition, the third condition in Definition 2.50 was
replaced by the stronger condition: for every b1, b2 ∈ B, b1 < b2 ⇒ |b1| ≤ |b2|. To avoid confusion
with the generalized definition, we name them length-compatible Hall bases in the sequel.

Two famous families of generalized Hall bases of L(X) are the Chen-Fox-Lyndon basis (see [70,
Chapter 1]) and the historical length-compatible Hall bases, for which b1 < b2 ⇒ |b1| ≤ |b2|.

Example 2.54. For instance, with X = {X1, X2}, the elements with length at most 4 of each gen-
eralized Hall basis B of L(X) with a length-compatible order < such that X1 < X2 are: X1,
X2, [X1, X2], ad2

X1
(X2), [X2, [X1, X2]], ad3

X1
(X2), [X2, ad2

X1
(X2)], ad2

X2
([X1, X2]). Note that

[X1, [X2, [X1, X2]]] does not belong to B because λ([X2, [X1, X2]]) = X2 is not smaller than X1,
and the following equality holds in L(X)

[X1, [X2, [X1, X2]]] = [[X1, X2], [X1, X2]] + [X2, [X1, [X1, X2]]] = [X2, ad2
X1

(X2)] (2.95)

This illustrates how Definition 2.50 prevents elements from Br(X), whose evaluations in L(X) are
linked by Jacobi relations, to appear simultaneously in B.
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2.5.2 Infinite product on a generalized Hall basis

Definition 2.55 (Infinite product). Let J be a totally ordered set and (Sj)j∈J be a family of Â(X)
such that

• for every j ∈ J , 〈Sj , 1〉 = 1

• for every σ ∈ I∗ with σ 6= ∅, the set {j ∈ J ; 〈Sj , Xσ〉 6= 0} is finite.

The infinite product
←
Π
j∈J

Sj is the element of Â(X) defined by

←
Π
j∈J

Sj =
∑
σ∈I∗

PσXσ, (2.96)

where P∅ = 1 and Pσ is the finite sum

Pσ :=

|σ|∑
n=0

∑
σ1,...,σn∈I∗,
Xσ1 ···Xσn=Xσ

∑
j1,...,jn∈J,
j1>···>jn

〈Sj1 , Xσ1
〉 · · · 〈Sjn , Xσn〉. (2.97)

The following lemma is the key point to generalize rigorously Sussmann’s infinite product on
length-compatible Hall bases, to generalized Hall bases.

Lemma 2.56. Let B be a generalized Hall basis and (αb)b∈B be a family of K. The infinite product
←
Π
b∈B

eαbb is well defined in Â(X). Moreover, for every σ ∈ I∗,

〈
←
Π
b∈B

eαbb, Xσ

〉
=

〈
←
Π

b∈BJ1,|σ|K
eαbb, Xσ

〉
(2.98)

where BJ1,|σ|K is ordered by the induced order of B.

Proof. B is a totally ordered set and, for every b ∈ B, 〈eαbb, 1〉 = 1. Let σ ∈ I∗ with |σ| ≥ 1. For
α ∈ K and b ∈ B, the property 〈eαb, Xσ〉 6= 0 requires |b| ≤ |σ|. Indeed

eαb − 1 =

+∞∑
k=1

αk

k!
bk (2.99)

has non vanishing coefficients only on monomials Xσ′ with length |σ′| ≥ |b|. Thus the set {b ∈
B, 〈eαbb, Xσ〉 6= 0} is finite. This proves that the infinite product is well defined in Â(X) and, by
(2.97), the formula (2.98) holds.

2.5.3 Coordinates of the second kind

Definition 2.57. Let B be a generalized Hall basis of L(X). The coordinates of the second kind
associated to B is the unique family (ξb)b∈B of functionals R+ × L1

loc(R+;KI) → K defined by
induction in the following way: for every t > 0 and a ∈ L1

loc(R+;KI)

• ξXi(t; a) :=
∫ t

0
ai, for i ∈ I,

• for b ∈ B \X, there exists a unique couple (b1, b2) of elements of B such that b1 < b2 and a
unique maximal integer m ∈ N∗ such that b = admb1(b2) and then

ξb(t; a) :=
1

m!

∫ t

0

ξmb1(τ ; a)ξ̇b2(τ ; a) dτ. (2.100)
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Formula (2.100) indeed defines continuous functionals on L1 and the following estimates hold.

Lemma 2.58. Let ai ∈ L1
loc(R+;K) for i ∈ I. For every b ∈ B and t ≥ 0,

|ξ̇b(t; a)| ≤ |b||a(t)|‖a‖|b|−1
L1(0,t), (2.101)

|ξb(t; a)| ≤ ‖a‖|b|L1(0,t). (2.102)

Proof. Estimate (2.101) is valid for b ∈ X because ξ̇Xi(t) = ai(t) for i ∈ I and propagated
by induction on b using the recursive definition (2.100). Estimate (2.102) is obtained by time-
integration of (2.101) for each b.

2.5.4 Infinite product expansion of the solution to the formal ODE

Theorem 2.59. Let B be a generalized Hall basis of L(X). Let T > 0 and ai ∈ L1((0, T );K) for
i ∈ I. For every x? ∈ Â(X), the solution to the formal ODE (2.8) satisfies, for every t ∈ [0, T ],

x(t) = x?
←∏
b∈B

eξb(t;a)b. (2.103)

Proof. It is sufficient to prove the formula with x? = 1. To simplify the notations in this proof, we
write ξb(t) instead of ξb(t; a). By Lemma 2.56 it is sufficient to prove that, for every t ∈ [0, T ] and
σ ∈ I∗

〈x(t), Xσ〉 =

〈
←
Π

b∈BJ1,|σ|K
eξb(t)b, Xσ

〉
. (2.104)

Let σ ∈ I∗, M := |σ|, k ∈ N and b1, . . . , bk+1 and Y0, . . . , Yk+1 be as in (2.92). The equality (2.104)
can equivalently we written

〈x(t), Xσ〉 =
〈
eξbk+1

(t)bk+1 · · · eξb1 (t)b1 , Xσ

〉
. (2.105)

We define x0(t) := x(t) and, for j ∈ J1, k + 1K,

xj(t) := x(t)e−ξb1 (t)b1 · · · e−ξbj (t)bj . (2.106)

We prove by induction on j ∈ J0, k + 1K that

ẋj(t) = xj(t)

∑
b∈Yj

ξ̇b(t)b

 and xj(0) = 1. (2.107)

It is clear for j = 0 because x0(t) = x(t), Y0 = X and ξ̇Xi(t) = ai(t) for i ∈ I. Let j ∈ J1, k + 1K.
We assume (2.107) holds at step j − 1. We deduce from the definition of xj(t) that

xj(t) = xj−1(t)e−ξbj (t)bj . (2.108)

Since ξbj (0) = 0, xj(0) = 1. Moreover,

ẋj(t) = xj−1(t)

 ∑
b∈Yj−1

ξ̇b(t)b

 e−ξbj (t)bj − xj−1(t)ξ̇bj (t)bje
−ξbj (t)bj

= xj(t)e
ξbj (t)bj

 ∑
b∈Yj−1\{bj}

ξ̇b(t)b

 e−ξbj (t)bj

= xj(t)
∑
m∈N

∑
b∈Yj−1\{bj}

ξmbj (t)

m!
ξ̇b(t) admbj (b)

(2.109)
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which ends the proof by induction.
We deduce from (2.94) and (2.107) for j = (k+1) that xk+1(t)−1 has non vanishing coefficients

only on monomials Xσ′ with |σ′| > |σ|. Therefore, by (2.97),

〈x(t), Xσ〉 =
〈
xk+1(t)eξbk+1

(t)bk+1 · · · eξb1 (t)b1 , Xσ

〉
=
〈
eξbk+1

(t)bk+1 · · · eξb1 (t)b1 , Xσ

〉
, (2.110)

which concludes the proof.

3 Technical tools about functions and vector fields
In this section, we state classical definitions and technical results about functions and vector fields,
that are used in the sequel. For the sake of completeness, the proofs, although classical, are
provided.

Throughout the whole paper, d ∈ N∗ denotes the dimension of the state space for the considered
ordinary differential equations. We work locally, in neighborhoods of the origin 0 ∈ Kd. For δ > 0,
Bδ denotes the closed ball of center 0 and radius δ in the state space Kd.

3.1 Functional spaces for finite or analytic regularity
3.1.1 Conventions for multi-indexes

For a ∈ N∗ and a multi-index α = (α1, . . . , αa) ∈ Na, we use the notations |α| := α1 + · · · + αa,
∂α := ∂α

1

x1
· · · ∂αaxa and α! := α1! · · ·αa!.

Lemma 3.1. The following estimates hold

∀n ∈ N, nne−ne ≤ n! ≤ (n+ 1)n+1e−(n+1)e, (3.1)

∀a ∈ N∗,∀α = (α1, . . . , αa) ∈ Na, 2−(a−1)|α||α|! ≤ α! ≤ |α|! (3.2)

Proof. The first inequality can be proved using classical series-integral comparison and the second
by iterating p!q! ≥ 2−(p+q)(p+ q)! for every p, q ∈ N.

3.1.2 Regular functions and vector fields

Definition 3.2 (Regular functions). Let a, b ∈ N∗ and K a compact subset of Ka. Let k ∈ N. We
endow Ck(K;Kb), the space of functions whose real-derivatives are well-defined and continuous up
to order k on an open neighborhood of K to Kb with the norm

‖f‖Ck :=

b∑
j=1

∑
|α|≤k

1

α!
‖∂αfj‖L∞(K), (3.3)

where the sum ranges over multi-indexes α ∈ Na whose sum is at most k and f1, . . . , fb are the
components of the vector-valued function f . We denote by C∞(K;Kb) the intersection of these
spaces over k ∈ N.

Definition 3.3 (Regular vector fields). Let δ > 0 and k ∈ N. We define Ckδ := Ck(Bδ;Kd) the space
of vector fields on Kd defined and regular in a ball of radius δ. We denote by C∞δ the intersection
of these spaces over k ∈ N.
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3.1.3 Analytic norms

Definition 3.4 (Analytic norms). Let a, b ∈ N∗ and K a compact subset of Ka. We define
Cω(K;Kb) the space of real-analytic functions defined on an open neighborhood of K to Kb, as
the union for r > 0 of the spaces Cω,r(K;Kb), which are the subsets of C∞(K;Kb) for which the
following norm is finite

|||f |||r :=

b∑
i=1

∑
α∈Nd

r|α|

α!
‖∂αfi‖L∞(K). (3.4)

Definition 3.5 (Analytic vector fields). Let r, δ > 0. We define Cω,rδ := Cω,r(Bδ;Kd) the space of
real-analytic vector fields on Kd defined in a ball of radius δ. We denote by Cωδ the union of these
spaces over r > 0.

Lemma 3.6 (Algebra property). Let a ∈ N∗, K a compact subset of Ka, r > 0. Then, for every
f, g ∈ Cω,r(K;K), one has

|||fg|||r ≤ |||f |||r |||g|||r . (3.5)

Proof. Using the multivariate Leibniz formula, one has

|||fg|||r =
∑
α∈Na

r|α|

α!
‖∂α(fg)‖L∞(K)

≤
∑
α∈Na

r|α|

α!

∑
β≤α

(
α

β

)
‖∂βf‖L∞(K)‖∂α−βg‖L∞(K) = |||f |||r |||g|||r ,

(3.6)

where the sum ranges over all multi-indexes β ∈ Na such that βi ≤ αi for each i ∈ J1, aK.

Lemma 3.7 (Control of gradients). Let a ∈ N∗, K a compact subset of Ka. For every r2 > r1 > 0,
f ∈ Cω,r2(K;K) and j ∈ J1, aK,

|||∂jf |||r1 ≤
1

r1

(
e ln

r2

r1

)−1

|||f |||r2 . (3.7)

In particular, if r2 ≤ er1,

|||∂jf |||r1 ≤
1

r2 − r1
|||f |||r2 . (3.8)

Proof. We start with the first estimate (3.7). One has

|||∂jf |||r1 =
∑
α∈Na

r
|α|
1

α!
‖∂α+ejf‖L∞(K) =

1

r1

∑
α∈Na

r
|α+ej |
1

(α+ ej)!

(α+ ej)!

α!
‖∂α+ejf‖L∞(K)

≤ 1

r1
|||f |||r2 sup

α∈Na

(
r1

r2

)|α+ej | (α+ ej)!

α!

≤ 1

r1
|||f |||r2 sup

n≥1
n

(
r1

r2

)n
.

(3.9)

For x ∈ (0, 1), let C(x) := supn≥1 nx
n = supn≥1 exp(lnn + n lnx). Differentiating inside the

exponent with respect to n ∈ [1,+∞) yields

∂

∂n
(lnn+ n lnx) =

1

n
+ lnx. (3.10)

Since x < 1, the derivative is negative for n large enough. For x ≥ 1/e, the global maximum is for
n = −1/ lnx. So its value yields the bound

C(x) ≤ (−e lnx)
−1
. (3.11)
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For x ≤ 1/e, the supremum over n is achieved for n = 1 and its value is x. Since x ≤ (−e lnx)
−1

for x ∈ (0, 1), the bound (3.11) is looser and valid for every x ∈ (0, 1).

The second inequality is a consequence of the estimate ln(1 + σ) ≥ σ/(e− 1) for σ ≤ e− 1.

Remark 3.8. The first estimate (3.7) is classical (see e.g. [56]). The second estimate (3.7) is a
simplified version, restricted to the case when the relative radius loss is small enough. This is the
form under which we will use Lemma 3.7 in the sequel since we consider small radius losses.

3.2 Well-posedness of ordinary differential equations
The nonlinear differential equations

ẋ(t) = f(t, x(t)) and x(0) = p (3.12)

will be studied in the following classical frameworks.

Lemma 3.9. Let δ, T > 0 and f ∈ L1((0, T ); C1
2δ) such that ‖f‖L1((0,T );C0) < δ.

1. For each p ∈ Bδ, there exists a unique function x(·; f, p) ∈ C0([0, T ];B2δ) such that

∀t ∈ [0, T ], x(t; f, p) = p+

∫ t

0

f (τ, x(τ ; f, p)) dτ. (3.13)

2. If f ∈ C0([0, T ]×B2δ;Kd) then x(·; f, p) ∈ C1([0, T ];B2δ) and satisfies (3.12) pointwise.

3. If f ∈ C∞([0, T ]×B2δ;Kd), the map p ∈ Bδ 7→ x(·; f, p) ∈ C0([0, T ];B2δ) is smooth.

4. If g satisfies the same assumptions as f , for each p ∈ Bδ and t ∈ [0, T ],

|x(t; f, p)− x(t; g, p)| ≤ ‖f − g‖L1((0,t);C0) exp
(
‖f‖L1((0,t);C1)

)
. (3.14)

Proof. We proceed step by step. Let X := C0([0, T ];B2δ).

1. Define Θ : X → X by Θ(x)(t) := p +
∫ t

0
f(τ, x(τ)) dτ for x ∈ X. Thanks to the smallness

assumption on f , Θ(x)(t) ∈ B2δ. Let n ∈ N∗ be such that ‖f‖nL1((0,T );C1)/n! < 1. By the
Banach fixed-point theorem, Θn has a unique fixed point, which is also a fixed point of Θ.

2. If f is continuous, then t 7→ Θ(x(t; f, p)) belongs to C1([0, T ];B2δ) and its derivative at time t
is f(t, x(t; f, p)).

3. If f is smooth, let p̄ ∈ Bδ, x̄ := x(·; f, p̄) and define F : Bδ ×X → X by

∀t ∈ [0, T ], F (p, x)(t) := x(t)− p−
∫ t

0

f(τ, x(τ)) dτ (3.15)

Then F is of class C∞, vanishes at (p̄, x̄) and ∂F
∂x (p̄, x̄) is a bijection on X. By the implicit

function theorem, the map p 7→ x(·; f, p) is C∞ on a neighborhood of p̄.

4. This follows from a standard Grönwall’s lemma argument.

Lemma 3.10. Let δ, δu > 0, q ∈ N∗ and f ∈ Cω(B2δ×BKq (0, δu);Kd). Let T := δ/‖f‖C0 . For each
p ∈ Bδ and u ∈ L∞((0, T );Kq) with ‖u‖L∞ ≤ δu, there exists a unique solution x ∈ C0([0, T ];B2δ)
to {

ẋ(t) = f(x(t), u(t)),

x(0) = p,
(3.16)

denoted x(t; f, u, p). Moreover, the map (u, p) 7→ x(·; f, u, p) ∈ C0([0, T ];B2δ) is real-analytic on
Bδ ×BL∞(0,T )(0, δu).
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Proof. Existence stems from Lemma 3.9. Analyticity is a consequence of the implicit function
theorem, which yields the analyticity of the implicit function when the direct function is analytic
(see e.g. [21, Theorem 4.5.3]).

3.3 Estimates for differential operators and Lie brackets
As is usual, a smooth vector field f is identified with the first-order linear differential operator f∇
acting on smooth functions and defined as (f∇)φ : p 7→ f(p) · ∇φ(p).

3.3.1 Estimates for products

Lemma 3.11. Let r2 > 0 and r1 ∈ [r2/e, r2). Let n ∈ N∗ and δ > 0. For every f1, . . . , fn ∈ Cω,r2δ

and φ ∈ Cω,r2δ ,

|||(fn · ∇) · · · (f1 · ∇)φ|||r1 ≤
n!

e

(
e

r2 − r1

)n
|||fn|||r2 · · · |||f1|||r2 |||φ|||r2 . (3.17)

In particular, under the same assumptions,

‖(fn · ∇) · · · (f1 · ∇)φ‖C0 ≤ n!

(
5

r2

)n
|||fn|||r2 · · · |||f1|||r2 |||φ|||r2 . (3.18)

Proof. For n = 1, estimate (3.17) is a consequence of (3.4), (3.5) and (3.8). For n > 1, one applies
the n = 1 estimate n times with a radius increment (r2 − r1)/n at each step. This yields more
precisely

|||(fn · ∇) · · · (f1 · ∇)φ|||r1 ≤
(

n

r2 − r1

)
|||fn|||r1 |||(fn−1 · ∇) · · · (f1 · ∇)φ|||

r1+
r2−r1
n

≤
(

n

r2 − r1

)n
|||φ|||r2

n∏
j=1

|||fj |||r1+(n−j) r2−r1n
,

(3.19)

which concludes the proof because the norm (3.4) is non-decreasing with respect to r, and we can
bound nn using (3.1). Estimate (3.18) is a direct consequence for the particular choice r1 = r2/e,
because e2/(e− 1) ≤ 5.

3.3.2 Lie brackets

Definition 3.12 (Lie bracket of vector fields). For smooth vector fields f, g, we define [f, g]∇
as the usual commutator of the associated operators f∇ and g∇, hence [f, g]∇ = [f∇, g∇] =
(f∇)(g∇)−(g∇)(f∇) = ((f∇g)−(g∇f))∇, where the last equality comes from Schwarz’s theorem.
In particular, [f, g]∇ is the operator associated to the smooth vector field [f, g] := (f ·∇)g−(g ·∇)f .

Definition 3.13 (Evaluated Lie bracket). Let I be a finite set of indices, X = {Xi; i ∈ I} be
indeterminates and {fi; i ∈ I} be C∞ vector fields on a subset Ω of Kd. For a formal Lie bracket
b ∈ Br(X), we define fb = Λ(b), where Λ : L(X) → C∞(Ω;Kd) is the unique homomorphism of
Lie algebra such that Λ(Xi) = fi for every i ∈ I (see Lemma 2.7).

The vector field fb is obtained by replacing the indeterminates Xi with the corresponding vector
fields fi in the formal bracket b, for instance f[X1,[X2,X3]] = [f1, [f2, f3]].

The notation fb will sometimes denote the same vector field, build under weaker regularity
assumptions, for instance fi ∈ C|b|−1 and then fb ∈ C0.

Lemma 3.14 (Finite regularity estimate). Let k ∈ N and b ∈ Br(X). Let δ > 0 and fi ∈ Ck+|b|−1
δ

for i ∈ I. Then,

‖fb‖Ck ≤ 2|b|
(k + |b| − 1)!

k!

∏
i∈I
‖fi‖ni(b)Ck+|b|−1 . (3.20)
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Proof. This estimate follows from (3.3), the algebra property that this norm satisfies and the
estimate ‖∂jf‖Cm ≤ (m+ 1)‖f‖Cm+1 for every j ∈ J1, dK, m ∈ N and f ∈ Cm+1

δ .

Lemma 3.15 (Analytic estimate). Let r2 > 0 and r1 ∈ [r2/e, r2). Let δ > 0. Let fi ∈ Cω,r2δ for
i ∈ I and b ∈ Br(X). Then,

|||fb|||r1 ≤
(|b| − 1)!

e

(
2e

r2 − r1

)|b|−1∏
i∈I
|||fi|||ni(b)r2

. (3.21)

In particular, under the same assumptions,

‖fb‖C0 ≤ (|b| − 1)!

(
9

r2

)|b|−1∏
i∈I
|||fi|||ni(b)r2

. (3.22)

‖fb‖C1 ≤ max

{
1,

1

r2

}
(|b| − 1)!

(
9

r2

)|b|−1∏
i∈I
|||fi|||ni(b)r2

. (3.23)

Proof. Estimate (3.21) stems from (3.17) because, as can be checked by induction on |b|, fb is a
sum of at most 2|b|−1 terms of the form studied in Lemma 3.11, where φ is one of the vector fields
fi. Estimates (3.22) and (3.23) are direct consequences of (3.21) for the particular choice r1 = r2/e
because 2e2/(e− 1) ≤ 9 and, for every r1 > 0, ‖fb‖C1 ≤ max{1, 1

r1
} |||fb|||r1 .

Remark 3.16. The fact that estimate (3.21) scales like the factorial of the length of the Lie bracket
is optimal, as illustrated by the following vector fields. For x ∈ R2 with |x| < 1, define

f0(x) := e1 and f1(x) :=
1

1− x1
e2. (3.24)

Using (3.4), one checks that these vector fields belong in particular to Cω,rδ for r = 1
4 and δ = 1

2 ,
with |||f0|||r = 1 and |||f1|||r = 2. For k ∈ N, one has

adkf0(f1)(x) =
∂k

∂xk1

(
1

1− x1

)
e2 =

k!

(1− x1)k+1
e2. (3.25)

Moreover, since f0 is constant and f1 depends only on x1 but is supported by e2, every Lie bracket
involving f1 at least twice vanishes identically. Since these analytic vector fields “saturate” the
bounds and exhibit such a nice structure, we will use them repeatedly in our counter-examples.

3.3.3 Nilpotent Lie algebra of vector fields

Lemma 3.17. Let F be a set of C∞ vector fields on a subset Ω of Kd. If each Lie bracket with
length m of vector fields in F vanishes on Ω, then the Lie algebra L(F) generated by F is nilpotent
with index at most m (see Definition 2.5).

Proof. Each Lie bracket with length m + 1 or more of vector fields in F vanishes on Ω. This
can be proved by expanding the bracket into monomials and then applying Dynkin’s formula
(Lemma 2.21) to recover brackets with length m inside brackets with length m+ 1 or more.

3.4 Flows, compositions and pushforwards
3.4.1 Definitions and approximations

By applying Lemma 3.9 to a time-independent vector field we obtain the following object.
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Definition 3.18 (Flow of time-independent vector fields). Let δ > 0. Let f ∈ C1
2δ such that

‖f‖C0 < δ. We denote by ef the flow at time one of the vector field f ,

ef :

{
Bδ → B2δ,

p 7→ x(1; f, p),
(3.26)

with the notations of Section 3.2. We will write efp instead of ef (p) to allow easier composition of
flows. If f ∈ C∞2δ , then ef can also be seen as the zero-order linear operator on C∞(B2δ;K) defined
by efφ : p 7→ φ(efp).

Lemma 3.19. Let δ > 0 and f ∈ C1
δ . Assume that δ′ := δ − ‖f‖C0δ > 0. For each p ∈ Bδ′ , efp is

well-defined and efp ∈ Bδ. Moreover,

|efp− p| ≤ ‖f‖C0δ , (3.27)

and
‖D(ef )‖C0

δ′
≤ e‖Df‖C0δ ≤ e‖f‖C1δ . (3.28)

Proof. The second estimate comes from the fact that D(ef )|p = R(1) where

Ṙ(t) = Df(etfp)R(t) and R(0) = Id. (3.29)

Thus, by Grönwall’s lemma,

‖R(1)‖ ≤ ‖Id‖e
∫ 1
0
‖Df(etfp)‖ dt ≤ e‖Df‖C0 , (3.30)

which concludes the proof.

The exponential notation is motivated by the possibility to approximate ef by partial sums of
the exponential series of the operator f∇. It is completely legitimate in the analytic setting, as
underlined by the following result.

Lemma 3.20 (Approximation of autonomous flows). Let δ > 0 and f ∈ C1
2δ such that ‖f‖C0 < δ.

1. For each M ∈ N, if f ∈ CM2δ and φ ∈ CM+1(B2δ;K), for each p ∈ Bδ,∣∣∣∣∣
(
ef −

M∑
k=0

(f · ∇)k

k!

)
(φ)(p)

∣∣∣∣∣ ≤ ‖f‖M+1
CM ‖∇φ‖CM . (3.31)

2. If f ∈ Cω2δ and φ ∈ Cω(B2δ;K), for t small enough, for each p ∈ Bδ,

etf (φ)(p) =

+∞∑
k=0

tk

k!
(f · ∇)kφ(p) (3.32)

and the sum converges absolutely in the sense of analytic functions.

Proof. First statement. By the first point of Lemma 3.9, etf (p) is well defined for every t ∈ [0, 1]
and takes values in B2δ. For t ∈ [0, 1] and k ∈ J0,M + 1K, we have

dk

dtk
[
φ(etf (p))

]
=
(
(f · ∇)kφ

)
(etf (p)). (3.33)

Thus, the considered sum is the Taylor expansion of order M of the map t 7→ φ(etf (p)) at t = 0
and (

ef −
M∑
k=0

(f · ∇)k

k!

)
(φ)(p) =

∫ 1

0

(1− s)M

M !

(
(f · ∇)M+1φ

)
(esf (p)) ds. (3.34)
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By induction on k ∈ N, one checks that (f · ∇)kφ is a sum of at most k! terms of the form

(∇j1f) · · · (∇jkf)(∇j0φ), (3.35)

where j0 + j1 + . . . + jk = k and j0 ≥ 1. This concludes the proof of (3.31) with a constant 1
thanks to the integration in (3.34).

Second statement. Let r > 0 be such that f ∈ Cω,r2δ and φ ∈ Cω,r(B2δ;K). Let r′ ∈ [r/e, r).
By (3.17), for each k ∈ N,∣∣∣∣∣∣∣∣∣∣∣∣ tkk!

(f · ∇)k(φ)

∣∣∣∣∣∣∣∣∣∣∣∣
r′
≤ |t|

k

k!

k!

e

(
e

r − r′

)k
|||f |||kr |||φ|||r , (3.36)

so that the sum converges absolutely in Cω,r′ when |t|e |||f |||r < r − r′. Moreover, by (3.34) with
f ← tf and (3.17),∥∥∥∥∥

(
etf −

M∑
k=0

tk

k!
(f · ∇)k

)
(φ)

∥∥∥∥∥
C0
≤ |t|M+1

(M + 1)!
‖(f · ∇)M+1(φ)‖C0 , (3.37)

where, using (3.36), the right-hand side tends to zero as M → +∞ under the same smallness
condition; so that the sum converges towards etfφ in Cω,r′ when |t|e |||f |||r < r − r′.

3.4.2 Pushforwards of vector fields by diffeomorphisms

Definition 3.21 (Pushforward of a vector field by a diffeomorphism). Let Ω,Ω′ be open subsets
of Kd. Let θ ∈ C1(Ω; Ω′) be a local diffeomorphism from Ω to Ω′. Let f ∈ C0(Ω;Kd) be a vector
field. We define θ∗f ∈ C0(Ω′;Kd) the pushforward of f by θ as

(θ∗f)(q) := (Dθ)|θ−1(q)f(θ−1(q)) = (Dθ−1(q))−1f(θ−1(q)). (3.38)

Lemma 3.22 (Chain rule for pushforwards). Let Ω,Ω′,Ω′′ be open subsets of Kd. Let θ ∈ C1(Ω; Ω′)
be a local diffeomorphism from Ω to Ω′ and θ′ ∈ C1(Ω′; Ω′′) be a local diffeomorphism from Ω′ to Ω′′.
Let f ∈ C0(Ω;Kd) be a vector field. Then, on Ω′′,

θ′∗(θ∗f) = (θ′ ◦ θ)∗f. (3.39)

Proof. This is a consequence of the chain rule for differentiation, see e.g. [51, Problem 12-10].

