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On expansions for nonlinear systems,
error estimates and convergence issues

Karine Beauchard} Jérémy Le Borgne} Frédéric Marbach*

April 21, 2021

Abstract

Explicit formulas expressing the solution to non-autonomous differential equations are of
great importance in many application domains such as control theory or numerical operator
splitting. In particular, intrinsic formulas allowing to decouple time-dependent features from
geometry-dependent features of the solution have been extensively studied.

First, we give a didactic review of classical expansions for formal linear differential equa-
tions, including the celebrated Magnus expansion (associated with coordinates of the first
kind) and Sussmann’s infinite product expansion (associated with coordinates of the second
kind). Inspired by quantum mechanics, we introduce a new mixed expansion, designed to
isolate the role of a time-invariant drift from the role of a time-varying perturbation.

Second, in the context of nonlinear ordinary differential equations driven by regular vector
fields, we give rigorous proofs of error estimates between the exact solution and finite approx-
imations of the formal expansions. In particular, we derive new estimates focusing on the role
of time-varying perturbations. For scalar-input systems, we derive new estimates involving
only a weak Sobolev norm of the input.

Third, we investigate the local convergence of these expansions. We recall known positive
results for nilpotent dynamics and for linear dynamics. Nevertheless, we also exhibit arbitrarily
small analytic vector fields for which the convergence of the Magnus expansion fails, even in
very weak senses. We state an open problem concerning the convergence of Sussmann’s infinite
product expansion.

Eventually, we derive approximate direct intrinsic representations for the state and discuss
their link with the choice of an appropriate change of coordinates.

*Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
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1 Introduction

1.1 Motivations

There are multiple situations in which one desires to compute the solution to a differential equation
whose dynamics depend on time. One often looks for explicit formulas, depending preferentially on
intrinsic quantities, which describe the composition of flows, or even the continuous composition
of flows. Some important applications are listed below.

e Control theory. Here, the dynamics depend on time mostly through the choice of time-
varying controls. One looks for explicit formulas of the continuous product of flows in order
to be able to construct controls for which this resulting flow drives a given initial state to a de-
sired target state. In order to establish necessary and sufficient conditions for controllability,
one is interested in intrinsic formulas. It is our main motivation.

e Numerical splitting methods. Here, the splitting algorithm applies sequentially a suc-
cession of basic flows, composed with appropriate time steps. One is interested in choosing
correctly the base flows and the time steps in order to approximate the most precisely possi-
ble the solution to the true complex flow. Formulas concerning the composition of flows are
essential to compute the order of the resulting numerical scheme. We refer to the survey [15]
and the introduction books [14, 37]. Composition of flows formulas are also very useful in
particular settings like Hamiltonian systems [17] or in the presence of a small perturbation
of a reference flow [54].

e Stochastic differential equations. Here, the dynamics depend on time through the
sources of randomness, say Brownian motions. One wishes to investigate the influence of
the randomness on the final state and thus looks for explicit formulas involving iterated
Stratanovich integrals to construct a representation of the flow, see e.g. [9, 11, 22, 25].

e Differential equations on Lie groups. Sometimes, the state itself of the differential
equation belongs to a Lie group, as in [41]. Then, looking for an intrinsic approximation of
the state helps to preserve structure which would be lost otherwise. In particular, writing
the product of multiple flows as a single flow is important. There are also control problems
for differential equations set on Lie groups, as in [44].

1.2 Short historical survey

We start with a short survey of some of the many approaches related with the computation of
solutions to formal linear differential equations, say

#(t) = X(t)z(t), (1.1)

together with some initial condition x(0). We recall in Section 1.2.4 the consequences of such
results for nonlinear ordinary differential equations.

1.2.1 Iterated Duhamel or Chen-Fliess expansion

One of the most straightforward approaches to solving (1.1) consists in what can be seen as an
iterated application of Duhamel’s principle. For small times, starting from the initial approxi-
mation z(t) ~ x(0), one then enhances the approximation by plugging the approxirnation in the
equation and obtains successively z( 0)+ fo 0) ds, then x( 0)+ fo 0)ds+

f (s) Jy X 0)ds’ ds and so on.

In the context of control theory, this expansion is known as the Chen-Fliess expansion, after
being popularized by the works [26, 33]. Its main advantages are its simplicity and nice convergence
properties (see Section 5.1). However, it also has some strong drawbacks, which we detail in
Remark 2.16 and Remark 8.7 and motivate the investigation of other expansions.



1.2.2 Magnus expansion

When X (¢) is piecewise constant, for example with values X; for ¢ € [0,1] and X for ¢ € [1,2],
one has formally, #(2) = eX2¢X12(0). Hence, the computation of solutions to (1.1) has a deep link
with the famous Campbell [23|, Baker [8], Hausdorff [40], Dynkin [31] formula (“CBHD formula”
in the sequel).

This formula has a long and rich history which involves forgotten contributions of other authors
such as Schur, Poincaré, Pascal or Yosida. As noted by Bourbaki in [19], “chacun considére que les
démonstrations de ses prédécesseurs ne sont pas convaincantes”. We therefore encourage the reader
to dive into the fascinating retrospectives [1] and [18] to understand the progressive construction
of its proof throughout the decades. This formula is a formal identity expressing the product of
the exponentials of two (non-commutative) indeterminates X; and X as the single exponential of
a series of Lie brackets (i.e. nested commutators) of these indeterminates, of which the first terms
are well-known:

1
€X2€X1 = exp <X1—|—X2—|—2[X27X1]+) . (12)

When more than two exponentials are multiplied, say eX* through eX", one can of course iterate the
formula (1.2) with itself to formally express the product of n exponentials as the single exponential
of a complicated series. Letting n — 400, one is lead to computing a continuous product of
exponentials, which corresponds, heuristically, to solving (1.1).

Magnus performed a breakthrough by deriving in [53] the first formal representation of the
solution to (1.1) as the exponential of a series, of which the first terms are

2(1) = exp (/OtX(ﬁ)dﬁ + ;/Ot /0 (X (1), X (r2)] dradry + - ) 2(0). (1.3)

This formula can be seen as the continuous counterpart of the CBHD formula and highlights
important structural properties of the solutions to (1.1) (see Section 2.3).

1.2.3 Infinite products

The CBHD formula and the Magnus formula share the goal of expressing the desired quantity
as the exponential of a single, although complicated, object. Other approaches go the other way
around and try to express the desired quantity as a long (infinite) product of exponentials of very
simple objects.

A well-known example is the Lie-Trotter product formula (see e.g. [69]), often used for numerical
splitting methods which attempts to give a meaning to the equality

eX1t X2 — Jim (e%e%)", (1.4)
n—-+oo
the interest relying on the fact that the exponentials of X; and X5 are assumed to be easier to
compute in some sense than the direct exponential of X7 + Xs.
Another related formula is the Zassenhaus expansion, described by Magnus in [53], which
allows to decompose the same quantity eX'*X2 as an infinite product of exponentials of linear
combinations of nested commutators of strictly increasing lengths, whose first terms are

1

1 1
€X1+X2 — €X1€X2 exp (—2[X1,X2]) exp (3[)(27 [Xl,XQ]] + 6

[Xla[XlaX2]]> (15)

In the context of differential equations such as (1.1), a nice formula is Sussmann’s infinite
product expansion, introduced in [68]. When X () is given as a linear combination of elementary
generators, e.g. X(t) = a1(t)X7 + a2(t) X5, Sussmann’s infinite product expansion is given by a
product of exponentials of Lie monomials, such as

l‘(t) _ e§1X1 e‘szQe&Q[Xl’XQ]65112[Xl’[Xl’XQ]]65212[X2’[X1’X2” - JZ(O), (16)



where the ; are scalar functions of time given by explicit formulas from the functions a; and as.
Compared to other expansions, this formula is both intrinsic (such as the Magnus expansion) and
involves coefficients which are easily computed by induction (such as the Chen-Fliess expansion).

1.2.4 Consequences for nonlinear ordinary differential equations

Although the expansions mentioned above concern linear formal differential equations, they can
be adapted to ordinary nonlinear differential equations on smooth manifolds governed by smooth
vector fields. Indeed, one can identify vector fields with linear operators acting on smooth functions,
and points of the manifold with the linear operator on smooth functions corresponding to evaluation
at this point. This method allows to recast the nonlinear equation into a linear equation set on a
larger space, for which the formal linear expansions can be used (see Section 4.1).

This linearization technique has been used by Sussmann in [67, Proposition 4.3] to prove the
convergence of the Chen-Fliess expansion for nonlinear ordinary differential equations driven by
analytic vector fields, by Agrachev and Gamkrelidze in the context of control theory (see [2, 3, 35]
in which they derive an exponential representation of flows, very similar to Magnus’ expansion,
using the chronological calculus framework) and by Strichartz (see [65] and his derivation of the
generalized CBHD formula, with applications related to sub-Riemannian geometry).

At a formal level, all identities mentioned above (almost) always make sense. However, if the
indeterminates are replaced by true objects (say matrices, operators or vector fields), convergence
issues arise. Generally speaking, convergence often requires that one either assumes that the objects
are small enough or that the generated Lie algebra has additional structure, like nilpotence.

1.3 Main goals and organization of this paper

This paper is both a survey on some classical expansions for nonlinear systems, a research paper
containing new results and counter-examples and a toolbox for future works. In particular, we aim
at the following goals.

e We give in Section 2 a didactic review of classical expansions for formal linear
differential equations. Our introduction to this algebraic topic is written with a view
to making it understandable by readers with minimal algebraic background. We review the
following classical expansions:

1. the iterated Duhamel or Chen-Fliess formula,
2. the Magnus or generalized CBHD formula (associated with coordinates of the first kind),

3. Sussmann’s infinite product formula (associated with coordinates of the second kind).

e We introduce a new formal mixed expansion, inspired by quantum mechanics, designed
to isolate the role of a time-invariant drift from the role of a time-varying perturbation (see
Section 2.4), which we name Magnus expansion in the interaction picture and for which we
define coordinates of the pseudo-first kind by analogy with first and second kind coordinates.

e We recall in Section 3 classical well-posedness results and estimates for products and
Lie brackets of analytic vector fields, which are used throughout the paper.

e In the context of nonlinear ordinary differential equations driven by regular vector fields,
we give in Section 4 rigorous proofs of error estimates between the exact solution and
finite approximations of each of these four formal expansions. These estimates are part
of the mathematical folklore for the Chen-Fliess and Magnus expansions, but are new for
our mixed expansion and for Sussmann’s infinite product expansion. We strive towards
providing estimates with similar structures for the four expansions and which are valid under
parsimonious regularity assumptions.



e We investigate the convergence of these expansions in Section 5. We recall known positive
convergence results for smooth vector fields generating nilpotent Lie algebras and for small
linear dynamics (matrices). For our new expansion, we investigate the subtle convergence
under a natural partial nilpotent assumption. In this case, convergence requires analyticity,
contrary to the proofs we give for the other expansions under a full nilpotent assumption.

e For analytic vector fields, only the Chen-Fliess expansion is known to converge. We give
in Section 5.2 new strong counter examples to the convergence of Magnus expansions,
which disprove the convergence of these expansions even for analytic vector fields and in very
weak senses. We state an open problem concerning the convergence of Sussmann’s infinite
product for analytic vector fields.

e When the system involves a time-invariant drift and a time-varying perturbation, we show
in Section 6 that only the Magnus expansion fails to provide well-behaved estimates
with respect to the perturbation size. For the three other expansions, it turns out to
be possible to obtain such estimates by summing well-defined infinite partial series which
converge for analytical vector fields.

e In the particular case of scalar-input systems, we prove in Section 7 new errors estimates
involving a negative Sobolev norm of the time-varying input. Such estimates are the
best compatible with the regularity of the input-to-state map and can be helpful for specific
applications.

e Eventually, we derive in Section 8 approximate direct intrinsic representations of the
state for nonlinear systems, which don’t require the computation of flows. Our formulas can
be viewed as almost-diffeomorphisms and might be useful for applications in control theory.
Unfortunately, we also study a counter-example which demonstrates that one cannot obtain
an exact representation through a diffeomorphism.

2 Formal expansions for linear dynamics

In this section, we consider formal linear differential equations, recall classical expansions valid in
this formal setting (for which there is no convergence issue) and introduce a new mixed expansion
which isolates the role of a perturbation in the dynamics.

2.1 Notations

We recall classical definitions and notations for usual algebraic objects. In the sequel, K denotes
the field R or C. All statements and proofs hold for both base fields. It will be implicit that all
vector spaces and algebras are constructed from the base field K.

2.1.1 Free algebras

We refer to the books [42, 60] for thorough introductions to Lie algebras and free Lie algebras.

Definition 2.1 (Indeterminates). Let I be a finite set. At the formal level, we consider a set
X = {X;; i € I} of indeterminates, indexed by I. For applications, we will substitute in their
place matrices or vector fields. Most often, we will write I = [1,4q] for some ¢ € N*, or I = [0, ]
when we want to isolate the role of the indeterminate Xg.

Definition 2.2 (Free monoid). For I as above, we denote by I* the free monoid over I, i.e.
the set of finite sequences of elements of I endowed with the concatenation operation. For o =
(01,...0%) € I*, where k is the length of o also denoted by |o|, we let X, := Xy, -+ X, . This
operation defines an homomorphism from I* to X*, the free monoid over X (monomials over X ).



Definition 2.3 (Free algebra). For X as above, we consider A(X) the free associative algebra
generated by X over the field K, i.e. the unital associative algebra of polynomials of the non com-
mutative indeterminates X (see also [20, Chapter 3, Section 2.7, Definition 2[). A(X) can be seen
as a graded algebra:

AX) = @ Au(X), (2.1)

neN
where A, (X) is the finite-dimensional K-vector space spanned by monomials of degree n over X.
In particular Ap(X) = K and A;(X) = spang (X).

Definition 2.4 (Free Lie algebra). For X as above, A(X) is endowed with a natural structure
of Lie algebra, the Lie bracket operation being defined by [a,b] = ab — ba. This operation satisfies
[a,a] = 0 and the Jacobi identity [a, [b,c]] + [c, [a,b]] + [b, [¢,a]] = 0. We consider L(X), the free
Lie algebra generated by X over the field K, which is defined as the Lie subaglebra generated by X
in A(X). It can be seen as the smallest linear subspace of A(X) containing all elements of X and
stable by the Lie bracket (see also [60, Theorem 0.4]). L(X) is a graded Lie algebra:

LX) = @ La(X),  [Lm(X), Lo(X)] C Lonsn(X) (2.2)

where, for each n € N, we define L,(X) := L(X) N A, (X).

Definition 2.5 (Nilpotent Lie algebra). Let L be a Lie algebra. We define recursively the following
two-sided Lie ideals: L' := L and, for k > 1, L**! := [L, L*] i.e. LF*1 is the linear subspace of
L generated by brackets of the form [a,b] with a € L and b € L*. Let m € N*. We say that L is

a nilpotent Lie algebra of index m when L™ = {0} and m is the smallest integer for which this
property holds.

Definition 2.6 (Free nilpotent Lie algebra). Let m € N*. The free m-nilpotent Lie algebra over X
is the quotient Ny, (X) := L(X)/L(X)™ (with the notation of Definition 2.5. Then the canonical
surjection oy, : L(X) = Ny (X) is a Lie algebra homomorphism.

The universal properties of the various free algebras constructed above allow to transport on
algebras relations proved at the free level.

Lemma 2.7. The following universal properties hold.

e For each unital associative algebra A and map A : X — A, there exists a unique homomor-
phism of algebras A(X) — A that extends A.

e For each Lie algebra L and map A : X — L, there exists a unique homomorphism of Lie
algebras L(X) — L that extends A.

e Let m € N*. For each nilpotent Lie algebra L of index m and map A : X — L, there exists
a unique homomorphism of Lie algebras N, (X) — L that extends A.

2.1.2 Formal brackets and evaluation

Definition 2.8 (Formal brackets). For X as above, we consider Br(X) the set of formal brackets of
elements of X. This set can be defined by induction: for X; € X, X; € Br(X) and if by, bs € Br(X),
then the ordered pair [by, bs] belongs to Br(X). More rigorously, one can define Br(X) as the free
magma over X or as the set of binary trees, with leaves labeled by X .

For b € Br(X), we will use the following notations:
e |b| will denote the length of b (i.e. the number of leaves of the tree).

e If |b| > 1, there exists a unique couple (b1, bs) € Br(X)? such that b = [by, ba] (left and right
factors) which are denoted as A(b) = b; and pu(b) = by. We also write [by, bo] as ady, (b2)
which allows iterated left bracketing.



e For i € I, n;(b) denotes the number of occurrences of the indeterminate X; in b. When
I =0, q] we will also write n(b) = ny(b) + - - - + ny(b) = |b| — no(b).

Definition 2.9 (Subspaces of brackets). When I = [0,q] and ¢ € N, S, denotes the subset of
Br(X) defined by
Se:={b e Br(X); n(b) </} (2.3)

With this convention, Sy is a subset of Br(X), which is different from a convention commonly used
in control theory where one refers to the vector space spanned by our Sy in L(X).

Remark 2.10. There is a natural “evaluation” mapping eval from Br(X) to L(X) defined by
induction by eval(X;) := X; for X; € X and eval([by,bs]) := [eval(by),eval(bz)]. Through this
mapping, Br(X) spans L(X) over K, i.e. L(X) = spang eval(Br(X)). This mapping is however
not injective: for example, [X1,X1] and [X2,[X1, X1]] are two different elements of Br(X), both
evaluated to zero in L(X). Nevertheless, we will sometimes implicitly evaluate the formal brackets
of Br(X) in L(X), omitting the mapping eval.

More precisely, the eval map extends to a surjective algebra homomorphism from the nonasso-
ciative free algebra over X (which is the free vector space over Br(X), whose elements are formal
(finite) linear combinations of elements of Br(X), endowed with the natural product map induced
by the product in Br(X)). Moreover the kernel of the extended eval is precisely the ideal generated
by the relations that define anticommutativity and the Jacobi identity in L(X).

2.1.3 Formal series, exponential and logarithms

Definition 2.11 (Formal series). We consider the (unital associative) algebra A(X) of formal
series generated by A(X). An element a € A(X) is a sequence a = (an)nen written a = > nen Ons
where a, € A,(X) with, in particular, ag € K being its constant term. We also define the Lie
algebra of formal Lie series E(X) as the Lie algebra of formal power series a € .Z(X) for which
an, € L(X) for eachn € N. For S € A(X) and o € T*, (S, X,) denotes the coefficient of X, in S:
S=3 e (S Xo) X5

Remark 2.12. The definition of ./Z(X) can be made more rigorous by considering val : A(X) —
NU {co} by val(a) = inf{n € N | a € @, Ax(X)}. Then (a,b) — e = s a distance on

A(X), that induces the discrete topology on each A, (X), and VZ(X) is defined as the completion of
the metric space A(X), to which the operations on A(X) naturally extend as continuous operations,
endowing it with a structure of topological algebra. A formal series )y an with a, € Ap(X)
thus converges in the metric space A\(X), which justifies the notations of Definition 2.11. To avoid
confusion, we shall however not use the term “convergence” in this context.

If a € A(X) has zero constant term, we define exp(a) € A(X) and log(1 + a) € A(X) as

m

exp(a) == Y % (2.4)
m>0
log(1+a) := Z #am. (2.5)

Since a has zero constant term, one checks that the right-hand sides of (2.4) and (2.5) indeed define
formal series of A(X). In particular, log(exp(a)) = a and exp(log(l1 +a)) =1+ a.

Lemma 2.13. Leta,b € JZl\(X) with zero constant term. Then a = b if and only if exp(a) = exp(b).

Proof. The forward implication is obvious. Conversely, if exp(a) = exp(b) in .,Z(X ), then, for every
r > 1, their components in A, are equal. Moreover, from (2.4), one has:

(exp(@), =Y. Y % =ar + 0, (a,...ap_1), (2.6)

k=1ri+..rp=r



for some function ©, depending only on the a,. for v’ < r. Hence, we obtain by induction on r > 1
that a, = b, from the equalities (exp(a)), = (exp(b));. O

2.2 Formal differential equations and iterated integrals

Using the notations of Section 2.1, for i € I, let a; € L'(R;K) and define a by
a(t) := Zai(t)Xi. (2.7)
i€l

In this section, we consider the following formal ordinary differential equation set on E(X ), driven
by a and associated with some initial data x*,

(1) = (t)a(?) .
z(0) = z*, '
whose solutions are precisely defined in the following way.

Definition 2.14 (Solution to a formal ODE). Let a; € L'(Ry;K) for i € I and define a by (2.7).
Let 2* € A(X) with homogeneous components z%, € A, (X). The solution to the formal ODE (2.8)
is the formal-series valued function z : Ry — .Z(X), whose homogeneous components x, : Ry —
An(X) are the unique continuous functions that satisfy, for every t > 0, xo(t) = af and, for every
n € N*¥,

t
xn(t) =z}, +/ Tp—1(T)a(r)dr. (2.9)
0
Iterating this integral formula yields the following series expansion, which is the most direct
way to compute the solution to (2.8) and was popularized by the works [26, 33].