Lemma 3.23 (Lie brackets of pushforwards). Let Ω,Ω′ be open subsets of Kd. Let θ ∈ C2(Ω; Ω′)
be a local diffeomorphism from Ω to Ω′. Let f, g ∈ C1(Ω;Kd) be two vector fields. Then, on Ω′,

[θ∗f, θ∗g] = θ∗[f, g]. (3.40)

Proof. This is a consequence of the chain rule for differentiation, see e.g. [51, Corollary 8.31].

3.4.3 Composition of vector fields with flows

Lemma 3.24. Let δ > 0, f0 ∈ C1
2δ and t ∈ R such that |t|‖f0‖C0 < δ. Denote by Φ0(t, p) := etf0(p)

the associated flow for p ∈ Bδ.

1. For each M ∈ N, if f0, f1 ∈ CM+1
2δ , then, for each p ∈ Bδ,∣∣∣∣∣∂pΦ0(t, p)−1f1 (Φ0(t, p))−

M−1∑
k=0

tk

k!
adkf0(f1)(p)

∣∣∣∣∣ ≤ tM

M !

∥∥∥adMf0 (f1)
∥∥∥
C0
. (3.41)
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2. For each M ∈ N, if f0, f1 ∈ CM+1
2δ and adMf0 (f1) ≡ 0, then, for each p ∈ Bδ,

(Φ0(−t)∗f1)(p) = ∂pΦ0(t, p)−1f1 (Φ0(t, p)) =

M−1∑
k=0

tk

k!
adkf0(f1)(p). (3.42)

This holds in particular when L({f0, f1}) is nilpotent with index ≤ (M + 1).

3. If r > 0, f0, f1 ∈ Cω,r2δ , then, for |t| < r
9|||f0|||r

, for each p ∈ Bδ,

(Φ0(−t)∗f1)(p) = ∂pΦ0(t, p)−1f1 (Φ0(t, p)) =

+∞∑
k=0

tk

k!
adkf0(f1)(p), (3.43)

where, for every r′ ∈ [r/e, r) the series converges in Cω,r
′

2δ when |t| < r−r′
6|||f0|||r

.

4. Let H0, H1 ∈Md(Kd) and M ∈ N∗. Then∥∥∥∥∥eH0H1e
−H0 −

M−1∑
k=0

1

k!
adkH0

(H1)

∥∥∥∥∥ ≤ (2‖H0‖)M

M !
‖H1‖e2‖H0‖ (3.44)

and

eH0H1e
−H0 =

+∞∑
k=0

1

k!
adkH0

(H1), (3.45)

where ad is the commutator of matrices adA(B) := [A,B] = AB − BA and ‖ · ‖ a sub-
multiplicative norm onMd(K) such that ‖Idd‖ = 1.

Proof. We proceed step by stem.

1. First, for each τ ∈ [0, t], Φ0(τ, p) is well-defined. Taking into account that

d

dτ

[
∂pΦ0(τ, p)−1

]
= −∂pΦ0(τ, p)−1 d

dτ
[∂pΦ0(τ, p)] ∂pΦ0(τ, p)−1

= −∂pΦ0(τ, p)−1f ′0 (Φ0(τ, p)) ,
(3.46)

one obtains by induction on k ∈ J0,M + 1K that

dk

dτk
[
∂pΦ0(τ, p)−1f1 (Φ0(τ, p))

]
= ∂pΦ0(τ, p)−1 adkf0(f1) (Φ0(τ, p)) . (3.47)

The Taylor formula

∂pΦ0(t, p)−1f1 (Φ0(t, p))−
M−1∑
k=0

tk

k!
adkf0(f1)(p)

=

∫ t

0

(t− s)M−1

(M − 1)!
∂pΦ0(s, p)−1 adMf0 (f1) (Φ0(s, p)) ds

(3.48)

proves the first statement.

2. Equation (3.48) yields the conclusion.

3. Let r′ ∈ [r/e, r). Thanks to (3.21),∣∣∣∣∣∣∣∣∣∣∣∣ tkk!
adkf0(f1)

∣∣∣∣∣∣∣∣∣∣∣∣
r′
≤ |t|

k

k!

k!

e

(
2e

r − r′

)k
|||f0|||kr |||f1|||r , (3.49)
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so the series converges absolutely in Cω,r
′

2δ when 2e|t| |||f0|||r < r − r′, which is the case when
6|t| |||f0|||r < r−r′ because 2e < 6. The weakest bound, for r′ = r/e is 2e|t| |||f0|||r < (1−1/e)r
and it holds when 9|t| |||f0|||r < r because 2e/(1− 1/e) < 9.

Moreover, thanks to (3.48) and (3.49),∣∣∣∣∣(Φ0(−t)∗f1)(p)−
M−1∑
k=0

tk

k!
adkf0(f1)(p)

∣∣∣∣∣ ≤ |t|MM !
‖ adMf0 (f1)‖C0 sup

s∈[0,t]

‖(∂pΦ0(s, ·))−1‖C0

≤ A0 |||f1|||r

(
2e|t| |||f0|||r
r − r′

)M
,

(3.50)

where A0 denotes the supremum in the right-hand side of (3.50) which is finite. So the sum
converges towards the pushforward under the same smallness assumption on time.

4. The last statement can be proved similarly, by considering the function t 7→ etH0H1e
−tH0 .

3.4.4 Partial derivative of a flow with respect to a parameter

In this paragraph, we compute the partial derivative of a flow with respect to a parameter on which
the vector field depends, under a particular nilpotent assumption.

Lemma 3.25. Let J an open interval of R. Let δ > 0 and f ∈ C∞(J × B4δ;Kd) such that
‖f‖C0 < δ. Let λ0 ∈ J , M ∈ N and assume that, for each λ ∈ J , adMf(λ0)(f(λ)) ≡ 0. Then, for
each p ∈ Bδ,

∂

∂λ

(
ef(λ)p

)
|λ=λ0

=

M−1∑
k=0

(−1)k

(k + 1)!
adkf(λ0) (∂λf(λ0))

(
ef(λ0)p

)
. (3.51)

This holds in particular when L(f(J)) is nilpotent with index at most M + 1.

Proof. Let Θ ∈ C∞([0, 1]× J ×Bδ) defined by Θ(t, λ, p) := etf(λ)(p). Let p0 ∈ Bδ and λ0 ∈ J . Let
x0(t) := etf(λ0)(p0) for t ∈ [0, 1]. Then, the desired derivative is ∂λΘ(1, λ0, p0) = z(1) where z is
the solution to z(0) = 0 and

ż(t) = ∂xf(λ0, x0(t))z(t) + ∂λf(λ0, x0(t)). (3.52)

Let R : (t, s) ∈ [0, 1]2 →Md(K) be the resolvent associated with the linearized system at p0, which
is the solution to R(s, s) = Id and

∂tR(t, s) = ∂xf(λ0, x0(t))R(t, s), (3.53)

i.e. R(t, s) = ∂pΘ(t− s, λ0, x0(s)). Then by the Duhamel formula

z(1) =

∫ 1

0

R(τ, 1)−1∂λf(λ0, x0(τ)) dτ

=

∫ 1

0

∂pΘ(τ − 1, λ0, x0(1))−1∂λf(λ0,Θ(τ − 1, λ0, x0(1))) dτ.

(3.54)

By (3.42) of Lemma 3.24 with t← τ − 1, f0 ← f(λ0, ·), f1 ← ∂λf(λ0, ·) and p← x0(1),

z(1) =

∫ 1

0

M−1∑
k=0

(τ − 1)k

k!
adkf(λ0) (∂λf(λ0)) (x0(1)) dτ, (3.55)

which gives the conclusion.

34



4 Error estimates in time for nonlinear vector fields
Using a classical linearization trick for smooth vector fields f , we show that the formal expansions
for linear equations of Section 2 can yield approximate formulas in the context of nonlinear ordinary
differential equations. We derive rigorous error bounds at every fixed order with respect to time,
involving finite sums or products.

4.1 Linearization trick for smooth fields
We explain how, by identifying vector fields with first-order differential operators and points on
the manifold with the operator of evaluation at this point, one recasts a nonlinear ODE driven by
smooth vector fields to a linear equation set on a larger space of operators on smooth functions.
This well-known method is notably used in [2] and [65].

4.1.1 Definition of an operator acting on smooth functions

When T > 0 and f ∈ C∞c ([0, T ] × Kd) satisfies ‖f‖L1
T (C0) < 1, we take the nonlinear ODE (3.12)

back to a linear framework by considering, for every t ∈ [0, T ] the linear operator L(t) on C∞c (Kd;K)
defined, for ϕ ∈ C∞c (Kd;K), by

L(t)ϕ : p 7→ ϕ (x(t; f, p)) . (4.1)

L(t)ϕ is of class C∞ as a composition of C∞ functions, by the third statement of Lemma 3.9.
L(t)ϕ is compactly supported in Kd because ϕ is and |x(t; f, p)− p| ≤ 1 for every p ∈ Kd, by the
first statement of Lemma 3.9 (which is of course invariant by translation of the origin). We don’t
specify the dependence of L(t) with respect to f to simplify the notations.

For every p ∈ Kd, the map t ∈ [0, T ] 7→
(
L(t)ϕ

)
(p) belongs to C1([0, T ];K) and satisfies, for

every t ∈ [0, T ],

d

dt

(
L(t)ϕ

)
(p) = Dϕ

(
x(t; f, p)

)
f
(
t, x(t; f, p)

)
=
(
L(t)(f(t) · ∇)ϕ

)
(p). (4.2)

Thus, L solves the following linear equation

d

dt
L(t) = L(t)(f(t) · ∇) (4.3)

in the weak sense explicited above. For every fixed t ∈ [0, T ],

∀ϕ ∈ C∞c (Kd;K),∀p ∈ Kd,
(
L(t)ϕ

)
(p) = ϕ(p) +

∫ t

0

(
L(τ)

(
f(τ) · ∇ϕ

))
(p) dτ, (4.4)

where the symbol
∫ t

0
is the Lebesgue integral on L1((0, t);K). We will use the following notation

to refer to this property:

L(t) = Id +

∫ t

0

L(τ)(f(τ) · ∇) dτ. (4.5)

In the sequel, all integral equalities between operators on C∞c (Kd;K) should be understood in this
weak sense (after evaluation on a test function and at a point). Here the right-hand side refers to
the composition of two operators on C∞c (Kd;K): L(t) and ϕ 7→ (f(t, ·) · ∇)ϕ, i.e. we identify each
vector field with a first-order differential operator on smooth functions.

Equation (4.3) is now a linear differential equation satisfied by the object L(t) (in a much larger
space), so one can hope to apply the linear results of the previous sections.
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4.1.2 Approximating sequence

In order to approximate the operator L(t), it is natural to introduce the sequence (Lj)j∈N of
time-dependent operators on C∞c (Kd;K) defined, for every t ∈ [0, T ], by L0(t) := Id and, for j ∈ N,

Lj+1(t) :=

∫ t

0

Lj(τ)(f(τ) · ∇) dτ, (4.6)

where this definition should be understood in the weak sense. Hence,

Lj(t) =

∫
0<τj<···<τ1<t

(f(τj) · ∇) · · · (f(τ1) · ∇) dτ =

∫
T(j)(t)

(f(τj) · ∇) · · · (f(τ1) · ∇) dτ, (4.7)

where the integration domain is defined in (2.14). Then, for every j ∈ N, Lj is “of order j with
respect to f ”, and a differential operator of order at most j (with respect to x) on C∞c (Kd;K). And
this sequence indeed allows to approximate L(t) in the following sense.

Lemma 4.1. For each M ∈ N, there exists CM > 0 such that, for each T > 0, f ∈ C∞c ([0, T ]×Kd)
and ϕ ∈ C∞c (Kd;K), for each t ∈ [0, T ],∥∥∥∥∥∥

L(t)−
M∑
j=0

Lj(t)

ϕ

∥∥∥∥∥∥
C0

≤ CM‖f‖M+1
L1
t (CM )

‖ϕ‖CM+1 . (4.8)

Proof. Let p ∈ Kd. Thanks to Lemma 3.9 (for δ large enough), x(τ ; f, p) is well-defined for τ ∈ [0, T ]
and x(·; f, p) ∈ C1([0, T ];Kd). Thus, for each τ ∈ [0, T ],

ϕ(x(τ ; f, p)) = ϕ(p) +

∫ τ

0

(
f(τ1) · ∇

)
(ϕ)(x(τ1; f, p)) dτ1. (4.9)

By iterating this formula, we obtain for t ∈ [0, T ],

ϕ (x(t; f, p))− ϕ(p)−
M∑
j=1

∫
T(j)(t)

(
(f(τj) · ∇) · · · (f(τ1) · ∇)

)
(ϕ)(p) dτ

=

∫
T(M+1)(t)

(
(f(τM+1) · ∇) · · · (f(τ1) · ∇)

)
(ϕ) (x(τM+1; f, p)) dτ,

(4.10)

which concludes the proof.

4.2 Iterated Duhamel or Chen-Fliess expansion
The approximating sequence for the operator L(t) yields the following straight-forward estimate
for the iterated Duhamel or Chen-Fliess expansion of the state.

Proposition 4.2. For every M ∈ N, there exists CM > 0 such that, for every δ > 0, T > 0,
f ∈ L1((0, T ); CM2δ ∩ C1

2δ), with ‖f‖L1
T (C0) < δ, p ∈ Bδ and ϕ ∈ CM+1(B2δ;K), for each t ∈ [0, T ],∣∣∣∣∣∣ϕ (x(t; f, p))−

M∑
j=0

∫
T(j)(t)

(
(f(τj) · ∇) · · · (f(τ1) · ∇)

)
(ϕ)(p) dτ

∣∣∣∣∣∣ ≤ CM‖f‖M+1
L1
t (CM )

‖ϕ‖CM+1 .

(4.11)
In particular∣∣∣∣∣∣x(t; f, p)−

M∑
j=0

∫
T(j)(t)

(
(f(τj) · ∇) · · · (f(τ1) · ∇)

)
(Idd)(p) dτ

∣∣∣∣∣∣ ≤ CM‖f‖M+1
L1
t (CM )

. (4.12)

Hence, if f ∈ L∞((0, T ); CM2δ ), both estimates correspond to a bound scaling like tM+1.
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Proof. Estimate (4.11) is a direct consequence of Lemma 4.1. Indeed, by density of C∞c ([0, T ]×Kd)
in L1((0, T ); CM2δ ), one can apply Lemma 4.1 to a sequence fn of regularized extended versions of f .
By the fourth point of Lemma 3.9, the solutions xn converge towards x. Estimate (4.12) follows
by applying (4.11) to coordinate functions.

4.3 Magnus expansion in the usual setting
In Section 4.3.1, we state a precise estimate of the difference between the exact flow and the
exponential of its truncated logarithm. In Section 4.3.2, we show that this estimate implies a
similar estimate for the CBHD formula. Section 4.3.3 is devoted to a technical result used in the
proof, which transposes to vector fields a formal integral identity.

4.3.1 Standard error estimate in time

The following estimate can be viewed as a refined version of classical time-focused estimates (see
e.g. [58, Proposition 4.3]). It bears a lot of similarity with [29, Theorem 1.32], but is both easier to
state and to prove in our flat setting since [29] is concerned with the truncated logarithm of flows
in general Riemannian manifolds. We propose a proof for sake of completeness, and because this
precise estimate is the founding principle of the new estimate, proved in the next section.

Proposition 4.3. For every M ∈ N, there exists δM , CM > 0 such that, for every δ > 0, T > 0,
f ∈ L1((0, T ); CM2

2δ ∩ C1
2δ) with ‖f‖L1

T (CM2 ) ≤ δM min{1; δ}, p ∈ Bδ and t ∈ [0, T ] then∣∣∣x(t; f, p)− eZM (t,f)p
∣∣∣ ≤ CM‖f‖M+1

L1
t (CM

2 )
, (4.13)

where ZM (t, f) := LogM{f}(t) is the vector field introduced in Definition 2.19.
Hence, if f ∈ L∞((0, T ), CM2

2δ ) this estimate corresponds to a bound scaling like tM+1.
Moreover, if f(t, x) =

∑
i∈I ui(t)fi(x) with ui ∈ L1((0, T );K) and fi ∈ CM

2

2δ ∩ C1
2δ, then, for

each monomial basis B of L(X),

ZM (t, f) =
∑

b∈BJ1,MK

ζb(t, u)fb (4.14)

where the functionals ζb are the associated coordinates of the first kind and fb are the evaluated
Lie brackets (see Definitions 2.27, 2.29 and 3.13).

Proof. For M = 0, Z0(t, f) = 0 thus (4.13) holds with C0 = 1 because |x(t; f, p)− p| ≤ ‖f‖L1(C0).
From now on M ∈ N∗ is fixed. By Definition 2.19, there exists C ′M > 0 such that, for every δ > 0,
T > 0, f ∈ L1((0, T ); CM−1

2δ ) with ‖f‖L1(CM−1) ≤ 1 and t ∈ [0, T ]

‖LogM{f}(t)‖C02δ ≤ C
′
M‖f‖L1((0,t),CM−1

2δ ). (4.15)

In particular, for every δ > 0, T > 0, f ∈ L1((0, T ); CM−1
2δ ) with ‖f‖L1(CM−1) ≤ min{1; δ; δ/C ′M},

for every p ∈ Bδ and t ∈ [0, T ]

• x(t; f, p) is well defined and belongs to B2δ,

• for every s ∈ [0, 1], esLogM{f}(t)p is well defined belongs to B2δ.

This happens in particular when ‖f‖L1(CM−1) ≤ δM min{1; δ} with δM := min{1; 1/C ′M}.

From now on, we fix δ, T > 0 and f ∈ L1((0, T ); CM2

2δ ) with ‖f‖L1(CM2 ) ≤ δM min{1; δ}.
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In order to use the operators L(t) defined in Section 4.1, we assume moreover that f ∈
C∞c ([0, T ] × Kd). This is not restrictive because C∞c ([0, T ] × Kd) is dense in L1((0, T ); CM2

2δ ) and
both sides of (4.13) are continuous for the L1((0, T ); CM2

2δ ) topology on f .

Step 1: Construction of the formal logarithm. We introduce ZM (t, f) the finite sum of
terms “of order at most M with respect to f ” in the following formal series (recall the formal series
for log(1 + x)):

log L(t) =
∑
m∈N∗

(−1)m−1

m

∑
j∈N∗

Lj(t)

m

(4.16)

i.e. we define

ZM (t, f) :=

M∑
r=1

M∑
m=1

(−1)m−1

m

∑
r∈Nmr

Lrm(t) · · ·Lr1(t), (4.17)

where Nmr is defined in (2.13). For instance,

Z3 = L1 +

(
L2 −

1

2
L2

1

)
+

(
L3 −

1

2
(L1L2 + L2L1) +

1

3
L3

1

)
. (4.18)

Then, by (4.7),

ZM (t, f) =

M∑
r=1

M∑
m=1

(−1)m−1

m

∑
r∈Nmr

∫
Tr(t)

(f(τr) · ∇) · · · (f(τ1) · ∇) dτ, (4.19)

A priori, ZM (t, f) is thus an inhomogeneous differential operator on C∞c (Kd;K), of order at
most M . Using Lemma 4.6 (see below in the next paragraph) and Definition 2.19, ZM (t, f) =
LogM{f}(t) and satisfies (4.14). Thus ZM (t, f) is both a smooth vector field on Kd and a first-
order differential operator, which we identify.

Step 2: Strategy for the proof of the estimate. The key observation is that it is sufficient
to prove that there exists CM > 0 (independent of δ, T, f) such that, for every p ∈ Bδ, t ∈ [0, T ]
and ϕ ∈ C∞c (Kd;K), ∣∣∣(L(t)− eZM (t,f)

)
(ϕ)(p)

∣∣∣ ≤ CM‖f‖M+1

L1(CM2 )
‖ϕ‖CM2+1 . (4.20)

Then, the conclusion follows by considering an appropriate C∞c truncation of the coordinate func-
tions ϕj : x ∈ Kd 7→ xj ∈ K. To prove (4.20), we will decompose the difference in three terms

L− eZM =

L− M∑
j=0

Lj

+

 M∑
j=0

Lj −
M∑
k=0

ZkM
k!

+

(
M∑
k=0

ZkM
k!
− eZM

)
. (4.21)

The first term is estimated in Proposition 4.2.

Step 3: Bound for
∑
Lj −

∑ ZkM
k! . By (4.17), this operator is a (finite) linear combination of

terms of the form Lj1(t) · · ·Ljp(t) where p ∈ N∗, j1, . . . , jp ∈ J1,MK andM+1 ≤ j1+. . .+jp ≤M2.
Indeed, ZM (t, f) is also the finite sum of terms “of order at mostM with respect to f ” in the formal
series (4.16). Thus, there exists C ′′M > 0 (independent of δ, T, f) such that, for every p ∈ Bδ,
t ∈ [0, T ] and ϕ ∈ C∞c (Kd;K),∣∣∣∣∣∣

 M∑
j=0

Lj(t)−
M∑
k=0

ZM (t, f)k

k!

 (ϕ)(p)

∣∣∣∣∣∣ ≤ C ′′M‖f‖M+1

L1(CM2−1)
‖ϕ‖CM2 . (4.22)
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Step 4: Bound for
∑ ZkM

k! − e
ZM . Using Lemma 3.20 for the time-independent vector field

ZM (t, f) (where t ∈ [0, T ] has been fixed), estimate (3.31) yields for every p ∈ Bδ, t ∈ [0, T ] and
ϕ ∈ C∞c (Kd;K) ∣∣∣∣∣

(
eZM (t,f) −

M∑
k=0

ZM (t, f)k

k!

)
(ϕ)(p)

∣∣∣∣∣ ≤ ‖ZM (t, f)‖M+1
CM2δ
‖∇ϕ‖CM2δ . (4.23)

We deduce from (2.24) the existence of C ′′′M > 0 (independent of δ, T, f) such that for every t ∈ [0, T ]

‖ZM (t, f)‖CM2δ ≤ C
′′′
M‖f‖L1((0,t),C2M−1

2δ ). (4.24)

Hence, for every p ∈ Bδ, t ∈ [0, T ] and ϕ ∈ C∞c (Kd;K)∣∣∣∣∣
(
eZM (t,f) −

M∑
k=0

ZM (t, f)k

k!

)
(ϕ)(p)

∣∣∣∣∣ ≤ (C ′′′M )M+1‖f‖M+1
L1(C2M−1)

‖∇ϕ‖CM . (4.25)

Gathering (4.8), (4.22) and (4.25) concludes the proof of (4.13).

4.3.2 Campbell Baker Hausdorff Dynkin formula

We deduce from Proposition 4.3 the following estimate for the classical CBHD formula with q
time-independent vector fields.

Corollary 4.4. For every M ∈ N, there exists δM , CM > 0 such that, for every δ > 0, q ∈ N∗,
f1, . . . , fq ∈ CM

2

2δ ∩ C1
2δ with

∑
1≤j≤q ‖fj‖CM2 ≤ δM min{1; δ},∥∥∥efq · · · ef1 − eCBHDM (f1,...,fq)

∥∥∥
C0δ
≤ CM‖f‖M+1 (4.26)

where CBHDM (f1, . . . , fq) = LogM{f}(q), where the time dependent vector field f is defined by
f : (t, x) ∈ [0, q]×B2δ 7→

∑q
j=1 1[j−1,j](t)fj(x) and ‖f‖ := ‖f‖L1(CM2 ) =

∑
1≤j≤q ‖fj‖CM2 .

Moreover, for each monomial basis B of L({X1, . . . , Xq})

CBHDM (f1, . . . , fq) =
∑

b∈BJ1,MK

αbfb (4.27)

where (αb)b∈B ⊂ KB is given by Corollary 2.32.

Proof. Because of the particular form of f , we have x(t; f, p) = efq · · · ef1p. Thus the estimate
(4.26) is an application of Proposition 4.3. Let Λ : L({X1, . . . , Xq}) → L({f1, . . . , fq}) be the
homomorphism of Lie algebras such that Λ(Xj) = fj . The map CBHDM is defined by a finite sum
of Lie brackets, thus it commutes with Λ

CBHDM (f1, . . . , fq) = Λ(CBHDM (X1, . . . , Xq)) = Λ

 ∑
b∈BJ1,MK

αbb

 =
∑

b∈BJ1,MK

αbΛ(b), (4.28)

which proves (4.27).

4.3.3 Replacing products with brackets in logarithm integrals

The goal of this section is to prove Lemma 4.6, which is a key point in the proof of Proposition 4.3,
as it allows to replace products of differential operators with Lie brackets in the integrals involved
in the computation of the logarithm of the flow.

We first state and prove a corollary of Theorem 2.26 in algebras. Indeed, Theorem 2.26 is a
statement about formal differential equations, but it has consequences for concrete realizations,
e.g. for systems governed by vector fields or matrices (this will be used in Section 5.2.2).
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Corollary 4.5. Let A be a unital associative algebra over K and A1 be a finite dimensional linear
subspace of A. Then, for every r ∈ N∗, t > 0 and a ∈ L1([0, t];A1), one has

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
Tr(t)

a(τr)a(τr−1) · · · a(τ1) dτ =

1

r

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
Tr(t)

[· · · [a(τr), a(τr−1)], . . . a(τ1)] dτ,

(4.29)

where the equality should be seen as an equality between elements of a finite dimensional linear
subspace of A (generated by monomials of terms in A1 of degree r), so that one can give a meaning
to the integrals without introducing any topology on A.

Moreover, if a(τ) =
∑
i∈I αi(τ)yi with αi ∈ L1([0, t];K) and yi ∈ A then, for each monomial

basis Br of Lr(X),

1

r

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
Tr(t)

[· · · [a(τr), a(τr−1)], . . . a(τ1)] =
∑
b∈Br

ζb(t, α)yb, (4.30)

where the functionals ζb are the associated coordinates of the first kind and yb = Υ(b) where
Υ : A(X) → A is the homomorphism of algebra such that Υ(Xi) = yi (see Definition 2.29 and
Lemma 2.7).

Proof. Let q ∈ N∗ be the dimension of A1 (as a linear subspace) and y1, . . . yq be a linear basis
of A1. Let αi ∈ L1([0, t];K) denote the components of a(·) in the basis y1, . . . yq, i.e. a(τ) =
α1(τ)y1 + . . .+ αq(τ)yq for almost every τ ∈ [0, t]. Then a(t) = Υ(a(t)) where a(τ) := α1(τ)X1 +
. . .+ αq(τ)Xq ∈ A1(X). From (2.33) and (2.34), one obtains that (4.29) holds for a(·). Applying
the homomorphism of algebra Υ to both sides proves (4.29) for a(·). The same strategy proves
(4.30).

Lemma 4.6. For every r ∈ N∗, t > 0 and f ∈ L1([0, t]; C∞c (Kd;Kd))

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
Tr(t)

(f(τr) · ∇)(f(τr−1) · ∇) · · · (f(τ1) · ∇) dτ =

1

r

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
Tr(t)

[· · · [f(τr) · ∇, f(τr−1) · ∇], . . . f(τ1) · ∇] dτ,

(4.31)

which should be seen as an equality between linear operators on C∞c (Kd;K), hence only valid after
evaluation at a function ϕ at a point p, so that the integrals are integrals of real numbers.

Moreover, if f(τ, x) =
∑
i∈I ui(τ)fi(x) with ui ∈ L1([0, t];K) and fi ∈ C∞c (Kd;Kd) then

1

r

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
Tr(t)

[· · · [f(τr) · ∇, f(τr−1) · ∇], . . . f(τ1) · ∇] dτ

=
∑
b∈Br

ζb(t, u)fb,

(4.32)

where Br is a monomial basis of Lr(X), the functionals ζb are the associated coordinates of the
first kind and fb are the evaluated Lie brackets (see Definitions 2.4, 2.29 and 3.13).

Proof. Let (fn)n∈N∗ be a sequence of functions in L1([0, t]; C∞c (Kd;Kd)) such that fn takes values
in an at-most n-dimensional vector subspace En of C∞c (Kd;Kd) and ‖fn − f‖L1([0,t],Cr) → 0 when
n → ∞. For example, one can choose an n-points trapezoidal approximation of f . For each
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fixed n, applying Corollary 4.5 with A = Op(C∞c (Kd;K)) and A1 = span{fi}i∈I (a vector field g is
identified with the first order operator g ·∇ on C∞c (Kd;K)) proves (4.31) for fn. Let ϕ ∈ C∞c (Kd;K)
and p ∈ Kd. For each n ∈ N∗, we deduce that

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
Tr(t)

((fn(τr) · ∇) · · · (fn(τ1) · ∇)ϕ) (p) dτ =

1

r

r∑
m=1

∑
r∈Nmr

(−1)m−1

m

∫
Tr(t)

([· · · [fn(τr) · ∇, fn(τr−1) · ∇], . . . fn(τ1) · ∇]ϕ) (p) dτ.

(4.33)

For each fixed ϕ and p, both sides converge as n → +∞ towards the same quantities for f . This
proves that (4.31) holds as an equality between linear operators. Applying (4.30) gives (4.32).

Remark 4.7. Although most algebraic results of Section 2 remain valid for infinite alphabets (sets
of indeterminates), there is a difficulty when one wishes to “evaluate” equalities in the free algebra
over an infinite alphabet towards some target algebra (one must somehow introduce compatible
topologies on both sides). Our approach to prove Lemma 4.6, where f is allowed to take values
in the infinite-dimensional space C∞c , therefore relies on a discretization scheme to return to a
finite alphabet, and the convergence of the involved integrals in a weak sense. Another approach,
followed in [61, 62], consists in introducing definitions allowing an infinite (continuous) number of
generators and proving analogous algebraic results in such a setting.

4.4 Magnus expansion in the interaction picture
In this section, we consider the nonlinear ordinary differential equation

ẋ(t) = f0(x) + f1(t, x) (4.34)

We show how the formal expansion introduced in Section 2.4 allows to obtain error bounds at every
order in the size of the time-varying perturbation f1, provided that the flow of f0 is known. Such
estimates can be useful for example to design splitting methods in the case of a small perturbation
(see e.g. [15, Section 3.6] or [16, Section 2]).

4.4.1 Error bound

Proposition 4.8. For every M ∈ N, there exists CM > 0 and ΘM ∈ C0(R2
+;R∗+) such that, for

every δ > 0, T > 0, f0 ∈ CM
2+1

5δ with T‖f0‖C0 < δ, f1 ∈ L1((0, T ); CM2

5δ ) with

‖f1‖L1(CM2 ) ≤ ΘM (T, ‖f0‖CM2+1) min{1; δ}, (4.35)

p ∈ Bδ and t ∈ [0, T ] then∣∣∣x(t; f0 + f1, p)− eZM (t,f0,f1)etf0p
∣∣∣ ≤ CM‖gt‖M+1

L1
t (CM

2 )
(4.36)

where ZM (t, f0, f1) = LogM{gt}(t) in the sense of Definition 2.19, gt : [0, t]×B4δ 7→ Kd is defined
by

gt(τ, y) := (Φ0(t− τ)∗f1(τ))(y) = ∂pΦ0(τ − t, y)−1f1

(
τ,Φ0(τ − t, y)

)
(4.37)

and Φ0 : [0, T ]×B4δ → B5δ is the flow associated with f0 i.e. Φ0(τ ; p) = eτf0(p).
Hence, if f1 ∈ L∞((0, T ); CM2

5δ ), estimate (4.36) corresponds to a bound scaling like tM+1.

Proof. Let M ∈ N, δ > 0, T > 0, f0 ∈ CM
2+1

5δ with T‖f0‖C0 < δ and f1 ∈ L1((0, T ); CM2

5δ ) such
that ‖f1‖L1((0,T );C0) ≤ δ. Then, for every p ∈ Bδ and τ ∈ [0, T ], x(τ ; f0 + f1, p) is well defined and
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belongs to B3δ. To simplify the notations in this proof, we write x(τ) instead of x(τ ; f0 + f1, p).
Let t ∈ [0, T ]. The function y : [0, t]→ Kd defined by

y(τ) := Φ0

(
t− τ ;x(τ)

)
(4.38)

takes values in B4δ and satisfies, for every τ ∈ [0, t],

ẏ(τ) = gt (τ, y(τ)) . (4.39)

By (4.37), there exists ΦM ∈ C0(R2
+;R∗+) (independent of δ, T, f0, f1) such that

‖gt‖L1((0,t);CM2

4δ )
≤ ΦM

(
T, ‖f0‖CM2+1

5δ

)
‖f1‖L1((0,t);CM2

5δ )
. (4.40)

Let us assume that (4.35) holds with ΘM (T, a) := min{1; δM/ΦM (T, a)} and δM as in Proposi-
tion 4.3. This implies ‖f1‖L1((0,T );C0) ≤ δ. Moreover, one has ‖gt‖L1((0,t);CM2 ) ≤ δM min{1; 4δ}.
Thus, by Proposition 4.3

|y(t)− eZM (t,f0,f1)y(0)| ≤ CM‖gt‖M+1

L1((0,t);CM2 )
, (4.41)

which is exactly (4.36) because y(t) = x(t) and y(0) = etf0p.

4.4.2 Expansions of ZM
Proposition 4.9. Let r > 0 and M, δ, T, f0, f1, gt,ZM be as in Proposition 4.8. If f0 ∈ Cω,r5δ and
f1 ∈ C0([0, T ]; Cω,r5δ ) then, for 0 ≤ τ ≤ t ≤ min{T ; r

9|||f0|||r
}

gt(τ, ·) = e(τ−t) adf0 (f1(τ)) =

+∞∑
k=0

(τ − t)k

k!
adkf0(f1(τ)) (4.42)

and

ZM (t, f0, f1) =
∑ (−1)m−1

rm

∫
Tr(t)

(τ1 − t)k1
k1!

· · · (τr − t)
kr

kr![
· · ·
[
adkrf0 (f1(τr)), ad

kr−1

f0
(f1(τr−1))

]
, . . . , adk1f0 (f1(τ1))

]
dτ

(4.43)

where the sum is taken over r ∈ J1,MK, m ∈ J1, rK, r ∈ Nmr , and k1, . . . , kr ∈ N. Moreover,
for every r′ ∈ [r/e, r) and 0 ≤ τ ≤ t ≤ min{T ; r−r′

6|||f0|||r
}, the series (4.42) and (4.43) converge

absolutely in Cω,r
′

5δ .

Proof. We apply the third statement of Lemma 3.24 to f0 and f1(τ) to get (4.42). The absolute
convergence in this series allows to interchange the sums and the integrals.

When the perturbation f1(t, x) is affine, i.e. of the form
∑q
i=1 ui(t)fi(x), by analogy with Theo-

rem 2.39, we use the notation ZM (t, f, u) instead of ZM (t, f0,
∑q
i=1 uifi), with f = (f0, f1, . . . , fq)

and u = (u1, . . . , uq). In this context, we have the following result, that emphasizes that ZM is a
truncated version of Z∞.

Proposition 4.10. Let r > 0 and M, δ, T, f0, f1, gt,ZM be as in Proposition 4.8. We assume
f0 ∈ Cω,r5δ and f1(t, x) =

∑q
i=1 ui(t)fi(x) where ui ∈ L1(0, T ) and fi ∈ Cω,r5δ . Then

ZM (t, f, u) = lim
N→∞

∑
b∈B

n(b)≤M
n0(b)≤N

ηb(t, u)fb (4.44)

where, for every r′ ∈ [r/e, r] the limit holds in Cω,r
′

5δ when 0 ≤ t ≤ min{T ; r−r′
6|||f0|||r

}.
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Proof. Let X = {X0, X1, . . . Xq} and Λ : L(X)→ Cω,r5δ be the homomorphism of Lie algebra such
that Λ(Xi) = fi for i ∈ J0, qK (see Lemma 2.7). By applying Λ to each term in the equality (2.82)
(where Zr,ν∞ (t,X, a) is the finite sum defined in (2.80)), we obtain for every r ∈ N∗ and ν ∈ N

Zr,ν∞ (t, f, u) =
∑
b∈Br,ν

ηb(t, u)fb. (4.45)

By Proposition 4.9

ZM (t, f, u) = lim
N→∞

N∑
ν=0

M∑
r=1

Zr,ν∞ (t, f, u) (4.46)

where for every r′ ∈ [r/e, r] the limit holds in Cω,r
′

5δ when 0 ≤ t ≤ min{T ; r−r′
6|||f0|||r

}. This
proves (4.44).

Remark 4.11. Although the family ηb(t, u)fb for b ∈ B ∩ SM is not proved to be absolutely
summable, equality (4.44) gives a sense to the expression

ZM (t, f, u) =
∑

b∈B∩SM

ηb(t, u)fb. (4.47)

Indeed, the proof above justifies the absolute summability of appropriate packages Zr,ν∞ (t, f, u) for
r ∈ J1,MK and ν ∈ N of this family. The full absolute summability over B ∩ SM is investigated in
the next subsection.

4.4.3 Absolute convergence for coordinates of the pseudo-first kind

Continuing the discussion started in Section 2.4.3 we state a criterion on the basis B which entails
the absolute summability for analytic vector fields of the family ηb(t, u)fb for b ∈ B ∩ SM .

Proposition 4.12. Let q ∈ N∗, X = {X0, X1, . . . , Xq} and B be a monomial basis of L(X)
with geometric growth with respect to X0 (see Definition 2.45). Let M ∈ N, r > 0 and r′ ∈
[r/e, r). There exists T ∗ = T ∗(M, q, r, r′) > 0 such that, for every δ, T, f0, f1, . . . , fq, u1, . . . , uq as
in Proposition 4.10 (in particular f0, . . . , fq ∈ Cω,r5δ ) and t ∈ [0, T ∗]

ZM (t, f, u) =
∑

b∈B∩SM

ηb(t, u)fb (4.48)

where the series converges absolutely in Cω,r
′

5δ .

Proof. By (2.88) of Proposition 2.48 and (3.21), for every b ∈ B ∩ SM and t ∈ [0, T ]

|ηb(t;u)| |||fb|||r′ ≤
r − r′

2e2

(
2eCM t

r − r′

)n0(b)(
2eCM
r − r′

‖u‖L1(0,t) |||f |||r

)n(b)

(4.49)

where |||f |||r := max{|||fj |||r ; j ∈ J0, qK}. In particular, if |t| < T ∗(M, r, r′) := r−r′
4(q+1)eCM

then the
series

∑
ηb(t, a)fb converges absolutely in Cω,r′ because

∑
b∈B∩SM

(2(q + 1))−n0(b) ≤
M∑
n=1

+∞∑
n0=0

(q + 1)n0+n(2(q + 1))−n0 ≤M(q + 1)M . (4.50)
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4.5 Sussmann’s infinite product expansion
Let T > 0. In this section, we consider affine systems of the form

ẋ(t) =
∑
i∈I

ui(t)fi(x(t)) and x(0) = p, (4.51)

where, for i ∈ I, fi is a vector field and ui ∈ L1((0, T );K). When well-defined, its solution is
denoted x(t; f, u, p). For every norm ‖ · ‖ on vector fields, ‖f‖ denotes

∑
i∈I ‖fi‖.

Proposition 4.13. Let B be a generalized Hall basis of L(X) and (ξb)b∈B be the associated co-
ordinates of the second kind. For every M ∈ N∗, there exist CM , ηM > 0 such that the following
property holds. Let T, δ > 0, fi ∈ C2M

3δ and ui ∈ L1((0, T );K) for i ∈ I. Assume that

‖u‖L1
T
‖f‖CM ≤ ηM min{1, δ}. (4.52)

Then, for each t ∈ [0, T ] and p ∈ Bδ,∣∣∣∣x(t; f, u, p)−
→
Π

b∈BJ1,MK

eξb(t;u)fbp

∣∣∣∣ ≤ CM‖u‖M+1
L1
t
‖f‖M+1

C2M
(
1 + ‖f‖M−1

C2M
)
, (4.53)

where the arrow above the product symbol designates the order for the product, i.e. with the notations
of Definition 2.49

→
Π

b∈BJ1,MK

eξb(t;u)fb = eξb1 (t;u)fb1 · · · eξbk+1
(t;u)fbk+1 . (4.54)

Proof. Let M ∈ N∗. We adopt the notations b1, . . . , bk+1 and Y0, . . . , Yk+1 of Definition 2.49.
For j ∈ J1, k + 1K, we denote by Φj the flow associated with fbj , i.e. Φj(t, p) := etfbj (p). To
simplify the notations in this proof, we write x(t) and ξb(t) instead of x(t; f, u, p) and ξb(t;u). Let
ηM := 1/(4|I|M !). For brevity, we use the shorthand notation F := ‖f‖C2M−1 .

Step 1: Well-definition of the flows. Using (4.52),∥∥∥∥∥∑
i∈I

uifi

∥∥∥∥∥
L1
T (C0)

≤ ηM min{1, δ} ≤ δ. (4.55)

Thus, for t ∈ [0, T ], x(t) is well-defined and x(t) ∈ B2δ. For b ∈ B, using (2.102), Lemma 3.14 and
the crude estimate |B`| ≤ |I|`, we obtain, for each t ∈ [0, T ],

∑
b∈BJ1,MK

‖ξb(t)fb‖C1 ≤
M∑
`=1

|I|`‖u‖`L1
t
2``!‖f‖`C` ≤

2M !|I|‖u‖L1
T
‖f‖CM

1− 2|I|‖u‖L1
T
‖f‖CM

≤ min(δ, 1). (4.56)

Thus, for every j ∈ J1, k + 1K,

xj(t) := e−ξbj (t)fbj · · · e−ξb1 (t)fb1 (x(t)) (4.57)

is well-defined and belongs to B3δ.

Step 2: Estimates along a Lazard elimination. We prove by induction on j ∈ J0, k+1K the existence
of a numerical constant Cj > 0 such that

(Hj) :

{
ẋj(t) =

∑
b∈BJ1,MK∩Yj ξ̇b(t)fb(xj(t)) + εj(t),

xj(0) = p,
(4.58)

where
|εj(t)| ≤ Cj |u(t)|‖u‖ML1

t
FM+1(1 + FM−1). (4.59)
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First, letting x0(t) := x(t) by convention, (H0) holds with ε0 = 0, C0 = 0 because ξ̇Xi(t) = ui(t)
for i ∈ I. Let j ∈ J1, k+ 1K and assume that (Hj−1) holds. We deduce from the definition of xj(t)
that

xj(t) = e−ξbj (t)fbj (xj−1(t)) = Φj
(
−ξbj (t), xj−1(t)

)
(4.60)

and, using (Hj−1), that

ẋj(t) = −ξ̇bj (t)fbj (xj(t)) +
∑

b∈BJ1,MK∩Yj−1

ξ̇b(t)∂pΦj
(
−ξbj (t), xj−1(t)

)
fb(xj−1(t)) + ε̃j(t) (4.61)

where ε̃j−1(t) := ∂pΦj
(
−ξbj (t), xj−1(t)

)
εj−1(t). By (4.56), ‖ξbj (t)fbj‖C1 ≤ 1, so, using (3.28),

|ε̃j−1(t)| ≤ e|εj−1(t)|. (4.62)

Moreover, for each b ∈ B

∂pΦj
(
−ξbj (t), xj−1(t)

)
fb(xj−1(t)) =

(
Φj
(
−ξbj (t)

)
∗ fb
)

(xj(t)), (4.63)

thus,
ẋj(t) =

∑
b∈BJ1,MK∩Yj−1\{bj}

ξ̇b(t)
(
Φj
(
−ξbj (t)

)
∗ fb
)

(xj(t)) + ε̃j(t). (4.64)

For b ∈ BJ1,MK ∩ Yj \ {bj}, we introduce the maximal integer h(b) ∈ N∗ such that

|b|+ (h(b)− 1)|bj | ≤M. (4.65)

Then, by the first statement of Lemma 3.24 and Definition 2.57

ξ̇b(t)
(
Φj
(
−ξbj (t)

)
∗ fb
)

(xj(t)) =

h(b)−1∑
m=1

ξmbj (t)

m!
ξ̇b(t)fadmbj

(b)(xj(t)) + εjb(t)

=

h(b)−1∑
m=1

ξ̇admbj
(b)(t)fadmbj

(b)(xj(t)) + εjb(t)

(4.66)

where

|εjb(t)| ≤ |ξ̇b(t)|
|ξbj (t)|h(b)

h(b)!
‖f

ad
h(b)
bj

(b)
‖C0 . (4.67)

By definition of h(b) we have M + 1 ≤ |b|+ h(b)|bj | ≤ M + |bj | ≤ 2M . Thus, using Lemma 3.14,
(2.101) and (2.102), we get

|εjb(t)| ≤ |u(t)|‖u‖|b|+h(b)|bj |−1

L1
t

|b|
h(b)!

22M (2M − 1)!FM+1(1 + FM−1)

≤ |u(t)|‖u‖ML1
t
M22M (2M − 1)!FM+1(1 + FM−1).

(4.68)

By definition of Yj in Definition 2.49, we obtain (Hj) with

εj(t) := ε̃j−1(t) +
∑

b∈BJ1,MK∩Yj−1\{bj}

εjb(t). (4.69)

that satisfies (4.59) with, for instance Cj+1 := eCj + |I|M+1M22M (2M − 1)!.

Step 3: Conclusion. Taking into account that BJ1,MK ∩ Yk+1 = {0}, we get ẋk+1(t) = εk+1(t) thus
|xk+1(t)− p| ≤ Ck+1‖u‖M+1

L1
t

FM+1(1 + FM−1), i.e.∣∣∣∣ ←
Π

b∈BJ1,MK

e−ξb(t;u)fbx(t)− p
∣∣∣∣ ≤ Ck+1‖u‖M+1

L1
t

FM+1(1 + FM−1). (4.70)

Applying the locally Lipschitz map eξb1 (t;u)fb1 · · · eξbk+1
(t;u)fbk+1 to the two terms in the left-hand

side, we get another constant CM > 0 such that (4.53) holds. Note that (4.56) and (3.28) ensure
that CM ≤ eCk+1, so that CM depends indeed only on M .
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5 Convergence results and issues
The formal expansions of Section 2 generally exhibit poor convergence properties for smooth vector
fields without any additional assumption. Nevertheless, one can hope to obtain convergence results
in the following particular contexts:

• Nilpotent Lie algebras. Here, one assumes that the Lie algebra generated by the set of
smooth vector fields {f(t, ·); t ∈ [0, T ]} is nilpotent (see Definition 2.5 and Lemma 3.17).
This structural assumption turns most of the involved infinite expansions into finite ones,
and it is thus reasonable to expect convergence properties.

• Banach algebras. Here, one assumes that the vector fields are actually linear in the space
variable, e.g. that f(t, x) = A(t)x for some A(t) ∈ Md(K). This assumption yields better
estimates for Lie brackets (since products of matrices behave more nicely than differentiation
of nonlinear vector fields) and it is thus reasonable to expect convergence properties. In this
section, we give statements for matrices for consistence, but similar results can be obtained
for linear operators in a Banach algebra.

• Analytic vector fields. Here, one assumes that the vector fields are locally real-analytic,
i.e. than their k-th derivative grows roughly no more that k!. This bound is compatible with
the 1/k! factors which come out of the corresponding time integrals, and it is thus reasonable
to expect convergence properties.

In the following paragraphs, we investigate the convergence properties of each expansion in each
of these three reasonable contexts and encounter some surprises. We summarize the results in the
following table.

Expansion Lie-Nilpotent Banach Analytic
Iterated Duhamel or

Chen-Fliess
No

(Section 5.1.1)
Global

(Section 5.1.2)
Yes

(Section 5.1.3)
Magnus in the
usual setting

Yes for C∞
(Section 5.2.1)

Small time
(Section 5.2.2)

No
(Section 5.2.3)

Magnus in the
interaction picture

Yes for Cω
(Section 5.3.1)

Small perturbation
(Section 5.3.2)

No
(Section 5.3.3)

Sussmann’s
infinite product

Yes for C∞
(Section 5.4.1)

Small time
(Section 5.4.2)

Open problem
(Section 5.4.3)

5.1 Iterated Duhamel or Chen-Fliess expansion
5.1.1 Counter-example for nilpotent vector fields

As already discussed in Remark 2.16, the iterated Duhamel or Chen-Fliess expansion is not an
intrinsic representation of the flow and involves quantities which are not Lie brackets of the dy-
namics. Therefore, this expansion is not expected to converge under a Lie-nilpotent assumption.
The following counter-example (where the dynamic does not depend on time, thereby obviously
generating a nilpotent Lie algebra of order 2) proves that this expansion indeed relies on quantities
which are not Lie brackets.

Proposition 5.1. There exists f0 ∈ C∞(R;R) such that, for every t ∈ (0, 1], the solution x(t; f, 0)
to (3.12) with f(t, x) := f0(x) satisfies

lim
N→+∞

∣∣∣∣∣x(t; f, 0)−
N∑
n=0

tn

n!
((f0 · ∇)nId1) (0)

∣∣∣∣∣ = +∞. (5.1)
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Proof. For every sequence (αn)n∈N ∈ RN, there exists fα ∈ C∞(R;R) ∩ L∞(R;R) with fα(0) = 1
such that

∀n ≥ 2, ((fα · ∇)nId1) (0) = αn. (5.2)

This is an easy consequence of Borel’s lemma. Indeed, for n ≥ 2 and fα(0) = 1,

((fα · ∇)nId1) (0) = f (n−1)
α (0) + Pn

(
fα(0), . . . , f (n−2)

α (0)
)
, (5.3)

for some polynomial Pn. Thus, given a sequence (αn)n∈N, one can prescribe an appropriate value
for f (n−1)

α and recursively ensure (5.2). Let f0 be a vector field constructed following this process
for αn := n!2. On the one hand, since f0 ∈ L∞(R;R), x(t; f, 0) is bounded for t ∈ [0, 1]. On the
other hand, thanks to (5.2), for each t > 0

N∑
n=0

tn

n!
((f0 · ∇)nId1) (0) =

N∑
n=0

n!tn → +∞, (5.4)

which proves (5.1).

Remark 5.2. In this counter-example, the local change of coordinates which transforms f0(x)e1

into the constant vector field e1 allows to transform the ODE on x to a new ODE for which
the Chen-Fliess expansion is finite (and thus convergent). It would be even more interesting to
construct a counter-example, probably in dimension d ≥ 2, for which no local change of coordinates
can restore the convergence of the Chen-Fliess expansion.

5.1.2 Global convergence for matrices

Let T > 0. In this paragraph, we study linear systems of the form

ẋ(t) = A(t)x(t) and x(0) = p, (5.5)

where A ∈ L1((0, T );Md(K)). The solution is denoted x(t;A, p).

Proposition 5.3. Let T > 0 and A ∈ L1((0, T );Md(K)). For each t ∈ [0, T ] and p ∈ Kd,

x(t;A, p) = p+

+∞∑
j=1

∫
0<τ1<···<τj<t

A(τj) · · ·A(τ1)p dτ, (5.6)

where the series converges absolutely.

Proof. To simplify the notations, we write x(t) instead of x(t;A, p). By Grönwall’s lemma, we have
|x(τ)| ≤ |p|e‖A‖L1(0,τ) for every τ ∈ [0, T ]. By iterating the formula

x(τ) = p+

∫ τ

0

A(τ ′)x(τ ′) dτ ′ (5.7)

we obtain, for every M ∈ N∗∣∣∣∣∣∣x(t)− p−
M−1∑
j=1

∫
0<τM<···<τ1<t

A(τj) · · ·A(τ1)p dτ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫

0<τ1<···<τM<t

A(τM ) · · ·A(τ1)x(τ) dτ

∣∣∣∣∣∣
≤

∫
0<τ1<···<τM<t

‖A(τM )‖ · · · ‖A(τ1)‖dτ |p|e‖A‖L1(0,t) =
‖A‖ML1(0,t)

M !
|p|e‖A‖L1(0,t)

(5.8)

which proves the convergence. Similar estimates prove the absolute convergence.
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5.1.3 Local convergence for analytic vector fields

For analytic vector fields, it is well known that the iterated Duhamel or Chen-Fliess series converges
locally in time (see e.g. [67, Proposition 4.3] for slightly different assumptions).

Proposition 5.4. Let T, δ, r > 0. There exists η > 0 such that, for each f ∈ L1([0, T ]; Cω,r2δ ) with
‖f‖L1

t (Cω,r) ≤ η, for each ϕ ∈ Cω,r2δ , t ∈ [0, T ] and p ∈ Bδ,

ϕ (x(t; f, p)) = ϕ(p) +

+∞∑
j=1

∫
0<τ1<···<τj<t

((f(τj) · ∇) · · · (f(τ1) · ∇)) (ϕ)(p) dτ, (5.9)

where the sum converges absolutely. In particular,

x(t; f, p) = p+

+∞∑
j=1

∫
0<τ1<···<τj<t

((f(τj) · ∇) · · · (f(τ1) · ∇)) (Idd)(p) dτ. (5.10)

Proof. Let η := min{δ/2, r/10}. By Lemma 3.9, x(t; f, p) is well defined for t ∈ [0, T ], p ∈ Bδ and
belongs to B2δ. Moreover, by Lemma 3.11, we have, for every j ∈ N∗∫

0<τ1<···<τj<t
|((f(τj) · ∇) · · · (f(τ1) · ∇)) (ϕ)(p)| dτ ≤ j!

(
5

r

)j
· ‖f‖

j

j!
|||ϕ|||r , (5.11)

where ‖f‖ = ‖f‖L1
t (Cω,r), which proves the absolute convergence because the right-hand side is

bounded by 2−j |||ϕ|||r. Eventually, we deduce from (4.10) and Lemma 3.11 that∣∣∣∣∣∣ϕ (x(t; f, p))−
M−1∑
j=0

∫
0<τ1<···<τj<t

((f(τj) · ∇) · · · (f(τ1) · ∇)) (ϕ)(p) dτ

∣∣∣∣∣∣ ≤ 2−M |||ϕ|||r , (5.12)

which proves (5.9).

5.2 Magnus expansion in the usual setting
5.2.1 Equality for nilpotent systems

The goal of this section is to prove that the Magnus expansion is an exact expansion for regular
vector fields generating a nilpotent Lie algebra (see Proposition 5.6).

If the vector fields are analytic in space, a simple proof can be given (see e.g. [43, Remark A.1]
for the case of the CBHD formula), with the following steps. First, by density, one can assume
that the dynamic depends analytically on time. Then, the maps t 7→ x(t) and t 7→ eZM (t) are
analytic. Because of the nilpotent assumption, ZM = ZM ′ for every M ′ ≥M and estimate (4.13)
proves that both functions have the same Taylor expansion at t = 0, and are thus equal.

For non-analytic vector fields, the proof is much more intricate. A sketch of proof is briefly
suggested in [3, Proposition 2.4]. In this paragraph, we write the proof completely. The difficulty
is to formulate the question in the nilpotent Lie algebra generated by the vector fields, in order to
conclude with the universal property of free nilpotent Lie algebras (Lemma 2.7).

To that end, we start with the following technical result about formal series.

Lemma 5.5. The following statements hold.

1. Let T > 0 and z ∈ C1([0, T ];L(X)). Then the following equality holds in L̂(X)

d

dt
exp(z(t)) = exp(z(t))

+∞∑
n=0

(−1)n

(n+ 1)!
adnz(t)(ż(t)). (5.13)
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2. Let a be given by (2.7) and Z∞(t) := Log∞{a}(t) with the notation of Definition 2.19. Then
for every t ∈ R, the following equality holds in L̂(X)

+∞∑
n=0

(−1)n

(n+ 1)!
adnZ∞(t)(Ż∞(t)) = a(t). (5.14)

3. Let a be given by (2.7), M ∈ N∗, ZM (t) := LogM{a}(t) with the notation of Definition 2.19.
Then for every t ∈ R, the following equality holds in NM+1(X)

M−1∑
n=0

(−1)n

(n+ 1)!
adnZM (t)(ŻM (t)) = a(t), (5.15)

where ZM (t) belongs to the space ⊕
r∈J1,MK

L(X)r which is identified to NM+1(X) as a vector

space.