Lemma 2.15 (Iterated Duhamel or Chen-Fliess series expansion). In the context of Defini-
tion 2.14, the solution to (2.8) with initial data x* =1 can be expanded as

a(t) = J; (/Ot aa> Xo, (2.10)

where fot ag = 1 by convention and, for o € I'* with |o| > 1, we introduce the notation

t
/ ay = / gy (T1) -+ g, (7,) AT (2.11)
0 0<m << <t

Proof. Expansion (2.10) is a direct consequence of the iterated application of (2.9) and of the
definition of X, in Definition 2.2 and can be proved by induction on the length of o. O

Remark 2.16. Despite its simplicity, the Chen-Fliess series expansion suffers from a major draw-
back: it involves non intrinsic quantities and is redundant. As an illustration, this has the following
consequences:

e The functionals fot as for o € I* are not algebraically independent. For example, for every
solution to (2.8) and every t > 0, one has the identity

<l‘(t), X1X2> + <$(t),X2X1> - <l‘(t), X1><l‘(t),X2> =0 (2.12)
e In the context of nonlinear ordinary differential equations, the representation (2.10) can fail
to converge for smooth vector fields despite strong structural assumptions (see Section 5.1.1).

e In the context of nonlinear ordinary differential equations, the representation (2.10) will not
be invariant by diffeomorphism (see Remark 8.7), which would be a desirable invariance.

This drawback motivates the search for more intrinsic representations of the solutions, which will
turn out to involve Lie algebras.



2.3 Logarithm of flows, coordinates of the first kind

In the particular case where a(t) is a constant element a € A;(X), evaluating the iterated integrals
in (2.11) yields the elegant formula z(¢) = * exp(ta), with the notation of (2.4). Of course, it is no
longer valid for a time-varying dynamic (because the indeterminates do not commute a priori), but
one can wish to find an object of which the flow is the exponential, the so-called “logarithm of the
flow”. In this section, we recall and prove Theorem 2.26, which states that the logarithm of flows of
formal linear differential equations is given by explicit Lie brackets. Our proof follows the method
proposed in [65, Section 3| and relies on well-known algebraic results, which we recall, for the sake
of giving a self-contained presentation. Another related approach, relying on Ree’s theorem and
shuffle relations satisfied by the Chen-Fliess series coeflicients is developed in [47, 48, 59, 60].

2.3.1 Notations for indexes

We start with an abstract definition of the truncated logarithm of a time-dependent dynamic.

Definition 2.17. For m,r € N*, we define the set of ordered positive partitions of size m of r,
N i={r=(r1,...,t;m) € N, r1 4+ +r, =1}, (2.13)
where N™ = () when r < m. For each r € N™ and t > 0, we also define
Te(t) := {T =(11,...,7) €(0,0)"; Vie[l,m], 0< 7R, <---<7Tr; 41 < t}, (2.14)

where, for j € [1,m],
Rj:=> 1, (2.15)

Example 2.18. The sets Tr(t) will be used as integration domains, and can be pictured as products
of pyramidal domains. As examples, we compute the integration domains for r < 3. One has

Toy(t) = {r = (m1) € (0,)'}, (2.16)
7-(2)@) ={r=(r,m) € (0,)% 0<m <7 <t}, (2.17)
Tan () = {7 = (n,m) € (0,1)%}, (2.18)
T(t) ={r=(11,72,73) € (0,1)% 0< 13 <™ <7 <t} (2.19)
Ty (t) = {1 = (11,72,73) € (0,1)”; 0 <7 <711 <t}, (2.20)
T2 () ={7 = (11,72,73) € (0,8)”; 0 <735 <72 <t} (2.21)
Taa)(t) ={r = (r1,72,73) € (0,1)°}. (2.22)
A more complex example forr =4, m =2 and r = (2,2) € N3 is
T () = {7 = (11,72,73,71) € (0,8)*; 0< <7 <t and 0<7y <73 <t} (2.23)

We now give a notation for the (truncated or complete) logarithm of a time-dependent dynamic.
We will see in the sequel why this quantity indeed corresponds to a logarithm.

Definition 2.19 (Abstract logarithm of a time-varying field). Let M € N or M = +o0, t > 0 and
F be a map from [0,t] with values in some algebra. We introduce the notation

m—l

M
Log {F} (1) Z%Z T /ET()[...[F(TT),F(TT1)]7...F(ﬁ)}d7. (2.24)

m=1 reNm

Remark 2.20. In such an abstract setting, the right-hand side of (2.24) does not make sense since
we are not able to define an integral over an abstract algebra (without topology on the algebra and
without time-reqularity on F ). At this stage, we see (2.24) as an abstract formula or notation. We
will check, each time we use it, that we can give a meaning to the integrals.
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2.3.2 Preliminary algebraic results

Define a linear map § from A(X) to £(X) by setting its values on the monomials by 5(1) := 0,
B(X;) =X, for 1 <i<gq,and, for 1 <iy,...,ix < ¢ with k € N*¥,

B(Xi, Xi, -+ X,

)= (X, Xiol o Xy ] (2.25)

This process defines a standard way, the “left to right” or “left normed” bracketing, to associate a
Lie bracket to each monomial. The following important result, proved successively by Dynkin [30],
Specht [63] and Wever [72] states that, if a polynomial is a Lie element, then it is equal to its left
normed bracketing.

Lemma 2.21 (Dynkin’s theorem). For a € A,(X), a € L(X) if and only if B(a) = na.
Proof. This statement is contained in the equivalence between (i) and (v) of [60, Theorem 1.4]. O

Example 2.22. The element X1 X5 does not belong to L(X). And indeed, B(X1X2) = X1 X5 —
XX # 2X1X5. On the contrary, the element [X1, Xo] = X1 Xo — XX, belongs to L(X). And
indeed, B([X1, Xa]) = (X1Xo — XoX1) — (X2 X — X1 X0) = 2[X1, Xo].

Let A(X) ® A(X) be the tensor product of algebra A(X) with itself (i.e. the tensor product of
A(X) and A(X), endowed with the product rule (a®b)(a’ @b') := (aa’) @ (bb'), see [20, Chapter 3,
Section 4.1, Definition 1] for a precise construction). Define an homomorphism A from A(X) to
A(X) ® A(X) by setting the values A(1) :=1® 1 and A(X;) =X;®14+1@ X; for 1 <i<gq.
This defines a unique homomorphism because A(X) is freely generated by X as an algebra (see
[60, Proposition 1.2] for more detail). The homomorphism A can then be used to characterize
Lie elements, as in the following result, which was proposed by Friedrichs in [34], then proved by
multiple authors in the same period [27, 32, 52, 53].

Lemma 2.23 (Friedrichs’ criterion). Fora € A(X), a € L(X) if and only if the condition A(a) =
a®14+1®a holds.

Proof. This statement is the equivalence between (i) and (%i) in [60, Theorem 1.4]. O

Example 2.24. The element X1 X5 does not belong to L. And indeed,

A(X1X2) = AX)DAX2) = (X1 @1+12 X)) (Xo @1 +1® Xy)
=X Xo®R1+X1 X0+ Xo® X1 +1® X1Xs (2.26)
£X1Xo®1+10® X1 Xs.

On the contrary, the element [ X1, Xo] = X1 X — X2 X1 belongs to L. And indeed,

A([X71, X)) = A(X1 X)) — A(X2 X))
=X Xo®14+4 X0 X0+ XoX; +10X,X5)
—(XXi @1+ X0 X1+ X190 Xo+1®XX))
= [X1,X2] ®1+1® [X7, Xo).

(2.27)

The tensor product A(X) ® A(X) also has a graded structure, with (A(X) ® A(X)), =
D, Ai(X) ® A,_;(X). Since the homomorphism A is linear and degree preserving, it can be

extended as an homomorphism from .Z(X ) to .A(X@(X ), the formal series over A(X)® A(X).
For such series with zero constant term, one can define, as in (2.4), an exponential, say expg,
which also verifies a uniqueness property such as Lemma 2.13. One can then derive a criterion to
determine whether the logarithm of a formal series is a Lie element.

Corollary 2.25. Let a € A(X) with ag = 1. Then log(a) € L(X) if and only if Ala) = a ® a.
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Proof. We follow [60, Theorem 3.2]. By linearity and degree preservation, Lemma 2.23 implies
that, for a € A(X), a € L(X) if and only if A(a) =a®1+1® a. For a € A(X) with constant
term 1,

loga € A(X) < A(log(a)) = log(a) ® 1 + 1 & log(a)
<= expg (A(log(a))) = expg, (log(a) ® 1+ 1 ® log(a))
<= A (exp(log(a))) = expg(log(a) ® 1) expg (1 @ log(a))
<= A(a) = ((exploga) @ 1)(1 ® (exploga)) = a ® a,

(2.28)

where we used the equality A(exp(-)) = expg(A(+)), because A is an homomorphism, and the fact
that expg (b® 14+ 1® ¢) = expg(b® 1) expg (1 ® ¢), because b ® 1 and 1 ® ¢ commute. O

2.3.3 Formal linear differential equations

Theorem 2.26. Fort € R, and z* € A(X), the solution = to (2.8) satisfies

x(t) = 2* exp (Log {a}(t)), (2.29)
with the notation of Definition 2.19.

Proof. First, by linearity, it suffices to prove (2.29) for z* = 1. For t € R, to show that log(z(t))
is a Lie series, thanks to Corollary 2.25, it suffices to check that A(z(t)) = x(t) ® z(t). We proceed
using the same trick as in [65]. At the initial time A(z(0)) = A(1) =1® 1 = 2(0) ® 2(0). Then,
on the one hand

%A(m) =A(z2) = A(za) = A(z)A(a) = Alz)(a® 1+ 1R a). (2.30)

On the other hand,

%(m@x)=¢®x+x®i‘:(ma)®x+x®(xa):(x®x)(a®1+1®a). (2.31)

Hence, both quantities satisfy the same formal differential equation with the same initial condition,
so they are equal for every ¢ € Ry and log(x(t)) € L(X).
Repeated integration of (2.9) yields, for every t € Ry,

z(t) =1+ ;/M@mda(m () dr. (2.32)

Hence, recalling the definitions (2.13) of NI and (2.14) of T(¢), one has

too 7 m—1
log(z() =S 3 3 % / a(r)a(r1)---a(m) dr. (2.33)

r=1m=1reNm T (t

Since log(z(t)) € E(X)7 applying Lemma 2.21 to each of its homogeneous components in A, proves

+oo 1 r (_1)m—1

log(z(t)) :Z; >N m/T(t)[~-~[a(7'r),a(7'r1)],...&(7'1)] dr. (2.34)

Recalling the notation (2.19) and taking the exponential concludes the proof of (2.29). O
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2.3.4 Coordinates of the first kind

Although the expansion (2.34) already has some interest by itself, it is not written on a basis of
L(X), which has some drawbacks. In this paragraph, we define canonical representations for this
expansion, in appropriate bases of £(X).

Definition 2.27 (Monomial basis). Let B C L(X). We say that B is a basis of L(X) when each
element a € L(X) can be written as a unique finite linear combination of elements of B. We say
that B is a monomial basis when the elements of B are the evaluation of formal brackets in Br(X),
that will be identified. Then, for everyn € N*, we use the following notations B,, = {b € B;|b| = n}
and By ) = {b € B;[b] < n}.

Proposition 2.28. Let B be a monomial basis of L(X). There exists a unique set of functionals

(Co)ve, with ¢, € CO (Ry x L' (Ry; K)K), such that, for every a; € L'(Ry;K), a* € A(X) and
t > 0, the solution to (2.8) satisfies

z(t) = z* exp (Z Go(t, a)b> : (2.35)

beB

Moreover, the functionals ¢, are “causal” in the sense that, for every t > 0, (y(t,a) only depends
on the restrictions of the functions a; to [0,t].

Proof. For each b € B, since B is monomial, only a finite number of summands of the right-
hand side of (2.34) have a non vanishing component along b (indeed, only terms sharing the same
homogeneity can be involved). Hence, it is clear that the functionals thereby defined are continuous
on Ry x L'(R;K)?, due to their explicit expression. The sum in (2.35) is understood in the sense
of a well-defined formal series. Indeed, for each word o € I*, only a finite number of elements
b € B have a non-vanishing component (b, X,,). O

Definition 2.29 (Coordinates of the first kind). The functionals ¢, are usually called coordinates
of the first kind associated to the (monomial) basis B of L(X).

Remark 2.30. Thanks to the monomial nature of the basis, one does not need to specify the full
basis in order to define a given functional. For example, if X\ € N! is a given homogeneity, let

Bry(X) :={b e Br(X); VieI,n;b)=\} (2.36)
Then the coordinates of the first kind {, for b € BN Bry(X) only depend on BN Bry(X).
Remark 2.31. An important particular case for applications to control theory is the case X =
{Xo, X1}, with ag(t) =1 and a1(t) = u(t). This corresponds to formal scalar-input control-affine
systems ©(t) = x(t)(Xo + u(t)X1). One often writes (p(t,u) (omitting the dependency on ag =1)
to denote the coordinates of the first kind in this particular context.

2.3.5 Campbell Baker Hausdorff Dynkin formula

Corollary 2.32. Let X be a finite set, n € N* and y1,...,y, € E(X) without constant term.
There exists a unique w € L(X) such that

eVl ... eV =e". (2.37)

We will use the notation w = CBHDy(y1,...,yn). Moreover, for each monomial basis B of
L{Y1,...,Y,}), there exists a unique sequence (cw)pen C KB such that, for every finite set X and

Yi,-- 5 Yn E‘C(X)

CBHD oo (Y1, -+ Yn) = Z apYp (2.38)
beB

where y, == A(b) and A : L({Y1,...,Y,}) = L(X) is the homomorphism of Lie algebra such that
A(Y;) =y; forj € [1,n].
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Proof. We prove that (2.37) holds with

w := Log Zyjl[j—la'] (n) (2.39)
j=1

in the sense of Definition 2.19.

Step 1: Proof when X = {X1,...,X,} and y; = X; for j € [1,n]. The solution to (2.8) with
a(t) =377 Xl1,5(t) is 2(t) = x*eX1 ... eXn. By Theorem 2.26, w solves (2.37). By injectivity
of the exponential (see Lemma 2.13), it is the unique solution. By Proposition 2.28, the equality
(2.38) holds with «p := (p(n, 1[0,1], ey 1[n—1,n])-

Step 2: Proof in the general case. Let X be a finite set, n € N* y,...,y, € E(X) Let
Y :={Y1,...,Y,} be another set of indeterminates.

The map A : Y — £(X) defined by A(Y;) = y; for j € [1,n] extends into an algebra homo-
morphism A(Y) — A(X), which is also a Lie algebra homomorphism £(Y) — £(X), that we still
denote A. Indeed Lemma 2.7 ensures the extension as an algebra homomorphism A(Y) — le\(X )
(resp. a Lie algebra homomorphism £(Y) — E(X)) The extension can be done on ,Z(Y) (resp.
L(Y)) because y1, .. .,y do not have constant terms and the target space A(X) (resp. L£(X)) is a
space of formal series.

Let W = Logoo{Z;LZIle[j,l,j]}(n) Y). Then A(W) = w. By applying the algebra
homomorphism A to the relation e¥1---e¥» = " we get (2.37). By applying the Lie algebra
homomorphism A to the relation W =}, -z ;b we get (2.38). O

~

S
Yn

Despite the fact that the product e¥* - - - e¥» is of course non-commutative, there is some struc-
ture and symmetry inside its logarithm, which we highlight for future use in the following result.

Proposition 2.33. There exists a family of maps Fyp : E(X)q — E(X) for ¢ € N* and h =
(h1,...,hg) € (N*)? such that

o Fun(y,...,Yq) is a linear combination of brackets of y1, ... ,y, involving y; exactly h; times,
for j € [1,q],

o for everyn >2, y1,...,Yn € E(X),

CBHDwo (41, .-+, Yn) = > Fun(Yjss-- 2 Y3,)- (2.40)

q€[1,n]
J1<--<jq€[1,n]
B (b1, ) E(N)

Forq=1, I, (1)(y1) = y1 and Fy (,,)(y1) = 0 for hy > 2. For ¢ =2 and hy + hy < 4,

1 1

Fy 1, (y1,92) = 5[1/17312] Fy 2,2y (y1,92) = *ﬂ[ym (Y1, [y1,Y2]]]
1

Fy 2,1y (y1,92) = ﬁ[yh [y1, 2] Fy 3,1y (y1,92) =0 (2.41)
1

Fy (1,2 (y1,92) = E[y% [y2, y1]] Fy (1,3 (y1,92) = 0.

For higher order terms, there is no elegant general closed form.

Proof. Using the same Lie algebra homomorphism arguments as in the proof of Corollary 2.32; it
is sufficient to consider the case where y; = Y; is an indeterminate.

For n = 2, the statement is merely a rewriting of (2.38) where the terms are grouped by their
homogeneity with respect to y1 and y». This defines the maps Fy (1y(y1) = y1 and Fy )(y1) = 0
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for h > 2 and F» j,(y1,y2) for h € (N*)? according to the usual two-variables formula, of which the
well-known low-order terms are recalled in (2.41).
We define by induction on n > 3 the functions F}, ;, by the relations

Fn,h(yla v ayn) = Z F27(m,hn) (anl,(h’il hn—1 (y17 .. 7yn—1)7 yn) (242)

m’ m

mlhy,...,hn_1

We now prove the result by induction on n. Let n > 3. By associativity of the product, the formula
for two indeterminates and the induction hypothesis at step n — 1, we obtain

CBHD o (Y1, - -+, Yn)
- CBHDOO(CBHDOO(yh e 7yn71)7 yn)

:CBHDoo(yh?ynfl)"’_yn"' Z F2,g(CBHDoo(y17~~~ayn71)ayn)

geN)? (2.43)
=Ynt Z Fq,h’(yhv"'vyjq)"i' Z F2>Q(Fq7h'(yj17'"’yjq)ayn)
q€[1,n—-1] ge(N*)?
J1<--<jq€[l,n—1]
h'e(N*)4

We now check that the right-hand side of (2.43) is the same as the right-hand side of (2.40). Since
we are working in the free Lie algebra over Y7,...Y,,, we can proceed by homogeneity.

e The terms not involving vy, are equal, since they have the same expression.
e The term involving only y, on both sides is y,, itself, so they are equal.

e Now, let ¢ € [I,n—1], j1 < --- < j, € [I,n—1] and h € (N*)?"1. We look for the
term involving h; times y;, for i € [1,q] and hgy1 times y,,, which is Foy1 n(Yj0, -0 Y5, Yn)
in (2.40). In (2.43), it is

Do > EgFun a5 vn): (2.44)
h' €(N*)? ge(N*)2

where the sum is restricted to g1h; = h; and g2 = hyy1. Hence, both terms are equal thanks
to the definition (2.42).

This concludes the proof and gives a way to compute the maps Fy ; iteratively. O

In particular, the component of CBHD o (y1, . . . , ¥») homogeneous with degree h = (hq, ..., hy)
with respect to (yj,,---,¥;,) 15 Fgn(¥yj,---,¥j,)- It depends neither on the total number n of
arguments in the initial product, nor on the selection of indexes (ji,...,j,). This is the natural
symmetry that we wish to highlight.

2.3.6 Computation of some coordinates of the first kind

In this paragraph, we focus on the case X = {Xy, X1}. Computing the coordinates of the first
kind is of paramount interest for applications (see e.g. [46] where the first 14 such coordinates
are computed, and [24, 57| for efficient algorithms and explicit formulas obtained by an approach
relying on rooted binary labeled trees).

Here, we calculate as an illustration (and because they will be used later) all coordinates of the
first kind on a basis of

W1 := spang {eval(b); b€ Br(X),nq(b) =1} C L(X). (2.45)

Lemma 2.34. The family (audl)%0 (X1))ken is a basis of W.
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Proof. From (2.45), W1 is spanned by the evaluations in £(X) of the formal brackets B € Br(X)
involving X exactly once. Let B € Br(X) be such a formal bracket. We assume eval(B) # 0 in
L(X) and B # X;. There exists a unique couple (B, B”) € Br(X)? such that B = [B’, B”]. Then
eval(B) = [eval(B’), eval(B")] thus eval(B’) and eval(B") are non null in £(X). Moreover, either
B’ or B” does not involve X; and is thus equal to X,. Therefore eval(B) = +[Xy, eval(B)] where
B € Br(X) involves X; exactly once and eval(B) # 0. Working by induction on the number k of
occurrences of X in B, we obtain eval(B) = + abd’)“(O (X1).