Proof. We prove each claim separately.

1. We have

d

dt
exp(z(t)) =

d

dt

(
+∞∑
k=0

zk(t)

k!

)
=

+∞∑
k=0

1

(k + 1)!

k∑
j=0

zj(t)ż(t)zk−j(t)

= exp(z(t))

(
+∞∑
l=0

(−1)l

l!
zl(t)

)+∞∑
k=0

1

(k + 1)!

k∑
j=0

zj(t)ż(t)zk−j(t)

 .

(5.16)

Letting n := k + l and i := l + j, we obtain that

d

dt
exp(z(t)) = exp(z(t))

+∞∑
n=0

1

(n+ 1)!

n∑
i=0

zi(t)ż(t)zn−i(t)

i∑
l=0

(−1)l
(
n+ 1

l

)
(5.17)

The following formulas, which can be proved by induction using Pascal’s rule,

adnz (y) = (−1)n
n∑
i=0

(−1)i
(
n

i

)
ziyzn−i, (5.18)

i∑
l=0

(−1)l
(
n+ 1

l

)
= (−1)i

(
n

i

)
(5.19)

give the conclusion.

2. By Theorem 2.26, the solution x(t) of the formal ODE ẋ(t) = x(t)a(t) is x(t) = eZ∞(t). We
conclude by identifying the two expressions for d

dt

[
eZ∞(t)

]
.

3. The canonical surjection σM+1 : L(X)→ NM+1(X) is a Lie-algebra homomorphism. Apply-
ing to (5.14) gives (5.15).

This technical lemma leads to the main result of this section.

Proposition 5.6. Let M ∈ N∗. There exists ηM > 0 such that, for every T, δ > 0 and f : [0, T ]→
C∞4δ such that L(f([0, T ])) is nilpotent with index at most M + 1 and f ∈ L1((0, T ); CM+1

4δ ) with

‖f‖L1(CM ) + ‖f‖ML1(CM ) ≤ ηMδ, (5.20)

then, for each p ∈ Bδ and t ∈ [0, T ], one has x(t; f, p) = eZM (t,f)(p) where ZM (t, f) := LogM{f}(t)
is the vector field defined in Definition 2.19.
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Proof. Let M ∈ N∗. By Definition 2.19, there exists ηM > 0 such that, for every t, f ,

‖ZM (t, f)‖C0 ≤
1

ηM

(
‖f‖L1(CM ) + ‖f‖ML1(CM )

)
. (5.21)

Step 1: Proof for f(t, x) =
∑q
j=1 aj(t)fj(x) with q ∈ N∗, aj ∈ L1([0, T ];K) and fj ∈ C∞c (Kd;Kd).

By uniqueness in the Cauchy-Lipschitz theorem, it is sufficient to prove that for every t ∈ [0, T ]
and p ∈ Bδ,

d

dt
(eZM (t,f)(p)) = f

(
t, eZM (t,f)(p)

)
. (5.22)

By Definition 2.19, (5.20) and (5.21), the map (t, p) 7→ ZM (t, f)(p) belongs to C∞([0, T ]×B4δ;Kd)
and ‖ZM (·, f)‖C0 ≤ δ. Thanks to the nilpotent assumption, adMZM (t,f)(ZM (τ, f)) = 0 on B4δ for
every t, τ ∈ [0, T ]. Thus Lemma 3.25 yields

d

dt

(
eZM (t,f)(p)

)
=

M∑
k=0

(−1)k

(k + 1)!
adkZM (t,f)

(
ŻM (t, f)

)(
eZM (t,f)(p)

)
. (5.23)

Let Λ : NM+1(X) → L(f1, . . . , fq) be the homomorphism of nilpotent Lie algebra such that
Λ(Xj) = fj for j = 1, . . . , q. By applying Λ to the equality (5.15), we obtain that the right-hand
side of the above equality is f(t, eZM (t,f)(p)).

Step 2: Proof for a general time-dependent vector field f . We apply Step 1 to a sequence fn of
simple functions, taking values in f([0, T ]), uniformly bounded in L1((0, T ); CM+1

4δ ) and such that
fn → f in L1(C0). We get the conclusion by passing to the limit in both sides.

5.2.2 Convergence for linear systems

In this paragraph, we consider linear systems of the form (5.5). Since the Magnus expansion was
designed for linear systems, its convergence in this context has received much attention. Depending
on the exact convergence notion that one considers and on the way one groups terms, different
sufficient conditions for the convergence can be derived. In [65], T‖A‖L∞(0,T ) ≤ 1 is shown to be
a sufficient condition for convergence on [0, T ] thanks to a careful estimate of the combinatorial
terms. In [55], ‖A‖L1(0,T ) < π is shown to be a sufficient condition for convergence using complex
analysis.

We give below a short elementary proof with a sub-optimal constant, for the sake of complete-
ness and because it will be useful later in the article. Let ‖ · ‖ be a sub-multiplicative norm on
Md(K).

Proposition 5.7. Let T > 0 and A ∈ L1((0, T );Md(K)) such that ‖A‖L1
T
< 1

4 . For each t ∈ [0, T ],

Z∞(t) :=

+∞∑
r=1

1

r

r∑
m=1

(−1)m−1

m

∑
r∈Nmr

∫
τ∈Tr(t)

[· · · [A(τr), A(τr−1)], . . . A(τ1)] dτ (5.24)

is well defined inMd(K) and, for every p ∈ Kd, x(t;A, p) = e−Z∞(t)p, where the brackets refer to
commutators of matrices, i.e. [A,B] = AB −BA.

Proof. Step 1: Absolute convergence of Z∞(t). Let r ∈ N∗. For every m ∈ J1, rK and r ∈ Nmr ,∫
τ∈Tr(t)

‖[· · · [A(τr), A(τr−1)], . . . A(τ1)]‖ dτ

≤
∫
τ∈Tr(t)

2r‖A(τ1)‖ . . . ‖A(τr−1)‖‖A(τr)‖dτ ≤ 2r
(∫ t

0

‖A(τ)‖ dτ

)r
.

(5.25)
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Moreover, recalling the definition of (2.13), |Nmr | =
(
r−1
m−1

)
and

∑r
m=1

(
r−1
m−1

)
= 2r−1. Thus,

+∞∑
r=1

1

r

r∑
m=1

1

m

∑
r∈Nmr

∫
τ∈Tr(t)

‖[· · · [A(τr), A(τr−1)], . . . A(τ1)]‖ dτ ≤
+∞∑
r=1

(4‖A‖L1)
r
<∞. (5.26)

Step 2: Formula for the solution L ∈ C1([0, t];Md(K)) of{
L′(τ) = L(τ)A(τ)

L(0) = Idd.
(5.27)

By working as in the proof of Proposition 5.3, we obtain

L(t) = Idd +

+∞∑
r=1

∫
0<τr<···<τ1<t

A(τr) · · ·A(τ1) dτ (5.28)

where the series converges absolutely. Moreover, we have∥∥∥∥∥
+∞∑
r=1

∫
0<τr<···<τ1

A(τr) · · ·A(τ1) dτ

∥∥∥∥∥ ≤
+∞∑
r=1

‖A‖rL1

r!
< e

1
4 − 1 < 1. (5.29)

Thus

log (L(t)) =

+∞∑
m=1

(−1)m

m

(
+∞∑
r=1

∫
0<τr<···<τ1

A(τr) · · ·A(τ1) dτ

)m
(5.30)

is well defined inMd(K) and L(t) = elog(L(t)). By applying Corollary 4.5 with A = A1 =Md(K),
we get log(L(t)) = Z∞(t).

Step 3: Conclusion. The resolvent R(τ) associated to the linear system ẋ = A(τ)x with initial
condition at τ = 0 is R(τ) = L(τ)−1. Thus x(t) = R(t)p = e−Z∞(t)p.

Remark 5.8. For X,Y ∈ Md(K) such that ‖X‖ + ‖Y ‖ < 1
8 , the previous statement implies the

convergence of the CBHD formula, yielding a matrix Z∞ such that eXeY = eZ∞ . Much work has
been devoted to proving optimal convergence domains in different contexts for the CBHD formula.
Such a domain sometimes depends on the summation process (i.e. the way terms are grouped
together) and the exact question one asks (existence of a logarithm, absolute summability of the
series, convergence of the remainder, etc.). Better sufficient conditions than ours can be found
for instance in [13], for instance, ‖X‖ + ‖Y ‖ < ln 2

2 . We refer to [12] for a nice survey of the
convergence questions regarding the CBHD formula.

Remark 5.9. The smallness assumption (on time or on the matrices) is in general necessary, both
for the CBHD formula (see [12, Example 2.3] or [71, Section II]) and for the Magnus expansion
(see [55], where the authors also prove that, although the condition ‖A‖L1(0,T ) < π is not necessary
for convergence, there exists A with ‖A‖L1(0,T ) = π for which the Magnus series at time π does
not converge).

5.2.3 Divergence for arbitrarily small analytic vector fields

The convergence of Magnus expansions is deeply linked with the convergence of the CBHD series.
For analytic vector fields, it is expected that both series diverge (see e.g. [3, p.1671] or [65, p.335] for
statements without examples). Some authors nevertheless suggested that, despite the divergence
of the series, the flows could converge for analytic vector fields (see [65, p.335] and [47, p.241]).

In this paragraph, we give explicit counter-examples to the convergence, even in the weak
sense of the flows, for arbitrarily small analytic vector fields, of both the CBHD series and the
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Magnus expansion. Similarly to counter-examples concerning the convergence of the CBHD series
for large matrices (see e.g. [12, Theorem 2.5]), our construction relies on the choice of generators for
which many brackets vanish thanks to their particular structure, and the remaining non-vanishing
brackets are associated with coordinates of the first kind involving Bernoulli numbers.

Proposition 5.10. There exists δ > 0 and f0, f1 ∈ Cωδ such that,

∀M ∈ N,∃CM , εM > 0,∀ε ∈ [0, εM ],
∣∣∣eεf0eεf1(0)− eCBHDM (εf1,εf0)(0)

∣∣∣ ≤ CMεM+1, (5.31)

where CBHDM (εf1, εf0) is defined in Corollary 4.4, but, simultaneously, for every ε > 0,

lim
M→+∞

|CBHDM (εf1, εf0)(0)| = +∞ (5.32)

and
lim

M→+∞

∣∣∣eεf0eεf1(0)− eCBHDM (εf1,εf0)(0)
∣∣∣ = +∞. (5.33)

Proof. Let f0, f1 as in Remark 3.16. For these vector fields, estimate (5.31) comes from Corol-
lary 4.4. Due to their structure, the only non vanishing brackets are those containing f1 at most
once. Therefore, formula (2.63) of Corollary 2.36 yields, for M ≥ 1,

CBHDM (εf1, εf0) = εf0 +

M−1∑
k=0

Bk
k!
εk+1 adkf0(f1). (5.34)

Hence, using (3.25),
CBHDM (εf1, εf0)(x) = εe1 + εΘε

M (x1)e2, (5.35)

where we introduce, for q ∈ R,

Θε
M (q) :=

M−1∑
k=0

Bkε
k(1− q)−k−1. (5.36)

In particular,
|CBHDM (εf1, εf0)(0)| ≥ |εΘε

M (0)| . (5.37)

Since the odd Bernoulli numbers except B1 are zero, when M = 2M ′ + 2 with M ′ ≥ 1, Θε
2M ′+2 =

Θε
2M ′+1. Then,

Θε
2M ′+1(q) =

1

1− q
− ε

2(1− q)2
+

M ′∑
k=1

B2kε
2k(1− q)−2k−1. (5.38)

In particular, using (2.67),

Θε
2M ′+1(0) = 1− ε

2
+

M ′∑
k=1

B2kε
2k = 1− ε

2
+

M ′∑
k=1

(−1)k+1 2(2k)!

(2π)2k
ζ(2k)ε2k. (5.39)

Thus, for every fixed ε > 0, |Θε
M (0)| → +∞ when M → +∞, because it involves a sum of the

form
∑M ′

k=1 ak where |ak+1|/|ak| → +∞ when k → +∞. Using (5.37), this proves (5.32).
For p ∈ R2 close enough to the origin, one can also compute the flow eCBHDM (εf1,εf0)(p), which

is y(1) where y is the solution to the ODE y(0) = p and

ẏ1(s) = ε and ẏ2(s) = εΘε
M (y1(s)) . (5.40)

Solving successively for y1 then y2 yields y1(s) = p1 + sε and

y2(s) = p2 +

∫ y1(s)

y1(0)

Θε
M (h) dh. (5.41)
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Thus,

eCBHDM (εf1,εf0)(p) = (p1 + ε)e1 +

(
p2 +

∫ p1+ε

p1

Θε
M (h) dh

)
e2. (5.42)

In particular,

eCBHDM (εf1,εf0)(0) = εe1 +

(∫ ε

0

Θε
M (h) dh

)
e2. (5.43)

When M = 2M ′ + 2 with M ′ ≥ 1, using (5.38), we get

eCBHDM (εf1,εf0)(0) = εe1 +

− ln(1− ε)− ε

2

(
1

1− ε
− 1

)
+

M ′∑
k=1

B2k

2k
ε2k

(
1

(1− ε)2k
− 1

) e2.

(5.44)
Hence, for the same reason as above, the flow satisfies |eCBHDM (εf1,εf0)(0)| → +∞ whenM → +∞,
which proves (5.33).

Remark 5.11. If one sees (x1, x2) as (q, p) in an Hamiltonian setting, one checks that the vector
fields defined in (3.24) and used in this counter-example are associated with the Hamiltonians
H0(q, p) := p and H1(q, p) := ln(1 − q). Therefore, assuming an Hamiltonian structure on the
considered vector fields does not provide enough structure to yield convergence.

One could wonder if assuming even more structure on the dynamics, for example assuming that
it is time-reversible, prevents the construction of such counter-examples.

Open problem 5.12. Does there exist Hamiltonians H0 and H1 on R2d, which are time-reversible
(i.e. satisfy Hi(q, p) = Hi(q,−p) for every q, p ∈ Rd), locally real-analytic near zero and for which
the convergence of the CBHD series fails as in Proposition 5.10?

The counter-example of Proposition 5.10 for the convergence of the CBHD series allows to build
counter-examples to the convergence of the Magnus expansion which blow up instantly, despite
analytic regularity in both time and space.

Proposition 5.13. There exist T, δ > 0 and f ∈ Cω([0, T ] × Bδ) such that, for every ε > 0 and
t ∈ (0, T ],

lim
M→+∞

|ZM (t, εf)(0)| = +∞ (5.45)

and
lim

M→+∞

∣∣∣x(t; εf, 0)− eZM (t,εf)(0)
∣∣∣ = +∞, (5.46)

where x is the solution to ẋ(t) = εf(t, x(t)) with x(0) = 0 and ZM (t, εf) = LogM{εf}(t).

Proof. Let T = 1. We define f(t, x) := f0(x)+ tf1(x), where f0 and f1 are defined in Remark 3.16.
Similarly as for the previous construction, only Lie brackets involving f1 at most once are non-
vanishing. Moreover, the coordinates of the first kind associated with the controls a0(t) = 1 and
a1(t) = t have been computed in Example 2.38. Hence, recalling (3.25), we have

ZM (t, εf) = εte1 +

M−1∑
k=0

εk+1 (−1)k+1tk+2

(k + 1)!
Bk+1

k!

(1− x1)k+1
e2. (5.47)

Proceeding along the same lines as in the proof of Proposition 5.10 allows to conclude that both
ZM (t, εf)(0) and eZM (t,ε)(0) diverge when M → +∞.
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5.3 Magnus expansion in the interaction picture
5.3.1 Nilpotent systems

For ODEs of the form (4.34), the starting point of the interaction picture is to factorize the flow
of f0. Hence, the roles of f0 and f1 are asymmetric. One can expect that, under the assumption
that Lie brackets of f0 and f1 containing at least M + 1 times f1 identically vanish, the Magnus
expansion in the interaction picture should yield an equality of the form

x(t; f0 + f1, p) = eZM (t,f0,f1)etf0p, (5.48)

where ZM (t, f0, f1) is defined in Proposition 4.8. We prove in this paragraph that it is indeed the
case, when f0 and f1 are analytic. However, contrary to the case of the usual Magnus expansion
(see Section 5.2.1), we give examples highlighting the fact that the analiticity assumption cannot
be removed, which is quite surprising but stems from the mixing induced by pushforwards.

We therefore start with the following definition.

Definition 5.14 (Semi-nilpotent family of vector fields). Let Ω be an open subset of Kd. Let
F ⊂ C∞(Ω;Kd), f0 ∈ C∞(Ω;Kd) and M ∈ N∗. We say that the family of vector fields F is
semi-nilpotent of index M with respect to f0 if every bracket of elements of F ∪ {f0} involving
M elements of F vanishes identically on Ω and M is the smallest positive integer for which this
property holds.

Proposition 5.15. Let T, δ > 0. Let M ∈ N. Let f0 ∈ C∞4δ with T‖f0‖C0 ≤ δ. There exists η > 0
such that, for every f1 : [0, T ]→ C∞4δ with f1 ∈ L1([0, T ]; CM+1

4δ ) and ‖f1‖L1(CM ) ≤ η, the following
family is well-defined

G := {Φ0(−t)∗f1(t); t ∈ [0, T ]} ⊂ C∞δ . (5.49)

and, assuming moreover that G is nilpotent of index M + 1, then, for each t ∈ [0, T ] and p ∈ Bδ,
the solution to (4.34) satisfies (5.48).

Proof. Let t > 0. As in the proof of Proposition 4.8, we introduce the new unknown y(s) :=
Φ0(t − s, x(s)). Then ẏ(s) = gt(s, y(s)), where gt is defined in (4.37). Thanks to Lemma 3.22,
gt(s) = Φ0(t)∗Φ0(−s)∗f1(s). Thanks to the assumption and to Lemma 3.23, the family {gt(s); s ∈
[0, t]} is nilpotent of index M + 1. Thus, by Proposition 5.6, y(t) = eZM (t,f0,f1)y(0). Since
x(t) = y(t) and y(0) = Φ0(t, p), this concludes the proof of (5.48).

Lemma 5.16. Let T, δ > 0, F ⊂ C∞4δ , f0 ∈ C∞4δ such that T‖f0‖C0 ≤ δ. The following family is
well-defined

G := {Φ0(−t)∗f ; t ∈ [0, T ], f ∈ F} ⊂ C∞δ . (5.50)

Assume that the family F is semi-nilpotent of index M with respect to f0 and that there exists
r > 0 such that F ∪ {f0} ⊂ Cω,rδ . Then G is nilpotent of index M .

Proof. For t ∈ [0, T ] and f ∈ F , equation (3.43) of Lemma 3.24 implies that

Φ0(−t)∗f =

+∞∑
k=0

tk

k!
adkf0(f) (5.51)

and that the series converges absolutely in CMδ (in particular). Hence, if t1, . . . , tM ∈ [0, T ] and
f1, . . . fM ∈ F , the bracket

[Φ0(−tM )∗fM ,[· · · [Φ0(−t2)∗f2,Φ0(−t1)∗f1] · · · ]]

=
∑

k1,...kM∈N

tk11 · · · t
kM
M

k1! · · · kM !
[adkMf0 (fM ), [· · · [adk2f0 (f2), adk1f0 (f1)] · · · ]] (5.52)

vanishes thanks to the assumption and the absolute convergence of the sums. The same is true for
every other bracket structure, which proves that G is nilpotent of index M .
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Corollary 5.17. Let T, δ, r > 0. Let f0 ∈ Cω,r4δ with T‖f0‖C0 ≤ δ and f1 ∈ L1([0, T ]; Cω,r4δ ). Assume
moreover that F := {f1(t, ·); t ∈ [0, T ]} is semi-nilpotent of index M + 1 with respect to f0. Then,
for each t ∈ [0, T ] and p ∈ Bδ, the solution to (4.34) satisfies (5.48), where ZM (t, f0, f1) is defined
in Proposition 4.8.

Proof. This corollary is a direct consequence of Proposition 5.15 and Lemma 5.16.

The analyticity assumption in Lemma 5.16 is necessary, as illustrated by the following counter-
example for smooth functions.

Example 5.18. We consider smooth vector fields on R3. Let χ ∈ C∞(R;R) with χ ≡ 0 on R−
and χ(x) > 0 for x > 0. Let f0 and F := {f1, f2} where

f0(x) := e2, (5.53)
f1(x) := χ(x2)x1e3, (5.54)
f2(x) := χ(−x2)e1. (5.55)

Heuristically, f1 and f2 commute because they have disjoint (touching) supports, but the flow of f0

involved in (5.50) mixes these supports for every positive time. This is possible only because χ is
not analytic.

First, we check that F is semi-nilpotent of order 2 with respect to f0. Indeed, for every j ∈ N,

adjf0(f1)(x) = χ(j)(x2)x1e3, (5.56)

adjf0(f2)(x) = (−1)jχ(j)(−x2)e1. (5.57)

Thus, for j, k ∈ N, [adjf0(f1), adkf0(f1)] (resp. [adjf0(f2), adkf0(f2)]) vanishes because both vector
fields are supported by e3 but independent on x3 (resp. supported by e1 but independent on x1).
Moreover,

[adjf0(f1), adkf0(f2)](x) = −(−1)kχ(k)(−x2)χ(j)(x2)e3 = 0, (5.58)

because the supports of χ(·) and χ(−·) only touch at x2 = 0 where all derivatives vanish.
Second, let us check however that the family G defined in (5.50) is not nilpotent of index 2.

Indeed, for t ≥ 0 and x ∈ R3, Φ0(t)(x) = x + te2. Thus, for f ∈ C∞(R3;R3), (Φ0(−t)∗f)(x) =
f(x+ te2). Therefore, for every T > 0, G is well-defined on R3. Moreover,

[f2, (Φ0(−t)∗f1)](x) = χ(−x2)χ(x2 + t)e3. (5.59)

In particular, for every ε > 0, [f2, (Φ0(−2ε)∗f1)](−εe2) = χ(ε)2e3 6= 0, which prevents the family
G from being nilpotent of index 2 (even locally in time and space).

The analyticity assumption in Corollary 5.17 is also necessary, as illustrated by the following
counter-example for smooth functions, inspired by the previous one.

Example 5.19. We consider smooth vector fields on R3. Let χ ∈ C∞(R;R) with χ ≡ 0 on R−
and χ(x) > 0 for x > 0. Let f0(x) := e2 and f1(t, x) := f1(x) (independent on time) with

f1(x) := 2χ′(x2)x1e3 + χ′(−x2)e1. (5.60)

For j ∈ N, one has

adjf0(f1)(x) = ∂j2f1(x) = 2χ(j+1)(x2)x1e3 + (−1)jχ(j+1)(−x2)e1. (5.61)

Thus, for every j1, j2 ∈ N,

[adj1f0(f1), adj2f0(f1)](x) = 2(−1)j1χ(j1+1)(−x2)χ(j2+1)(x2)e3

− 2(−1)j2χ(j2+1)(−x2)χ(j1+1)(x2)e3 = 0
(5.62)
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because the supports of χ(·) and χ(−·) only touch at x2 = 0, where all derivatives vanish. Hence
each bracket of f0 and f1 involving f1 at least twice vanishes identically on R3. Thus, for every
T > 0, the family F := {f1(t, ·); t ∈ [0, T ]} = {f1} is semi-nilpotent of index 2 with respect to f0.
Let us prove that, despite this property, equality (5.48) with M = 1 fails.

Computation of the state. We solve ẋ = f0(x) + f1(x) for some initial data p. Solving the
ODE successively for x2, x1 and x3, we obtain

x1(t) = p1 + χ(−p2)− χ(−p2 − t), (5.63)
x2(t) = p2 + t, (5.64)
x3(t) = p3 + 2 (χ(p2 + t)− χ(p2)) (p1 + χ(−p2)). (5.65)

In particular, with t = 2ε and p = −εe2, x(2ε; f0 + f1,−εe2) = (χ(ε), ε, 2χ(ε)2).

Computation of the flow. We compute eZ1(t,f0,f1)etf0(p) for some initial data p. One has
Φ0(τ, q) = q + τe2. Hence, in particular (Φ0(τ)∗f1)(q) = f1(q − τe2). Moreover Z1(t, f0, f1)(q) =∫ t

0
gt(s, q) ds where gt(s, q) = (Φ0(t− s)∗f1)(q). Hence gt(s, q) = f1(q − (t− s)e2) and

Z1(t, f0, f1)(q) =

∫ t

0

f1(q + (s− t)e2) ds

= 2q1(χ(q2)− χ(q2 − t))e3 + (χ(−q2 + t)− χ(−q2))e1.

(5.66)

Then eZ1(t,f0,f1)etf0p = eZ1(t,f0,f1)(p + te2) is y(1) where y is the solution to y(0) = p + te2 and
ẏ(s) = Z1(t, f0, f1)(y(s)). Solving the ODE successively for y2, y1 and y3, we obtain

y1(s) = p1 + s(χ(−p2)− χ(−p2 − t)), (5.67)
y2(s) = p2 + t, (5.68)

y3(s) = p3 + (χ(p2 + t)− χ(p2))
(
2p1s+ s2(χ(−p2)− χ(−p2 − t))

)
. (5.69)

In particular, with with t = 2ε and p = −εe2, eZ1(2ε,f0,f1)e2εf0(−εe2) = (χ(ε), ε, χ(ε)2). Thus, for
every ε > 0, ∣∣∣x(2ε, f0 + f1,−εe2)− eZ1(2ε,f0,f1)e2εf0(−εe2)

∣∣∣ = χ2(ε) > 0. (5.70)

5.3.2 Convergence for linear systems

Let T > 0. In this paragraph, we study linear systems of the form

ẋ(t) = (H0 +H1(t))x(t) and x(0) = p, (5.71)

where H0 ∈Md(K) and H1 ∈ L1((0, T );Md(K)). Let ‖·‖ be a sub-multiplicative norm onMd(K).

Proposition 5.20. Let T > 0, H0 ∈ Md(K) and H1 ∈ L1((0, T );Md(K)) such that ‖H1‖L1
T
<

e−2T‖H0‖

8 . Then, for each t ∈ [0, T ] and p ∈ Kd the solution to (5.71) satisfies x(t) = e−Z∞(t)etH0p
where Z∞(t) is defined by (5.24) with

At(τ) = e(t−τ)H0H1(τ)e(τ−t)H0 =

+∞∑
k=0

(t− τ)k

k!
adkH0

(H1). (5.72)

Proof. The function y : τ ∈ [0, t] 7→ e(t−τ)H0x(τ) solves y′(τ) = A(τ), y(0) = etH0p. Thus, by
Proposition 5.7, y(t) = e−Z∞(t)etH0p, which gives the conclusion because y(t) = x(t).

Remark 5.21. The Magnus expansion in the usual setting (Proposition 5.7), when applied directly
to A(t) = H0 +H1(t) requires a smallness assumption on T‖H0‖ (through the condition ‖A‖L1

T
<

1
8), even for small perturbations H1. On the contrary, the Magnus expansion in the interaction
picture (Proposition 5.20) holds even when T‖H0‖ is large, provided that the perturbation H1 is
small enough.
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5.3.3 Divergence for arbitrary small analytic vector fields

Generally speaking, since, as illustrated in Section 5.2.3, the Magnus expansion does not converge
for analytic vector fields, one cannot expect that the Magnus expansion in interaction picture
converges for analytic vector fields.

For instance, if f0 = 0, or if, for some a ∈ J1, dK, f0(x) only depends on x1, . . . , xa and is
supported by e1, . . . , ea and f1(t, x) only depends on xa+1, . . . xd and is supported along ea+1, . . . ed,
then the vector field gt(τ) = Φ0(t − τ)∗f1(τ) defined in (4.37) and involved in the Magnus in the
interaction picture formula satisfies gt(τ) = f1(τ).

Hence, each counter-example to the convergence of the usual Magnus expansion also yields
counter-examples to the convergence of the Magnus expansion in the interaction picture.

5.4 Sussmann’s infinite product expansion
5.4.1 Equality for nilpotent systems

In this section, we study affine systems of the form (4.51).