The previous argument proves that the given family spans W;. Moreover, this family is linearly
independent in £(X) because two different elements have different lengths. O

To express the coordinates of the first kind on this basis, we introduce (using the modern NIST
sign and indexing convention) the Bernoulli numbers (By,),en, defined by the identity

+oo n +oo 2n
z z z z
VzeC 2 = B,—=1-—- By ——. 2.46
Moreover, we introduce
Wa+ := spang {eval(b); b€ Br(X),ni(b) > 2} C L(X), (2.47)

thanks to which we can write the direct sum decomposition £(X) = KXy & Wi & Was+.

Proposition 2.35. Let B a monomial basis of L(X) containing Xy and the family (adlj(o (X1))ken-
The associated coordinates of the first kind satisfy, for eacht >0, ag,a; € L*((0,t);K) and k € N,

Cad’j(o(Xl)(taGOaal) = (*UkAo(t)k%Aﬂt)
s (2.48)
+(=1)k ;Ao(t)k_z (kBi_;)‘ /o<n<--<<n<t ao(T1) - - - ao(7¢) Ax () dr,

where Ag(t) := fot ag and A (t) = fot a1 and the sum is empty by convention for k = 0.

Proof. First, the considered coordinates are well-defined independently on the exact choice of B

(see Remark 2.30). Let x be the solution to (2.8) starting from x* = 1. To simplify the notations

in this proof, we write z(t), (x(t) and Z(t) instead of x(t,a), Cuax (x,)(t; a0, a1) and Log {a}(?).
0

From (2.35),

Z(t) =Y G(t,a)b = Cx,(t,a)Xo + Zi(t) + Za(t), (2.49)
beB
where Z5(t) € Wy+ and
+oo
Zi(t) = 3 Gult) ad, (X2). (2.50)
k=0

First, a straightforward identification in (2.24) yields (x, = Ao and (x, = A;. Let k € N*. The
proof consists in computing (z(t), X1 X}) in two ways: first by the ODE (2.8), then by the formula
x(t) = eZ®. By definition of the solution to (2.8), we have, for every word ¢ € I* and t > 0

t
(2(t), X Xo) = / (2(r), X, )ao(r) dr. (2.51)
0
Taking into account that (x(t), X1) = A (¢), we obtain

<£C(t),X1X(])C> :/ G,Q(Tl)"'ao(Tk)Al(Tk)dT. (252)

0< T <. <1<t
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On the other hand, we deduce from the expansion of z(t) = e#(*) that

k+1

(1), X, X5) = (20, X,X5) + 3 & (Z(0)'. X, xE) (2.53)
=2

because, for £ > (k+2), Z(t)* is a sum of words with length at least (k + 2). For £ € [2,k + 1],

-1
Z(t)é = Z(Ao(t)Xo)jZl(t)(AO(t)Xo)eflfj + Zy(t), where Zj,(t) € Wor. (2.54)
=0
Thus
(Z(t ), X1X§> (Z1(t)(Ao(t )XO)Z_l,X1X§> = Ao(t) (=D g (1), (2.55)

because the word XlX(’f_Hl appears in the decomposition of ad’y (X;) iff k —£+1 = n and then

it appears with coefficient (—1)™. We deduce from (2.53) and (2.55) that

k+1 1—¢
(a0 X2X8) = (<1 + 5 T A 0 G0 (256)

=2
Using (2.52) and the index change j = k+1—¢ € [0,k — 1], we obtain

k— 1 JA
ao(T1) - ao(7me)A (1) dT + 0 < £, 957
/0<Tk< <m<t 0( 1) 0( k) 1( k) Z k- + 1 7] J( ) ( )

Jj=

When Ag(t) = 0, this formula yields (2.48) immediately. When Ag(t) # 0, let, for j € N,

x(t), X X7 -1 jCj t
o = 7< ﬁlz(t)jl+10> and Bj = (AO()t)ij(l) (2.58)

we deduce from (2.57) that
k
2.
Z (k+ 1 - (2.59)

We have
k

Skt
Zakzk 2225 (kT Zﬂjzj e —1) (2.60)

E>0 k>0 j=0 §>0

or equivalently

Zﬂjzj eZZ_ T Zakzk = ZZBn%Takzk. (2.61)

§>0 k>0 n>0k>0

Thus, for every j € N*
J

_ Bj—k
kz:o (J—

Finally (2.58) and (2.52) give (2.48). O

(2.62)

In particular, we recover the following very classical formula for the partial coeflicients of the
CBHD formula (see e.g. [71, equation (2)] or [60, Corollary 3.24]).
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Corollary 2.36. There holds eX1eX0 = e? where Z = Xo + Zy + Za, Zo € Wos and

+o00 +00o
Z'—Z&ad” (X)—X—l[X X]+ZB2” ad¥ (X1) (2.63)
1-— n! X[) 1 - 1 2 0 1 (2 )' XO 1) .
n=0 n=1

Proof. We apply the previous result to the controls ag(t) = 11 2)(t) and a1 (t) = 1(0,1)(t), for which
the solution to (2.8) with z* = 1 satisfies 2(2) = eX1eX0. For f e N* and 0 < 7y < -+~ < 71 < 2,
the real number ag(11) - - - ag(7¢) A1 (7¢) does not vanish iff 1 < 7, < ---71 < 2 and then it equals 1.
Thus, for every k > 2, using (2.48) and (2.65),

"B 1L B
:Z(kHZ Z _]Tf (2.64)

£=0 ‘7

We conclude by noticing, thanks to (2.48), that (4(2) = A1(2) =1 and (1(2) = —5 = Bj. O

1
2

The following lemma states properties about Bernoulli numbers (and thus about coordinates
of the first kind) that will be used later in this article.

Lemma 2.37. The Bernoulli numbers defined in (2.46) satisfy, for every n > 2
n—1 n
Z (k) B, =0, (2.65)

k
i (Z) % = 0. (2.66)

Moreover, the odd Bernoulli numbers except By vanish and, for everyn > 1,

Bay = (—1) 1220 oy L1y 9y (2)2" (2.67)

(27T)27L
where C is the Riemann zeta function.

Proof. Both sum equalities are classical and can be proved using the generating series of the
Bernoulli numbers of (2.46), respectively by identification in z = (e* — 1) x (z/(e* — 1)) for (2.65)
and in 1 = ((e* —1)/2) x (z/(e* — 1)) for (2.66).

The relationship with the Riemann zeta function is proved in |7, equation (12.38)|. The asymp-
totic is a consequence of the Stirling’s approximation and ((s) — 1 as s > 1 tends to +o0o (which
is a direct consequence of the formula ((s) = > n~*). O

Example 2.38. As an example and for later use in the sequel, we compute the coordinates of the
first kind for the particular choice ag(t) := 1 and a1(t) :=t. Let k € N. Using formula (2.48) of
Proposition 2.35 we obtain

B t* B tit+2
k Dk k— e DBr—¢ z
<ad§(0(X1)(tﬂa) ( 1) t Zt (£+2)'
Bk
Yoz §Y Dk (2.68)
Z I(j +2)!

B
— (1 k+1phr2 Dkl
(=1) Gt 1)
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where we used that

k E+1 By
k—t0)k+1—0lk—(+2

1 kE+1 By _ Biu
_(’“Ll)!z ¢ )(k+1)—£+1  (k+1)

- By; 1
Z (k—)G+2)! (E+1)

~
S I\Mw

(2.69)

I
=)

thanks to (2.66).

2.4 Interaction picture, coordinates of the pseudo-first kind

In quantum mechanics, the interaction picture is an intermediate representation between the
Schrodinger picture (in which the state vectors are time-dependent and the operators are time-
independent) and the Heisenberg picture (in which the state vectors are time-independent and the
operators are time-dependent). It is particularly useful when the dynamics can be written as the
sum of a time-independent part, which can be solved exactly, and a time-dependent perturbation.
In this section, we introduce and study a formal counterpart of this situation, that can be useful
for applications.

2.4.1 A new formal expansion

In this paragraph, we therefore consider I = [0,¢] to isolate the role of Xy. For some given
a; € LY(Ry;K) for i € [1,q], we assume that a takes the form

Theorem 2.39. Fort € Ry, 2* € A(X) and a of the form (2.70), the solution x to (2.8) satisfies
x(t) = " exp(tXo) exp (2 (t, X, a)), (2.71)

where Zoo(t, X, a) := Log.{b:}(t) with the notation of Definition 2.19 and

—(t—s)X. (t—s)X. L (- k k
bi(s):=e 0 Zai(S)Xi e 0 = Z = (t—s)"a;i(s) adx, (X;) (2.72)

i=1 i=1 k=0
i.e.
Zo(t,X,a) = Z ﬂ / (r — O e (n— 1) a;, (17) - ai, (1) dr
mr Jeerny k! kq! (2.73)
[+, (06, ) adiy (X)) adi (X))
where the sum is taken over r € [1,00], m € [1,7], r € N, ky,..., k. € N and i,...,i, € [1,4].

Proof. Let t > 0. A key point is to remark that all the definitions and results from the previous
paragraphs which are stated for a finite set I of indeterminates are still valid if I is an infinite set.
For mathematicians with a background in analysis, all equalities can be understood “in the weak
sense” as equalities holding along each monomial. Therefore, for a set of unknowns {Yz. i rew,ic[1,q]»
the solution to

o (D ko ,

2(s) = z(s)v(s) where ~(s):= Z x (t —s)%a;(s)Yk, (2.74)

ki

2]
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with initial data z(0) = 1 satisfies, thanks to Theorem 2.26,

2(t) = exp (Logo {7e} (1)) - (2.75)
Let © be the unique algebra homomorphism from -Z({Yk,z‘}kemem,q]}) to A(X) defined by

O(Yy,;) = adk, (X5). (2.76)

Then zg(s) = O(z(s)) satisfies on the one hand 2¢(0) = 1 and Zo(s) = ze(s)b:(s), and on the
other hand zg(t) = exp (Log,,{b:}(t)).
We introduce the change of unknown y(s) := z(s)e(*=*)X0, Then,

y(s) = @(s)et=9%¥0 _ z(s5) Xpelt=5)X0 = x(s) (Z ai(s)Xl-) e(t=9Xo — 4 (5)b(s). (2.77)
i=1

Hence

a(t) = y(t) = y(0)ze(t) = x*e" exp (Log., (b} (1)), (2.78)
which concludes the proof of (2.71). O
Remark 2.40. In expansion (2.71), the choice to write exp(tXo) to the left of the formal logarithm

is arbitrary. One could obtain a similar formula with exp(tXo) to the right. Depending on the
application one has in mind, both choices can be helpful.

2.4.2 Coordinates of the pseudo-first kind

Proposition 2.41. Let ¢ € N*, X = {X¢, X1,..., X} and B be a monomial basis of L(X). There
exists a unique set of functionals (ny)pes, with n, € C° (]R+ x LY (Ry; K)Y, K), such that, for every
a; € LY(Ry;K) andt >0

Zoo(t, X,a) =Y my(t,a)h in  L(X). (2.79)
beB

Moreover, nx, = 0 and the functionals n, are “causal” in the sense that, for every t > 0, ny(t,a)
only depends on the restrictions of the functions a; to [0,t].

Proof. For every r € N* and v € N we introduce the finite sum of brackets
-1 m—1 T_tkr ¢ k1
2 X a) = 3 U / =7 D () a () dr
mr Jreruwy k! ky! (2.80)
For
[ [ad%, (Xi,), ady, ™ (X, )], - adR (X))

where the sum is taken over m € [1,7], r € N, kq,..., k. € N such that k& +--- + &k, = v and
i1,-..,ir € [1,¢]. For each term in this sum, the bracket

[+ [adk (X5,),adi " (Xi, )], - adf (X)) (2.81)

has a unique expansion on the basis B,, = {b € B; n(b) = r and no(b) = v}. By summing
these expansions we obtain causal functions (75)sep,, in C® (R4 x L*(R4;K)%; K) such that the
following equality holds in £(X)

Zgéu(t7X7 a’) = Z nb(tva')b (282)
beB,.,
By summing these relations, we get (2.79). O

Definition 2.42 (Coordinates of the pseudo-first kind). We call the functionals np coordinates of
the pseudo-first kind associated to the (monomial) basis B of L(X), by analogy with coordinates of
the first kind.

20



2.4.3 Structure constants and estimates for the coordinates

At the formal level, series such as (2.79) make sense. However, in the sequel, we will need to
give a meaning to such series where the indeterminates are replaced by true objects. To make
sure that the resulting series converge, it will be necessary to have estimates on the coordinates of
the pseudo-first kind. In this paragraph, we suggest a criterion based on the structure constants
of L(X) relative to the underlying monomial basis to obtain such estimates.

Definition 2.43 (Structure constants). Let B be a basis of L(X). For every a,b € B, since
[a,b] € L(X), it can be written as a finite linear combination of basis elements, say

[a,0] =) A5 4c, (2.83)

ceB

where the coefficients g, € K and only a finite number of them are non-zero. The set of these
coefficients are called the structure constants of L(X) relative to the basis B.

Definition 2.44 (Geometric growth). Let X be a finite set and B be a monomial basis of L(X).
We say that B has geometric growth when there exists I' > 1 such that, for every by,by € B,

> g, b, | < TIIHIEL (2.84)
ceB

Definition 2.45 (Asymmetric geometric growth). Let ¢ € N*, X = {X, X1,...,X,} and B be a
monomial basis of L(X). We say that B has geometric growth with respect to Xo when, for every
k € N, there exists T'(k) > 1 such that, for every by, by € B with n(by) + n(bs) <k,

D by byl < T(R)PHFIERL (2.85)
ceB

Asymmetric geometric growth is a weaker notion than geometric growth (which can be seen
as asymmetric geometric growth with a constant I' independent on k). Up to our knowledge, it is
not known if the usual bases of £(X) have these properties. These definitions therefore lead to the
following algebraic open problem, which will be studied in a forthcoming paper, where we intend
to prove, in particular, that there exist bases, useful for control theory, satisfying these properties.

Open problem 2.46. Which monomial bases B of L(X) have (asymmetric) geometric growth?

For such bases, we can prove nice estimates for the coordinates of the pseudo-first kind. We
start with an estimate concerning the decomposition of the Lie brackets involved in (2.80).

Lemma 2.47. Let ¢ € N*, X = {Xo, X1,...,X,}, B be a monomial basis of L(X) with geometric
growth with respect to Xo. For every r > 1, there exists C(r) > 1 such that, for every iy,..., i, €
[1,q] and k1, ...,k €N, for every b € B,

[+ i, (X2,), adlyy (X, )2, (X)), 0| < )P, (256)

where the bra-ket denotes the component of the Lie bracket along b in its decomposition on B.

Proof. Since the basis is monomial, by homogeneity, the bra-ket vanishes when |b| # ki +- - -+k,.+7.
Moreover, for each j € [1,¢], there exists b; € B with n(b;) = 1 and |b;| = k; + 1 such that

adljgo (X;,) = £b; in L(X). Indeed, the homogeneous part of £(X) containing k; times X, and

J

X, once is of dimension one. Then, repeated nested application of (2.85) yields

|<[ .. [br7 br71]7 L b1]7 b>8| < F(z)kr+kr—1+2r(3)kr+kr—l+k‘7‘72+3 . -F(T)kr+"'+k1+r

< F(T)(7“71)(k:1+~--+kr+r)7 (287)

since the sequence I is non-decreasing. This proves the desired estimate with C(r) :=T'(r)"~1. O

21



Proposition 2.48. Let ¢ € N*, X = {Xo,X1,...,X,}, B be a monomial basis of L(X) with
geometric growth with respect to Xo. Then, for every M € N*| there exists Cyy > 0 such that, for
every T >0, u € L*((0,T);K?), b € B with n(b) < M and t € [0,T],
Clb‘ n n(b
| (£, w)| < |b—f|v{t °O )| 70 (2.88)

Proof. We may assume that (C(r)),en~ given by Lemma 2.47 is non-decreasing. Let M € N* and
b € B be such that n(b) < M. We deduce from (2.73) that

_1\ym-—1 Ty — ko T — ky
1 (t,u) :Z(l)/eT(t)( k,f) b kllt) wj, (7r) - ug, (1) d7

mr

(2.89)
(I fad, (X,), ad (X, )], - adf, (X,)],)

where the sum is taken over r € [1,00], m € [1,7], r € N kq,..., k. € Nand j1,...,7- € [1,q].
If the summand bra-ket in (2.89) does not vanish, then » = n(b) and ky + - - - + k, = no(b). Thus
the sum in (2.89) is taken over the finite set 7 = n(b), m € [1,n(b)], k1,...,k € N such that
ki + -+ k. = no(b) and 7j1,...,j, € [1,q], whose cardinal is bounded by M2/*l¢™. Moreover,
for every r,m,ky,...,ky,j1,...,j- in this set, the associated term in (2.89) is bounded, thanks to
Lemma 2.47, by

th ke N .o n(b)!
ol HHUHLl(O,t)C(T)lb‘ < O, (2 C(r))\bl |§)|') (2.90)

thanks to (3.2). Thus

1 b n
Pt )] < MM (2 O() e (2.91)
which gives the conclusion with, for instance, Cys := M!M¢M2M+1C(M). O

2.5 Infinite product, coordinates of the second kind

In this section, we present an expansion for the formal power series z(t) solution to (2.8) as
a product of exponentials of the members of a generalized Hall basis of £(X), multiplied by
coefficients that have simple expressions as iterated integrals, called coordinates of the second kind.
This infinite product is an extension to generalized Hall bases of Sussmann’s infinite product on
length-compatible Hall bases [68], suggested in [45].

2.5.1 Lazard sets, Hall sets and generalized Hall bases

Definition 2.49. A Lazard set is a subset B of Br(X), totally ordered by a relation < and such
that, for every M € N*, the set B[y v of elements of B with length at most M, denoted By ar) =
{b1,...,bgr1} with k € N and by < --- < byy1 satisfies

beYy =X,
by € V1 = {ad] (v);j € N,v € Yo \ {b1}}, (29
bk+1 S Yk = {adik (’U);j S N,U S Yk,1 \ {bk}}
and
By, N Ye = {brs1}, (2.93)
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where condition (2.93) can equivalently be written
By N Y1 =0, (2.94)

where Vi1 := {ad},  (v);j € Nyv € Vi \ {bps1}}-
The elements adie (v) for £€{0,...,k+1}, j e Nand v € Yy \ {b,} are all different in Br(X)
(identify their left and right factors iteratively) and all belong to .
Viennot proves in |70, Proposition 1.1 and Theorem 1.1] that properties (2.92) and (2.93) ensure
that eval(B) is a linearly independent and generating family of £(X). In particular, eval : Br(X) —
L(X) is one to one on B, thus B can be regarded as a set of Lie monomials.

Definition 2.50 (Hall set). A Hall set is a subset B of Br(X), totally ordered by a relation < and
such that

e X CB,

e if bbby € Br(X) and b = [by,b2] then b € B iff b1,by € B, by < by and either ba € X or
A(b2) < by,

o for every by,ba € B such that [by,be] € B then by < [by, ba].
When b = [by, [b3, bs]] € B then by is “sandwiched” in between b3 and b, since bg < by < b.

Remark 2.51. A Hall set can be built by induction on the length. One starts with the set X as
well as an order on it. To find all Hall monomials with length n given those of smaller length,
one adds first all [by,ba] with by € B, |b1] = n—1, by € X and by < by. Then for each bracket
by = [b5, 5] € B with length |ba] < n one adds all the [by,ba] with by € B with |b1] = n — |ba| and
by, < by < by. Finally, one inserts the newly generated monomials of degree n into an ordering,
maintaining the condition that by < [by, ba].

Viennot proves in [70, Corollary 1.1] that a subset B of Br(X) is a Lazard set iff it is a Hall
set. With a slight abuse of naming, we call B a “generalized Hall basis of L(X)".

Definition 2.52 (Generalized Hall basis). B is a generalized Hall basis of L(X) if B is a Hall set
or equivalently a Lazard set.

Remark 2.53. Historically, Hall bases where introduced by Marshall Hall in [38], based on ideas of
Philip Hall in [39]. In his historical narrower definition, the third condition in Definition 2.50 was
replaced by the stronger condition: for every by,bs € B, by < by = |b1| < |ba|. To avoid confusion
with the generalized definition, we name them length-compatible Hall bases in the sequel.

Two famous families of generalized Hall bases of £(X) are the Chen-Fox-Lyndon basis (see |70,
Chapter 1]) and the historical length-compatible Hall bases, for which b; < be = |b1| < |ba].

Example 2.54. For instance, with X = {X1, X2}, the elements with length at most 4 of each gen-
eralized Hall basis B of L(X) with a length-compatible order < such that X; < Xo are: Xi,
Xo, [X1,Xa], ad%, (X2), [Xa, [X1, Xo]], ady, (X2), [Xz,ad%, (X2)], adk,([X1, Xo]). Note that
[X1, [Xo, [ X1, X2]]] does not belong to B because A([Xa,[X1,X2]]) = X2 is not smaller than X,
and the following equality holds in L(X)

[ X1, (X2, [X1, Xa])) = [[X1, X, [ X1, Xa]] + [Xa2, [X1, [X1, Xo]]] = [X2, ad¥, (X2)] (2.95)

This illustrates how Definition 2.50 prevents elements from Br(X), whose evaluations in L(X) are
linked by Jacobi relations, to appear simultaneously in B.
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2.5.2 Infinite product on a generalized Hall basis

Definition 2.55 (Infinite product). Let J be a totally ordered set and (S7);c; be a family of A(X)
such that

o foreveryj e J, (S7,1) =1
o for every o € I* with o # 0, the set {j € J;(S7, X,) # 0} is finite.

— . ~
The infinite product HJSJ is the element of A(X) defined by
JE

< .
nsi=5 PrXx,, 2.96
-y 200

where Py =1 and P, is the finite sum

o]
Pr=> Y > (X)) (S X, (2.97)

n=0 oy,..,0n€I", J1,-sjn€J,
X(,lu-X(,n:X(7 J1>>Jn

The following lemma is the key point to generalize rigorously Sussmann’s infinite product on
length-compatible Hall bases, to generalized Hall bases.

Lemma 2.56. Let B be a generalized Hall basis and (ap)pep be a family of K. The infinite product

— ~
bHBeO‘bb is well defined in A(X). Moreover, for every o € I*,
€

T asb ha b
< IT o ,XU> _ < T ,XU> (2.98)
beB bEB[[l"U”]

where By 5] is ordered by the induced order of B.

Proof. B is a totally ordered set and, for every b € B, (e*®,1) = 1. Let ¢ € I* with |o| > 1. For
a € K and b € B, the property (e®®, X,;) # 0 requires |b| < |o|. Indeed

+oo L

ab _ Qg
e —1=)" o7b (2.99)
k=1

has non vanishing coefficients only on monomials X, with length |o’| > |b|. Thus the set {b €

B, (e®® X,) # 0} is finite. This proves that the infinite product is well defined in A(X) and, by
(2.97), the formula (2.98) holds. O

2.5.3 Coordinates of the second kind

Definition 2.57. Let B be a generalized Hall basis of L(X). The coordinates of the second kind
associated to B is the unique family (&)pes of functionals Ry x Li (R ;K!) — K defined by

loc

induction in the following way: for everyt >0 and a € L (R, ;K!)

loc
o ix.(ta) = fotai, foriel,

o forbe B\ X, there exists a unique couple (by,be) of elements of B such that by < by and a
unique mazimal integer m € N* such that b = ady’ (b2) and then

&p(t;a) == %/0 §§f(r;a)£b2(7;a) dr. (2.100)
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Formula (2.100) indeed defines continuous functionals on L' and the following estimates hold.

Lemma 2.58. Let a; € LL _(Ry;K) fori e I. For everybe€ B and t > 0,

loc

()| < plla(®)lllall ), (2.101)

b
&t @)l < lallPl g (2.102)
Proof. Estimate (2.101) is valid for b € X because £x,(t) = a;(t) for i € I and propagated

by induction on b using the recursive definition (2.100). Estimate (2.102) is obtained by time-
integration of (2.101) for each b. O

2.5.4 Infinite product expansion of the solution to the formal ODE

Theorem 2.59. Let B be a generalized Hall basis of L(X). Let T >0 and a; € L'((0,T);K) for
i € I. For every x* € A(X), the solution to the formal ODE (2.8) satisfies, for every t € [0,T],

-
a(t) = a* [ et tP. (2.103)
beB

Proof. Tt is sufficient to prove the formula with * = 1. To simplify the notations in this proof, we
write &,(t) instead of & (¢;a). By Lemma 2.56 it is sufficient to prove that, for every ¢ € [0, 7] and
cel”

X o e®b x 2.104

Leto € I*, M :=|o|, k e Nand by, ...,bxy1 and Yy, ..., Y11 be as in (2.92). The equality (2.104)
can equivalently we written

(z(t), Xo) = <€£bk+1(t)bk+1 . eEbl(t)b17XU> ) (2.105)
We define xo(t) := x(t) and, for j € [1,k + 1],
;(t) = a(t)e S ®br .. o=t (Db, (2.106)
We prove by induction on j € [0,k + 1] that
() =a;(t) | D &t)b]| and z;(0) = 1. (2.107)
beY;

It is clear for j = 0 because xo(t) = z(t), Yo = X and £x, (t) = a;(t) for i € I. Let j € [1,k +1].
We assume (2.107) holds at step j — 1. We deduce from the definition of x;(t) that

z;(t) = x5 (t)e S Db, (2.108)
Since &, (0) = 0, x;(0) = 1. Moreover,

i) =i () | Y &b | e W —ay y (1)g, (t)bje
bey; 1

=z (e[ 3T )b | eSO (2.109)
beY, (b}
& (1) .
2 UD DD D S AGEL )

meN beY; _1\{b;}
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which ends the proof by induction.
We deduce from (2.94) and (2.107) for j = (k+1) that xxy1(¢) — 1 has non vanishing coefficients
only on monomials X, with |0’| > |o|. Therefore, by (2.97),

(x(t), X,) = <xk+1(t)65bk+1(t)bk+l .. .efbl(t)b17Xo_> = <65bk+1(t)bk+1 PINOLN Xa> . (2.110)

which concludes the proof. O

3 Technical tools about functions and vector fields

In this section, we state classical definitions and technical results about functions and vector fields,
that are used in the sequel. For the sake of completeness, the proofs, although classical, are
provided.

Throughout the whole paper, d € N* denotes the dimension of the state space for the considered
ordinary differential equations. We work locally, in neighborhoods of the origin 0 € K?. For ¢ > 0,
Bs denotes the closed ball of center 0 and radius ¢ in the state space K¢,

3.1 Functional spaces for finite or analytic regularity

3.1.1 Conventions for multi-indexes

For a € N* and a multi-index o = (a,...,a%) € N, we use the notations |a| := al + -+ + a®

9% =02 ...9°" and a! := all. .- o
=0y o I ! L

)

Lemma 3.1. The following estimates hold
VneN, n'e"e<n!<(n+1) e (e (3.1)
Va € N* Vo= (a!,...,a%) e N?, 27 Dlaljg)l <ol < |af! (3.2)

Proof. The first inequality can be proved using classical series-integral comparison and the second
by iterating plg! > 2= (P9 (p 4 ¢)! for every p,q € N. O

3.1.2 Regular functions and vector fields

Definition 3.2 (Regular functions). Let a,b € N* and K a compact subset of K. Let k € N. We
endow C*(K;K®), the space of functions whose real-derivatives are well-defined and continuous up
to order k on an open neighborhood of K to K® with the norm

b
1
Ifllex == > 0% filloe= o), (3-3)

=1 |al<k

where the sum ranges over multi-indezes o € N* whose sum is at most k and f1,..., f, are the
components of the vector-valued function f. We denote by C(K;KP®) the intersection of these
spaces over k € N.

Definition 3.3 (Regular vector fields). Let § > 0 and k € N. We define C¥ := C*(Bs; K?) the space
of vector fields on K defined and regular in a ball of radius §. We denote by C$° the intersection
of these spaces over k € N.
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3.1.3 Analytic norms

Definition 3.4 (Analytic norms). Let a,b € N* and K a compact subset of K*. We define
C¥(K;Kb) the space of real-analytic functions defined on an open neighborhood of K to K°, as
the union for r > 0 of the spaces C*" (K ;KP®), which are the subsets of C>®(K;KP®) for which the
following norm is finite

b la|
r (87
Al = D7 10 fill ey (3.4)
i=1 N4 ’

Definition 3.5 (Analytic vector fields). Let r,6 > 0. We define C;" := C¥"(Bs; K9) the space of
real-analytic vector fields on K¢ defined in a ball of radius 6. We denote by Cy the union of these
spaces over r > 0.

Lemma 3.6 (Algebra property). Let a € N*, K a compact subset of K%, r > 0. Then, for every
fyg € C¥T(K;K), one has
£l < LA Mgl - (3.5)

Proof. Using the multivariate Leibniz formula, one has

lex|
IFell, = > 10" (Fa) oo

aeNae

3.6)
lex] (
r @ .
< 3 T 2 (5)19° o0 gl = 17, Nl
aeNae " B<a
where the sum ranges over all multi-indexes 8 € N such that 5; < a; for each i € [1,d]. O

Lemma 3.7 (Control of gradients). Let a € N*, K a compact subset of K®. For everyry > 11 > 0,
fecv(K;K) and j € [1,q],

1 T2 -t
m&musrleﬁ) I1£Il,, (3.7)
In particular, if ro < erq,
1
. < — . 3.8
05511, < ~—=— I, (38)

Proof. We start with the first estimate (3.7). One has

laf [ate;|
r e 1 r (a+e) nare.
10361, = 3 S0 iy = = 3 o gt
aeNae aeNae J
late;]
1 r T a+e;)!
N G (39)
T1 acNe ) (o

IN

Sl s (2

— supn | — | .

71 "2 nZIi i)

For x € (0,1), let C(x) := sup,>; na" = sup,>;exp(Inn + nlnz). Differentiating inside the
exponent with respect to n € [1,+00) yields

1
%(lnn—l—nlnx):E—l—lnx. (3.10)

Since x < 1, the derivative is negative for n large enough. For = > 1/e, the global maximum is for
n = —1/Inz. So its value yields the bound

C(z) < (—elnz)™". (3.11)
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For x < 1/e, the supremum over n is achieved for n = 1 and its value is z. Since z < (—eln x)_l
for z € (0,1), the bound (3.11) is looser and valid for every = € (0, 1).

The second inequality is a consequence of the estimate In(14+0) > o/(e—1) foroc <e—1. O

Remark 3.8. The first estimate (3.7) is classical (see e.g. [56]). The second estimate (3.7) is a
simplified version, restricted to the case when the relative radius loss is small enough. This is the
form under which we will use Lemma 3.7 in the sequel since we consider small radius losses.

3.2 Well-posedness of ordinary differential equations
The nonlinear differential equations
(t) = f(t,z(t)) and x(0)=0p (3.12)
will be studied in the following classical frameworks.
Lemma 3.9. Let 6,7 >0 and f € L'((0,T);Css) such that || f|l10,);c0) < 8-
1. For each p € Bg, there exists a unique function z(-; f,p) € C°([0,T]; Bas) such that

Vvt e [0, T], x(t; f,p) zp—i—/o f(ryz(r; f,p)) dr. (3.13)

2. If f € CO([0,T) x Bas; K?) then z(-; f,p) € CH([0,T]; Bas) and satisfies (3.12) pointwise.
3. If f € C%([0,T] x Bas; K%), the map p € Bs + z(-; f,p) € C°([0,T); Bas) is smooth.
4. If g satisfies the same assumptions as f, for each p € Bs and t € [0,T],
(t; f,p) — x(t;9,0)| < |1f = 9llrco.0:c0) exp ([ fllLr(o,0):01)) - (3.14)
Proof. We proceed step by step. Let X := C°([0, T]; Bas).

1. Define © : X — X by O(z)(t) :=p + fo (r))dr for z € X. Thanks to the smallness
assumption on f, ©(x)(t) € Bas. Let n € N* be such that || fl|7: o r).c1)/n! < 1. By the
Banach fixed-point theorem, ©™ has a unique fixed point, which is also a fixed point of ©.

2. If f is continuous, then t — ©(x(t; f,p)) belongs to C([0, T]; Bas) and its derivative at time ¢
is f(t,x(t; f,p)-
3. If f is smooth, let p € Bs, T := x(-; f,p) and define F' : Bs x X — X by

t
Ve, Flpa)t) =) -p- | f(ra(m)dr (3.15)
0
Then F is of class C°°, vanishes at (7, %) and 2 (p, T) is a bijection on X. By the implicit
function theorem, the map p — x(-; f,p) is C* on a neighborhood of p.

4. This follows from a standard Gronwall’s lemma argument.

O

Lemma 3.10. Let 4,6, > 0, ¢ € N* and f € C¥(Basx Bga(0,6,); K9). Let T := &/ f||co. For each
p € Bs and u € L*((0,T); K9) with ||u||p= < 6., there exists a unique solution x € C°([0,T]; Bas)
to

(3.16)

denoted x(t; f,u,p). Moreover, the map (u,p) — z(:; f,u,p) € C°([0,T); Bas) is real-analytic on
B§ X BLoc 0,7 (0, u)
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Proof. Existence stems from Lemma 3.9. Analyticity is a consequence of the implicit function
theorem, which yields the analyticity of the implicit function when the direct function is analytic
(see e.g. [21, Theorem 4.5.3]). O

3.3 Estimates for differential operators and Lie brackets
As is usual, a smooth vector field f is identified with the first-order linear differential operator fV
acting on smooth functions and defined as (fV)¢ : p— f(p) - Vo(p).

3.3.1 Estimates for products

Lemma 3.11. Let ro > 0 and r € [ra/e,r2). Let n € N* and 6 > 0. For every fi,..., [, € C5"
and ¢ € C5"",

' n
99l < 2 () Whalley Al ol @17)

To —T1

In particular, under the same assumptions,

- 9)- (1Dl <t () Whall, -+ WAl el (3.18)

Proof. For n = 1, estimate (3.17) is a consequence of (3.4), (3.5) and (3.8). For n > 1, one applies
the n = 1 estimate n times with a radius increment (ro — 71)/n at each step. This yields more
precisely

G+ (D6l < (2 Wl WGt - 90 (61 D)ol e

n n
n
<(=%) ol LT oy

which concludes the proof because the norm (3.4) is non-decreasing with respect to r, and we can
bound n™ using (3.1). Estimate (3.18) is a direct consequence for the particular choice 11 = r3/e,
because €2/(e — 1) < 5. O

(3.19)

3.3.2 Lie brackets

Definition 3.12 (Lie bracket of vector fields). For smooth vector fields f,g, we define [f,g]V
as the usual commutator of the associated operators fV and gV, hence [f,g9]V = [fV,gV] =
(IVY(gV)=(gV)(fV) = ((fV9)—(gV[))V, where the last equality comes from Schwarz’s theorem.
In particular, [f, g|V is the operator associated to the smooth vector field [f,g] :== (f-V)g—(g9-V)f.

Definition 3.13 (Evaluated Lie bracket). Let I be a finite set of indices, X = {X;;i € I} be
indeterminates and {fi;i € I} be C* wector fields on a subset Q of K. For a formal Lie bracket
b € Br(X), we define f, = A(b), where A : L(X) — C>°(Q;K%) is the unique homomorphism of
Lie algebra such that A(X;) = f; for every i € I (see Lemma 2.7).

The vector field fy is obtained by replacing the indeterminates X; with the corresponding vector
fields f; in the formal bracket b, for instance fix, x, x5 = [f1, [f2, f3]]-

The notation f, will sometimes denote the same vector field, build under weaker regularity
assumptions, for instance f; € CI'=1 and then fy € C°.

Lemma 3.14 (Finite regularity estimate). Let k € N and b € Br(X). Let 6 > 0 and f; € C(’;Hb‘_l
foriel. Then,

k + |b‘ n; (b
1 oller < 2 1L = D! | [0 (3.20)
el
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Proof. This_estimate follows from (3.3), the algebra property that this norm satisfies and the
estimate [|07 f|lcm < (m + 1)||f||cm+1 for every j € [1,d], m € N and f € CJ"*'. O

Lemma 3.15 (Analytic estimate). Let ro > 0 and rq € [ro/e,r2). Let § > 0. Let f; € C5"™ for
i€l andb e Br(X). Then,

bl — 1)! o=t
sl < 2 (2 T

i€l

() (3.21)

T2

In particular, under the same assumptions,

lb|—1
Il < (ol =0t (2) 7 TLHAIE®. 3.2

icl

1 9\ /=t
Iler < max {1, Lo - 0 (2) 7 T s

i€l

i), (3.23)

Proof. Estimate (3.21) stems from (3.17) because, as can be checked by induction on |b], f is a
sum of at most 2/’/=1 terms of the form studied in Lemma 3.11, where ¢ is one of the vector fields
fi. Estimates (3.22) and (3.23) are direct consequences of (3.21) for the particular choice r; = ry/e
because 2e?/(e — 1) < 9 and, for every r1 > 0, || foller < max{1, =} [ folll,,- O

o
Remark 3.16. The fact that estimate (3.21) scales like the factorial of the length of the Lie bracket
is optimal, as illustrated by the following vector fields. For x € R? with |z| < 1, define

1
_17$1

fo(z) :=e1 and fi(x): es. (3.24)

Using (3.4), one checks that these vector fields belong in particular to C5"" for r = i and § = %,

with ||| folll, =1 and || f1|||, = 2. For k € N, one has
ad (£ ) = 2 (2 . (3.25)
r)=—F|——|ea= ——"F—e€a. .
o1 ok \1— 14 2T =y

Moreover, since fy is constant and fi1 depends only on x1 but is supported by es, every Lie bracket
involving f1 at least twice vanishes identically. Since these analytic vector fields “saturate” the
bounds and exhibit such a nice structure, we will use them repeatedly in our counter-examples.

3.3.3 Nilpotent Lie algebra of vector fields

Lemma 3.17. Let F be a set of C* wector fields on a subset Q of K%. If each Lie bracket with
length m of vector fields in F vanishes on ), then the Lie algebra L(F) generated by F is nilpotent
with index at most m (see Definition 2.5).

Proof. Each Lie bracket with length m + 1 or more of vector fields in F vanishes on 2. This
can be proved by expanding the bracket into monomials and then applying Dynkin’s formula
(Lemma 2.21) to recover brackets with length m inside brackets with length m + 1 or more. I

3.4 Flows, compositions and pushforwards
3.4.1 Definitions and approximations

By applying Lemma 3.9 to a time-independent vector field we obtain the following object.
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Definition 3.18 (Flow of time-independent vector fields). Let § > 0. Let f € Cis such that
Il fllco < 8. We denote by ef the flow at time one of the vector field f,

Bs — By,
of )70 20 (3.26)
p = x(1; f, p),

with the notations of Section 3.2. We will write el p instead of ef (p) to allow easier composition of
flows. If f € CS5, then el can also be seen as the zero-order linear operator on C*(Bas; K) defined

by efd 1 p s d(elp).
Lemma 3.19. Let 6 >0 and f € C}. Assume that &' :=§ — [fllco > 0. For each p € By, efp is
well-defined and e/ p € Bs. Moreover,

le/p —pl < || fllco- (3.27)

and b
||D(€f)||co < 6“ f”cg < 6”f||c§ (328)

s

Proof. The second estimate comes from the fact that D(e/), = R(1) where

R(t) = Df(e!p)R(t) and R(0) =1Id. (3.29)
Thus, by Gronwall’s lemma,

IR < |[d]|elo 1P7( It < IDflleo (3.30)
which concludes the proof. O

The exponential notation is motivated by the possibility to approximate e/ by partial sums of
the exponential series of the operator fV. It is completely legitimate in the analytic setting, as
underlined by the following result.

Lemma 3.20 (Approximation of autonomous flows). Let § > 0 and f € Cs such that || f|co < 6.
1. For each M € N, if f € CM and ¢ € CM+1(Bys; K), for each p € Bs,

M ok
Kef_z S >(¢)(p)

k=0

< Il 1Vl (3.31)

2. If f € C§5 and ¢ € C¥(Bas; K), for t small enough, for each p € Bs,

+oo L
@) =Y U9 ) (332)

k=0
and the sum converges absolutely in the sense of analytic functions.

Proof. First statement. By the first point of Lemma 3.9, €'/ (p) is well defined for every t € [0,1]

and takes values in Bys. For t € [0,1] and k € [0, M + 1], we have
dk
< e )] = ((F- V) 8) (e ). (3.33)

Thus, the considered sum is the Taylor expansion of order M of the map t — ¢(etf(p)) at t = 0
and

M
(f- V)" _ A=t :
<ef kz_%k'> (@) () = /0 (L)) (e (p) ds. (3.34)
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By induction on k € N, one checks that (f - V)¥¢ is a sum of at most k! terms of the form
(V71 f) - (VI ) (V70), (3.35)

where jo + j1 + ...+ jx = k and jo > 1. This concludes the proof of (3.31) with a constant 1
thanks to the integration in (3.34).