Proposition 5.22. Let B be a generalized Hall basis of L(X) and (ξb)b∈B be the associated coor-
dinates of the second kind. For every M ∈ N∗, there exist ηM > 0 such that the following property
holds. Let T, δ > 0, fi ∈ C∞3δ and ui ∈ L1((0, T );K) for i ∈ I. Assume that the Lie algebra
generated by the fi for i ∈ I is nilpotent of index at most M + 1. Then, under the smallness
assumption (4.52), for each t ∈ [0, T ] and p ∈ Bδ,

x(t; f, u, p) =
→
Π

b∈BJ1,MK

eξb(t;u)fbp. (5.73)

Proof. The proof strategy is the same as for Proposition 4.13. We apply the second statement of
Lemma 3.24 instead of the first one, which gives εj = 0 for each j ∈ J0, k + 1K. The smallness
assumption guarantees that all flows are well-defined.

5.4.2 Linear dynamics in Banach algebras

Convergence for small matrices. Let T > 0. In this paragraph, we study affine linear systems
of the form

ẋ(t) =

(∑
i∈I

ui(t)Ai

)
x(t) and x(0) = p (5.74)

where Ai ∈Md(K) and ui ∈ L1((0, T );K). When well-defined, its solution is denoted x(t;A, u, p).
The main goal of this section is to prove Proposition 5.25 which asserts that Sussmann’s infinite
product expansion for system (5.74) converges locally (i.e. for small matrices or small controls).

Before proving this result, we need a definition for an ordered infinite product (given in Defi-
nition 5.23 below) and a sufficient condition for its convergence (given in Lemma 5.24 below).

Defining the ordered product of a family of matrices indexed by a length-compatible Hall basis
is straightforward, because there exists an indexation of the family by N which is compatible with
the order induced by the Hall basis (since it does not involve infinite segments). Hence, one is
brought back to the classical case of a sequence of products and usual definitions and convergence
criteria can be used.

For generalized Hall bases, the situation is more intricate, due to the potential infinite segments
which can prevent the order of the basis from being compatible with the order of natural integers.
This problem already appears for a product which would be indexed by N2 with the lexicographic
order

(0, 0) < (0, 1) < (0, 2) < · · · < (1, 0) < (1, 1) < (1, 2) < · · · < (2, 0) < · · · (5.75)
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We therefore propose a natural definition and a basic sufficient condition for convergence based
on absolute convergence. In what follows, ‖ · ‖ is a submultiplicative norm on Md(K) such that
‖Id‖ = 1, for instance a subordinated norm.

Definition 5.23. Let J be a totally ordered set and (Aj)j∈J matrices ofMd(K). We say that the
ordered product of the eAj over J converges when there exists M ∈ Md(K) such that, for every
ε > 0, there exists a finite subset J0 of J such that, for every finite subset J1 of J containing J0,
one has ∥∥∥∥M − ←

Π
j∈J1

eAj
∥∥∥∥ ≤ ε. (5.76)

When such an M exists, it is unique and we write

M =
←
Π
j∈J

eAj . (5.77)

Lemma 5.24. Let J be a totally ordered set and (Aj)j∈J matrices ofMd(K) such that∑
j∈J
‖Aj‖ < +∞. (5.78)

Then the ordered product of the eAj over J converges in the sense of Definition 5.23.

Proof. Let α be the left-hand side of (5.78).

Step 1: Basic claims. We start with straightforward claims. First, for every j ∈ J , one has

‖eAj − Id‖ ≤ e‖Aj‖ − 1 ≤ ‖Aj‖e‖Aj‖ ≤ ‖Aj‖eα. (5.79)

Second, for every finite part J ′ ⊂ J , one has∥∥∥∥ ←Πj∈J′eAj
∥∥∥∥ ≤ Π

j∈J′
e‖Aj‖ ≤ eα. (5.80)

Third, for every finite parts J0 ⊂ J1 ⊂ J , one has∥∥∥∥ ←Πj∈J1eAj − ←
Π
j∈J0

eAj
∥∥∥∥ ≤ e3α

∑
j∈J1\J0

‖Aj‖. (5.81)

Indeed, writing J1 \ J0 = {j1 > · · · > jn}, we have the following telescopic decomposition

←
Π
j∈J1

eAj −
←
Π
j∈J0

eAj =

n∑
k=1

←
Π
j∈J0
j>jk

eAj
(
eAjk − Id

) ←
Π
j∈J1
j<jk

eAj , (5.82)

which, together with the two first claims, proves estimate (5.81).

Step 2: Construction of a limit. We construct a possible limit. For each n ≥ 2, let

Jn :=

{
j ∈ J, ‖Aj‖ >

1

n

}
. (5.83)

Thanks to assumption (5.78), the sets Jn are finite and, moreover,

εn :=
∑

j∈J\Jn

‖Aj‖ → 0. (5.84)
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Now, for each n ≥ 2, we define the matrix

Mn :=
←
Π

j∈Jn
eAj . (5.85)

This defines a Cauchy sequence in the complete spaceMd(K). Indeed, for every n < p, thanks to
estimate (5.81), one has

‖Mn −Mp‖ ≤ e3αεn. (5.86)

Hence, there exists M ∈ Md(K) towards which the sequence (Mn)n≥2 converges. By letting
[p→∞] in the previous inequality we obtain, for every n ≥ 2

‖Mn −M‖ ≤ e3αεn. (5.87)

Step 3: Proof of convergence. We now prove that the ordered product of the eAj over J converges
to M in the sense of Definition 5.23. Let ε > 0. Let n ≥ 2 large enough such that e3αεn < ε/2.
For every finite set J1 containing Jn, condition (5.76) holds thanks to (5.87) and (5.81).

Proposition 5.25. Let B be a generalized Hall basis of L(X), (ξb)b∈B be the coordinates of the
second kind associated to B. There exists η > 0 such that the following property holds. Let
Ai ∈ Md(K) for i ∈ I. For b ∈ B, we define the matrix Ab := Λ(b) where Λ : L(X) →Mn(K) is
the homomorphism of Lie algebra such that Λ(Xi) = Ai for i ∈ I (see Lemma 2.7). Let T > 0 and
ui ∈ L1((0, T );K) for i ∈ I. Assume that

‖u‖L1
T
‖A‖ ≤ η. (5.88)

Then, for each t ∈ [0, T ] and p ∈ Kd, the ordered product of the eξb(t;u)Ab over b ∈ B converges.
Moreover, for every p ∈ Kd,

x(t;A, u, p) =
→
Π
b∈B

eξb(t;u)Abp. (5.89)

Proof. Let η := 1/(8|I|2). Let T > 0. Below, the variable t implicitly belongs to [0, T ]. To simplify
the notations we write ξb(t) instead of ξb(t;u).

Step 1: Convergence of the ordered product of the eξb(t)Ab over b ∈ B. One obtains, by induction
on |b|, that for every b ∈ B, ‖Ab‖ ≤ (2‖A‖)|b|. Thus, recalling (2.102),

‖ξb(t)Ab‖ ≤
(
2‖A‖‖u‖L1(0,t)

)|b|
. (5.90)

Taking into account that |B`| ≤ |I|`, we obtain, using (5.88),

∑
b∈B

‖ξb(t)Ab‖ ≤
+∞∑
`=1

(
2|I|‖A‖‖u‖L1(0,t)

)` ≤ 1 (5.91)

and Lemma 5.24 gives the conclusion.

Step 2: Estimates along a Lazard elimination in BJ1,MK. Let M ∈ N∗. We adopt the notations
b1, . . . , bk+1 and Y0, . . . , Yk+1 of Definition 2.49 and we define x0(t) := x(t) and, for j ∈ J1, k + 1K

xj(t) := e−ξbj (t;u)Abj · · · e−ξb1 (t;u)Ab1x(t). (5.92)

We prove by induction on j ∈ J0, k + 1K that

(Hj) :

{
ẋj(t) =

(∑
b∈BJ1,MK∩Yj ξ̇b(t)Ab + εj(t)

)
xj(t),

xj(0) = p,
(5.93)
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where ε0 = 0 and

‖εj(t)‖ ≤
(
M |I|‖A‖|u(t)|(4|I|‖A‖‖u‖L1

t
)M + ‖εj−1(t)‖

)
e2‖ξbj (t)Abj ‖. (5.94)

First, (H0) holds with ε0 = 0 because x0(t) = x(t) and ξ̇Xi(t) = ui(t) for i ∈ I. Let j ∈ J1, k+1K
and assume that (Hj−1) holds. We deduce from the definition of xj that

xj(t) = e−ξbj (t)Abj xj−1(t) (5.95)

and from (Hj−1) that

ẋj(t) = −ξ̇bj (t)Abjxj(t) + e−ξbj (t)Abj

 ∑
b∈BJ1,MK∩Yj−1

ξ̇b(t)Ab + εj−1(t)

 eξbj (t)Abj xj(t)

=

 ∑
b∈BJ1,MK∩Yj−1\{bj}

ξ̇b(t)e
−ξbj (t)AbjAbe

ξbj (t)Abj + ε̃j−1(t)

xj(t)

(5.96)

where ε̃j−1(t) := e−ξbj (t)Abj εj−1(t)eξbj (t)Abj satisfies,

‖ε̃j−1(t)‖ ≤ ‖εj−1(t)‖e2‖ξbj (t)Abj ‖. (5.97)

For b ∈ BJ1,MK ∩ Yj−1 \ {bj}, let h(b) ∈ N∗ be the maximal integer such that (4.65) holds and

εjb(t) := ξ̇b(t)e
−ξbj (t)AbjAbe

ξbj (t)Abj −
h(b)−1∑
m=0

ξ̇b(t)
ξmbj (t)

m!
Aadmbj

(b). (5.98)

Then, by definition of Yj , (Hj) holds with εj defined by (4.69). Using the fourth statement of
Lemma 3.24, (2.101), (5.90), we obtain

‖εjb(t)‖ ≤ |ξ̇b(t)|
(2‖ξbj (t)Abj‖)h(b)

h(b)!
‖Ab‖e2‖ξbj (t)Abj ‖

≤ |b||u(t)|‖u‖|b|−1

L1
t
·

(2‖A‖‖u‖L1
t
)h(b)|bj |2h(b)

h(b)!
· (2‖A‖)|b|

≤M |u(t)|(4‖A‖‖u‖L1
t
)M‖A‖,

(5.99)

taking into account M + 1 ≤ |b|+ h(b)|bj | ≤ 2M and ‖A‖‖u‖L1
t
≤ 1.

We deduce from (4.69), (5.97), (5.99) and the relation |BJ1,MK| ≤ |I|M+1 that (5.94) holds.

Step 4: Proof of an estimate on the ordered product of the eξb(t)Ab over BJ1,MK. We deduce
from (5.94), (5.91) and the relation k + 1 = |BJ1,MK| ≤ |I|M+1 that

‖εk+1(t)‖ ≤ eM‖A‖|I|2|u(t)|(4|I|2‖A‖‖u‖L1
t
)M . (5.100)

Hence, using (5.88),
‖εk+1‖L1

t
≤ e

4
(4|I|2‖A‖‖u‖L1

t
)M+1 ≤ 2−M . (5.101)

We deduce from (Hk+1), (2.94) and Grönwall’s lemma that∣∣∣∣ ←
Π

b∈BJ1,MK

e−ξb(t;u)Abx(t)− p
∣∣∣∣ = |xk+1(t)− p| ≤

∫ t

0

|εk+1(τ)xk+1(τ)|dτ ≤ 2−Me|p| (5.102)

Multiplying both sides by the finite product
→
Π

b∈BJ1,MK

eξb(t;u)Ab gives∣∣∣∣x(t)−
→
Π

b∈BJ1,MK

eξb(t;u)Abp

∣∣∣∣ ≤ e22−M |p| (5.103)

Passing to the limit [M →∞] in the previous estimate gives (5.89).
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Divergence for matrices in large time. The goal of this paragraph is to illustrate that the
smallness assumption (5.88) in Proposition 5.25 is necessary because the equality does not hold
globally.

Proposition 5.26. Let u : t ∈ R+ 7→ (1, 1) ∈ R2.

1. There exist a Hall basis B of L({X1, X2}) and a subsequence (bk)k∈N of B such that

∃γ > 0,∀k ∈ N, t ≥ 0, ξbk(t;u) ≥
(
t

γ

)|bk|
(5.104)

2. There exists A1, A2 ∈ M3(C) and t > γ such that (eξbk (t;u)Abk )k∈N does not converge to Id3

inM3(C). Thus, the ordered product of the eξb(t;u)Ab over B does not converge inM3(C).

Proof. For the first point we adapt an argument due to Sussmann in [68, pages 333-335]. We define
by induction two sequences (b1k)k∈N and (b2k)k∈N of Br(X1, X2) by

b10 = X1, b20 = X2, b1k+1 := [b2k, [b
1
k, b

2
k]], b2k+1 := [b1k, [b

1
k, b

2
k]]. (5.105)

There exists a Hall basis of L({X1, X2}), whose order, denoted <, is compatible with length and
such that, for every k ∈ N, b1k, b2k ∈ B and b1k < b2k. It suffices to choose, on the brackets with length
3k, some order such that b1k < b2k. Then, automatically, [b1k, b

2
k] ∈ B and thus b1k+1, b

2
k+1 ∈ B. Such

a process indeed allows to construct a Hall basis (see Remark 2.51), provided that one chooses an
arbitrary length-compatible order on all other brackets.

To simplify notations in this proof, we write ξb(t), instead of ξb(t;u). We have ξX1(t) = ξX2(t) =
t. An easy induction shows that, for every b ∈ B, ξ̇b(t) = t|b|−1/αb, where αb ∈ N∗. The constants
αb can be computed recursively: αX1

= αX2
= 1 and, if b = admb1(b2) with m ∈ N∗, b1 < b2 and

λ(b2) < b1 then αb = αmb1 |b1|
mm!αb2 . In particular, for every k ∈ N,

αb1k+1
= αb1kα

2
b2k
|b2k||b1k| = αb1kα

2
b2k

32k, αb2k+1
= 2α2

b1k
αb2k |b

1
k|2 = 2α2

b1k
αb2k32k. (5.106)

Let βk = max{αb1k , αb2k}. Then, β0 = 1 and, by the previous relations,

βk+1 ≤ 32k+1β3
k. (5.107)

Thus θk := 3−k ln(βk) satisfies θ0 = 0 and

θk+1 ≤ θk + (2k + 1)3−(k+1) ln(3), (5.108)

which leads to θk ≤ η :=
∑+∞
j=1(2j + 1)3−(j+1) ln(3) i.e. βk ≤ (γ′)3k where γ′ = eη. Therefore, for

every k ∈ N and j ∈ {1, 2} we have

∣∣∣ξbjk(t)
∣∣∣ ≥ 1

|bjk|

(
t

γ′

)|bjk|
. (5.109)

Let γ > γ′ be such that, for every k ∈ N, 1
3k

(
γ
γ′

)3k

≥ 1. Then (5.104) holds, for instance with
bk = b1k.

For the second point, let, for j ∈ {1, 2, 3}, Fj ∈ M3(R) be the matrix of the linear map
x ∈ R3 7→ ej ∧ x. Then [F1, F2] = F3, [F2, F3] = F1 and [F3, F1] = F2. In particular

[F2, [F1, F2]] = F1, [F1, [F1, F2]] = −F2. (5.110)
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We consider A1 = ei
π
6 F1 and A2 = ei

π
6 F2 in M3(C). One easily proves by induction on k ∈ N∗

that Ab1k = (−1)k+1iF1 and Ab2k = −iF2. We have, for every k ∈ N and t ∈ R

eξbk (t)Abk =

1 0 0
0 cosh(ξbk(t)) i(−1)k sinh(ξbk(t))
0 i(−1)k+1 sinh(ξbk(t)) cosh(ξbk(t))

 (5.111)

By (5.104), this sequence of matrices diverges for every t > γ.

5.4.3 Investigation for analytic vector fields

In this paragraph, we study affine systems (4.51). Our goal is to explain the difficulty of the
convergence question for Sussmann’s infinite product for arbitrary analytic vector fields. First, we
state a definition (Definition 5.27) and a sufficient condition for the convergence (Lemma 5.28), in
the same spirit as for matrices. Then we show that they do not provide convergence for general
analytic vector fields and we formulate an open problem.

Definition 5.27. Let J be a totally ordered set, δ > 0 and (fj)j∈J a family of C1
2δ. We say that

the ordered product of the efj over J converges uniformly on Bδ if there exists g ∈ C0
δ such that, for

every ε > 0, there exists a finite subset J0 of J such that, for every finite subset J1 of J containing
J0, and for every p ∈ Bδ one has ∥∥∥∥g(p)−

←
Π
j∈J1

efjp

∥∥∥∥ ≤ ε. (5.112)

When such a g exists, it is unique and we write

g =
←
Π
j∈J

efj . (5.113)

Lemma 5.28. Let J be a totally ordered set, δ > 0 and (fj)j∈J a family of C1
2δ such that∑

j∈J
‖fj‖C0 < δ and α :=

∑
j∈J
‖fj‖C1 <∞. (5.114)

Then the ordered product of the efj over J converges uniformly on Bδ and is eα-Lipschitz.

Proof. We proceed as in the proof of Lemma 5.24.

Step 1: Basic claims. First, for every finite subset J ′ ⊂ J and p ∈ Kd with |p| ≤ 2δ−
∑
j∈J′ ‖fj‖C0 ,

then
←
Π
j∈J′

efjp ∈ B2δ and
∥∥∥∥∂p [ ←Πj∈J′efjp

]∥∥∥∥ ≤ Π
j∈J′

e‖f
′
j‖C0 ≤ eα (5.115)

because of Lemma 3.19 and the chain rule.
Second, for every finite parts J0 ⊂ J1 ⊂ J and p ∈ Kd with |p| ≤ 2δ −

∑
j∈J1 ‖fj‖C0 one has∥∥∥∥ ←Πj∈J1efjp− ←

Π
j∈J0

efjp

∥∥∥∥ ≤ eα ∑
j∈J1\J0

‖fj‖C0 . (5.116)

Indeed, writing J1 \ J0 = {j1 > · · · > jn}, we have the following telescopic decomposition

←
Π
j∈J1

efjp−
←
Π
j∈J0

efjp =

n∑
k=1


 ←

Π
j∈J0
j>jk

efj

 efjk

 ←
Π
j∈J1
j<jk

efj

 p−

 ←
Π
j∈J0
j>jk

efj

 ←
Π
j∈J1
j<jk

efj

 p

 . (5.117)
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For k ∈ J1, nK, let xk :=
←
Π
j∈J1
j<jk

efjp which is a point in B2δ−‖fjk‖C0 . By (5.115) and (3.27), the term

with index k in the previous sum is bounded by∣∣∣∣∣∣
 ←

Π
j∈J0
j>jk

efj

 efjkxk −

 ←
Π
j∈J0
j>jk

efj

xk

∣∣∣∣∣∣ ≤ eα ∣∣efjkxk − xk∣∣ ≤ eα‖fjk‖C0 . (5.118)

which, together with (5.117) proves (5.116).

Step 2: Construction of a limit. We construct a possible limit. For each n ≥ 2, let

Jn :=

{
j ∈ J, ‖fj‖C1 >

1

n

}
. (5.119)

Thanks to assumption (5.114), the sets Jn are finite and, moreover,

εn :=
∑

j∈J\Jn

‖fj‖C1 → 0. (5.120)

Now, for each n ≥ 2, we define gn ∈ C0
δ by

gn(p) :=
←
Π

j∈Jn
efjp. (5.121)

This defines a Cauchy sequence in the complete space C0
δ . Indeed, for every n < n′ and p ∈ Bδ,

thanks to estimate (5.116), one has

‖gn(p)− gn′(p)‖ ≤ eαεn. (5.122)

Hence, there exists g ∈ C0
δ towards which the sequence (gn)n≥2 uniformly converges on Bδ. By

(5.115), gn is eα-Lipschitz on Bδ for every n ∈ N, thus so is g. By letting [n′ →∞] in the previous
inequality we obtain, for every n ≥ 2 and p ∈ Bδ

‖gn(p)− g(p)‖ ≤ eαεn. (5.123)

Step 3: Proof of convergence. We now prove that the ordered product of the efj over J converges
uniformly to g on Bδ in the sense of Definition 5.27. Let ε > 0. Let n ≥ 2 large enough such that
eαεn < ε/2. For every finite set J1 containing Jn, condition (5.112) holds thanks to (5.123) and
(5.116).

Now, let us emphasize that, by using estimates on ξb(t;u) and fb depending only on the length
of the Lie bracket b, it is not possible to prove the convergence of

∑
|ξb(t;u)|‖fb‖C1 , where the

sum ranges over b ∈ B, an arbitrary generalized Hall basis of L(X).
On the one hand, one easily proves by induction on |b| that, for every b ∈ B and u ∈ L∞

with ‖u‖L∞ ≤ 1, there holds |ξb(t;u)| ≤ t|b|. However, by the first statement of Proposition 5.26,
when X contains at least two indeterminates, there are Hall bases (even compatible with length)
for which one may not expect an upper bound, function of |b| alone, that behaves better than
geometrically. Hence, we should consider the t|b| bound to be sharp, when one restricts to bounds
depending only on |b|.

On the other hand, if the vector fields are locally analytic, there exists r, δ > 0 such that
fi ∈ Cω,rδ for i ∈ I. By (3.23) with r1 ← r and r2 ← r/e for every b ∈ B,

‖fb‖C1 ≤
(

1 +
e

r

)
(|b| − 1)!

(
9

r

)|b|−1

F |b|, (5.124)
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where F := maxi∈I |||fi|||r. However, by Remark 3.16, the dependence in (|b|−1)! is optimal (again,
if one restricts to bounds involving only |b|).

We deduce from the previous estimates that there exists C > 0 such that

|ξb(t;u)|‖fb‖C1 ≤ (Ct)|b||b|!. (5.125)

This bound does not provide the convergence of the considered series. Indeed, for every t > 0,
(Ct)|b||b|!→ +∞ as |b| → +∞, so an argument depending on |b| alone doesn’t even prove that the
general term tends to zero.

To prove the convergence of Sussmann’s infinite product expansion, one therefore either needs
a better sufficient condition than Lemma 5.28 or one needs to prove estimates on ξb and fb that
take into account the structure of the bracket b, and not only its length.

Open problem 5.29. Does Sussmann’s infinite product converge for analytic vector fields?

In Section 6.4, we prove the convergence (for analytic vector fields) of some infinite subproducts,
by applying Lemma 5.28 with estimates on ξb that depend on the structure of b.

6 Error estimates for control systems
In this section, we consider control-affine systems with drift, i.e. of the form

ẋ(t) = f0(x(t)) +

q∑
i=1

ui(t)fi(x(t)) and x(0) = p, (6.1)

where f0, . . . , fq are vector fields and u = (u1, . . . , uq) ∈ L1(R;Kq). When well-defined, the solution
is denoted x(t; f, u, p) where f = (f0, . . . , fq) and u = (u1, . . . , uq).

We prove error formulas at every order in ‖u‖L1 for the iterated Duhamel expansion, the
Magnus expansion in the interaction picture and for Sussmann’s infinite product expansion. In
each case, the error formula involves an infinite sum or an infinite product which turns out to be
well-defined. We also propose a counter-example for the validity of such error estimates for the
usual Magnus expansion, for which the infinite sum involved is not well-defined.

6.1 Iterated Duhamel or Chen-Fliess expansion
The convergence of the Chen-Fliess series, for control affine systems (6.1) with analytic vector
fields, under a smallness assumption on t and a uniform bound on u, is a classical result, see for
instance [28, Proposition 3.37] or [67, Proposition 4.3]. In this section we prove the convergence
of the Chen-Fliess expansion, (Proposition 6.1) under a smallness assumption on ‖u‖L1 . We also
generalize the Chen-Fliess expansion to nonlinear systems (not necessarily affine) with scalar input
(Proposition 6.2), because this fact will be used in Section 7.2.

In the following statement q ∈ N∗, I = J0, qK. For a word σ = σ1 · · ·σ` ∈ I∗, with ` ∈ N∗,
σ1, . . . , σ` ∈ I, and vector fields f0, f1, . . . , fq, we denote by fσ the differential operator fσ =

(fσ1
· ∇) · · · (fσ` · ∇). For t > 0 and u = (u1, . . . , uq) ∈ L1(0, t), the quantity

∫ t
0
uσ is defined

in (2.11), with u0 = 1.

Proposition 6.1. Let δ, r > 0 and f0, f1, . . . , fq ∈ Cω,r2δ . There exists η > 0 such that, for every
ϕ ∈ Cω,r(B2δ;K), t ∈ [0, η] and u ∈ L1((0, t);Kq) such that ‖u‖L1 ≤ η and p ∈ Bδ, then

ϕ(x(t; f, u, p)) =
∑
σ∈I∗

(∫ t

0

uσ

)
(fσϕ) (p) (6.2)
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where the sum converges absolutely, uniformly with respect to (t, u, p). Moreover, for every ϕ ∈
Cω,r(B2δ;K), there exists C > 0 such that, for everyM ∈ N, p ∈ Bδ, t ∈ [0, η] and u ∈ L1((0, t);Kq)
such that ‖u‖L1 ≤ η, then∣∣∣∣∣∣ϕ(x(t; f, u, p))−

∑
n(σ)≤M

(∫ t

0

uσ

)
(fσϕ) (p)

∣∣∣∣∣∣ ≤ (C‖u‖L1)
M+1

, (6.3)

where the sum ranges over words σ ∈ I∗ such that the number of non-zero letters is at most M .

Proof. For σ = σ1 · · ·σ` ∈ I∗, let n(σ) be the number of non zero letters in σ, i.e. n(σ) = |{i ∈
J1, `K;σi 6= 0}| and n0(σ) be the number of occurrences of the letter zero in σ, i.e. n0(σ) = |{i ∈
J1, `K;σi = 0}|. Then ` = n(σ) + n0(σ). One proves by induction on the length ` of σ ∈ I∗ the
following estimate, for every t > 0 and u ∈ L1((0, t);Kq),∣∣∣∣(∫ t

0

uσ

)∣∣∣∣ ≤ ‖u‖n(σ)
L1(0,t)

n(σ)!

tn0(σ)

n0(σ)!
. (6.4)

Let ‖f‖ =
∑q
i=0 |||fi|||r, η = r/(10‖f‖), ϕ ∈ Cω,r(B2δ;K), t ∈ [0, η] and u ∈ L1((0, t);Kq) such

that ‖u‖L1(0,t) =
∑q
i=1 ‖ui‖L1(0,t) ≤ η and p ∈ Bδ. Using (6.4) and (3.18), we get∣∣∣∣(∫ t

0

uσ

)
(fσϕ) (p)

∣∣∣∣ ≤ ‖u‖n(σ)
L1(0,t)t

n0(σ)

(
10

r
‖f‖

)`
|||ϕ|||r (6.5)

which proves the absolute convergence of the sum in (6.2), uniformly with respect to (t, u, p)
The proof of the equality in (6.2) consists in applying (5.9) to f(t, x) = f0(x)+

∑q
i=1 ui(t)fi(x).

In particular the sum involved in (6.3) is the Taylor expansion of order M of u 7→ ϕ(x(t; f, u, p))
at u = 0. By adapting Lemma 3.10 to affine systems with L1 controls, we get the real-analyticity
of the map u 7→ ϕ(x(t; f, u, p)) on BL1(0,t)(0, η) uniformly with respect to (t, p) ∈ [0, η]×Bδ which
ends the proof of (6.3).

The last statement of this section focuses on nonlinear control systems with scalar input

ẋ = f(x, u) (6.6)

where f : Kd × K → Kd, When well-defined, the solution of this ODE, with initial condition
x(0) = p is denoted x(t; f, u, p). We introduce the notation∫ t

0

uk :=

∫
T(n)(t)

u(τn)kn · · ·u(τ1)k1 dτ (6.7)

for every t > 0, u ∈ L1((0, t);K), and every multi-index k = (k1, . . . , kn) ∈ Nn with n ∈ N∗.