Second statement. Let r > 0 be such that f € C;;" and ¢ € C¥7"(Bas; K). Let v € [r/e,r).
By (3.17), for each k € N,

tk
I

(V) (@)

tF k! k
= %; (T 67,,) AN NI, (3.36)

r!

so that the sum converges absolutely in C*"" when |t|e |||, < 7 — ’. Moreover, by (3.34) with
[« tf and (3.17),

-t

where, using (3.36), the right-hand side tends to zero as M — +o0o under the same smallness
condition; so that the sum converges towards e/ ¢ in C*" when [tle|||f]], <7 — 7. O

|t|]W+1

< arsmI¢ 9D @ler (3.37)

co

3.4.2 Pushforwards of vector fields by diffeomorphisms

Definition 3.21 (Pushforward of a vector field by a diffeomorphism). Let Q,€) be open subsets
of K¢ Let 0 € CH (') be a local diffeomorphism from Q to Q. Let f € C°(Q;K?) be a vector
field. We define 0. f € C°(Q'; K?) the pushforward of f by 6 as

(0:£)(a) = (DO)jg-1(9) F(07" (a)) = (DO (@)~ F(07(a))- (3.38)

Lemma 3.22 (Chain rule for pushforwards). Let Q,Q', Q" be open subsets of K. Let 6 € C*(2; )
be a local diffeomorphism from Q to Q) and 6’ € C1(Q; ") be a local diffeomorphism from Q' to .
Let f € C°(Q;KY) be a vector field. Then, on ",

0. (0.f) = (0" 00).f. (3.39)
Proof. This is a consequence of the chain rule for differentiation, see e.g. [51, Problem 12-10]. [

Lemma 3.23 (Lie brackets of pushforwards). Let §2,€) be open subsets of K. Let 6 € C?(£2;€Y)
be a local diffeomorphism from Q to Q. Let f,g € C1(Q;K%) be two vector fields. Then, on €,

[0..f.0.9] = 0.[f, g]. (3.40)

Proof. This is a consequence of the chain rule for differentiation, see e.g. [51, Corollary 8.31]. O

3.4.3 Composition of vector fields with flows

Lemma 3.24. Let § > 0, fo € Cis andt € R such that |t||| fol|co < 0. Denote by ®q(t,p) := et7o(p)
the associated flow for p € By.

1. For each M € N, if fo, f1 € C%H, then, for each p € By,

]\/flk

M
0,0 (t. )" f1 (Bot Z add ()| < o fadkion] - Ay
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2. For each M € N, if fo, f1 € Cé‘g“'l and ad%(fl) = 0, then, for each p € Bs,

Mlk

(Po(=t)sf1)(p) = Op®o(t,p) " f1 (Ro(t, ) Z Eadfo (f1)(P)- (3.42)

This holds in particular when L({fo, f1}) is nilpotent with index < (M + 1).

3. Ifr >0, fo, f1 € Cy", then, for|t| < - for each p € Bs,

9\Hfo||

+oo Lk
(@0(~)sf1)(8) = By@o(t,0) " i (R(t,p)) = 3 1 acdh, (£1)(0) (3.43)
k=0

where, for every r' € [r/e,r) the series converges in Cof” when [t < 6|||fo|||

4. Let Hy, Hy € My(K?) and M € N*. Then

(2l Hol)™
o Hye™ Mo — N adfy, (Hy)|| < || Hy e ! (3.44)
k=0
and
+oo 1
eflo e~ Ho = yad L (Hy), (3.45)
k=0
where ad is the commutator of matrices ada(B) := [A,B] = AB — BA and || - || a sub-

multiplicative norm on My(K) such that |Id4|| = 1.
Proof. We proceed step by stem.

1. First, for each 7 € [0,t], ®o(7, p) is well-defined. Taking into account that

d _ 4 d _
77 [06@0(7:p) 7] = =0p®0(7,p) "'~ [0p®0(7, P)] Do (7, p) ! (3.46)
== *3p¢0(77p)71f6 (q)O(Tap)) 5
one obtains by induction on k € [0, M + 1] that
d* —1_ 1k
<7 [0p®o(:p)” L (@o(7,p))] = 8p@0(,p) " adf, (f1) (Po(T,)) - (3.47)
The Taylor formula
M— 1tk
3p®o(t,p) " f1 (Ro(t,p)) — 7 ad’, (f1)(p)
k=0 (3.48)
[N (s p)tad (1) (@ d
= o m pPo(s,p)” a fo(fl)( o(s,p)) ds
proves the first statement.
2. Equation (3.48) yields the conclusion.
3. Let r' € [r/e,r). Thanks to (3.21),
th [t]* k! 2e
& wi]] < (20) st s (3.49)
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so the series converges absolutely in C;’(S’T/ when 2elt| ||| foll|, < r — ', which is the case when
6[t| ||| folll,, < r—r’ because 2e < 6. The weakest bound, for ' = r/eis 2elt| ||| folll,, < (1—1/e)r
and it holds when 9|t| ||| fol|,, < r because 2e/(1 —1/e) < 9.

Moreover, thanks to (3.48) and (3.49),

3 2 LM v “1
(Po(=0)ef1)p) = D 7 2d5 ()0 < Gprlladis(lleo sup 113 Bo(s, ) o
k=0 : s€[0,t] (350)
M
émwm«%w%r)’

where A denotes the supremum in the right-hand side of (3.50) which is finite. So the sum

converges towards the pushforward under the same smallness assumption on time.
4. The last statement can be proved similarly, by considering the function ¢ — e*fo H;e~tHo,

O

3.4.4 Partial derivative of a flow with respect to a parameter

In this paragraph, we compute the partial derivative of a flow with respect to a parameter on which
the vector field depends, under a particular nilpotent assumption.

Lemma 3.25. Let J an open interval of R. Let § > 0 and f € C>®(J x Bys;K?) such that
| fllco < 6. Let Ao € J, M € N and assume that, for each A € J, ad%)\o)(f()\)) = 0. Then, for
each p € By,

O (v — (=DF o0
) (e p)M:AO => "+ 1! adj(y,) (Oxf (X)) (e 0 p) : (3.51)
k=0

This holds in particular when L(f(J)) is nilpotent with index at most M + 1.

Proof. Let © € C*([0,1] x J x Bjs) defined by O(t, \, p) := /N (p). Let py € Bs and \g € J. Let
zo(t) := etfX0)(pg) for t € [0,1]. Then, the desired derivative is yO(1, Ao, po) = 2(1) where z is
the solution to z(0) = 0 and

() = 0z f (Ao, 2o (1)) 2(t) + Oxf (Ao, wo(t))- (3.52)

Let R: (t,8) € [0,1]> = M4(K) be the resolvent associated with the linearized system at pg, which
is the solution to R(s,s) = Id and

O R(t, s) = 0uf(No, zo(t))R(t, 5), (3.53)

ie. R(t,s) = 0,0(t — s, Ao, o(s)). Then by the Duhamel formula

1
Zm:ARhWWMWwWWh

1 (3.54)
= / 61)@(7— - 17 )\0,.130(1))_18)\f()\0, 9(7— - 1) AOvl‘O(l))) dr.
0
By (3.42) of Lemma 3.24 with ¢ < 7 — 1, fo < f(Xo,-), f1 < I f(Xo,-) and p  zo(1),
1 M—1 (r— 1)k
(1) = /O > T adh ) (037 00) (wo(1) d, (3.55)
which gives the conclusion. O
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4 FError estimates in time for nonlinear vector fields

Using a classical linearization trick for smooth vector fields f, we show that the formal expansions
for linear equations of Section 2 can yield approximate formulas in the context of nonlinear ordinary
differential equations. We derive rigorous error bounds at every fixed order with respect to time,
involving finite sums or products.

4.1 Linearization trick for smooth fields

We explain how, by identifying vector fields with first-order differential operators and points on
the manifold with the operator of evaluation at this point, one recasts a nonlinear ODE driven by
smooth vector fields to a linear equation set on a larger space of operators on smooth functions.
This well-known method is notably used in [2] and [65].

4.1.1 Definition of an operator acting on smooth functions

When T > 0 and f € C°([0,7] x K9) satisfies [ fllz1 (coy < 1, we take the nonlinear ODE (3.12)
back to a linear framework by considering, for every ¢ € [0, T the linear operator L(t) on C2°(K¢; K)
defined, for ¢ € C°* (K% K), by

L(t)p : pr—= ¢ (x(t; f,p)).- (4.1)

L(t)p is of class C*™ as a composition of C* functions, by the third statement of Lemma 3.9.
L(t)yp is compactly supported in K¢ because ¢ is and |z(t; f,p) — p| < 1 for every p € K¢, by the
first statement of Lemma 3.9 (which is of course invariant by translation of the origin). We don’t
specify the dependence of L(t) with respect to f to simplify the notations.

For every p € K%, the map ¢ € [0,T] — (L(t)p)(p) belongs to C*([0,T];K) and satisfies, for
every t € [0, 77,

d

S (L)) = Do(w(t: £.)) £ (12t £.0) = (LOFD) - V)e) (0)- (4:2)

Thus, L solves the following linear equation

d
L) = LA)(f()- V) (4.3)

in the weak sense explicited above. For every fixed t € [0, T,
t
Ve € CX(RLI) VP €KL (L)) = 90)+ [ (L) Ve))@har, (44)

where the symbol fg is the Lebesgue integral on L'((0,t); K). We will use the following notation
to refer to this property:

L) = 1d + /0 L(D)(f(r) - V) dr. (4.5)

In the sequel, all integral equalities between operators on C°(K%; K) should be understood in this
weak sense (after evaluation on a test function and at a point). Here the right-hand side refers to
the composition of two operators on C°*(K%; K): L(t) and ¢ — (f(t,-) - V)i, i.e. we identify each
vector field with a first-order differential operator on smooth functions.

Equation (4.3) is now a linear differential equation satisfied by the object L(¢) (in a much larger
space), so one can hope to apply the linear results of the previous sections.
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4.1.2 Approximating sequence

In order to approximate the operator L(¢), it is natural to introduce the sequence (L;);en of
time-dependent operators on C2° (K% K) defined, for every t € [0, T], by Lo(t) := Id and, for j € N,

Lia(t) = / Li(r)(f(r) - V) dr, (4.6)

where this definition should be understood in the weak sense. Hence,
L= [ (F(7)- D) (f(m) W)dr = [ (7(5) - V) (fm) - V)dr, - (47)
0<Tj < <71 <t T (@)

where the integration domain is defined in (2.14). Then, for every j € N, L; is “of order j with
respect to 7, and a differential operator of order at most j (with respect to x) on C2°(K%; K). And
this sequence indeed allows to approximate L(t) in the following sense.

Lemma 4.1. For each M € N, there exists Cpy > 0 such that, for each T > 0, f € C>°([0,T] x K%)
and ¢ € C°(K%K), for each t € [0,T),

M
LO =S L0 | o < Cul I lpllevsn: (43)
j=0 co

Proof. Let p € K% Thanks to Lemma 3.9 (for § large enough), z(7; f, p) is well-defined for 7 € [0, T
and z(-; f,p) € C1([0, T); K%). Thus, for each 7 € [0,7],

plalrs £.9)) = o)+ | " (Fm) - V) (@) alm: £p) dm (49)
By iterating this formula, we obtain for ¢ € [0, 7],
M
oGt foo) = o)=Y [ () ¥) (1) V) (@) dr
j=1"7Txn () (4.10)
= [ ()9 () V) @) (alrarss £.9)

Tin1)(t)

which concludes the proof. O

4.2 TIterated Duhamel or Chen-Fliess expansion

The approximating sequence for the operator L(t) yields the following straight-forward estimate
for the iterated Duhamel or Chen-Fliess expansion of the state.

Proposition 4.2. For every M € N, there exists Cy > 0 such that, for every § > 0, T > 0,
f € Ll((07T>7C% mc;é)) with ||fHL§w(CO) < 67 pe Bs and pe CM+1(BQ5;K>7 fOT each t € [OaT]7

M

e (a(t: f.p) =3 /T “ () - V) (F(m1) - ) ) (@) ) dr| < CurllF 1N Il
j=0""7G
) z (4.11)
n particular
M
i f) = 3 /T » () - V) (F(r) - 9) ) ) (p) dr| < OIS0 (412)

Hence, if f € L>((0,T);C), both estimates correspond to a bound scaling like t*+1.
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Proof. Estimate (4.11) is a direct consequence of Lemma 4.1. Indeed, by density of C2°([0, T] x K¢)
in L1((0,7);C21), one can apply Lemma 4.1 to a sequence f,, of regularized extended versions of f.
By the fourth point of Lemma 3.9, the solutions x,, converge towards z. Estimate (4.12) follows
by applying (4.11) to coordinate functions. O

4.3 Magnus expansion in the usual setting

In Section 4.3.1, we state a precise estimate of the difference between the exact flow and the
exponential of its truncated logarithm. In Section 4.3.2, we show that this estimate implies a
similar estimate for the CBHD formula. Section 4.3.3 is devoted to a technical result used in the
proof, which transposes to vector fields a formal integral identity.

4.3.1 Standard error estimate in time

The following estimate can be viewed as a refined version of classical time-focused estimates (see
e.g. [58, Proposition 4.3]). It bears a lot of similarity with [29, Theorem 1.32], but is both easier to
state and to prove in our flat setting since [29] is concerned with the truncated logarithm of flows
in general Riemannian manifolds. We propose a proof for sake of completeness, and because this
precise estimate is the founding principle of the new estimate, proved in the next section.

Proposition 4. 32 For every M € N, there exists dpr, Cpy > 0 such that, for every § > 0, T > 0,
f € LY(0,T);C° N Cly) with Hf”LlT(cM?) < oy min{1;d}, p € Bs and t € [0,T] then

2(t: £,p) = e Dp| < Curll FI2 e (4.13)
where Zp(t, f) := Logp {f}(t) is the vector field introduced in Definition 2.19.
Hence, if f € LOO((O,T),C%Q) this estimate corresponds to a bound scaling like
Moreover, if f(t,x) = >, ui(t) fi(z) with u; € L'((0,T);K) and f; € C25 N Css, then, for
each monomial basis B of L(X),

tM+l

Zut )= Y. Gltuw (4.14)

beB[1,m]

where the functionals (, are the associated coordinates of the first kind and f, are the evaluated
Lie brackets (see Definitions 2.27, 2.29 and 3.13).

Proof. For M =0, Zy(t, f) = 0 thus (4.13) holds with Cy = 1 because |z(t; f,p) — p| < [|fllL1(co)-
From now on M € N* is fixed. By Definition 2.19, there exists C}; > 0 such that, for every § > 0,
T >0, feL(0,T);Cas ") with || fll p1car-1)y < L and t € [0, 7]

||L0gM{f}(t)||036 < CJ/\4Hf||L1((o,t),cM*1)' (4.15)

25

In particular, for every § > 0, T > 0, f € Ll((O,T);C%_l) with || f]|z1(cm-1) < min{1;8;0/C), 1,
for every p € Bs and t € [0,T]

x(t; f,p) is well defined and belongs to Bas,
o for every s € [0,1], estogm /1) p is well defined belongs to Bas.

This happens in particular when || f||z1(cm -1y < dpy min{1;0} with 657 := min{1;1/C,}.

From now on, we fix 6,7 > 0 and f € L*((0,T);C/") with £l 2 a2y < Oar min{1; 0}
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In order to use the operators L(t) defined in Section 4.1, we assume moreover that f €
C>([0,T] x K%). This is not restrictive because C°([0,7T] x K9) is dense in Ll((O,T);C%2) and
both sides of (4.13) are continuous for the L!((0,T); C%Q) topology on f.

Step 1: Construction of the formal logarithm. We introduce Z;(¢, f) the finite sum of

terms “of order at most M with respect to f” in the following formal series (recall the formal series
for log(1 + x)):

m

log L(t) = > # > Li) (4.16)

meN* FEN*

i.e. we define

Zut.) =33 S L 010 (417)

where N7 is defined in (2.13). For instance,

Zs =Ly + (L2 — ;L%) + (L3 — % (L1Ly + LoLy) + ;)L?) . (4.18)
Then, by (4.7),
M M (—1)m-1
ZutH =33 Sl [ ()9 () Wy (419)
r=1m=1 reNm Te(t)

A priori, Zy(t, f) is thus an inhomogeneous differential operator on C°(K%; K), of order at
most M. Using Lemma 4.6 (see below in the next paragraph) and Definition 2.19, Zy,(t, f) =
Log, {f}(t) and satisfies (4.14). Thus Zy/(t, f) is both a smooth vector field on K¢ and a first-
order differential operator, which we identify.

Step 2: Strategy for the proof of the estimate. The key observation is that it is sufficient
to prove that there exists Cp; > 0 (independent of §, T, f) such that, for every p € Bs, t € [0,T]
and ¢ € (K% K),

|(2) = D) (@)p)| < Curl I Il crrn - (4.20)

Then, the conclusion follows by considering an appropriate C3° truncation of the coordinate func-
tions p; : © € K¢+ x; € K. To prove (4.20), we will decompose the difference in three terms

M M M 7k M VA
VA zZ
Loe® = L= L |+ (> L =Y S +< kﬂf—e”f) (4.21)
§=0 §=0 k=0 k=0

The first term is estimated in Proposition 4.2.

Step 3: Bound for ) L;—>" Zk—% By (4.17), this operator is a (finite) linear combination of
terms of the form Lj, (t) - -- L;, (t) where p € N*, ji,...,j, € [I, M] and M+1 < ji+...+j, < M.
Indeed, Zys(t, f) is also the finite sum of terms “of order at most M with respect to f” in the formal
series (4.16). Thus, there exists C}; > 0 (independent of 4,7, f) such that, for every p € Bs,
t €10,T] and ¢ € C (K% K),

M M ZM(t f)k 1" M+1
dLi(t) = Y = | (@) < CUIFI e lellene (4.22)
j=0 k=0
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Step 4: Bound for Zk—flgf — e#M, Using Lemma 3.20 for the time-independent vector field
Zy(t, f) (where ¢ € [0,T] has been fixed), estimate (3.31) yields for every p € Bs, t € [0,T] and

¢ € C2(K%K)
M k
(eZM“’” I ) (#)(2)

k=0

< 120t DI IV @l (4.23)

We deduce from (2.24) the existence of C}j; > 0 (independent of §, T, f) such that for every t € [0, T
1201 (8 Plless < CRIF I Lo, c226-1)- (4.24)

Hence, for every p € Bs, t € [0,T] and ¢ € C°(K% K)

o Zur(t, )
MY,
(ezw,f) -y At ) ()| < SIS IVellew. (425)
k=0
Gathering (4.8), (4.22) and (4.25) concludes the proof of (4.13). O

4.3.2 Campbell Baker Hausdorff Dynkin formula

We deduce from Proposition 4.3 the following estimate for the classical CBHD formula with ¢
time-independent vector fields.

Corollary 4.4.2 For every M € N, there exists dpr, Cpr > 0 such that, for every 6 > 0, ¢ € N¥,
fiy-ooy fq €CH N CLs with Z1gqu | filloarz < 0pg min{1;6},

Hefq oo eft _ GCBHDM(f1,fq)

L S OulfIM (4.26)

[

where CBHDy(f1, ..., fg) = Logy{f}(q), where the time dependent vector field f is defined by

f(t,x) €[0,q] X Bas = 231:1 Lij—1,7() fi(z) and || f]| :== ”fHLl(cMQ) = Z1§j§q 1 fillgarz -
Moreover, for each monomial basis B of L({X1,...,Xq})

CBHDum(f1,- fg) = D aufo (4.27)

bGB[[l.MIl

where (ay)pes C KB is given by Corollary 2.32.

Proof. Because of the particular form of f, we have z(¢; f,p) = efe---efip. Thus the estimate
(4.26) is an application of Proposition 4.3. Let A : L({X1,...,X,}) — L{ f1,--., fq}) be the
homomorphism of Lie algebras such that A(X;) = f;. The map CBHD, is defined by a finite sum
of Lie brackets, thus it commutes with A

CBHD(f1,. .., fg) = A(CBHDp (X1, ..., X)) =A | > ab| = Y apAh), (4.28)
beB[[L]u]] bEB[[le]]

which proves (4.27). O

4.3.3 Replacing products with brackets in logarithm integrals

The goal of this section is to prove Lemma 4.6, which is a key point in the proof of Proposition 4.3,
as it allows to replace products of differential operators with Lie brackets in the integrals involved
in the computation of the logarithm of the flow.

We first state and prove a corollary of Theorem 2.26 in algebras. Indeed, Theorem 2.26 is a
statement about formal differential equations, but it has consequences for concrete realizations,
e.g. for systems governed by vector fields or matrices (this will be used in Section 5.2.2).
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Corollary 4.5. Let A be a unital associative algebra over K and Ay be a finite dimensional linear
subspace of A. Then, for every r € N*, t > 0 and a € L'([0,t]; A1), one has

Z Z 7(_17);”_ / a(rr)a(rr—1) - -a(m)dr =

m=1reNm T: (1)
: o . (4.29)
_ - ccclal Ty ), alTr—1), .. a(T1 dT,
DIPIE [ sl

where the equality should be seen as an equality between elements of a finite dimensional linear
subspace of A (generated by monomials of terms in Ay of degree ), so that one can give a meaning
to the integrals without introducing any topology on A.

Moreover, if a(t) = Y, c; o (7T)yi with o € L*([0,t];K) and y; € A then, for each monomial
basis B, of L.(X),

% Z Z # / [ .. [a(Tr)7 a(Tr,l)], . a(ﬁ)] = Z Go(t, @)y, (4.30)

m=1reNm Te(t) beB,

where the functionals (, are the associated coordinates of the first kind and y, = Y(b) where
T : A(X) — A is the homomorphism of algebra such that YT(X;) = y; (see Definition 2.29 and
Lemma 2.7).

Proof. Let ¢ € N* be the dimension of A; (as a linear subspace) and y1,...y, be a linear basis
of Ay. Let a; € L'([0,¢);K) denote the components of a(-) in the basis yi,...y,, i.e. a(r) =
a1(T)y1 + ...+ aq(7)yq for almost every 7 € [0,t]. Then a(t) = Y(a(t)) where a(7) := a1 (1) X1 +
oo Fay(m)X, € A1(X). From (2.33) and (2.34), one obtains that (4.29) holds for a(-). Applying
the homomorphism of algebra T to both sides proves (4.29) for a(-). The same strategy proves
(4.30). 0

Lemma 4.6. For every r € N*, t > 0 and f € L'([0,t];C° (K% K?))

>y H / (F(7) - D) F(11) - V) o (f(r1) - V) dr =

m=1reNm Te(t)
L - (4.31)
- S | flre) -V, f(rez1) - Voo f(mn) - V] dT,
DI [ L) VS ) g ¥

which should be seen as an equality between linear operators on C°(K% K), hence only valid after

evaluation at a function @ at a point p, so that the integrals are integrals of real numbers.
Moreover, if f(T,2) =Y, ui(7) fi(z) with u; € L*([0,t];K) and f; € C2°(K%K?) then

%Z Z(_l%/ ['“[f(Tr)'vvf(Tr—l)'V]7...f(T1)~V]dT
m=1recNm T (t) (4.32)

=Y Gtwf,

beB,.

where B, is a monomial basis of L,.(X), the functionals (, are the associated coordinates of the
first kind and f, are the evaluated Lie brackets (see Definitions 2.4, 2.29 and 3.13).

Proof. Let (fn)nen+ be a sequence of functions in L'([0,t]; C2°(K%; K%)) such that f,, takes values
in an at-most n-dimensional vector subspace E,, of C3°(K% K?) and || f,, — fll11((0,¢,cr) — O When
n — oo. For example, one can choose an n-points trapezoidal approximation of f. For each
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fixed n, applying Corollary 4.5 with A = Op(C>°(K%;K)) and A; = span{ f;}icr (a vector field g is
identified with the first order operator g-V on C2°(K%; K)) proves (4.31) for f,,. Let p € C°(K%; K)
and p € K% For each n € N*, we deduce that

> > (_1,):_ / (ful(m2) - V) -+ (fu(11) - V)) (p) dT =
m=1reNm

(4.33)

& / ([ o [fn(Tr) -V, fn(Trfl) . V], s fn(Tl) : V]SD) (p) dr.
Te(t)

1

r m=1reNm m
For each fixed ¢ and p, both sides converge as n — +o0o towards the same quantities for f. This
proves that (4.31) holds as an equality between linear operators. Applying (4.30) gives (4.32). O

Remark 4.7. Although most algebraic results of Section 2 remain valid for infinite alphabets (sets
of indeterminates), there is a difficulty when one wishes to “evaluate” equalities in the free algebra
over an infinite alphabet towards some target algebra (one must somehow introduce compatible
topologies on both sides). Our approach to prove Lemma 4.6, where f is allowed to take values
in the infinite-dimensional space C2°, therefore relies on a discretization scheme to return to a
finite alphabet, and the convergence of the involved integrals in a weak sense. Another approach,
followed in [61, 62], consists in introducing definitions allowing an infinite (continuous) number of

generators and proving analogous algebraic results in such a setting.

4.4 Magnus expansion in the interaction picture

In this section, we consider the nonlinear ordinary differential equation

&(t) = fo(z) + fi(t, x) (4.34)

We show how the formal expansion introduced in Section 2.4 allows to obtain error bounds at every
order in the size of the time-varying perturbation fi, provided that the flow of f is known. Such
estimates can be useful for example to design splitting methods in the case of a small perturbation
(see e.g. [15, Section 3.6] or [16, Section 2]).

4.4.1 Error bound

Proposition 4.8. For every M € N, there exists Cp; > 0 and Oy € CO(Ri;Ri) such that, for
every § >0, T >0, fo € CM with T folleo < 8, fr € L*((0,T);CM*) with

11l oty < O (T, [follgass 1) min{1; 6}, (435)
p € Bs and t € [0,T)] then

x(t; fo + fi,p) — eZM S0 ethopl < Oy ||| MHE (4.36)

Li(cM?)

where Zyr(t, fo, f1) = Logy{g:}(t) in the sense of Definition 2.19, gy : [0,t] x Bys + K% is defined
by
gt(T> y) = (‘bo(t - T)*fl (T))(y) = apq)O(T —t, y)_lfl (Ta (I)O(T —t, y)) (437)
and ®q : [0,T] x Bys — Bss is the flow associated with fq i.e. ®o(T;p) = ™0 (p).
Hence, if f1 € LOO((O,T);C%Q), estimate (4.36) corresponds to a bound scaling like t+1,

Proof. Let M €N, 6 >0, T >0, fo € CM'H with T||follco < & and fy € L*((0,T);CM") such
that || fi|lz1(0,1);c0) < 9. Then, for every p € Bs and 7 € [0,T], x(7; fo + f1,p) is well defined and
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belongs to Bss. To simplify the notations in this proof, we write z(7) instead of z(7; fo + f1,p).
Let t € [0, T]. The function y : [0,#] — K¢ defined by

y(1) =P (t — 732(7)) (4.38)
takes values in Bys and satisfies, for every 7 € [0, ¢],
y(1) = g+ (1,y(7)) - (4.39)

By (4.37), there exists ®); € C°(R3;R%) (independent of 8,7, fo, f1) such that

HgtHLl((O,t);Ci\gz) < Oy (T, ||f0||cé\§2+1> ||f1HL1((o,t);cé\g2)‘ (4'40)

Let us assume that (4.35) holds with © /(T a) := min{1;5 /P (T,a)} and dps as in Proposi-
tion 4.3. This implies || f1[|11((0,7);c0) < 0. Moreover, one has [|g¢[[ ;1 (g 4).crz) < On min{l; 46}
Thus, by Proposition 4.3

ly(t) — e2 10y (0)] < Cuallgell (4.41)

L1<<o tem2y

which is exactly (4.36) because y(t) = x(t) and y(0) = etfop. O

4.4.2 Expansions of Z),
Proposition 4.9. Let r > 0 and M, 6, T, fo,fl,gt,ZM be as in Proposition 4.8. If fo € Cy" and

f1 € CO[0, T];C55") then, for 0 < 7 <t < min{T; gy}
(r—t)ad ~— (="
gi(r.r)=e o(fi(r) =) o ady, (7)) (4.42)
k=0 ’
and
ml 1_t “(TT_t)kr
Mm(t, fo, f1) = /T k,! (4.43)
B [adfg fi( n>>7ad§ig*<f1<m>> ooad (fi(n)] dr

where the sum is taken over r € [1,M], m € [1, r]] r e N
for every v’ € [r/e,r) and 0 < 7 < ¢t < min{T;

m, and ki,...,k. € N. Moreover,

’G\Hf0||| }, the series (4.42) and (4.43) converge

absolutely in C;;’r i

Proof. We apply the third statement of Lemma 3.24 to fy and f1(7) to get (4.42). The absolute
convergence in this series allows to interchange the sums and the integrals. O

When the perturbation fi (¢, z) is affine, i.e. of the form Y_7_; u;(t) fi(x), by analogy with Theo-
rem 2.39, we use the notation Z (¢, f,u) instead of Zas (¢, fo, >y wifi), with f = (fo, f1,.... fq)
and u = (u1,...,uq). In this context, we have the following result, that emphasizes that Zy, is a
truncated version of Z.,

Proposition 4.10. Let v > 0 and M,6,T, fo, f1,9:, Zp be as in Proposition 4.8. We assume
fo€C" and fi(t,x) =31, wi(t) fi(x) where u; € L*(0,T) and f; € Cz5". Then

w(t, f,u) = lim > m(tu)fy (4.44)

N—oo

where, for every v’ € [r/e,r] the limit holds in C"" when 0 < t < min T; =1,
56 61l folll,.
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Proof. Let X = {Xo, X1,...X,} and A : L(X) — C:;" be the homomorphism of Lie algebra such
that A(X;) = f; for i € [0,q] (see Lemma 2.7). By applying A to each term in the equality (2.82)
(where 227 (t, X, a) is the finite sum defined in (2.80)), we obtain for every r € N* and v € N

Z0 fu) = Y mltu) fo (4.45)
beBr,u
By Proposition 4.9
N M
Zu(t, fru) = ngnoo;;é’og (t, f,u) (4.46)
where for every ' € [r/e,r] the limit holds in Cg’(gr/ when 0 < ¢ < min{T; 7&“;0”/‘ +. This
proves (4.44). O

Remark 4.11. Although the family ny(t,u)fy, for b € BN Sy is not proved to be absolutely
summable, equality (4.44) gives a sense to the expression

Zu(t, fou)= > m(t,u)fo. (4.47)

beBNSp

Indeed, the proof above justifies the absolute summability of appropriate packages Z3Y (t, f,u) for
r € [1,M] and v € N of this family. The full absolute summability over BN Sy is investigated in
the next subsection.

4.4.3 Absolute convergence for coordinates of the pseudo-first kind

Continuing the discussion started in Section 2.4.3 we state a criterion on the basis B which entails
the absolute summability for analytic vector fields of the family (¢, u) fp for b € BN Syy.

Proposition 4.12. Let ¢ € N*, X = {Xo, X1,...,X,} and B be a monomial basis of L(X)
with geometric growth with respect to Xy (see Definition 2.45). Let M € N, r > 0 and ' €
[r/e,r). There exists T* = T*(M,q,r,r") > 0 such that, for every §,T, fo, f1,..., fgw1,..., uq as
in Proposition 4.10 (in particular fo, ..., fq € Co5") and t € [0,T*]

ZM (t7 f7 u) = Z nb(t, u)fb (448)

beBNSp

’
where the series converges absolutely in Coy" .

Proof. By (2.88) of Proposition 2.48 and (3.21), for every b € BN Sy and ¢ € [0, 7]

r—r" [(2eCyt no(b) 2eCyr n(b)
el il < 5 (F20) T (22 oo A1, (1.49)
where ||| f[ll, := max{||| f;]ll, ;7 € [0,¢]}. In particular, if [t| < T*(M,r,7’) := m then the
series Yy (¢, a) f, converges absolutely in C*"" because

M +4oco

D 2g+1) @ <IN g+ D)™ (2g+ 1) < M(g+ )M, (4.50)
beBNSp n=1no=0

O
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4.5 Sussmann’s infinite product expansion

Let T > 0. In this section, we consider affine systems of the form
i(t) = Y ui(t)fi(x(t) and x(0) =p, (4.51)
i€l
where, for i € I, f; is a vector field and u; € L'((0,7);K). When well-defined, its solution is
denoted x(t; f,u, p). For every norm || - || on vector fields, || f| denotes >, || fi|-

Proposition 4.13. Let B be a generalized Hall basis of L(X) and (&)ven be the associated co-
ordinates of the second kind. For every M € N*, there exist Car,npr > 0 such that the following
property holds. Let T,5 >0, fi € C3M and u; € L*((0,T);K) fori € I. Assume that

[ull 2o [[fllear < mar min{1, &3 (4.52)

Then, for each t € [0,T] and p € Bs,

N
(t; f,u, p) " el Heéb“’“)fbp < Curllall 25 llgant (L4 1F1lgsnt) 5 (4.53)
1,M t

where the arrow above the product symbol designates the order for the product, i.e. with the notations
of Definition 2.49

ﬁ eSotu)fo — &by (u)foy . oEbpyn (U fop g (4.54)

beB[1, Mm]

Proof. Let M € N*. We adopt the notations b1, ...,bx+1 and Yy, ..., Yiy1 of Definition 2.49.
For j € [1,k + 1], we denote by ®; the flow associated with fy,, i.e. ®;(t,p) := etfe (p). To
simplify the notations in this proof, we write z(¢) and &,(t) instead of x(t; f,u, p) and &,(¢; u). Let
na = 1/(4]1|M!). For brevity, we use the shorthand notation F' := || f||cer-1.

Step 1: Well-definition of the flows. Using (4.52),

> uifi

i€l

< mamin{l, 6} < 6. (4.55)
Ly (C%)

Thus, for ¢t € [0, T, z(t) is well-defined and x(t) € Bys. For b € B, using (2.102), Lemma 3.14 and
the crude estimate |B;| < |I|*, we obtain, for each ¢ € [0, 7],

M
2MI{[[ull Lo 11 fllcar .
o 1a®fsller < DIl 2@l fllEe < » <min(§,1).  (4.56)
ve p ‘ 1 =2 [lull o [ fllca
[1,M]
Thus, for every j € [1,k + 1],
2;(t) = e~ oy =G Oy (1)) (4.57)

is well-defined and belongs to Bss.

Step 2: Estimates along a Lazard elimination. We prove by induction on j € [0, k+1] the existence
of a numerical constant C'; > 0 such that

3,) {w (1) = Shesy, e, S0y (1) + (1), (458)
z;(0) = p,
where
e5(0)] < Cilu(®)lljul 1 EM (1 + P, (4.59)
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First, letting xo(t) := z(t) by convention, (Ho) holds with g9 = 0, Cp = 0 because £x, (t) = wu;(t)
for i € I. Let j € [1,k+ 1] and assume that (#;_1) holds. We deduce from the definition of x;(t)
that
wi(t) = e~ O (2 4 (8) = @5 (=&, (1), 251 (1)) (4.60)
and, using (#,_1), that
Bi(t) ==&, (0 fo; () + Y &(0)0p®; (=&, (D), x5-1(1)) folwj1 (1) +E5()  (4.61)
beB1, mpNYj—1

where &;_1(t) := 0,9, (=&, (t), zj—1(t)) €j-1(t). By (4.56), [|&, (¢) fo, llcr < 1, so, using (3.28),

|Ej-1(t)] < elej—1(t)]- (4.62)
Moreover, for each b € B
O (—&, (1) 2j-1() folzj—1(t) = (5 (=&, (1)), fo) (x;(1)), (4.63)
thus,
;(t) = > & () (D5 (=&, (1), fo) (2(8)) + &5(D). (4.64)

bEB[[l)M]]ﬁyj',l\{bj}
For b € By ap NY; \ {bj}, we introduce the maximal integer h(b) € N* such that

|b| + (h(b) — 1)]b;| < M. (4.65)
Then, by the first statement of Lemma 3.24 and Definition 2.57
. & sb (1), .
& (1) (25 (=&, (1)), fo) (z;(t) = D fb( ) fadg ) (25 (t)) + & (¢)
m=1
(4.66)
hb)-1 '
= > Eaag 1) (1) faag 0 (25(1)) + E(t)
m=1
where ht)
01 < I gy o (4s7)

By definition of h(b) we have M + 1 < |b| + h(b)|b;| < M + |b;| < 2M. Thus, using Lemma 3.14,
(2.101) and (2.102), we get

=] bl+h®)b; 1 0] jons M+1 M-1
B O] < Ju(®)]]lu ||| o2 2M - DIFYT (1 + FE )
’ h(b)! (4.68)
< |u(t)||\u||ﬁM22M(2M — D)IFPMTL( 4 PV,
By definition of Y; in Definition 2.49, we obtain (H,;) with
g;(t) =& _1(t) + > (). (4.69)
bGB[[lﬁM]]ﬁijfl\{bj}
that satisfies (4.59) with, for instance Cj4; := eC; + |[I|MT1M22M (20 — 1)!.
Step 3: Conclusion. Taking into account that By ap N Yeq1 = {0}, we get £p41(t) = ep41(t) thus
|zk41(t) — p| < C’k+1||“||ﬁ+lFM+l(1 +FMY) e,
—

11 e g (t) — p| < CrpJul HH M1+ FM. (4.70)
bEB1, M t

Applying the locally Lipschitz map eét1 () o1 ... efortr (5 eii1 £ the two terms in the left-hand
side, we get another constant Cp; > 0 such that (4.53) holds. Note that (4.56) and (3.28) ensure
that Cyy < eCly1, so that Cjy depends indeed only on M. O
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5 Convergence results and issues

The formal expansions of Section 2 generally exhibit poor convergence properties for smooth vector
fields without any additional assumption. Nevertheless, one can hope to obtain convergence results
in the following particular contexts:

e Nilpotent Lie algebras. Here, one assumes that the Lie algebra generated by the set of
smooth vector fields {f(¢,-); t € [0,T]} is nilpotent (see Definition 2.5 and Lemma 3.17).
This structural assumption turns most of the involved infinite expansions into finite ones,
and it is thus reasonable to expect convergence properties.

e Banach algebras. Here, one assumes that the vector fields are actually linear in the space
variable, e.g. that f(t,z) = A(t)x for some A(t) € My(K). This assumption yields better
estimates for Lie brackets (since products of matrices behave more nicely than differentiation
of nonlinear vector fields) and it is thus reasonable to expect convergence properties. In this
section, we give statements for matrices for consistence, but similar results can be obtained
for linear operators in a Banach algebra.

e Analytic vector fields. Here, one assumes that the vector fields are locally real-analytic,
i.e. than their k-th derivative grows roughly no more that k!. This bound is compatible with
the 1/k! factors which come out of the corresponding time integrals, and it is thus reasonable
to expect convergence properties.

In the following paragraphs, we investigate the convergence properties of each expansion in each
of these three reasonable contexts and encounter some surprises. We summarize the results in the
following table.

Expansion Lie-Nilpotent Banach Analytic

Iterated Duhamel or No Global Yes
Chen-Fliess (Section 5.1.1) (Section 5.1.2) (Section 5.1.3)

Magnus in the Yes for C* Small time No
usual setting (Section 5.2.1) (Section 5.2.2) (Section 5.2.3)

Magnus in the Yes for C¥ Small perturbation No
interaction picture | (Section 5.3.1) (Section 5.3.2) (Section 5.3.3)
Sussmann’s Yes for C* Small time Open problem
infinite product (Section 5.4.1) (Section 5.4.2) (Section 5.4.3)

5.1 Iterated Duhamel or Chen-Fliess expansion
5.1.1 Counter-example for nilpotent vector fields

As already discussed in Remark 2.16, the iterated Duhamel or Chen-Fliess expansion is not an
intrinsic representation of the flow and involves quantities which are not Lie brackets of the dy-
namics. Therefore, this expansion is not expected to converge under a Lie-nilpotent assumption.
The following counter-example (where the dynamic does not depend on time, thereby obviously
generating a nilpotent Lie algebra of order 2) proves that this expansion indeed relies on quantities
which are not Lie brackets.

Proposition 5.1. There exists fo € C°(R;R) such that, for everyt € (0,1], the solution x(t; f,0)
to (3.12) with f(t,x) := fo(x) satisfies

. Y gn .
m e (t £,0) - ; — (fo+ ¥)"Idy) (0)] = +oc. (5.1)
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Proof. For every sequence (ay,)nen € RY, there exists f, € C°(R;R) N L>(R;R) with f,(0) =1
such that
Yn>2, ((fo-V)"1d1)(0) = ay. (5.2)

This is an easy consequence of Borel’s lemma. Indeed, for n > 2 and f,(0) =1,

((Fa+ V)" 1) (0) = £5"70(0) + P (£a(0),- .. £572(0) ) (5.3)

for some polynomial P,,. Thus, given a sequence (., )nen, one can prescribe an appropriate value
for £" ) and recursively ensure (5.2). Let fo be a vector field constructed following this process
for v, := n!2. On the one hand, since fy € L= (R;R), z(¢; f,0) is bounded for ¢ € [0,1]. On the

other hand, thanks to (5.2), for each ¢t > 0

N n N
> o (U ) a) 0) = 3 it = 4oc, (5.4)
which proves (5.1). O

Remark 5.2. In this counter-example, the local change of coordinates which transforms fo(x)eq
into the constant vector field e allows to transform the ODE on x to a new ODE for which
the Chen-Fliess expansion is finite (and thus convergent). It would be even more interesting to
construct a counter-example, probably in dimension d > 2, for which no local change of coordinates
can restore the convergence of the Chen-Fliess expansion.
5.1.2 Global convergence for matrices
Let T > 0. In this paragraph, we study linear systems of the form
z(t) = A(t)z(t) and x(0) = p, (5.5)
where A € L1((0,T); M4(K)). The solution is denoted z(t; A, p).
Proposition 5.3. Let T > 0 and A € L'((0,T); My(K)). For each t € [0,T] and p € K,
—+oo
z(t; A,p) = p+ Z/ A(rj) - A(y)pdr, (5.6)
j=1 0<m <0< <t
where the series converges absolutely.