Proposition 6.2. Let r, δ, δu > 0, f ∈ Cω,r(B2δ × [−δu, δu];Kd) and fk := 1
k!∂

k
uf(·, 0) for every

k ∈ N. There exists T ∗, η > 0 such that, for every ϕ ∈ Cω,r(B2δ;K), t ∈ [0, T ∗], u ∈ L∞((0, t);K)
with ‖u‖L∞ ≤ η and p ∈ Bδ

ϕ (x(t; f, u, p)) =
∑
n∈N
k∈Nn

(∫ t

0

uk
)(

(fkn · ∇) · · · (fk1 · ∇)
)(
ϕ
)

(p) (6.8)

where the sum converges absolutely, uniformly with respect to (t, u, p). Moreover, for every ϕ ∈
Cω,r(B2δ : K), there exists C > 0 such that, for every M ∈ N, t ∈ [0, T ∗], u ∈ L∞((0, t);K) with
‖u‖L∞ ≤ η and p ∈ Bδ∣∣∣∣∣∣∣∣ϕ (x(t; f, u, p))−

∑
n∈N

k∈Nn,|k|≤M

(∫ t

0

uk
)(

(fkn · ∇) · · · (fk1 · ∇)
)(
ϕ
)

(p)

∣∣∣∣∣∣∣∣ ≤ (C‖u‖L∞)
M+1 (6.9)
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where the sum is taken over n ∈ N and k = (k1, . . . , kn) ∈ Nn such that k1 + · · ·+ kn ≤M .

Proof. We define r′ = r/e,

T ∗ := min

{
r′

10 |||f |||r
,

δ

‖f‖C0

}
, η := min

{
δu,

r

10

}
. (6.10)

Let ϕ ∈ Cω,r(B2δ;K), t ∈ [0, T ∗], u ∈ L∞((0, t);Kq) with ‖u‖L∞ ≤ η and p ∈ Bδ. Then
x(t; f, u, p) ∈ B2δ.

Step 1: Uniform absolute convergence of the sum in (6.8). Using the iterated version of (3.8) and
(3.1), we get, for every k ∈ N,

|||fk|||r′ ≤
1

k!

(
k

r − r′

)k
|||f |||r ≤

(
e

r − r′

)k
|||f |||r ≤

(
5

r

)k
|||f |||r . (6.11)

For every n ∈ N∗ and k1, . . . , kn ∈ N, we have, using (3.18) and (6.11)∣∣∣((fkn · ∇) · · · (fk1 · ∇)
)(
ϕ
)

(p)
∣∣∣ ≤ n!

(
5

r′

)n
|||fkn |||r′ · · · |||fk1 |||r′ |||ϕ|||r′

≤ n!

(
5

r′

)n(
5

r

)k1+···+kn
|||f |||nr |||ϕ|||r′

(6.12)

and ∣∣∣∣∫ t

0

uk
∣∣∣∣ =

∣∣∣∣∫
0<τ1<···<τn<t

u(τn)kn · · ·u(τ1)k1 dτ

∣∣∣∣ ≤ tn

n!
‖u‖k1+···+kn

L∞ . (6.13)

By definition of T ∗ and η we have 5t
r′ |||f |||r ≤

1
2 and 5

r‖u‖L∞ ≤
1
2 , which gives the conclusion.

Step 2: Equality in (6.8) and error formula (6.9). We have f(·, u) =
∑+∞
j=0 u

jfj with convergence

in Cω,r
′

2δ uniformly with respect to u ∈ BKq (0, η). Thus, the equality (6.8) is a consequence of Fubini
theorem and (5.9) applied to (t, x) 7→ f(x, u(t)). In particular the finite sum involved in (6.9) is the
Talyor expansion of order M of u 7→ ϕ(x(t; f, u, p)) at u = 0. By Lemma 3.10 u 7→ ϕ(x(t; f, u, p))
is analytic on BL∞(0,T∗)(0, η) uniformly with respect to (t, p) ∈ [0, T ∗]×Bδ, which ends the proof
of (6.9).

6.2 Magnus expansion in the usual setting: a counter-example
Contrary to other expansions, the usual Magnus expansion does not yield, in general, error es-
timates involving the size of the control. Indeed, the infinite segments which would need to be
summed do not converge, even for analytic vector fields, arbitrarily small times and even when the
drift vector field vanishes at the origin. The following statement illustrates that even the series
defining the terms which are linear with respect to the control does not converge.

Proposition 6.3. Let d := 2. There exists T, δ > 0, f0, f1 ∈ Cω,δδ with f0(0) = 0 and a control
u ∈ C∞([0, T ]), such that, if one defines, for t ∈ (0, T ), the sequence of vector fields

Fn(t) :=

n∑
k=0

ζadkX0
(X1)(t, u) adkf0(f1), (6.14)

then, for each δ∗ ∈ (0, δ) and t ∈ (0, T ), the sequence Fn(t) ∈ C∞δ does not converge in C0
δ∗ .

Proof. We define the following vector fields for x ∈ R2 with |x| < 1,

f0(x) := x2e1 and f1(x) :=
1

1− x1
e2. (6.15)
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Then,

adkf0(f1)(x) = xk2
∂k

∂xk1

(
1

1− x1

)
e2 =

k!xk2
(1− x1)k+1

e2. (6.16)

We now choose the particular control u(t) := t for t ∈ (0, T ) with T = 1 (the simpler choice,
u(t) := 1, would not produce a diverging counter-example). Using the expression (2.68) from
Example 2.38 for the coordinates of the first kind along the brackets adkX0

(X1) for this particular
control, we obtain, for t ∈ (0, T ),

Fn(t)(x) =

n∑
k=0

(−1)k+1tk+2Bk+1

k + 1

xk2
(1− x1)k+1

. (6.17)

Thus, for each t, δ∗ > 0, the sequence of vector fields Fn(t) does not converge in C0
δ∗ , since for every

x2 6= 0, the general term of the series does not tend to zero because of the asymptotic (2.67) for
Bernoulli numbers.

6.3 Magnus expansion in the interaction picture

Proposition 6.4. For every M ∈ N, there exists Θ̃M ∈ C0(R∗+×R3
+;R+) and ΦM ∈ C0(R2+q

+ ;R+)

such that, for every δ > 0, T > 0, f0 ∈ CM
2+1

5δ with T‖f0‖C0 ≤ δ, f1, . . . , fq ∈ CM
2

5δ , u1, . . . , uq ∈
L1((0, T );K) with

‖u‖L1 ≤ Θ̃M (δ, T, ‖f0‖CM2+1 ,

q∑
j=1

‖fj‖CM2 ) (6.18)

p ∈ Bδ and t ∈ [0, T ] then∣∣∣x(t; f, u, p)− eZM (t,f,u)etf0p
∣∣∣ ≤ ‖u‖M+1

L1(0,t)ΦM (T, ‖f0‖CM2+1 , ‖f1‖CM2 , . . . , ‖fq‖CM2 ) (6.19)

where ZM (t, f0, f1) = LogM{gt}(t) in the sense of Definition 2.19, gt : [0, t]×B4δ 7→ Kd is defined
by

gt(τ, y) =

q∑
i=1

ui(t)(Φ0(t− τ)∗fi(τ))(y) (6.20)

and Φ0 : [0, T ]×B4δ → B5δ is the flow associated with f0 i.e. Φ0(t; p) = etf0(p).

Proof. We define

Θ̃M (δ, T, ‖f0‖CM2+1 ,

q∑
i=1

‖fi‖CM2 ) = ΘM (T, ‖f0‖CM2+1) min{1; δ}/
q∑
i=1

‖fi‖CM2 (6.21)

with ΘM as in Proposition 4.8. Then the assumptions of Proposition 6.4 imply (4.35) for f1(t, x)←∑q
i=1 ui(t)fi(x). Then (4.36) gives (6.19) because for every i ∈ J1, qK and τ ∈ [0, t], ‖(Φ0(t −

τ)∗fi(τ)‖CM2 is bounded by a continuous function of T , ‖f0‖CM2+1 and ‖fi‖CM2 .

6.4 Sussmann’s infinite product expansion
The goal of this section is to prove Proposition 6.7 which states that, despite the difficulties men-
tioned in Section 5.4.3 concerning the full convergence of Sussmann’s infinite product expansion,
some (infinite) subproducts of it do converge and yield error estimates at every order in the size
of the control for control-affine systems with drift of the form (6.1).

We start with an elementary remark (Lemma 6.5) on the structure of brackets of a generalized
Hall basis which allows to prove nice asymmetric estimates on the associated coordinates of the
second kind (see Lemma 6.6).
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Lemma 6.5. Let q ∈ N∗, X = {X0, X1, . . . , Xq} and B a generalized Hall basis of L(X). For each
b ∈ B, there exist m,m ∈ N such that

b = admX0
ad
m

X0
(b∗), (6.22)

where ad
m

X0
denotes the iterated right bracketing m times by X0 and b∗ ∈ B is such that either

b∗ ∈ X or b = [b1, b2] with b1 6= X0 and b2 6= X0.

Proof. The key point is that, by the third condition in Definition 2.50, for each b ∈ B\X, λ(b) < b.
Let b ∈ B. We disjunct cases.

• If b ∈ X or (λ(b) 6= X0 and µ(b) 6= X0), then (6.22) holds with m = m = 0 and b∗ = b.

• If λ(b) = X0, there exists a unique m ∈ N∗ and b̃ ∈ B such that b = admX0
(b̃) where b̃ ∈ X or

λ(b̃) 6= X0.

– If b̃ ∈ X or µ(b̃) 6= X0, (6.22) holds with m = 0 and b∗ = b̃.

– Otherwise, there exists a unique m ∈ N∗ and b∗ ∈ B such that b̃ = ad
m

X0
(b∗) where

b∗ ∈ X or µ(b∗) 6= X0.

∗ If b∗ ∈ X, (6.22) holds.
∗ Else µ(b∗) 6= X0. one has λ(b∗) < b∗ as recalled. Moreover, sincem ≥ 1, [b∗, X0] ∈ B
so b∗ < X0 (by the second point of Definition 2.50). Hence λ(b∗) < X0. So we also
have λ(b∗) 6= X0 and (6.22) holds.

• If µ(b) = X0, there exists a unique m ∈ N∗ and b̃ ∈ B such that b = ad
m

X0
(b̃) where b̃ ∈ X or

µ(b̃) 6= X0.

– If b̃ ∈ X, (6.22) holds with m = 0 and b∗ = b̃.

– Else µ(b̃) 6= X0. Since m ≥ 1, [b̃, X0] ∈ B, so b̃ < X0. Since λ(b̃) < b̃, this proves
λ(b̃) 6= X0. So (6.22) holds with m = 0 and b∗ = b̃.

Hence, the decomposition (6.22) always holds.

We now turn to asymmetric estimates for the coordinates of the second kind, which, contrary
to Lemma 2.58, isolate the role of X0 associated with the implicit control u0 = 1.

Lemma 6.6. Let q ∈ N∗, X = {X0, X1, . . . , Xq}, B a generalized Hall basis of L(X) and (ξb)b∈B
the associated coordinates of the second kind. For every k ∈ N∗, there exists ck ≥ 1 such that, for
each b ∈ B with n(b) = k, T > 0, u ∈ L1((0, T );Kq) and t ∈ [0, T ],

|ξb(t; 1, u)| ≤ ‖u‖kL1
t

(ckt)
n0(b)

n0(b)!
(6.23)

and

|ξ̇b(t; 1, u)| ≤

k|u(t)|‖u‖k−1
L1
t

when n0(b) = 0,

‖u‖k−1
L1
t

(
kt|u(t)|+ n0(b)‖u‖L1(0,t)

)
ck(ckt)

n0(b)−1

n0(b)! when n0(b) > 0.
(6.24)

Proof. In this proof, we write ξb(t) instead of ξb(t; 1, u) by concision for the value at time t ∈ [0, T ]
of the coordinate of the second kind associated with the control u0 = 1 and ui for i ∈ J1, qK. First,
when (6.24) holds on [0, T ], then so does (6.23) by time-integration (with the same constant).
Hence, we only need to prove the bound on the time derivative of the coordinates.
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Step 1: Persistence of the estimates by right bracketing with X0. Let k ∈ N∗ and b ∈ B such that
n(b) = k. We assume that (6.23) holds and we prove that b̃ := [b,X0] satisfies both estimates with
the same constant. Since ξ̇X0

(t) = 1, we have

|ξ̇b̃(t)| = |ξb(t)ξ̇X0
(t)| ≤ ‖u‖kL1(0,t)

(ckt)
n0(b)

n0(b)!
. (6.25)

Hence b̃ satisfies (6.24) (and (6.23) by integration) because ck ≥ 1 and n0(b̃) > 0.

Step 2: Persistence of the estimates by arbitrary long left bracketing with X0, up to ck ← 2ck. Let
k ∈ N∗ and b ∈ B with n(b) = k. We assume that (6.24) holds and we prove that, for every m ∈ N∗,
b̃ := admX0

(b) satisfies both estimates with a constant ck ← 2ck. If n0(b) = 0, it is straightforward
to check that b̃ satisfies (6.24) with ck ← 1. If n0(b) = 1, we have

|ξ̇b̃(t)| =
1

m!
|ξmX0

(t)ξ̇b(t)|

≤ tm

m!
‖u‖k−1

L1
t

(
kt|u(t)|+ n0(b)‖u‖L1

t

)ck(ckt)
n0(b)−1

n0(b)!

≤ ‖u‖k−1
L1
t

(
kt|u(t)|+ (m+ n0(b))‖u‖L1

t

)
2m+n0(b)c

n0(b)
k

tm+n0(b)−1

(m+ n0(b))!

≤ ‖u‖k−1
L1
t

(
kt|u(t)|+ n0(b̃)‖u‖L1

t

)
(2ck)n0(b̃) t

n0(b̃)−1

n0(b̃)!

(6.26)

because n0(b̃) = m+ n0(b) and ck ≥ 1. So b̃ satisfies (6.24) with a constant ck ← 2ck.

Step 3: Proof of the estimates by induction on k ∈ N∗.

Initialization for k = 1. For i ∈ J1, qK, ξ̇Xi(t) = ui(t) so both estimates are satisfied with
constant 1 when b ∈ {X1, . . . , Xq}. By Lemma 6.5, Step 1 and Step 2, we deduce that (6.23) and
(6.24) hold for k = 1 with c1 = 2.

Induction (k − 1) → k. Let k ≥ 2 and let us assume that the estimates are proved for every
b ∈ B with n(b) ≤ (k − 1). Let b ∈ B with n(b) = k. By Lemma 6.5, Step 1 and Step 2, we can
assume that b = admb1(b2) with b1, b2 ∈ B, b1 6= X0 and (b2 ∈ X or λ(b2) < b1) and (b2 6= X0 or
m > 1). Assume that b2 6= X0. Then the induction assumption applies to both b1 and b2. Let
k1 := n(b1) and k2 := n(b2). Then k = mk1 + k2, n0(b) = mn0(b1) + n0(b2) ≥ n0(b2). Using the
induction assumption and (3.2) with a← (m+ 1), we obtain, when n0(b2) > 0,∣∣∣ξ̇b(t)∣∣∣ =

∣∣∣∣ 1

m!
ξmb1(t)ξ̇b2(t)

∣∣∣∣
≤ 1

m!

(
‖u‖k1

L1
t

(ck1t)
n0(b1)

n0(b1)!

)m
‖u‖k2−1

L1
t

(
k2t|u(t)|+ n0(b2)‖u‖L1

t

)ck2(ck2t)
n0(b2)−1

n0(b2)!

≤ ‖u‖k−1
L1
t

(
kt|u(t)|+ n0(b)‖u‖L1

t

)
2mn0(b)c

mn0(b1)
k1

c
n0(b2)
k2

tn0(b)−1

n0(b)!
.

(6.27)

Since m ≤ k, we have the two desired estimates with ck := 2 · 2k max{cj ; j ∈ J1, k − 1K}, where
the first factor 2 comes from Step 2. When n0(b2) = 0, the proof is similar and easier. When
b2 = X0, the induction hypothesis applies because m > 1 so n(b1) < n(b) and the proof is
straightforward.

These estimates allow to prove the main result of this section.
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Proposition 6.7. Let q ∈ N∗, X = {X0, X1, . . . , Xq}, B a generalized Hall basis of L(X) and
(ξb)b∈B the associated coordinates of the second kind. Let M ∈ N, r, δ > 0, f0, . . . , fq ∈ Cω,r4δ .
There exists η, CM > 0 such that, for every u ∈ L1((0, T );Kq) with T ≤ η and ‖u‖L1(0,T ) ≤ η, the
ordered product of the eξb(t;1,u)fb over the infinite set B ∩ SM converges uniformly on Bδ and, for
each t ∈ [0, T ] and p ∈ Bδ,∣∣∣∣x(t; f, u, p)−

→
Π

b∈B∩SM
eξb(t;1,u)fbp

∣∣∣∣ ≤ CM‖u‖M+1
L1(0,t). (6.28)

Proof. In this proof, to simplify the notations, we write x(t), ξb(t) and ‖u‖ instead of x(t; f, u, p),
ξb(t; 1, u) and ‖u‖L1(0,t). Let (ck)k∈N∗ be the increasing sequence of constants of Lemma 6.6. We
define

C∗ :=
18 |||f |||r

r
max

k∈J1,2MK
ck, (6.29)

η := min

{
δ

2‖f‖C1
,

min{1, δ}
2C∗(q + 1)M !(1 + r)

}
(6.30)

CM := e2δ(1 + r)(2M)!(q + 1)M+1CM+1
∗ . (6.31)

For t ∈ [0, T ] and u ∈ L1((0, T );Kq) with T ≤ η and ‖u‖ ≤ η, using (6.30),

t‖f0‖C0 +

q∑
i=1

‖ui‖L1(0,t)‖fi‖C0 ≤ η‖f‖C0 ≤ δ. (6.32)

Hence, for each p ∈ Bδ, x(t; f, u, p) ∈ B2δ.

Strategy. Since the product involved in (6.28) is indexed by the infinite set B ∩ SM , the proof
strategy consists in considering the sequence of finite products BJ1,LK ∩ SM for L ∈ N∗ and let
L→ +∞. The error between the true solution and the finite product contains both a term scaling
like ‖u‖M+1 which will persist in the limit and a transitory error term which vanishes as L→ +∞.
Each bracket in b ∈ B is either, not involved at all in the process, involved in the final error,
involved in the transitory error term, or involved in the finite product, depending on L,M, n(b)
and n0(b) as pictured in Fig. 1. In Steps 2, 3 and 4, L ≥ M + 1 is fixed. In Step 5, we take the
limit L→ +∞.

n0(b)

n(b)

M < n(b) ≤ 2M

2M < n(b)

n(b) ≤M and |b| ≤ L

Never part of the process

Part of the final error

Finite product Transitory
error

Figure 1: Decomposition of B along the Lazard elimination process for the product on B ∩ SM .
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Step 0: Preliminary estimates. First, using estimate (6.24) from Lemma 6.6, for each b ∈ B with
n(b) = k, one has in particular

‖ξ̇b‖L1 ≤ ‖u‖k (ckt)
n0(b)

n0(b)!
. (6.33)

Taking into account that for every m ∈ N∗, |Bm| ≤ (q+1)m and using the analytic estimate (3.23),
we obtain the following estimate for the terms which can be part of the final error∑

b∈B∩(S2M\SM )

‖ξ̇b‖L1‖fb‖C1

≤
2M∑

k=M+1

+∞∑
n0=0

|Bk+n0
|‖u‖k (ckt)

n0

n0!
(1 + r)

(
9 |||f |||r
r

)k+n0

(k + n0 − 1)!

≤ (1 + r)(2M − 1)!

2M∑
k=M+1

((q + 1)C∗‖u‖)k
+∞∑
n0=0

((q + 1)C∗T )n0

≤ (1 + r)(2M)!(q + 1)M+1CM+1
∗ ‖u‖M+1,

(6.34)

because ‖u‖ ≤ η, T ≤ η and (q+ 1)C∗η ≤ 1
2 . For the terms which can be part of the finite product

or of the transitory error, there holds similarly∑
b∈B∩SM

‖ξ̇b‖L1‖fb‖C1

≤ T‖f0‖C1 +

M∑
k=1

+∞∑
n0=0

|Bk+n0
|‖u‖k (ckt)

n0

n0!
(1 + r)

(
9 |||f |||r
r

)k+n0

(k + n0 − 1)!

≤ T‖f0‖C1 + (1 + r)(M − 1)!

M∑
k=1

((q + 1)C∗‖u‖)k
+∞∑
n0=0

((q + 1)C∗T )n0

≤ T‖f0‖C1 + (1 + r)M !(q + 1)C∗‖u‖ ≤ δ.

(6.35)

Step 1: Convergence of the ordered product of the eξb(t)fb over B ∩ SM , uniformly on Bδ, towards
a Lipschitz map. Thanks to (6.35), we have∑

b∈B∩SM

|ξb(t)| ‖fb‖C1 ≤
∑

b∈B∩SM

‖ξ̇b‖L1‖fb‖C1 ≤ δ (6.36)

and Lemma 5.28 gives the conclusion of Step 1.

Step 2: Lazard structure on BJ1,LK∩SM . We use the notations of Definition 2.49 to describe BJ1,LK.
There exists m ∈ N and an extraction φ such that

BJ1,LK ∩ SM = {bφ(1) < · · · < bφ(m+1)}. (6.37)

Let i ∈ J1,m+ 1K and n = φ(i). By Definition 2.49, there exists a unique factorization

bφ(i) = bn = ad
jn−1

bn−1
· · · adj1b1(b0) (6.38)

where b0 ∈ X, j1, . . . , jn−1 ∈ N (one just identifies left and right factors in Br(X)). For every
j ∈ J1, n − 1K \ φ(J1, i − 1K), bj contains at least (L + 1) occurrences of the variables X1, . . . , Xq,
thus it cannot be involved in the factorization of bn. This proves that

bφ(1) ∈ Ỹ0 := X,

bφ(2) ∈ Ỹ1 := {adjbφ(1)(v); j ∈ N, v ∈ Ỹ0 \ {bφ(1)}},

. . .

bφ(m+1) ∈ Ỹm := {adjbφ(m)
(v); j ∈ N, v ∈ Ỹm−1 \ {bφ(m)}},

(6.39)
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BJ1,LK ∩ SM ∩ Ỹm+1 = ∅, (6.40)

where Ỹm+1 := {adjbφ(m+1)
(v); j ∈ N, v ∈ Ỹm \ {bφ(m+1)}}.

Step 3: Proof of estimates along the Lazard elimination on BJ1,LK∩SM . To simplify the notations,
from now on, we write BJ1,LK ∩SM = {b1 < · · · < bm+1} and we use (6.39) and (6.40) with φ = Id.
Let x0(t) := x(t). By (6.36), for every j ∈ J1,m+ 1K,

xj(t) := e−ξbj (t)fbj · · · e−ξb1 (t)fb1x(t) (6.41)

is well-defined and belongs to B3δ. The goal of Step 3 is to prove by induction on j ∈ J0,m + 1K
that

(Hj) :

{
ẋj(t) =

∑
b∈BJ1,LK∩SM∩Ỹj ξ̇b(t)fb(xj(t)) + εj(t),

xj(0) = p,
(6.42)

where
‖εj‖L1 ≤ e|ξbj (t)|‖fbj ‖C1‖εj−1‖L1 +

∑
b̃∈Zj

‖ξ̇b̃‖L1‖fb̃‖C0 , (6.43)

where Zj ⊂ (B ∩ S2M ) \ (BJ1,LK ∩ SM ) is defined in (6.50).
First (H0) holds with ε0 = 0 because ξ̇X0

(t) = 1 and ξ̇Xi(t) = ui(t) for i ∈ J1, qK. Now, let
j ∈ J1,m+ 1K and assume that (Hj−1) holds. We deduce from the definition of xj that

xj(t) = e−ξbj (t)fbj (xj−1(t)) = Φj
(
−ξbj (t), xj−1(t)

)
(6.44)

and thus that

ẋj(t) =
∑

b∈BJ1,LK∩SM∩Ỹj−1\{bj}

ξ̇b(t)
(
Φj
(
−ξbj (t)

)
∗ fb
)

(xj(t)) + ε̃j−1(t), (6.45)

where ε̃j−1(t) = ∂pΦj
(
−ξbj (t), xj−1(t)

)
εj−1(t). We get (Hj) with

εj(t) :=
∑

b∈BJ1,LK∩SM∩Ỹj−1\{bj}

εjb(t) + ε̃j−1(t) (6.46)

where, for every b ∈ BJ1,LK ∩ SM ∩ Ỹj−1 \ {bj},

εjb(t) := ξ̇b(t)
(
Φj
(
−ξbj (t)

)
∗ fb
)

(xj(t))−
h(b)−1∑
k=0

ξ̇b(t)
ξkbj (t)

k!
fadkbj

(b)(xj(t)) (6.47)

where h(b) ∈ N∗ is the maximal integer such that

n(b) + (h(b)− 1)n(bj) ≤M and |b|+ (h(b)− 1)|bj | ≤ L. (6.48)

By (3.41),

|εjb(t)| ≤ |ξ̇b(t)|
|ξbj (t)|h(b)

h(b)!
‖f

ad
h(b)
bj

(b)
‖C0 = |ξ̇b̃(t)|‖fb̃‖C0 , (6.49)

for b̃ := ad
h(b)
bj

(b). Hence, (6.43) holds with

Zj := {ad
h(b)
bj

(b); b ∈ BJ1,LK ∩ SM ∩ Ỹj−1 \ {bj}}. (6.50)

This yields Zj ⊂ (B ∩ S2M ) \ (BJ1,LK ∩ SM ) thanks to (6.48).
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Step 4: Proof of an estimate on the finite product over BJ1,LK ∩ SM . By (6.43), (6.36) and (6.34),
we have

‖εm+1‖L1 ≤ eδ
∑

b∈B∩(S2M\SM )

‖ξ̇b‖L1‖fb‖C0 + eδ
∑

b∈(B∩SM )\BJ1,LK

‖ξ̇b‖L1‖fb‖C0

≤ e−δCM‖u‖M+1 + oL→+∞(1),

(6.51)

because the series in (6.35) converges. We deduce from (6.42) and (6.40) that∣∣∣∣ ←
Π

b∈BJ1,LK∩SM
e−ξb(t;1,u)fbx(t)− p

∣∣∣∣ = |xm+1(t)− p| ≤ e−δCM‖u‖M+1 + oL→+∞(1) (6.52)

By (6.36), the map
→
Π

b∈BJ1,LK∩SM
e−ξb(t;u)fb is eδ Lipschitz on B3δ. Then, by (6.52),

∣∣∣∣x(t)−
→
Π

b∈BJ1,LK∩SM
e−ξb(t;1,u)fbp

∣∣∣∣ ≤ CM‖u‖M+1 + oL→+∞(1) (6.53)

Step 5: Infinite subproduct limit. By Step 1, the infinite product over B ∩ SM is well-defined. By
letting L→ +∞ in estimate (6.53), we obtain the conclusion of Proposition 6.7.

7 Refined error estimates for scalar-input affine systems
In this section, we consider scalar-input affine systems with drift, i.e. of the form

ẋ(t) = f0(x(t)) + u(t)f1(x(t)) and x(0) = p, (7.1)

where f0, f1 are vector fields on Kd and u ∈ L1((0, T );K). When well-defined, its solution is
denoted x(t; f, u, p). Such systems have been extensively studied in control theory, as toy models
for more complex situations.

The goal of this section is to improve, in this particular framework, the error estimates of the
previous section: the new bound is not expressed in terms of ‖u‖L1 but in terms of the L∞ norm
of the time-primitive of the input, which heuristically corresponds to the W−1,∞ norm of u.

This refined estimate is somehow optimal in the scale of Sobolev spaces (as shown by the one
dimensional system ẋ(t) = u(t)) and specific to the scalar-input case (see Section 7.5).

Lowering the Sobolev regularity required on the input is of paramount interest for applications
in control theory (see e.g. [10]) and might also be useful for applications to stochastic ODEs where
the input is a noise with low regularity (see e.g. [11]).

Definition 7.1 (Integrated input). Let T > 0 and u ∈ L1((0, T );K). In this section, U always
denotes the time-primitive of u vanishing at zero, i.e. defined by U(t) :=

∫ t
0
u(s) ds for t ∈ [0, T ].

7.1 Auxiliary system trick
Enhancing the estimates relies on the following trick which factorizes the dependence of the input
and introduces an auxiliary system involving the time-primitive U of the input (and not u itself).