Proof. To simplify the notations, we write z(t) instead of x(t; A, p). By Gronwall’s lemma, we have
lz(7)| < |ple! e for every 7 € [0,T). By iterating the formula

x(t)=p+ / Az (r")dr’ (5.7)
0
we obtain, for every M € N*
M—1
w(t)-p— Y / A7) - Alr)pdr| = / A(rag) -+ A(m)2(7) dr
I=locry << <t <ri<e<Ta <t
Al 141 0.0 1 i
< lACran) |- [[A(m) [ dr|plem™ et @0 = ——r5==plelTr @0
0<m <<t <t '
(5.8)
which proves the convergence. Similar estimates prove the absolute convergence. O
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5.1.3 Local convergence for analytic vector fields

For analytic vector fields, it is well known that the iterated Duhamel or Chen-Fliess series converges
locally in time (see e.g. [67, Proposition 4.3| for slightly different assumptions).

Proposition 5.4. Let T,6,r > 0. There exists n > 0 such that, for each f € L*([0,T);C5s") with
||f||L%(Cw -y <, for each ¢ € C35", t € [0, T] and p € By,

+o00
p (z(t; f,p)) = ¢(p) + Z/O ((f(75) - V)= (f (1) - V) () (p) dr, (5.9)

j=1 <7< <7<t

where the sum converges absolutely. In particular,

#(t: £,p) p+z / () - V) (f(r) - V) (M)(p)dr. (5.10)

0<T1 < <T_7<t

Proof. Let n:= min{d§/2,r/10}. By Lemma 3.9, z(¢; f,p) is well defined for ¢t € [0,T], p € Bs and
belongs to Bss. Moreover, by Lemma 3.11, we have, for every j € N*

/ (@) - D @wlar < () e, e
0< T < oo <7 <t r J:

where | f|| = | fll. 1w ), which proves the absolute convergence because the right-hand side is
bounded by 277 |||¢|||,. Eventually, we deduce from (4.10) and Lemma 3.11 that

o) Z/ WU Y)UE) I)E ar| <2 el (512

which proves (5.9). O

5.2 Magnus expansion in the usual setting
5.2.1 Equality for nilpotent systems

The goal of this section is to prove that the Magnus expansion is an exact expansion for regular
vector fields generating a nilpotent Lie algebra (see Proposition 5.6).

If the vector fields are analytic in space, a simple proof can be given (see e.g. [43, Remark A.1]
for the case of the CBHD formula), with the following steps. First, by density, one can assume
that the dynamic depends analytically on time. Then, the maps ¢ + x(t) and t +— e?M(t) are
analytic. Because of the nilpotent assumption, Zy; = Zyy for every M’ > M and estimate (4.13)
proves that both functions have the same Taylor expansion at ¢ = 0, and are thus equal.

For non-analytic vector fields, the proof is much more intricate. A sketch of proof is briefly
suggested in [3, Proposition 2.4]. In this paragraph, we write the proof completely. The difficulty
is to formulate the question in the nilpotent Lie algebra generated by the vector fields, in order to
conclude with the universal property of free nilpotent Lie algebras (Lemma 2.7).

To that end, we start with the following technical result about formal series.

Lemma 5.5. The following statements hold.
1. Let T >0 and z € C1([0,T); L(X)). Then the following equality holds in E(X)

= (=1)"

d
3 OPED) = 0 3

Gy M () (5.13)
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2. Let a be given by (2.7) and Zoo(t) := Log.,{a}(t) with the notation of Definition 2.19. Then
for every t € R, the following equality holds in L(X)

S D e
> g 11 292 (0(Zoo () = alt): (5.14)
n=0

3. Let a be given by (2.7), M € N*, Zp1(t) := Log,{a}(t) with the notation of Definition 2.19.
Then for every t € R, the following equality holds in Nps11(X)

M-1 (—1) '
7;) m adzlw(t) (ZM(t)) = a(t), (515)
where Zy(t) belongs to the space @& L(X)" which is identified to Npr+1(X) as a vector
re[l,M
space. crnl
Proof. We prove each claim separately.
1. We have
d d “+o0 k “+o0 k ) i
_ = — ] t : t - t
o) = 4 (Y5 Z,Hl (D30 ()
k=0 k=0 7=0
(5.16)
400 (_1) 400 k
= exp(z(t)) < 0 zl(t)> Z I ZZJ ~I(t)
1=0 k= 0 §=0
Letting n:= k + 1 and 7 := [ + j, we obtain that
d = ! (n+1
PO =) X Zz CoXen(T) e
The following formulas, which can be proved by induction using Pascal’s rule,
n n & i 1, N1
ad2(y) = (-1 Y07 () st (5.18)
i=0
i 1 ,
Se("T) = e () (5.19)

give the conclusion.

2. By Theorem 2.26, the solution z(t) of the formal ODE i(t) = z(t)a(t) is z(t) = eZ~®). We
conclude by identifying the two expressions for - [eZOO (t)]

3. The canonical surjection a1 : L(X) — N, M+1(X ) is a Lie-algebra homomorphism. Apply-
ing to (5.14) gives (5.15).

O

This technical lemma leads to the main result of this section.

Proposition 5.6. Let M € N*. There exists nyr > 0 such that, for every T,§ > 0 and f : [0,T] —
05 such that L(f([0,T])) is nilpotent with index at most M + 1 and f € Ll((O T); CM*YY with

£l enry + £ 1178 eary < mard, (5.20)
then, for each p € Bs and t € [0,T], one has x(t; f,p) = eZM &) (p) where Zy(t, f) := Logp {f}(t)
1s the vector field defined in Definition 2.19.
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Proof. Let M € N*. By Definition 2.19, there exists ny; > 0 such that, for every ¢, f,

1Z34(t. Dllen < = (I lza ey + 17 ey ) (5.21)

Step 1: Proof for f(t,x) = >25_, a;(t)f;(x) with ¢ € N*, a; € LY([0,T);K) and f; € C*(K?% KY).
By uniqueness in the Cauchy-Lipschitz theorem, it is sufficient to prove that for every ¢ € [0, 7]
and p € Bs,

d

D) = 1 (1P D (). (5.22)
By Definition 2.19, (5.20) and (5.21), the map (¢,p) — Z(t, f)(p) belongs to C*([0, T x Bas; K¢)
and || Za (-, f)llco < 6. Thanks to the nilpotent assumption, ad%f(uf)(ZM(T, f)) = 0 on Bys for
every t, 7 € [0,T]. Thus Lemma 3.25 yields

% (eZM(t,f) (p)) = 1:2: (](;rl)') ady  p (Z'M(u f)) (ezM(t,f) (p)) . (5.23)

Let A : Nap1(X) — L(f1,-.., fy) be the homomorphism of nilpotent Lie algebra such that
A(X;) = f; for j =1,...,q. By applying A to the equality (5.15), we obtain that the right-hand
side of the above equality is f(t,e%™ &) (p)).

Step 2: Proof for a general time-dependent vector field f. We apply Step 1 to a sequence f, of
simple functions, taking values in f([0,77]), uniformly bounded in L'((0,7);C3s t') and such that
fn — fin L1(C%). We get the conclusion by passing to the limit in both sides. O

5.2.2 Convergence for linear systems

In this paragraph, we consider linear systems of the form (5.5). Since the Magnus expansion was
designed for linear systems, its convergence in this context has received much attention. Depending
on the exact convergence notion that one considers and on the way one groups terms, different
sufficient conditions for the convergence can be derived. In [65], T'|| Al| o (0,7y < 1 is shown to be
a sufficient condition for convergence on [0, 7] thanks to a careful estimate of the combinatorial
terms. In [55], |[A||L1(0,7) < 7 is shown to be a sufficient condition for convergence using complex
analysis.

We give below a short elementary proof with a sub-optimal constant, for the sake of complete-
ness and because it will be useful later in the article. Let || - || be a sub-multiplicative norm on

M (K).
Proposition 5.7. Let T > 0 and A € L'((0,T); M4(K)) such that [AllLz < 1. Foreacht € [0,T],

=313 B

is well defined in My(K) and, for every p € K¢, x(t; A, p) = e=Z~Mp, where the brackets refer to
commutators of matrices, i.e. [A, Bl = AB — BA.

m—l

3 /ET( A, A ) A dr (5.24)

reNm

Proof. Step 1: Absolute convergence of Z(t). Let r € N*. For every m € [1,7] and r € N,

/ 4G, 4G A dr
el ) . (5.25)
</ o PG A dr < ( [ 14 dT> |
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Moreover, recalling the definition of (2.13), [N'| = (77;;11) and Y, _; (;;11) =271, Thus,

R

= reNm

—+oo

§:_/€TGJW~WA07%A0%1ﬂw-JﬂﬁHHm”<§:(MVWLQT<Cﬁ~ (5.26)

r=1
Step 2: Formula for the solution L € C*([0,t]); M4(K)) of

{L/(r) = L(7)A(7)

L(0) = Idg. (5.27)

By working as in the proof of Proposition 5.3, we obtain

—+oo
L(t)=Tda+ ) / A(ry) - A(my) dr (5.28)
=1 J0<T << <t
where the series converges absolutely. Moreover, we have

+o0o
Z/ A(r) - A(ry) dr

r=1 7 0<Tr <o <71

= [l All%

ey
S;—T,

<ei—1<1. (5.29)

Thus

+o00 +o00 m

=™

log (L(£)) = / Alry) -+ A(ry) dr (5.30)
mz::1 m ; 0< T <o <7y

is well defined in M4(K) and L(t) = e*¢(Z(t) By applying Corollary 4.5 with A = A; = M4(K),

we get log(L(t)) = Z(t).

Step 8: Conclusion. The resolvent R(7) associated to the linear system & = A(7)x with initial
condition at 7 = 0 is R(7) = L(7)~!. Thus z(t) = R(t)p = e_Zw(t)p. O

Remark 5.8. For X,Y € My(K) such that | X| + ||Y]| < 5, the prem'ous statement implies the
convergence of the CBHD formula, yielding a matriz Z such that eX eZe . Much work has
been devoted to proving optimal convergence domains in different conte:z:ts for the CBHD formula.
Such a domain sometimes depends on the summation process (i.e. the way terms are grouped
together) and the exact question one asks (existence of a logarithm, absolute summability of the
series, convergence of the remainder, etc.). Better sufficient conditions than ours can be found
for instance in [13], for instance, | X| + |Y|| < B2. We refer to [12] for a nice survey of the
convergence questions regarding the CBHD formula.

Remark 5.9. The smallness assumption (on time or on the matrices) is in general necessary, both
for the CBHD formula (see [12, Example 2.3 or [71, Section II]) and for the Magnus expansion
(see [55], where the authors also prove that, although the condition || A| 1,1y < 7 is not necessary
for convergence, there exists A with ||AllL1 o,y = 7 for which the Magnus series at time 7 does
not converge).

5.2.3 Divergence for arbitrarily small analytic vector fields

The convergence of Magnus expansions is deeply linked with the convergence of the CBHD series.
For analytic vector fields, it is expected that both series diverge (see e.g. [3, p.1671] or [65, p.335] for
statements without examples). Some authors nevertheless suggested that, despite the divergence
of the series, the flows could converge for analytic vector fields (see [65, p.335] and [47, p.241]).
In this paragraph, we give explicit counter-examples to the convergence, even in the weak
sense of the flows, for arbitrarily small analytic vector fields, of both the CBHD series and the
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Magnus expansion. Similarly to counter-examples concerning the convergence of the CBHD series
for large matrices (see e.g. [12, Theorem 2.5]), our construction relies on the choice of generators for
which many brackets vanish thanks to their particular structure, and the remaining non-vanishing
brackets are associated with coordinates of the first kind involving Bernoulli numbers.

Proposition 5.10. There exists 6 > 0 and fo, f1 € CY such that,
VM € N,3Cx,e0r > 0,¥e € [0,ep],  |e570e51(0) — eCBHPa(Ef1efo) (0)| < CpreMHL) (5.31)

where CBHD ys(ef1,ef0) is defined in Corollary 4.4, but, simultaneously, for every e > 0,

lim | CBHD]\/[(Efl, Efo)(0)| = 400 (532)
M —+o00
and
lim |effoesf1(0) — eOBHPM (Ef12f0) ()| = 4-00. (5.33)
M —+oc0

Proof. Let fo, f1 as in Remark 3.16. For these vector fields, estimate (5.31) comes from Corol-
lary 4.4. Due to their structure, the only non vanishing brackets are those containing f; at most
once. Therefore, formula (2.63) of Corollary 2.36 yields, for M > 1,

M—-1

B
CBHD (e f1.6f0) = efo+ Y k’“ bt adh (f1). (5.34)
k=0
Hence, using (3.25),
CBHDM(€f1,€f0)($) =ce; + 8@3/1(1‘1)62, (535)

where we introduce, for ¢ € R,

M-—1
)= Bref(1—q) L. (5.36)

In particular,

Since the odd Bernoulli numbers except B; are zero, when M = 2M' + 2 with M’ > 1, ©5,,/,, =
©3541- Then,

1
CHYERUES 1—q 7 T ZB%E (1—q)2F 1 (5.38)

In particular, using (2.67),

CHYN() —1—*—&-232]66 _1—7+Z ’f+1 :,)kg(zk) (5.39)

Thus, for every fixed € > 0, |©5,(0)] — 400 when M — +o0, because it involves a sum of the

form ZQ/; ay, where |ag41|/|ax| — 400 when k — +o00. Using (5.37), this proves (5.32).
For p € R? close enough to the origin, one can also compute the flow eCBHDM(efl’efO)(p), which
is y(1) where y is the solution to the ODE y(0) = p and

71(s)=¢ and ga(s) =eO%; (y1(s)). (5.40)

Solving successively for y; then yo yields y;(s) = p1 + se and

y1(s)
() =t [ O3 (5.41)
y1(0)
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Thus,
p1+eE
(CPHDLF1210) () — (py + <)ey + (pz [ enm dh) (5.42)

p1

In particular,

eCBHDM(Efl,Efo)(O) =cey + (/ (—)‘i‘/[(h) dh) es. (543)
0

When M = 2M' + 2 with M’ > 1, using (5.38), we get

M’
1 B 1
CBHD s (ef1.6f0) (()) — Cln(l—e) - S 1 2k 2k 1 _
e (0) =cer + n(l—e¢) 5\ 122 + E ok © S €2

k=1
(5.44)
Hence, for the same reason as above, the flow satisfies |eCBHPm (¢/1.2f0) (0)| — 400 when M — +o0,
which proves (5.33). O

Remark 5.11. If one sees (x1,22) as (¢,p) in an Hamiltonian setting, one checks that the vector
fields defined in (3.24) and used in this counter-example are associated with the Hamiltonians
Holg,p) := p and Hi(q,p) := In(1l — q). Therefore, assuming an Hamiltonian structure on the
considered vector fields does not provide enough structure to yield convergence.

One could wonder if assuming even more structure on the dynamics, for example assuming that
it is time-reversible, prevents the construction of such counter-examples.

Open problem 5.12. Does there exist Hamiltonians Ho and Hi on R??, which are time-reversible
(i.e. satisfy Hi(q,p) = Hi(q, —p) for every q,p € R?), locally real-analytic near zero and for which
the convergence of the CBHD series fails as in Proposition 5.107

The counter-example of Proposition 5.10 for the convergence of the CBHD series allows to build
counter-examples to the convergence of the Magnus expansion which blow up instantly, despite
analytic regularity in both time and space.

Proposition 5.13. There exist T,5 > 0 and f € C¥([0,T] x Bs) such that, for every e > 0 and
te (0,17,

a2t ef)(0)] = +o0 (5.45)
and
lim |z(t;ef,0) — 2 &0 (0)] = +oo, (5.46)
M —+o0

where x is the solution to ©(t) = ef(t, z(t)) with (0) =0 and Zp(t,ef) = Logy{ef}(t).

Proof. Let T = 1. We define f(t,z) := fo(z)+tf1(x), where fo and f; are defined in Remark 3.16.
Similarly as for the previous construction, only Lie brackets involving f; at most once are non-
vanishing. Moreover, the coordinates of the first kind associated with the controls ao(t) = 1 and
a1 (t) = t have been computed in Example 2.38. Hence, recalling (3.25), we have

(_1)k+1tk+2 k!
B .
(k+ D)1 I g )k

M-1
Zy(t,ef) = eter + Z gkl (5.47)
k=0

Proceeding along the same lines as in the proof of Proposition 5.10 allows to conclude that both
Zar(t, ef)(0) and e ) (0) diverge when M — +oo. O
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5.3 Magnus expansion in the interaction picture
5.3.1 Nilpotent systems

For ODEs of the form (4.34), the starting point of the interaction picture is to factorize the flow
of fo. Hence, the roles of fy and f; are asymmetric. One can expect that, under the assumption
that Lie brackets of fy and fi containing at least M + 1 times f; identically vanish, the Magnus
expansion in the interaction picture should yield an equality of the form

gj(t;fo + fhp) = ezlvl(tvf()afl)etfﬂp, (5.48)

where Z(t, fo, f1) is defined in Proposition 4.8. We prove in this paragraph that it is indeed the
case, when fy and f; are analytic. However, contrary to the case of the usual Magnus expansion
(see Section 5.2.1), we give examples highlighting the fact that the analiticity assumption cannot
be removed, which is quite surprising but stems from the mixing induced by pushforwards.

We therefore start with the following definition.

Definition 5.14 (Semi-nilpotent family of vector fields). Let Q be an open subset of K. Let
F C C®(KY), fo € C°(%KY) and M € N*. We say that the family of vector fields F is
semi-nilpotent of index M with respect to fo if every bracket of elements of F U {fo} involving
M elements of F wvanishes identically on Q and M is the smallest positive integer for which this
property holds.

Proposition 5.15. Let T,6 > 0. Let M € N. Let fy € Cf/[ with T|| follco < 9. There exists n > 0
such that, for every fi : [0,T] — C55 with f1 € L'([0,T];Cys ™) and || f1|l z1(cary < n, the following
family is well-defined

G :={Do(—t). f1(t); t €[0,T]} C Cs°. (5.49)
and, assuming moreover that G is nilpotent of index M + 1, then, for each t € [0,T] and p € Bg,
the solution to (4.34) satisfies (5.48).

Proof. Let t > 0. As in the proof of Proposition 4.8, we introduce the new unknown y(s) :=
Do (t — s,2(s)). Then y(s) = gi(s,y(s)), where g; is defined in (4.37). Thanks to Lemma 3.22,
9t(8) = Po(t)xPo(—s)« f1(s). Thanks to the assumption and to Lemma 3.23, the family {g:(s); s €
[0,#]} is nilpotent of index M + 1. Thus, by Proposition 5.6, y(t) = eZm®:fo:f1)y(0). Since
x(t) = y(t) and y(0) = Py(t, p), this concludes the proof of (5.48). O

Lemma 5.16. Let T,6 > 0, F C Cg5, fo € C35 such that T|| follco < 0. The following family is
well-defined
G :=A{Po(—t).f; t€[0,T],f€F}CC5. (5.50)

Assume that the family F is semi-nilpotent of index M with respect to fo and that there exists
r >0 such that FU{fo} C Cs"". Then G is nilpotent of index M.

Proof. For t € [0,T] and f € F, equation (3.43) of Lemma 3.24 implies that

+O°k

t).f = Z — adk (5.51)

and that the series converges absolutely in CM (in particular). Hence, if ¢1,...,ty € [0,7] and
f1,... far € F, the bracket

[©o(—tar)«fars[ - [Po(—t2)s f2, Po(—t1)s f1] - -]]

ki kM
= Y R () bl (e () O
K1,...kar €N

vanishes thanks to the assumption and the absolute convergence of the sums. The same is true for
every other bracket structure, which proves that G is nilpotent of index M. O
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Corollary 5.17. Let T,6,r > 0. Let fo € Cys" with T|| follco < & and f1 € L*([0,T);Cy5"). Assume
moreover that F := {f1(t,-); t € [0,T]} is semi-nilpotent of index M + 1 with respect to fo. Then,
for each t € [0, T] and p € Bs, the solution to (4.34) satisfies (5.48), where Zy(t, fo, f1) is defined
in Proposition 4.8.

Proof. This corollary is a direct consequence of Proposition 5.15 and Lemma 5.16. O

The analyticity assumption in Lemma 5.16 is necessary, as illustrated by the following counter-
example for smooth functions.

Example 5.18. We consider smooth vector fields on R3. Let x € C®°(R;R) with x = 0 on R_
and x(x) > 0 for x > 0. Let fo and F := {f1, f} where

fo(z) = e, (5.53)
fi(z) = x(w2)z1e3, (5.54)
fa(@) = x(—z2)er. (5.55)

Heuristically, fi and fa commute because they have disjoint (touching) supports, but the flow of fy
involved in (5.50) mizes these supports for every positive time. This is possible only because x is
not analytic.

First, we check that F is semi-nilpotent of order 2 with respect to fo. Indeed, for every j € N,

ad) (f1)(z) = XV (w2)1e3, (5.56)
adj, (f2)(z) = (=1)x (~a2)er. (5.57)
Thus, for j,k € N, [adfco(fl),ad’}o(fl)] (resp. [ad/j;o(fz),adfco(fz)]) vanishes because both vector

fields are supported by es but independent on x3 (resp. supported by ey but independent on x1).
Moreover,

[ad}, (f1), adf, (f2))(@) = =(=1)" " (—w2)xY (22)e5 = 0, (5.58)

because the supports of x(-) and x(—-) only touch at xo = 0 where all derivatives vanish.