Proposition 7.2. Let δ > 0, f0, f1 ∈ Cω3δ and η∗ > 0 small enough so that the two following maps
are well defined and (globally) analytic

Φ1 :

{
[−η∗, η∗]×B2δ → B3δ

(τ, q) 7→ eτf1(q)
and F :

{
B2δ × [−η∗, η∗] → Kd

(q, τ) 7→ (Φ1(−τ)∗f0)(q).
(7.2)

Let T > 0 be such that T‖F‖C0 ≤ δ.
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1. For every p ∈ Bδ and U ∈ C0([0, T ];K) with ‖U‖L∞ ≤ η∗, there exists a unique solution
x1 ∈ C1([0, T ];Kd) to {

ẋ1(t) = F (x1(t), U(t)),

x1(0) = p,
(7.3)

denoted x1(t;F,U, p). It takes values in B2δ. Moreover, the map (p, U) 7→ x1(·;F,U, p) is
analytic from Bδ ×BC0[0,T ](0, η

∗) to C1([0, T ];Kd).

2. For every p ∈ Bδ, t ∈ [0, T ] and u ∈ L1((0, T );K) such that ‖U‖L∞ ≤ η∗,

x(t; f, u, p) = Φ1

(
U(t);x1(t;F,U, p)

)
. (7.4)

Proof. The existence of η∗ such that Φ1 and F are well defined and globally analytic results from
the third statement of Lemma 3.24. The analytic dependence of x1 with respect to (p, U) is given
by Lemma 3.10. By definition of x1, the right-hand side of (7.4) solves the same Cauchy problem
as x thus the two functions are equal.

7.2 A new formulation of the Chen-Fliess expansion
The goal of this section is to derive of a new formulation of the Chen-Fliess expansion for scalar-
input affine systems (7.1).

Proposition 7.3. Let δ, r > 0 and f0, f1 ∈ Cω,r3δ . There exists η > 0 such that for every ϕ ∈
Cω;r(B3δ;K), t ∈ [0, η], u ∈ L1((0, t);K) such that ‖U‖L∞ ≤ η and p ∈ Bδ,

ϕ(x(t; f, u, p)) =
∑

`∈N,n∈N
k∈Nn

U(t)`

`!k!

(∫ t

0

Uk
)(

(f1 · ∇)`(adknf1 (f0) · ∇) · · · (adk1f1 (f0) · ∇)
)(
ϕ
)

(p) (7.5)

with the notation (6.7), where the sum converges absolutely, uniformly with respect to (t, u, p).
Moreover, for every ϕ ∈ Cω,r(B3δ;K), there exists C > 0 such that, for every M ∈ N∗, t ∈ [0, η],
u ∈ L1((0, t);K) such that ‖U‖L∞ ≤ η and p ∈ Bδ,∣∣∣∣∣∣∣∣ϕ(x(t; f, u, p))−

∑
`∈N,n∈N
`+|k|≤M

U(t)`

`!k!

(∫ t

0

Uk
)(

(f1 · ∇)`(adknf1 (f0) · ∇) · · · (adk1f1 (f0) · ∇)
)(
ϕ
)

(p)

∣∣∣∣∣∣∣∣
≤ CM+1

(
|U(t)|M+1 +

∫ t

0

|U |M+1

)
(7.6)

where the sum is taken over ` ∈ N, n ∈ N and k = (k1, . . . , kn) ∈ Nn such that `+k1+· · ·+kn ≤M .

Proof. Let η∗, T, x1 be as in Proposition 7.2, ‖f‖ := |||f0|||r + |||f1|||r and

η := min

{
T, η∗,

δ

‖f‖
,

r

28‖f‖

}
. (7.7)

Let ϕ ∈ Cω,r(B3δ;K), t ∈ [0, η], u ∈ L1((0, t);K) such that ‖U‖L∞ ≤ η and p ∈ Bδ. Then
x1(t;F,U, p) ∈ B2δ and, by (7.4) and (7.7), x(t; f, u, p) ∈ B3δ.

Step 1: Proof of the absolute convergence in (7.5) uniformly with respect to p ∈ Bδ. Let r′ := r/e.
Then, by Lemma 3.15, for every k ∈ N, adkf1(f0) ∈ Cω,r

′

3δ and∣∣∣∣∣∣∣∣∣adkf1(f0)
∣∣∣∣∣∣∣∣∣
r′
≤ k!

e

(
9

r

)k
‖f‖k+1. (7.8)
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Thus, by (3.18),∣∣∣((f1 · ∇)`(adknf1 (f0) · ∇) · · · (adk1f1 (f0) · ∇)
)(
ϕ
)

(p)
∣∣∣

≤(n+ `)!

(
5

r′

)n+`

|||f1|||`r′
∣∣∣∣∣∣∣∣∣adknf1 (f0)

∣∣∣∣∣∣∣∣∣
r′
· · ·
∣∣∣∣∣∣∣∣∣adk1f1 (f0)

∣∣∣∣∣∣∣∣∣
r′

≤(n+ `)!

(
14

r

)n+`

‖f‖` kn!

e

(
9

r

)kn
‖f‖kn+1 . . .

k1!

e

(
9

r

)k1
‖f‖k1+1

≤e−n(n+ `)!kn! · · · k1!

(
14‖f‖
r

)n+`+k1+···+kn
.

(7.9)

Moreover, recalling notation (6.7),∣∣∣∣U(t)`

`!k!

∫ t

0

Uk
∣∣∣∣ =

∣∣∣∣∣U(t)`

`!

∫
T(n)(t)

U(τn)kn · · ·U(τ1)k1

kn! · · · k1!
dτ

∣∣∣∣∣ ≤ ‖U‖`+k1+···+kn
L∞

tn

n!

1

`!kn! · · · k1!
. (7.10)

Thus it is sufficient to prove the summability over ` ∈ N, n ∈ N∗, k1, . . . , kn ∈ N of the following
quantity (

t

e

)n
(n+ `)!

n!`!

(
14‖f‖
r

)n+`+k1+···+kn
‖U‖`+k1+···+kn

L∞

≤
(
t

e

)n
2n+`

(
14‖f‖
r

)n+`+k1+···+kn
‖U‖`+k1+···+kn

L∞

≤
(

28t‖f‖
er

)n(
28‖f‖
r
‖U‖L∞

)`+k1+···+kn

(7.11)

which is ensured by (7.7).

Step 2: Proof of (7.5) and (7.6). Applying Lemma 3.20 and Proposition 6.2 we get

ϕ(x(t; f, u, p)) = ϕ
(
eU(t)f1x1(t;F,U, p)

)
=

+∞∑
`=0

U(t)`

`!
(f1 · ∇)`ϕ(x1(t;F,U, p))

=

+∞∑
`=0

U(t)`

`!
(f1 · ∇)`

∑
n∈N
k∈Nn

1

k!

(∫ t

0

Uk
)(

(adknf1 (f0) · ∇) · · · (adk1f1 (f0) · ∇)
)(
ϕ
)

(p)

(7.12)

The bound proved in Step 1 allows to exchange the differential operator (f1 · ∇)` and the second
sum, which proves (7.5). To prove (7.6), one bounds the queue of the series thanks to (7.9) and
the following consequence of Hölder’s inequality, valid when `+ |k| ≥ (M + 1)∣∣∣∣∣U(t)`

∫
T(n)(t)

U(τn)kn · · ·U(τ1)k1 dτ

∣∣∣∣∣ ≤ C(η)

(
|U(t)|M+1 +

∫ t

0

|U |M+1

)
. (7.13)

Remark 7.4. The bound (7.6) between the exact solution and the truncated Chen-Fliess series (in
its’ original formulation) is used by Stefani in [64, Lemma 3.1 and Corollary 3.1]. Our proof is
both different and shorter.

Remark 7.5. Equality (7.5) where the sum converges absolutely proves that appropriate packages
of the Chen-Fliess expansion are absolutely summable under a smallness assumption on ‖U‖L∞ ,
which is weaker than the smallness assumption on ‖u‖L1 which is used in Proposition 6.1 for
multi-input systems.
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7.3 Magnus expansion in the interaction picture
In this section, we prove the following enhanced error estimate for the magnus expansion in the
interaction picture with scalar input. Our proof relies on an appropriate approximation for the
auxiliary system x1 introduced in Section 7.1.

Proposition 7.6. Let δ > 0 and f0, f1 ∈ Cω3δ. For every M ∈ N, there exist ηM , CM > 0 such
that, for every T ∈ [0, ηM ], u ∈ L1((0, T );K) such that ‖U‖L∞ ≤ ηM , t ∈ [0, T ] and p ∈ Bδ,∣∣∣x(t; f, u, p)− eZM (t,f,u)etf0p

∣∣∣ ≤ CM (|U(t)|M+1 +

∫ t

0

|U |M+1

)
. (7.14)

Proof. In Section 7.3.1, we introduce a vector field YM (t, f, U) such that eYM (t,f,U)etf0(p) is a good
approximation of the auxiliary state x1 defined in (7.3). Since, by (7.4), x(t) = eU(t)f1(x1(t)), the
desired estimate then relies on the following decomposition

x(t; f, u, p)− eZM (t,f,u)etf0p = x(t; f, u, p)− eU(t)f1eYM (t,f,U)etf0p

+ eU(t)f1eYM (t,f,U)etf0p− eZM (t,f,u)etf0p.
(7.15)

Using Proposition 7.7 and Proposition 7.11 (see further) for the first and second lines, we get∣∣∣x(t; f, u, p)− eZM (t,f,u)etf0p
∣∣∣ ≤ CM (‖U‖M+1

L1 + |U(t)|M+1 + ‖U‖M+1
LM+1

)
(7.16)

which gives the conclusion since ‖U‖L1
t
≤ t

M
M+1 ‖U‖LM+1

t
.

In Section 7.3.1, we define YM (t, f, U) and prove in Proposition 7.7 that it indeed provides
a good approximation of the auxiliary state. In Section 7.3.2, we explain the link between
eU(t)X1eYM (t,X,U) and eZM (t,X,u) at the formal level. In Section 7.3.3, we show in Proposition 7.11
that this formal link entails that eU(t)f1eYM (t,f,U) is close to eZM (t,f,u).

7.3.1 An approximation of the auxiliary state

We use the error formula of Proposition 4.8 for the Magnus expansion in the interaction picture
to obtain an approximation of the auxiliary state.

Proposition 7.7. Let δ, ρ > 0, f0, f1 ∈ Cω,ρ3δ . For every M ∈ N, there exist ηM , CM > 0 such that,
for every p ∈ Bδ, t ∈ [0, ηM ], u ∈ L1((0, t);K) such that ‖U‖L∞ ≤ ηM ,∣∣∣x(t; f, u, p)− eU(t)f1eYM (t,f,U)etf0p

∣∣∣ ≤ CM‖U‖M+1
L1(0,t) (7.17)

where YM (t, f, U) := LogM{Gt}(t), and Gt : [0, t]×B3δ → Kd is defined by

Gt(s, y) :=
∑
k∈N∗
`∈N

(s− t)`

`!

U(s)k

k!
ad`f0 adkf1(f0)(y) (7.18)

and this sum converges absolutely in Cω,ρ
′

3δ with ρ′ = ρ/e. Moreover,

YM (t, f, U) =
∑ (−1)m−1

rm

∫
Tr(t)

(τr − t)`r
`r!

U(τr)
kr

kr!
· · · (τ1 − t)

`1

`1!

U(τ1)k1

k1!
dτ[

· · ·
[
ad`rf0(adkrf1 (f0)), ad

`r−1

f0
(ad

kr−1

f1
(f0))

]
, . . . , ad`1f0(adk1f1 (f0))

] (7.19)

where the sum is taken over r ∈ J1,MK, m ∈ J1, rK, r ∈ Nmr , `1, . . . , `r ∈ N, k1, . . . , kr ∈ N∗ and
the sum converges absolutely in Cω,ρ

′

3δ .
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Proof. Step 1: Convergence in (7.18) and (7.19). By (3.21), for every s ∈ [0, t],∣∣∣∣∣∣∣∣∣∣∣∣ (s− t)``!

U(s)k

k!
ad`f0 adkf1(f0)

∣∣∣∣∣∣∣∣∣∣∣∣
ρ′
≤ t`‖U‖kL∞

(k + `)!

`!k!

(
9

ρ

)k+`

|||f |||k+`+1
ρ (7.20)

thus the sum in (7.18) converges absolutely in Cω,ρ
′

3δ when t and ‖U‖L∞ are < ρ
18|||f |||ρ

.
For every r ∈ J1,MK, m ∈ J1, rK, r ∈ Nmr , `1, . . . , `r ∈ N, k1, . . . , kr ∈ N∗, using (3.2) and the

non-decreasing of q ∈ J1,∞K 7→ ‖ · ‖Lqt for t ∈ [0, 1], we get∣∣∣∣ ∫
Tr(t)

(τr − t)`r
`r!

U(τr)
kr

kr!
· · · (τ1 − t)

`1

`1!

U(τ1)k1

k1!
dτ

∣∣∣∣(r + |`|+ |k| − 1)!

(
9‖f‖
ρ

)r+|`|+|k|−1

≤ (2r−1t)|`|(2r−1‖U‖
L
|k|
t

)|k|
(

36‖f‖
ρ

)r+|`|+|k|−1

(r − 1)!

(7.21)

Thus, by (3.21), the sum in (7.19) converges absolutely in Cω,ρ
′

3δ when t and ‖U‖L∞ are < ρ2−M

18|||f |||ρ
.

Step 2: Proof of (7.17). Let T, η∗ and F as in Proposition 7.2. We introduce the function
F1 : [0, T ]×B2δ → Kd defined by

F1(t, y) := F (y, U(t))− f0(y) =

+∞∑
j=1

U(t)j

j!
adjf1(f0)(y) (7.22)

where the sum converges in Cω,ρ
′

2δ when ‖U‖L∞ < ρ
9|||f |||ρ

. Let M ∈ N. There exists C > 0 such

that, for every t ∈ [0, T ], U ∈ C0([0, T ];K) with ‖U‖L∞ ≤ η∗, the function F1 defined by (7.22)
satisfies

‖F1‖L1((0,t),CM2 ) ≤ C‖U‖L1(0,t) ≤ CT‖U‖L∞(0,t). (7.23)

Let ΘM be as in Proposition 4.8 and

ηM = min

{
1, η∗,

ρ2−M

36 |||f |||ρ
,ΘM (T, ‖f0‖CM2+1)

min{1, δ}
CT

}
. (7.24)

Let p ∈ Bδ, t ∈ [0, ηM ], u ∈ L1((0, t);K) such that ‖U‖L∞ ≤ ηM . Then, the convergences of Step 1
hold and ‖F1‖L1((0,t),CM2 ) ≤ ΘM (T, ‖f0‖CM2+1) min{1; δ} thus we can apply Proposition 4.8 and
Proposition 4.9 to the equation ẋ1 = f0(x1) + F1(t, x1)∣∣∣x1(t;F,U, p)− eYM (t,f,U)etf0p

∣∣∣ ≤ CM‖Gt‖M+1

L1(0,t),CM2 )
. (7.25)

Moreover, there exists C ′ (depending only on η∗, f0, f1) such that

‖Gt‖L1((0,t),CM2 ) ≤ C
′‖U‖L1(0,t). (7.26)

Thus, we get (7.17) by applying the eη
∗‖f1‖C1 -Lipschitz map eU(t)f1 to (7.25).

In the next paragraphs, we will use the following technical result about YM (t, f, U) and its
decomposition in homogeneous components with respect to U .

Lemma 7.8. Let δ, ρ > 0, f0, f1 ∈ Cω,ρ3δ . For every M ∈ N∗, there exists ηM , CM > 0 such that,
for every j ∈ N∗, t ∈ [0, ηM ], u ∈ L1((0, t),K) such that ‖U‖L∞ ≤ ηM , the sum in the right-hand
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side of (7.19) taken over r ∈ J1,MK, m ∈ J1, rK, r ∈ Nmr , `1, . . . , `r ∈ N and k1, . . . , kr ∈ N∗ such
that k1 + . . .+ kr = j, converges absolutely in Cω,ρ

′

3δ and its sum, denoted YjM (t, f, U), satisfies

∣∣∣∣∣∣∣∣∣YjM (t, f, U)
∣∣∣∣∣∣∣∣∣
ρ′
≤ CM

(
‖U‖Ljt
2ηM

)j
(7.27)

where ρ′ = ρ/e. Moreover, YM (t, f, U) =
∑
j∈N∗ Y

j
M (t, f, U) where the sum converges in Cω,ρ

′

3δ .

Proof. Let ηM > 0 be as in Proposition 7.7, t ∈ [0, ηM ] and u ∈ L1((0, t);K) such that ‖U‖L∞ <

ηM . The sum involved in YjM (t, f, U) converges absolutely in Cω,ρ
′

3δ because it is a subfamily of the
one considered in Proposition 7.7. By (7.21), there exists CM > 0 (independent of t and U) such
that, for every j ∈ N∗, (7.27) holds. The non-decreasing of q ∈ J1,∞K 7→ ‖ · ‖Lqt (since t ≤ 1) gives
the last conclusion.

7.3.2 Identification procedure at the formal level

In this paragraph, we highlight at the formal level the link between eU(t)X1eYM (t,X,U) and eZM (t,X,u)

in L̂(X). We start with a new formal factorization, well adapted to estimates with respect to the
primitive of the scalar input.

Proposition 7.9. Let X = {X0, X1} and u ∈ L1(R+;K). For every x? ∈ Â(X), the solution x
to the formal differential equation{

ẋ(t) = x(t)(X0 + u(t)X1),

x(0) = x?,
(7.28)

satisfies, for every t ∈ R+,

x(t) = x? exp (tX0) exp (Y∞(t,X,U)) exp (U(t)X1) (7.29)

where Y∞(t,X,U) ∈ L̂(X) is defined by Y∞(t,X,U) = Log∞{βt}(t) and βt : [0, t] → L̂(X) is
defined by

βt(s) = e−(t−s)X0

(
eU(s)X1X0e

−U(s)X1 −X0

)
e(t−s)X0 =

∑
k∈N∗
`∈N

(s− t)`

`!

U(s)k

k!
ad`X0

adkX1
(X0)

(7.30)
i.e.

Y∞(t,X,U) =
∑ (−1)m−1

rm

∫
Tr(t)

(τr − t)`r
`r!

U(τr)
kr

kr!
· · · (τ1 − t)

`1

`1!

U(τ1)k1

k1!
dτ[

· · ·
[
ad`rX0

(adkrX1
(X0)), ad

`r−1

X0
(ad

kr−1

X1
(X0))

]
, . . . , ad`1X0

(adk1X1
(X0))

]
(7.31)

where the sum is taken over r ∈ N∗, m ∈ J1, rK, r ∈ Nmr , `1, . . . , `r ∈ N, k1, . . . , kr ∈ N∗.

Proof. First, in the same way as Theorem 2.26 has been generalized to an infinite alphabet in the
proof of Theorem 2.39, it is possible to generalize Theorem 2.39 to an infinite alphabet.

The function x1 : [0, T ]→ Â(X) defined by x1(t) := x(t)e−U(t)X1 satisfies x1(0) = x? and

ẋ1 = x1(t)eU(t)X1X0e
−U(t)X1 = x1(t)

(
X0 +

∑
k∈N∗

U(t)k

k!
adkX1

(X0)

)
. (7.32)
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This equation is of the form ẋ1(t) = x1(t)(X0 +
∑
k∈N∗ ak(t)Yk) for some indeterminates Yk. Thus,

Theorem 2.39 (adapted to an infinite alphabet) and the algebra homomorphism sending Yk to
adkX1

(X0) prove that
x1(t) = x? exp(tX0) exp(Y∞(t,X,U)). (7.33)

which gives the conclusion.

We now use the formal expansion (7.29) to obtain an alternative formula for Z∞(t,X, u) defined
by Theorem 2.39, in terms of the primitive of the scalar input. For r, ν ∈ N, we introduce the finite
dimensional subspace of L(X)

Lr,ν(X) := span{eval(b); b ∈ Br(X), n0(b) = ν, n1(b) = r} (7.34)

and Pr,ν : L̂(X)→ Lr,ν(X) the associated canonical projection.

Proposition 7.10. Let X = {X0, X1}, T > 0, u ∈ L1((0, T );K), t ∈ [0, T ], Y∞(t,X,U) defined
by Proposition 7.9 and Z∞(t,X, u) defined by Theorem 2.39. Then, in L̂(X),

Z∞(t,X, u) = CBHD∞ (Y∞(t,X,U), U(t)X1) . (7.35)

In particular, for every M ∈ N∗, r ∈ J1,MK and ν ∈ N,

Pr,νZM (t,X, u) = Pr,ν CBHDM (YM (t,X,U), U(t)X1) . (7.36)

In this statement, CBHD∞ is defined in Corollary 2.32, CBHDM is its truncation used in Corol-
lary 4.4 and ZM (t,X, u) is defined in Theorem 2.39 and used in Proposition 4.8.

Proof. We deduce from Proposition 7.9 and Theorem 2.39 that

exp(Z∞(t,X, u)) = exp(Y∞(t,X,U)) exp(U(t)X1). (7.37)

Thus Corollary 2.32 proves (7.35). Let M ∈ N∗, r ∈ J1,MK, ν ∈ N. We deduce from (7.35) that

Pr,νZ∞(t,X, u) = Pr,ν CBHD∞ (Y∞(t,X,U), U(t)X1) . (7.38)

By definition, Z∞(t,X, u) − ZM (t,X, u) is a linear combination of brackets all involving at least
(M + 1) occurrences of X1, thus Pr,νZ∞(t,X, u) = Pr,νZM (t,X, u). By definition, Y∞(t,X,U) is
a sum of brackets involving all at least one occurrence of X1, thus

Pr,ν CBHD∞ (Y∞(t,X, U), U(t)X1) = Pr,ν CBHDM (Y∞(t,X,U), U(t)X1) . (7.39)

Moreover Y∞(t,X,U)−YM (t,X,U) is a linear combination of brackets involving all at least (M+1)
occurrences of X1 thus

Pr,ν CBHDM (Y∞(t,X,U), U(t)X1) = Pr,ν CBHDM (YM (t,X,U), U(t)X1) , (7.40)

which ends the proof of (7.36).

7.3.3 Error formula for analytic vector fields

We prove in Proposition 7.11 an error bound between eU(t)f1eYM (t,f,U) and eZM (t,f,u).

Proposition 7.11. Let δ, ρ > 0, f0, f1 ∈ Cω,ρ3δ . For every M ∈ N, there exist ηM , CM > 0 such
that, for every t ∈ [0, ηM ], p ∈ Bδ and u ∈ L1((0, t);K) such that ‖U‖L∞ ≤ ηM ,∣∣∣eU(t)f1eYM (t,f,U)etf0p− eZM (t,f,u)etf0p

∣∣∣ ≤ CM (|U(t)|M+1 +

∫ t

0

|U |M+1

)
. (7.41)
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Proof. We split the difference as

eU(t)f1eYM (t,f,U)etf0p− eCBHDM (YM (t,f,U),U(t)f1)etf0p

+ eCBHDM (YM (t,f,U),U(t)f1)etf0p− eZM (t,f,u)etf0p.
(7.42)

Taking into account that ‖YM (t, f, U)‖CM2 ≤ C‖U‖L1(0,t), the first line is bounded by Corol-
lary 4.4. Using Grönwall’s lemma and Proposition 7.12 bounds the second line.

Proposition 7.12. Let δ, ρ > 0, f0, f1 ∈ Cω,ρ3δ and ρ′ := ρ/e. For every ρ′′ ∈ (0, ρ′), M ∈ N, there
exist ηM , CM > 0 such that, for every t ∈ [0, ηM ], u ∈ L1((0, t);K) such that ‖U‖L∞ ≤ ηM ,

|||ZM (t, f, u)− CBHDM (YM (t, f, U), U(t)f1)|||ρ′′ ≤ CM
(
|U(t)|M+1 +

∫ t

0

|U |M+1

)
. (7.43)

In particular, ZM (t, f, u) is the sum of the terms homogeneous with degree at most M with respect
to U in CBHDM (YM (t, f, U), U(t)f1).

Proof. Step 1: Finite approximation of YM (t, f, U). First, by Lemma 7.8, one can write

YM (t, f, U) =

M∑
j=1

YjM (t, f, U) +
∑
j>M

YjM (t, f, U) =: YM (t, f, U) +RM (t, f, U), (7.44)

where the remainder satisfies |||RM (t, f, U)|||ρ′ ≤ C‖U‖
M+1

LM+1
t

. By the triangular and Young inequal-

ities, it is therefore sufficient to prove (7.43) with YM replaced by the finite truncation YM (t, f, U).

Step 2: Identification at the free level. Let Λ : L(X) → Cω3δ be the homomorphism of Lie algebra
such that Λ(Xi) = fi. The relation (7.36) is made of finite linear combinations of brackets of X0

and X1. Let M ∈ N. By applying Λ to this equality, we get, for every r ∈ J1,MK, ν ∈ N

Pr,νZM (t, f, u) = Pr,ν CBHDM

(
YM (t, f, U), U(t)f1

)
. (7.45)

By definition

ZM (t, f, u) =
∑
ν∈N

M∑
r=1

Pr,νZM (t, f, u) (7.46)

where the sum converges in Cω,ρ
′

3δ for appropriate ρ′ ∈ (0, ρ), by Proposition 4.9. Thus, with the
notations of (2.40),

ZM (t, f, u)− CBHDM

(
YM (t, f, U), U(t)f1

)
=

∑
jh1+h2>M

F2,h(YjM (t, f, U), U(t)f1), (7.47)

where the sum is taken over j, h1, h2 ∈ J1,MK.

Step 3: Proof of (7.43). From now on, ηM > 0 is given by Proposition 7.7 and Lemma 7.8,
t ∈ [0, ηM ], u ∈ L1((0, t);K) is such that ‖U‖L∞ < ηM and ρ′′ ∈ (0, ρ′). For each term in the finite
sum (7.47), one has, thanks to Lemma 7.8,∣∣∣∣∣∣∣∣∣F2,h(YjM (t, f, U), U(t)f1)

∣∣∣∣∣∣∣∣∣
ρ′′
≤ C

∣∣∣∣∣∣∣∣∣YjM (t, f, U)
∣∣∣∣∣∣∣∣∣h1

ρ′
|||U(t)f1|||h2

ρ′

≤ C ′‖U‖jh1

Ljt
|U(t)|h2 ≤ C ′‖U‖jh1

LM+1
t

th1− jh1
M+1 |U(t)|h2

(7.48)

which concludes the proof thanks to Young’s inequality since jh1 + h2 ≥M + 1.

80



7.4 Sussmann’s infinite product expansion
When the input is scalar, the estimates of the coordinates obtained in Lemma 6.6 can be enhanced
to involve only the primitive of the input, at least for generalized Hall bases where X1 is minimal,
which in turn improves the estimate of Proposition 6.7 (see Proposition 7.14 below). The hypothesis
that X1 is the minimal element can be seen as the formal counterpart of the auxiliary system trick
of Section 7.1.

Lemma 7.13. Let X = {X0, X1}, B be a generalized Hall basis of L(X) for which X1 is the
minimal element and (ξb)b∈B the associated coordinates of the second kind. For every k ≥ 1, there
exists ck ≥ 1 such that, for each b ∈ B \X with n(b) = k, T > 0, u ∈ L1((0, T );K) and t ∈ [0, T ],

|ξb(t; 1, u)| ≤ ck‖U‖kLkt
(ckt)

n0(b)−1

(n0(b)− 1)!
(7.49)

and

|ξ̇b(t; 1, u)| ≤

{
ck|U(t)|k when n0(b) = 1,

ck|U(t)|k (ckt)
n0(b)−1

(n0(b)−1)! + c2k‖U‖kLkt
(ckt)

n0(b)−2

(n0(b)−2)! when n0(b) ≥ 2.
(7.50)

Proof. As for Lemma 6.6, estimate (7.49) is obtained, for each b, by time integration of (7.50).
Moreover, still as in Lemma 6.6, both estimates are invariant by right-bracketing with X0, and
also by arbitrary long left-bracketing with X0, up to ck ← 2ck. Let us prove (7.49) and (7.50) by
induction on k.

Initialization for k = 1. We have ξX1
(t) = U(t) and ξ̇[X1,X0](t) = U(t). Hence [X1, X0] ∈ B

(because X1 < X0) satisfies both estimates. By Lemma 6.5, when n(b) = 1, there exist m,m ∈ N
such that b = admX0

ad
m

X0
(X1). Since X1 is minimal, if b 6= X1, m > 0. Thus, by the previous

invariant properties, we get the conclusion with c1 := 2.

Induction (k − 1) → k. Let k ≥ 2 and let us assume that the two estimates are proved for every
b ∈ B \X with n(b) ≤ (k− 1). Let b ∈ B with n(b) = k. By Lemma 6.5 and the previous invariant
properties, we may assume that b = admb1(b2) with m ∈ N∗, b1 < b2 ∈ B, b1 6= X0, (b2 ∈ X or
λ(b2) < b1) and (b2 6= X0 or m > 1).

• If b1 = X1, then b2 = X0 (otherwise, if b2 /∈ X, λ(b2) < X1, which is impossible since X1 is
minimal). Thus

|ξ̇b(t)| =
|U(t)|m

m!
(7.51)

so (7.50) with ck = 1 holds since n0(b) = 1 and k = m.

• If b1 6= X1, then b1 satisfies (7.50) for some k1 ∈ J1, k − 1K. Moreover, either b2 = X0 or
b2 /∈ X (because it cannot be X1). The case (b2 = X0 and m > 1) is easier and left to the
reader. Thus we are left with the case where b2 satisfies (7.50) for some k2 ∈ J1, k− 1K. One
has k = mk1 + k2 and ν := n0(b) = mn0(b1) + n0(b2) =: mν1 + ν2. Thus,

|ξ̇b(t)| ≤
cmk1‖U‖

mk1

L
k1
t

m!

(ck1t)
mν1−m

(ν1 − 1)!m

(
ck2 |U(t)|k2 (ck2t)

ν2−1

(ν2 − 1)!
+ c2k2‖U‖

k2

L
k2
t

(ck2t)
ν2−2

(ν2 − 2)!
1ν2≥2

)
.

(7.52)
Thanks to Hölders’ inequality,

‖U‖mk1
L
k1
t

‖U‖k2
L
k2
t

≤ ‖U‖kLkt t
m. (7.53)

Thanks to Hölder’s inequality and Young’s inequality,

‖U‖mk1
L
k1
t

|U(t)|k2 ≤ tm
(
‖U‖kLkt t

−1 + |U(t)|k
)
. (7.54)
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Moreover, thanks to (3.2), for i ∈ J1, 2K,
1

m!

1

(ν1 − 1)!m
1

(ν2 − i)!
≤ 2(m+1)(ν−i) 1

(ν − i)!
. (7.55)

Combining these inequalities proves (7.50) with ck := 2k+2 max{cj ; j ∈ J1, k − 1K}.

These enhanced estimates yield the following result.

Proposition 7.14. Let X = {X0, X1}, B a generalized Hall basis of L(X) for which X1 is the
minimal element and (ξb)b∈B the associated coordinates of the second kind. Let r, δ > 0, f0, f1 ∈
Cω,r4δ . For each M ∈ N∗, there exist ηM , CM > 0 such that, for every u ∈ L1((0, T );K) with
T ≤ ηM and ‖U‖LM+1(0,T ) ≤ ηM , the ordered product of the eξb(t;1,u)fb over the infinite set B∩SM
converges uniformly on Bδ and, for each t ∈ [0, T ] and p ∈ Bδ,∣∣∣∣x(t; f, u, p)−

→
Π

b∈B∩SM
eξb(t;1,u)fbp

∣∣∣∣ ≤ CM‖U‖M+1
LM+1(0,t)

. (7.56)

Proof. The proof is the same as the proof of Proposition 6.7. The only difference is that we use
estimates of Lemma 7.13 instead of those of Lemma 6.6. The fact that these enhanced estimates
are not valid for b ∈ X doesn’t come into play. Indeed, neither X0 nor X1 are involved in the final
error term (6.34).

7.5 Failure of the primitive estimate for multiple inputs
Proposition 7.6 relying only on the primitive of the input is specific to the scalar-input case and
fails for multiple inputs. As an illustration, for δ > 0 and f0, f1 ∈ C∞δ , in the degenerate case
M = 0 and the particular case f0(0) = 0, p = 0, estimate (7.14) implies that, for every T > 0,
there exists CT > 0 such that, for t ∈ [0, T ] and u ∈ L1(0, T ) with ‖U‖L∞ ≤ 1,

|x(t;u, 0)| ≤ CT ‖U‖L∞ . (7.57)

As illustrated by the following example, even this very crude estimate fails for multiple inputs,
because the W−1,∞ norms are not sufficient to bound the nonlinear terms arising in the dynamic.

Example 7.15. Let T > 0 and consider the following system on R2:{
ẋ1 = u,

ẋ2 = vx1,
(7.58)

where u and v are two scalar inputs. There exists un, vn ∈ L1(0, T ) such that

‖Un‖L∞ + ‖Vn‖L∞ → 0 and |x(t; (un, vn), 0)| 6→ 0, (7.59)

where Un is the primitive of un and Vn the primitive of Vn. Indeed, let n ∈ N∗ and define
un(t) := n cosn2t and vn(t) := n sinn2t. Then one has

‖Un‖L∞ + ‖Vn‖L∞ ≤
2

n
. (7.60)

Moreover, x1(t) = Un(t) = (sinn2t)/n and

x2(T ) =

∫ T

0

vn(t)Un(t) dt =

∫ T

0

sin2(n2t) dt→ T

2
, (7.61)

as n→ +∞. This proves (7.59).

Remark 7.16. Although Proposition 7.6 does not hold for multiple inputs, we expect that the proof
method can be adapted to obtain asymmetric estimates, involving for example ‖U‖L∞ + ‖v‖L∞ in
the two-inputs case (or the converse). Such asymmetric estimates have been used successfully to
obtain sharp results for particular control systems in [36].
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8 On direct intrinsic representations of the state
The expansions studied above in this paper unfortunately don’t provide a direct intrinsic repre-
sentation of the state. The Magnus and Sussmann expansions are given with intrinsic quantities
(Lie brackets of the vector fields) but they require to compute one or multiple flows in order to
recover the state. The Chen-Fliess expansion gives directly a formula for the state, but it depends
on non-intrinsic quantities (see Remark 2.16 and Remark 8.7). In this section, we investigate the
possibility of finding a direct intrinsic formula for the state. We discuss this possibility in the
context of affine systems.

8.1 Approximate direct intrinsic representations
We prove in this section approximate direct intrinsic representations which achieve the desired goal
up to a small error. We believe that the formulas we derive can be of interest for applications to
control theory as they give approximate expressions for the state in terms of the inputs and Lie
brackets of the vector fields evaluated at the origin.

We start with an elementary result, which bounds the error when replacing a flow by the value
of the vector field.

Lemma 8.1. Let δ > 0 and z ∈ C1
δ such that ‖z‖C0 ≤ δ. Then

|ez(0)− z(0)| ≤ |z(0)|‖Dz‖C0e‖Dz‖C0 . (8.1)

Proof. Let x(t) := etz(0) for t ∈ [0, 1]. Then, for every t ∈ [0, 1],

|x(t)− tz(0)| ≤
∫ t

0

|z(x(τ))− z(0)|dτ ≤ t2

2
‖Dz‖C0 |z(0)|+

∫ t

0

‖Dz‖C0 |x(τ)− τz(0)|dτ (8.2)

and by Grönwall’s lemma, |x(t)− tz(0)| ≤ t2

2 ‖Dz‖C0 |z(0)|et‖Dz‖C0 .

This elementary estimate allows to obtain approximate direct intrinsic representations from the
various Magnus expansions described above.

Proposition 8.2. Let M ∈ N∗, δ > 0 and q ∈ N∗.

1. Let I = J0, qK or I = J1, qK. Let fi ∈ CM
2

δ for i ∈ I. For T > 0 and u ∈ L∞((0, T );Kq), if
x(t; f, u, 0) denotes the solution to (4.51) with p = 0 and ZM (t, f, u) denotes the vector field
defined in Proposition 4.3 (called ZM (t,

∑
i∈I uifi) in this statement), then, as T → 0,

x(t; f, u, 0) = ZM (t, f, u)(0) +O
(
tM+1 + t|x(t; f, u, 0)|

)
. (8.3)

in the following sense: there exist C, η > 0 such that, for every T ∈ (0, η] and u ∈
L∞((0, T );Kq) with ‖u‖L∞ ≤ 1, for each t ∈ [0, T ],

|x(t; f, u, 0)− ZM (t, f, u)(0)| ≤ C
(
tM+1 + t|x(t; f, u, 0)|

)
. (8.4)

2. Let T > 0, f0, . . . , fq ∈ CM
2+1

2δ with f0(0) = 0 and T‖f0‖C0 ≤ δ. For u ∈ L1((0, T );Kq),
if x(t; f, u, 0) denotes the solution to (6.1) with p = 0 and Z(t; f, u) denotes the vector field
defined in Proposition 6.4, then, as ‖u‖L1 → 0,

x(t; f, u, 0) = ZM (t, f, u)(0) +O
(
‖u‖M+1

L1
t

+ ‖u‖L1
t
|x(t; f, u, 0)|

)
. (8.5)
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3. Let f0, f1 ∈ Cω3δ with f0(0) = 0. Let T > 0 as in Proposition 7.2. For u ∈ L1((0, T );K),
if x(t; f, u, 0) denotes the solution to (7.1) with p = 0 and Z(t, f, u) denotes the vector field
defined in Proposition 6.4 (with q = 1), then, as (T, ‖U‖L∞)→ 0,

x(t; f, u, 0) = ZM (t, f, u)(0) +O
(
‖U‖M+1

LM+1
t

+ ‖U‖L1
t
|x(t; f, u, 0)|+ |x(t; f, u, 0)|2

)
(8.6)

where U(s) :=
∫ s

0
u.

Proof. Proof of the first statement. By Proposition 4.3, there exists C1 > 0 and T ∗ > 0 such that
for every u ∈ L∞((0, T ∗);Kq) with ‖u‖L∞ ≤ 1 and t ∈ [0, T ∗],∣∣∣x(t; f, u, 0)− eZM (t,f,u)(0)

∣∣∣ ≤ C1t
M+1. (8.7)

By the explicit expression of ZM (t, f, u), there exists C2 > 0 such that for every u ∈ L∞((0, T ∗);Kq)
with ‖u‖L∞ ≤ 1 and t ∈ [0, T ∗],

‖ZM (t, f, u)‖C1 ≤ C2t. (8.8)

Thus, by Lemma 8.1, there exists C3 > 0 such that, for every for every u ∈ L∞((0, T ∗);Kq) with
‖u‖L∞ ≤ 1 and t ∈ [0, T ∗],∣∣∣eZM (t,f,u)(0)− ZM (t, f, u)(0)

∣∣∣ ≤ C3t |ZM (t, f, u)(0)| . (8.9)

Then, by triangular inequality, for every u ∈ L∞((0, T ∗);Kq) with ‖u‖L∞ ≤ 1 and t ∈ [0, T ∗]

|x(t; f, u, 0)− ZM (t, f, u)(0)| ≤ C1t
M+1 + C3t|ZM (t, f, u)(0)| (8.10)

and in particular, for t ≤ T ≤ 1/(2C3)

|ZM (t, f, u)(0)| ≤ 2 |x(t; f, u, 0)|+ 2C1t
M+1. (8.11)

This gives (8.4) with C = max{2C1; 2C3} and η := min{T ∗, 1/(2C3)}.

Proof of the second statement. The strategy is the same: one starts from the estimate in Propo-
sition 6.4, then applies Lemma 8.1 to ZM (t, f, u) and concludes thanks to the following estimate,
implied by the explicit expressions of the vector field

‖ZM (t, f, u)‖C1 = O
‖u‖L1→0

(
‖u‖L1(0,t)

)
. (8.12)

Proof of the third statement. First, one can assume that f1(0) 6= 0. Indeed, otherwise, both
x and ZM vanish identically, so the desired estimate is void. Using Proposition 7.12 and the
explicit expression of the vector field CBHDM (YM (t, f, U), U(t)f1), we obtain in the asymptotics
(t, ‖U‖L∞t )→ 0

‖ZM (t, f, u)‖C1 = O
(
|U(t)|+ ‖U‖L1(0,t)

)
. (8.13)

Thus, using f0(0) = 0, Proposition 7.6 and the same strategy as above, we obtain in the asymptotics
(t, ‖U‖L∞t )→ 0

x(t; f, u, 0) = ZM (t, f, u)(0) +O

(
|U(t)|M+1 +

∫ t

0

|U |M+1 + (|U(t)|+ ‖U‖L1) |x(t; f, u, 0)|
)
.

(8.14)
The following proposition and Hölder inequality give the conclusion.

Proposition 8.3. Let δ > 0, f0, f1 ∈ Cωδ with f0(0) = 0 and f1(0) 6= 0. There exists T, η, C > 0
such that, for every u ∈ L1((0, T ),K) with ‖U‖L∞ < η and t ∈ [0, T ],

|U(t)| ≤ C
(
|x(t; f, u, 0)|+ ‖U‖L1

t

)
. (8.15)

84



Proof. With the notations of Proposition 7.2, x(t; f, u, 0) = eU(t)f1x1(t;F,U, 0) tends to zero when
‖U‖L∞ → 0. A Taylor expansion of order 2 in x(t; f, u, 0) = eU(t)f1x1(t;F,U, 0) provides C1 > 0
such that, for every t ∈ [0, T ] and u ∈ L1((0, T );K) such that ‖U‖L∞ ≤ η∗,

|x(t; f, u, 0)− x1(t;F,U, 0)− U(t)f1(0)| ≤ C1|U(t)|2 + C1|U(t)||x1(t;F,U, 0)|. (8.16)

Moreover, by Grönwall’s lemma, there exists C2 > 0 such that

|x1(t;F,U, 0)| ≤ C2‖U‖L1(0,t). (8.17)

Let P : Kd → Kd defined by P (y) = 〈y, f1(0)〉/|f1(0)|2. Applying P to the vector in the left-hand
side of (8.16) and using (8.17), we get the conclusion, when ‖U‖L∞ is small enough.

Remark 8.4. Estimate (8.6) proves that, for a situation in which
∫ t

0
|U |M+1 is negligible, the state

is well approximated by ZM (t, f, u)(0), which is a convergent series of iterated Lie brackets of f0

and f1 evaluated at 0. We expect that this representation can be useful for applications to control
theory, where one tries to relate controllability of the system with geometric relations on the Lie
brackets evaluated at zero.

8.2 Diffeomorphisms and Lie brackets
Lie brackets behave very nicely with respect to local changes of coordinates. Let fi be smooth
vector fields for i ∈ I, p ∈ Kd and θ be a smooth local diffeomorphism near p. If x(t) denotes the
solution to (4.51), we define y(t) := θ(x(t)). Then, one checks that y is the solution to

ẏ(t) =
∑
i∈I

ui(t)gi(y(t)) and y(0) = q, (8.18)

where gi := θ∗fi and q := θ(p). By iterating Lemma 3.23, Lie brackets of the vector fields defining
the dynamics for y can be computed explicitly from those of x. More precisely, for every b ∈ Br(X),

gb = θ∗fb (8.19)

with the notation of Definition 3.13. In particular, there exists a linear invertible map Lp : Kd →
Kd, Lp := Dθ(p), such that, for every b ∈ Br(X),

gb(q) = Lfb(p). (8.20)

Conversely, if the fi and gi for i ∈ I are analytic vector fields, the existence of points p and
q and a linear invertible map Lp such that (8.20) holds is a sufficient condition for the existence
of a local smooth diffeomorphism θ with θ(p) = q and such that, for every controls ui, there
holds y(t) = θ(x(t)) where x and y denote the solutions to (4.51) and (8.18) for the same set of
controls. This nice property is proved in [49, Theorem 1] and was then extended with a more
general geometric viewpoint in [66] (see also [4, Theorem 5.5] for a modern presentation).

When (8.20) only holds for brackets up to some length M ∈ N and the controls are uniformly
bounded in L∞, one can prove (see [50]) the existence of a local smooth diffeomorphism θ and a
constant C such that

|y(t)− θ(x(t))| ≤ CtM+1. (8.21)

Up to our knowledge, the converse, which is conjectured to be true in [50], is a nice open problem.

Open problem 8.5. Let I = J1, qK and X = {X1, . . . Xq}. Let p, q ∈ Kd. Assume that there exists
a smooth diffeomorphism θ from a neighborhood of p to a neighborhood of q and M ∈ N such that,
for every controls u1, . . . uq ∈ L∞(0, T ) with ‖ui‖ ≤ 1, estimate (8.21) holds for every trajectories
x and y corresponding to the same controls. Does this imply that there exists a linear invertible
map such that, for each b ∈ Br(X) with |b| ≤M , (8.20) holds?
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Open problem 8.6. Same question in the context of affine systems with drift, i.e. when I = J0, qK,
X = {X0, X1, . . . Xq} and the first control u0 is constrained to be identically equal to 1. This
question might be harder because one gets less information from (8.21) as it is valid for less choices
of controls since u0 is heavily constrained.

Remark 8.7. Property (8.20) is specific to Lie brackets and does not hold for products of differ-
ential operators. For example, consider on R2 the vector fields f0(x) = (0, x1) and f1(x) = (1, 0)
and let θ(x) := (x1, x2 + x2

1). Then g0(y) = (0, y1) and g1(y) = (1, 2y1). In particular, one has
(f1 · ∇)f1 = 0 but (g1 · ∇)g1 = (0, 2). So one cannot hope for a relation such as (8.20) to hold for
products of differential operators. This explains why we consider that the Chen-Fliess expansion
is not an intrinsic representation of the state, as it depends on quantities which are not invariant
through local changes of coordinates.

8.3 Replacing the Magnus flow by a diffeomorphism
Let fi for i ∈ I be smooth vector fields. We consider the solution x(t;u) to (4.51) with p =
0. Let ZM (t, u) be the vector field defined in Proposition 4.3 (and called ZM (t,

∑
i∈I uifi) in

this statement). By Proposition 4.3, for each M ∈ N, x(t;u) is given by the time-one flow of
the autonomous vector field ZM (t, u), up to an error scaling like tM+1 when the controls ui are
uniformly bounded in L∞.

In this paragraph, inspired by the nice properties of Lie brackets with respect to diffeomorphisms
recalled above, we attempt to replace the computation of the time-one flow by a diffeomorphism.
This can be seen as a converse of the classical question of whether a given diffeomorphism can be
represented as the time-one flow of an autonomous vector field (see e.g. [5, 6]).

This also corresponds to replacing the terms x(t;u)+o(|x(t;u)|) in Proposition 8.2 by θ(x(t;u)),
where θ is a smooth local diffeomorphism of Kd.

We start with a definition.

Definition 8.8. Let T > 0 and n ∈ N. We say that a functional β : [0, T ]× L∞((0, T );Kq) → K
is homogeneous of degree n with respect to time when, for every u ∈ L∞((0, T );Kq), λ ∈ (0, 1]
and t ∈ [0, T ],

β(λt, uλ) = λnβ(t, u) (8.22)

where uλ is defined by uλ(λt) := u(t) for t ∈ [0, T ] and uλ(λt) := 0 for t > T .

In particular, the product of two homogeneous functionals of degree n and m with respect to
time is an homogeneous functional of degree n + m. The coordinates of the first kind ζb(t, u),
pseudo-first kind ηb(t, u) and second kind ξb(t, u) are all homogeneous of degree |b| with respect to
time. An interesting property of homogeneous functionals is given by the following statement.

Lemma 8.9. Let T > 0, n ∈ N and β : [0, T ] × L∞((0, T );Kq) → K, homogeneous of degree n
with respect to time. Assume that there exists C > 0 such that, for every u ∈ L∞((0, T );Kq) with
‖u‖L∞(0,T ) ≤ 1 and each t ∈ [0, T ],

|β(t, u)| ≤ Ctn+1. (8.23)

Then β ≡ 0.

Proof. Let t ∈ [0, T ] and u ∈ L∞((0, T );Kq) such that ‖u‖L∞(0,T ) ≤ 1. On the one hand, for
each λ ∈ (0, 1], β(λt, uλ) = λnβ(t, u). On the other hand, |β(λt, uλ)| ≤ Cλn+1tn+1 because
‖uλ‖L∞ = ‖u‖L∞ ≤ 1. Hence |β(t, u)| ≤ Cλtn+1 for each λ ∈ (0, 1] so β(t, u) = 0.

One could wonder if the following proposition holds.

False proposition 8.10. Let X = {Xi; i ∈ I}, B be a monomial basis of L(X). Let T > 0. There
exists a family (βb)b∈B of functionals from [0, T ] × L∞((0, T );Kq) to K, with βb homogeneous of
degree |b| with respect to time, such that the following statement holds. Let δ > 0 and fi ∈ C∞δ for
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i ∈ I. There exists a smooth diffeomorphism θ of Kd near p = 0 such that, for each M > 0, there
exists CM , TM > 0 such that, for every u ∈ L∞((0, T );Kq) with ‖u‖L∞ ≤ 1, for each t ∈ [0, TM ],

|θ(x(t;u))− yM (t;u)| ≤ CM tM+1, (8.24)

and
yM (t;u) = θ(0) +

∑
|b|≤M

βb(t, u)gb(θ(0)), (8.25)

where gb = θ∗fb and x(t;u) is the solution to (4.51) starting from p = 0.

The functionals βb would be the analog of the coordinates of the first and second kind described
earlier. A formula such as (8.25) would be ideal for applications to control theory for example, since
it is expressed on intrinsic quantities (Lie brackets) and allows to compute x(t;u) directly without
solving for flows (one recovers x(t;u) ≈ θ−1(y(t;u))). In some sense, it corresponds to asking if
there exists a local change of coordinates for which the Chen-Fliess expansion only involves Lie
bracket terms (and all the non-Lie bracket terms vanish).

Unfortunately, it is impossible in general, as illustrated by the following counter-example.

Proposition 8.11. Let X = {X0, X1}. Let T > 0 and consider, in R3, f0(x) := (0, x1 +x2
1, x1x2)

and f1(x) := (1, 0, 0), i.e. the following affine system with drift
ẋ1 = u,

ẋ2 = x1 + x2
1,

ẋ3 = x1x2,

(8.26)

together with the initial data x(0) = 0. There exists a monomial basis B of L(X), such that,
for every functionals βb : [0, T ] × L∞((0, T );R) → R for b ∈ B, homogenous of degree |b| with
respect to time and for every local C6 diffeomorphism θ of R3, there exists M ∈ J1, 6K and a control
u ∈ L∞((0, T );R) with ‖u‖L∞ ≤ 1 such that (8.24) does not hold, even for small times.

Proof. Let B be a length-compatible Hall basis of L(X) with X0 < X1.

Step 1: Computation of y6(t). We define Ḃ` = {b ∈ B;n1(b) = `} for every ` ∈ N. Then
Ḃ1 = {adkX0

(X1); k ∈ N}. The computation shows that the only elements b ∈ Ḃ1 such that fb 6= 0
are

b1 = X1, b2 = [X0, X1], c1 = [X0, [X0, X1]], (8.27)

fb1(x) = e1, fb2(x) = −(1 + 2x1)e2 − x2e3, fc1(x) = x2
1e3. (8.28)

Thus, the only elements b ∈ Ḃ2 that could satisfy fb 6= 0 are [b1, b2], [b1, c1], [b2, c1]. The compu-
tation shows that, among them, only the two first ones do satisfy the condition:

b3 = [X1, [X0, X1]], c2 = [X1, ad2
X0

(X1)], (8.29)
fb3(x) = −2e2, fc2(x) = 2x1e3. (8.30)

Thus, the only elements b ∈ Ḃ3 with length at most 6 that could satisfy fb 6= 0 are [b1, b3], [b1, c2],
[b2, b3], [b2, c2], [c1, b3]. The computation shows that, among them, only the second and the third
ones do satisfy the condition:

b4 = ad2
X1

ad2
X0

(X1), b5 = [[X0, X1], [X1, [X0, X1]]], (8.31)
fb4(x) = 2e3, fb5(x) = −2e3. (8.32)

Thus the only elements b ∈ Ḃ4 with length at most 6 that could satisfy fb 6= 0 are [b1, b4] and
[b1, b5], but the computation shows that they satisfy fb = 0. Therefore, for every b ∈ Ḃ4 ∪ Ḃ5 ∪ Ḃ6,
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fb = 0. In conclusion, b1, . . . , b5 are the only elements b ∈ B such that fb(0) 6= 0. In particular,
none of them have length 4 or 6, thus

y6(t) = θ(0) +Dθ(0)
(
β1(t, u)e1 − β2(t, u)e2 − 2β3(t, u)e2 + 2(β4(t, u)− β5(t, u))e3

)
(8.33)

is the sum of 4 homogeneous functionals of degree 1, 2, 3 and 5. Here and below we write βj instead
of βbj for brevity.

Step 2: Computation of homogeneous terms with degree 4 and 6 in θ(x(t)). In this step, we consider
a local C6 diffeomorphism θ of R3 defined on a neighborhood of p = 0. For u ∈ L∞((0, T );R), we
denote by U the primitive of u such that U(0) = 0 and V the primitive of U such that V (0) = 0.
Straightforward explicit integration of (8.26) yields

x(t;u) = U(t)e1 + V (t)e2 +

∫ t

0

U2(s) dse2 +
1

2
V 2(t)e3 +

∫ t

0

U(s)

∫ s

0

U2(s′) ds′ dse3, (8.34)

where the five terms are respectively functionals homogeneous of degree 1 through 5 with respect
to time in the sense of Definition 8.8. Using a Taylor expansion of θ at 0, one obtains (vector
valued) functionals γk for k ∈ J1, 6K, homogeneous of degree k with respect to time such that for
every M ∈ J1, 6K

θ(x(t)) = θ(0) +

M∑
k=1

γk(t, u) +O(tM+1). (8.35)

In particular

γ4(t, u) =
1

2
V 2(t)∂3θ(0) + U(t)

∫ t

0

U2∂12θ(0) +
1

2
V 2(t)∂22θ(0)

+
1

2
U2(t)V (t)∂112θ(0) +

1

4!
U4(t)∂4

1θ(0)

(8.36)

and

γ6(t, u) = U(t)

∫ t

0

U(s)

∫ s

0

U(s′)2ds′ds∂13θ(0) +
1

2
V 3(t)∂23θ(0) +

1

2

(∫ t

0

U2

)2

∂22θ(0)

+
1

4
U2(t)V 2(t)∂113θ(0) +

1

2
U(t)V (t)

∫ t

0

U2∂122θ(0) +
1

6
V 3(t)∂222θ(0)

+
1

6
U3(t)

∫ t

0

U2∂1112θ(0) +
1

4
U2(t)V 2(t)∂1122θ(0)

+
1

4!
V (t)U4(t)∂4

1∂2θ(0) +
1

6!
U6(t)∂6

1θ(0).

(8.37)

Step 3: Denying (8.24). We proceed by contradiction, assuming that there exists a local C6

diffeomorphism θ of R3 such that, for each M ∈ J1, 6K, there exists CM , TM > 0 such that (8.24)
holds for every t ∈ [0, TM ] and u ∈ L∞((0, TM );R) with ‖u‖L∞ ≤ 1.

By induction on M , estimate (8.24), Lemma 8.9 and (8.33) imply that γ1 = β1∂1θ(0), γ2 =
−β2∂2θ(0), γ3 = −2β3∂2θ(0), γ4 = 0, γ5 = 2(β4 − β5)∂3θ(0) and γ6 = 0.

On the one hand, by choosing u such that U(t) = 0 but V (t) 6= 0, the relation γ4(t, u) = 0
implies that ∂22θ(0) = −∂3θ(0) 6= 0 because θ is a local diffeomorphism. On the other hand,
by choosing u such that U(t) = V (t) = 0 but

∫ t
0
U2 6= 0, the relation γ6(t, u) = 0 implies that

∂22θ(0) = 0. This concludes the proof, since we have found incompatible conditions on ∂22θ(0).

Remark 8.12. This section is written with a focus on time-based estimates. However, a similar
“false proposition” could be stated for control-based estimates. The same counter-example also
negates this possibility.
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