Second, let us check however that the family G defined in (5.50) is not nilpotent of index 2.
Indeed, fort > 0 and x € R3, ®¢(t)(z) = = + tea. Thus, for f € C°(R*%R3), (Po(—t).f)(z) =
f(x +tes). Therefore, for every T > 0, G is well-defined on R3. Moreover,

[f2, (@o(=8)« 1)](x) = x(=22)x (22 + )es. (5.59)

In particular, for every e > 0, [fa, (®o(—2¢)4 f1)](—ce2) = x(€)?e3 # 0, which prevents the family
G from being nilpotent of index 2 (even locally in time and space).

The analyticity assumption in Corollary 5.17 is also necessary, as illustrated by the following
counter-example for smooth functions, inspired by the previous one.

Example 5.19. We consider smooth vector fields on R3. Let x € C*®°(R;R) with x = 0 on R_
and x(x) > 0 for x > 0. Let fo(x) := eq and f1(t,z) := fi(z) (independent on time) with

fi(@) = 2x (w2)z1e3 + X/ (—22)e1. (5.60)
For j € N, one has
ad’ (f1)(x) = A fi(x) = 2xU T (wa)zres + (1) x UV (—z2)er. (5.61)
Thus, for every ji,j2 € N,

[ad? (f1), ad? (F1)](@) = 2(=1)" X9+ (—a)x U+ (22)e

o _ (5.62)
—2(—1)72x U2+ (— 0 ) U1t (25)e5 = 0
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because the supports of x(-) and x(—-) only touch at xo = 0, where all derivatives vanish. Hence
each bracket of fo and fi involving fi at least twice vanishes identically on R3. Thus, for every
T >0, the family F := {f1(t,-); t € [0,T]} = {f1} is semi-nilpotent of index 2 with respect to fj.
Let us prove that, despite this property, equality (5.48) with M =1 fails.

Computation of the state. We solve & = fo(x) + f1(x) for some initial data p. Solving the
ODE successively for xq, x1 and x3, we obtain

z1(t) = p1 + x(=p2) — x(—p2 — 1), (5.63)
za(t) = p2 + 1, (5.64)
z3(t) = p3 + 2 (x(p2 + 1) — x(p2)) (P1 + x(=p2))- (5.65)

In particular, with t = 2¢ and p = —cea, x(2¢; fo + f1, —cea) = (x(€),¢,2x(€)?).

Computation of the flow. We compute e (o[ etho(p) for some initial data p. One has
®o(7,q) = q + Tea. Hence, in particular (Po(7)«f1)(q) = fi(q — Te2). Moreover Z1(t, fo, f1)(q) =
Jo 9¢(s,q) ds where gi(s,q) = (Po(t — ). f1)(q)- Hence gi(s,q) = fi(q — (t — s)ea) and

20t fo f1)() = / fi(g+ (s — t)es) ds

=2q1(x(q2) — x(g2 — t))es + (x(—q2 + 1) — x(—q2))e1-

Then eZ1(tfosf)etfoy = eZ1(8fof1) (p - tey) is y(1) where y is the solution to y(0) = p + tes and
y(s) = Z1(t, fo, f1)(y(s)). Solving the ODE successively for ya, y1 and ys, we obtain

(5.66)

y1(s) = p1 + s(x(—=p2) — x(—=p2 — 1)), (5.67)
Yy2(s) =p2 + ¢, (5.68)
ys(s) = ps + (x(p2 + 1) — x(p2)) (2p15 + 5°(x(—p2) — x(—p2 — 1))) - (5.69)

In particular, with with t = 2 and p = —ceq, €21 (25 f0.f)e2efo(_cey) = (x(e), ¢, x(€)?). Thus, for
every € > 0,
x(2e, fo + f1, —ceq) — 215 Fo ) 280 (_gey)| = x2(e) > 0. (5.70)

5.3.2 Convergence for linear systems
Let T > 0. In this paragraph, we study linear systems of the form

#(t) = (Ho + H1(t)) z(t) and z(0) = p, (5.71)
where Hy € My(K) and H; € L*((0,7); M4(K)). Let ||-|| be a sub-multiplicative norm on M4(K).
Proposition 5.20. Let T > 0, Hy € My(K) and Hy € L*((0,T); My(K)) such that [ Hillzs <

%HHOH. Then, for each t € [0,T] and p € K? the solution to (5.71) satisfies x(t) = e~ %= ettop

where Zy(t) is defined by (5.24) with
+oo

_ (t=7)H, (r—tHy _ N~ =T
Ar) =e Hi(7)e => o adi, (Hy). (5.72)

k=0 '

Proof. The function y : 7 € [0,t] = e*""Hog(r) solves /(1) = A(7), y(0) = e'op. Thus, by

Proposition 5.7, y(t) = e~ %= " etHop which gives the conclusion because y(t) = x(t). O

Remark 5.21. The Magnus expansion in the usual setting (Proposition 5.7), when applied directly
to A(t) = Ho + Hi(t) requires a smallness assumption on T'||Hol| (through the condition ||Al|L: <
%), even for small perturbations Hy. On the contrary, the Magnus expansion in the interaction
picture (Proposition 5.20) holds even when T | Hy|| is large, provided that the perturbation Hy is
small enough.
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5.3.3 Divergence for arbitrary small analytic vector fields

Generally speaking, since, as illustrated in Section 5.2.3, the Magnus expansion does not converge
for analytic vector fields, one cannot expect that the Magnus expansion in interaction picture
converges for analytic vector fields.

For instance, if fo = 0, or if, for some a € [1,d], fo(z) only depends on z1,...,z, and is
supported by eq, ..., e, and fi (¢, z) only depends on x4 1, . . . 4 and is supported along e, 11, . . . €4,
then the vector field g¢(7) = @o(t — 7). f1(7) defined in (4.37) and involved in the Magnus in the
interaction picture formula satisfies g;(7) = f1(7).

Hence, each counter-example to the convergence of the usual Magnus expansion also yields
counter-examples to the convergence of the Magnus expansion in the interaction picture.

5.4 Sussmann’s infinite product expansion
5.4.1 Equality for nilpotent systems
In this section, we study affine systems of the form (4.51).

Proposition 5.22. Let B be a generalized Hall basis of L(X) and (§)pen be the associated coor-
dinates of the second kind. For every M € N*| there exist ny; > 0 such that the following property
holds. Let T,5 > 0, fi € C35 and u; € L*((0,T);K) for i € I. Assume that the Lie algebra
generated by the f; for i € I is nilpotent of index at most M + 1. Then, under the smallness
assumption (4.52), for each t € [0,T) and p € Bs,

x(t; fou,p) = il et oy (5.73)
s Uy beBarg

Proof. The proof strategy is the same as for Proposition 4.13. We apply the second statement of
Lemma 3.24 instead of the first one, which gives €; = 0 for each j € [0,k + 1]. The smallness
assumption guarantees that all flows are well-defined. O

5.4.2 Linear dynamics in Banach algebras

Convergence for small matrices. Let T > 0. In this paragraph, we study affine linear systems
of the form

z(t) = (Z ul(t)Al> z(t) and x(0)=p (5.74)
il
where A; € My(K) and u; € L((0,7); K). When well-defined, its solution is denoted x(t; A, u, p).
The main goal of this section is to prove Proposition 5.25 which asserts that Sussmann’s infinite
product expansion for system (5.74) converges locally (i.e. for small matrices or small controls).
Before proving this result, we need a definition for an ordered infinite product (given in Defi-
nition 5.23 below) and a sufficient condition for its convergence (given in Lemma 5.24 below).

Defining the ordered product of a family of matrices indexed by a length-compatible Hall basis
is straightforward, because there exists an indexation of the family by N which is compatible with
the order induced by the Hall basis (since it does not involve infinite segments). Hence, one is
brought back to the classical case of a sequence of products and usual definitions and convergence
criteria can be used.

For generalized Hall bases, the situation is more intricate, due to the potential infinite segments
which can prevent the order of the basis from being compatible with the order of natural integers.
This problem already appears for a product which would be indexed by N? with the lexicographic
order

(0,0) < (0,1) < (0,2) <--- < (1,0) < (1,1) < (1,2) < --- < (2,0) < - - (5.75)
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We therefore propose a natural definition and a basic sufficient condition for convergence based
on absolute convergence. In what follows, || - || is a submultiplicative norm on M4(K) such that
|IId|| = 1, for instance a subordinated norm.

Definition 5.23. Let J be a totally ordered set and (A;),jec; matrices of My(K). We say that the
ordered product of the e over J converges when there exists M € My(K) such that, for every
€ > 0, there exists a finite subset Jy of J such that, for every finite subset Ji of J containing Jy,
one has

<e. (5.76)

-
’M— I e4

VISDA

When such an M ezists, it is unique and we write

.
M = E[Jef“f. (5.77)
J

Lemma 5.24. Let J be a totally ordered set and (A;)jes matrices of Mq(K) such that

> 4] < +oo. (5.78)

JjeJ
Then the ordered product of the ei over J converges in the sense of Definition 5.23.
Proof. Let « be the left-hand side of (5.78).
Step 1: Basic claims. We start with straightforward claims. First, for every j € J, one has
e — 1) < e 1 < 4l < )4y e (579)

Second, for every finite part J’ C J, one has

-
I e

Py < I el < e, (5.80)

T jeJ’

Third, for every finite parts Jy C J; C J, one has

— —
I ed — 11 ™
JEJ1 J€Jo

< Y |4 (5.81)

j€J1\Jo

Indeed, writing J; \ Jo = {j1 > -+ > jn}, we have the following telescopic decomposition

n

— — — —
I e — I et = IT e?i (eAjk —Id) II e, (5.82)
JEJ Jj€Jo Jj€Jo JE€N1

k=175>j 3<dk

which, together with the two first claims, proves estimate (5.81).

Step 2: Construction of a limit. We construct a possible limit. For each n > 2, let

1
Jn = {j e J, || Al > n} (5.83)
Thanks to assumption (5.78), the sets J,, are finite and, moreover,

eni= Y 4] —o. (5.84)

GEINTn
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Now, for each n > 2, we define the matrix

<—
M, = IT e, (5.85)
J n

This defines a Cauchy sequence in the complete space My(K). Indeed, for every n < p, thanks to
estimate (5.81), one has
| M, — M,|| < e3*,. (5.86)

Hence, there exists M € Mgy(K) towards which the sequence (M,,),>2 converges. By letting
[p — oo] in the previous inequality we obtain, for every n > 2

| M, — M| < e3,. (5.87)

Step 3: Proof of convergence. We now prove that the ordered product of the e over J converges
to M in the sense of Definition 5.23. Let ¢ > 0. Let n > 2 large enough such that e3¢, < /2.
For every finite set J; containing J,,, condition (5.76) holds thanks to (5.87) and (5.81). O

Proposition 5.25. Let B be a generalized Hall basis of L(X), (§)ven be the coordinates of the
second kind associated to B. There exists 7 > 0 such that the following property holds. Let
A; € My(K) fori e I. Forbe B, we define the matriz Ay := A(b) where A : L(X) — M, (K) is
the homomorphism of Lie algebra such that A(X;) = A; fori € I (see Lemma 2.7). Let T > 0 and
u; € LY(0,T);K) fori € I. Assume that

[ull g 1A < 7. (5.88)

Then, for each t € [0,T] and p € K¢, the ordered product of the oW A oper b € B converges.
Moreover, for every p € K¢,

—
‘A — I St Any, )
(t A,u,p) = TS0y (5.59)
Proof. Let 1 :=1/(8|I|?). Let T > 0. Below, the variable ¢ implicitly belongs to [0,7]. To simplify
the notations we write &,(¢) instead of & (t; u).

Step 1: Convergence of the ordered product of the e$*M4s gver b € B. One obtains, by induction
on |b], that for every b € B, || 4| < (2]|A)!l. Thus, recalling (2.102),

|b]

1€ (8) Abll < (2l ANlull L1 0.0)) (5.90)
Taking into account that |By| < |I|*, we obtain, using (5.88),
+oo P
Yo la®Al <Y ANl ) <1 (5.91)

beB =1
and Lemma 5.24 gives the conclusion.

Step 2: Estimates along a Lazard elimination in By . Let M € N*. We adopt the notations
b1,...,bgy1 and Yy, ..., Yi 1 of Definition 2.49 and we define z((t) := x(t) and, for j € [1,k + 1]

aj(t) = e S (A, e (A, (g, (5.92)

We prove by induction on j € [0,k 4 1] that

() {i“j(t) = (ZbeB[[l,M]]ﬂYJ & (1) Ay + gi(t)) 7 (1), (5.93)
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where g = 0 and
les @l < (MITIAN @ ATIANl )™ + - (@)]) 501 (5.0

First, (Ho) holds with ey = 0 because xq(t) = x(t) and £x;, (t) = u,(t) fori € I. Let j € [1,k+1]
and assume that (#;_1) holds. We deduce from the definition of x; that

z;(t) = e DA (1) (5.95)
and from (#;_1) that
@j(t) = —&, (£) Ay, x5 (t) + e~ (DA S &M A e (t) | e D Miay(1)
PR (5.96)
- 3 Ey(t)e s DA Apets Dy 425 1 (1) | ()
bEB1, 2y NYj-1\{b;}
where £;_1(t) := e Sbs (DA ej,l(t)e&’]‘ ®4s; satisfies,
IZj-1 (&) < llej(t) eI DA, (5.97)
For b € By pp NYj-1\ {b;}, let h(b) € N* be the maximal integer such that (4.65) holds and
PP & f"‘( ),
(1) = &y(t)e 5 O 4,68 O, Z 607" Ay . (5.99)

Then, by definition of Y;, (#;) holds with ¢; defined by (4.69). Using the fourth statement of
Lemma 3.24, (2.101), (5.90), we obtain

, : 2||&, (£) Ay, [|)"®
L e

2 Al [l 1 )P lesl 22 ) .
Al ||2(b>>! e (5.99)

< Mlu(®)| (4l Allllell) M 1AL,

taking into account M +1 < [b| 4+ h(b)[b;| < 2M and [|Al|[[ul|zr < 1.
We deduce from (4.69), (5.97), (5.99) and the relation | By arg| < [I]M 7! that (5.94) holds.

< [el u(®)]lfull )~ -

Step 4: Proof of an estimate on the ordered product of the e$(M4r gyer Bpi,ag- We deduce
from (5.94), (5.91) and the relation k + 1 = |Bpy arg| < [I|M T that

ler+1 (O < eMIAYT Pt (41112 [ AlllJull o)™ (5.100)
Hence, using (5.88),
lersallzy < (4|I| 1Al )™ < 274 (5.101)
We deduce from (Hy11), (2.94) and Gronwall s lemma that
t
ol a0 gl o) -5l < [ lrnDoalar <27Vl (.02

5
Multiplying both sides by the finite product ~ IT WA gives

bEB1,Mm]
e ) A 20—M
z(t)— I eSEWAyl < 297 M) (5.103)
bEBHl,M]]
Passing to the limit [M — oo] in the previous estimate gives (5.89). O
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Divergence for matrices in large time. The goal of this paragraph is to illustrate that the
smallness assumption (5.88) in Proposition 5.25 is necessary because the equality does not hold
globally.

Proposition 5.26. Letu:t € Ry — (1,1) € R?.
1. There exist a Hall basis B of L({X1, X2}) and a subsequence (by)ren of B such that

b
Iy >0,VkeN,t >0, &, (t;u)> <’y> (5.104)

2. There exists A1, As € M3(C) and t >~ such that (efbk (t;ﬂ)Abk)keN does not converge to Ids
in M3(C). Thus, the ordered product of the 5 ™Av oyer B does not converge in M3(C).

Proof. For the first point we adapt an argument due to Sussmann in [68, pages 333-335]. We define
by induction two sequences (b},)ren and (b2 )ren of Br(X7, X») by

b(l) =X, bg = Xy, bllc+1 = [biv [bi7bi]]7 biJrl = [bllcﬂ [bllcvbi“' (5'105)

There exists a Hall basis of £({X7, X2}), whose order, denoted <, is compatible with length and
such that, for every k € N, b}, b € B and b}, < bZ. It suffices to choose, on the brackets with length
3%, some order such that b} < b2. Then, automatically, [b},b?] € B and thus b,lﬁ_l, b2+1 € B. Such
a process indeed allows to construct a Hall basis (see Remark 2.51), provided that one chooses an
arbitrary length-compatible order on all other brackets.

To simplify notations in this proof, we write &, (t), instead of §,(¢; 7). We have {x, () = £x, () =
t. An easy induction shows that, for every b € B, &(t) = tl!=1/ay, where a;, € N*. The constants
ap can be computed recursively: ax, = ax, =1 and, if b = adgz (be) with m € N*, b; < by and
A(b2) < by then oy, = aj’|by|"m!ay,. In particular, for every k € N,
2 1121151 2 92k 2 12 2 2k
abllc-H = ab,lﬂabi|bk”bk| = abiabig 3 abi-H = Zabiabﬂbk\ = 2abkabi3 . (5106)
Let B = max{abi,abi}. Then, 8y = 1 and, by the previous relations,

Bry1 < 3%H1BE (5.107)

Thus 6y, := 3% In(B},) satisfies fy = 0 and

Or1 < O + (2k + 1)3~ D 1n(3), (5.108)
which leads to 0 < n:= ;:OT(Zj +1)37U+D In(3) ie. B < (v)*" where 4/ = e”. Therefore, for
every k € N and j € {1,2} we have

A

1 t k
0z —(5) 5.109
]2 5 () (5.109)

31€
Let v > 7/ be such that, for every k € N, 3% (l,) > 1. Then (5.104) holds, for instance with

8l
by, = bL.

For the second point, let, for j € {1,2,3}, F; € M3(R) be the matrix of the linear map
S R‘S =€ A x. Then [Fl,FQ] = Fg, [FQ,FS} = F1 and [Fg,Fl] = FQ. In particular

[Fy, [F1, Bb]] = Fy,  [FL, [FLL Bl = —F. (5.110)
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We consider A; = €6 Fy and Ay = €'s I, in M3(C). One easily proves by induction on k € N*
that Ay = (—=1)**1F and Ay = —iF,. We have, for every k € Nand t € R

1 0 0
efor Ay — [0 cosh(&, (1)) i(—1)Fsinh(&, (t)) (5.111)
0 i(=1)**" sinh(&, (1)) cosh (&, (1))

By (5.104), this sequence of matrices diverges for every ¢t > ~. O

5.4.3 Investigation for analytic vector fields

In this paragraph, we study affine systems (4.51). Our goal is to explain the difficulty of the
convergence question for Sussmann’s infinite product for arbitrary analytic vector fields. First, we
state a definition (Definition 5.27) and a sufficient condition for the convergence (Lemma 5.28), in
the same spirit as for matrices. Then we show that they do not provide convergence for general
analytic vector fields and we formulate an open problem.

Definition 5.27. Let J be a totally ordered set, § > 0 and (f;)jcs a family of Ca5. We say that
the ordered product of the efi over J converges uniformly on By if there exists g € CY such that, for
every € > 0, there exists a finite subset Jy of J such that, for every finite subset Jy of J containing
Jo, and for every p € Bs one has

Hg(p) - ]gheff ‘ <e. (5.112)
When such a g exists, it is unique and we write
-
g= jg,@fj- (5.113)

Lemma 5.28. Let J be a totally ordered set, § > 0 and (fj);jes a family of Cas5 such that
S llfillco <6 and  a=>_|lfiler < oo (5.114)
jed jeJ

Then the ordered product of the efi over J converges uniformly on Bs and is e®-Lipschitz.

Proof. We proceed as in the proof of Lemma 5.24.

Step 1: Basic claims. First, for every finite subset J' C J and p € K¢ with |p| < 20=3 e filleo,
then

+—
11 ef"p € Bos and ‘
JjeJ’

jeJ’ Togeg’

because of Lemma 3.19 and the chain rule.
Second, for every finite parts Jo C J; C J and p € K¢ with |p| < 26 — > jes, Ifjllco one has

H efip— H efi
Jjeh1 P Jj€Jdo P

‘<e > Afillco. (5.116)

]€J1\J0
Indeed, writing Jy \ Jo = {j1 > -+ > jn}, we have the following telescopic decomposition
— — n — — — —
I elip— 1O effpzz I eli Jefic | T efi |p—| I el IIeli|py. (5117)

ISER Jj€Jo jEJU jEJ1 ]:EJO ]:EJ}
k=1 i>dk F<ik 3>k 3<dk
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—
For k € [1,n], let = = 1’5 efip which is a point in Bos—|1f;, llco- BY (5.115) and (3.27), the term
JE€S1
J<Jk
with index k in the previous sum is bounded by

— —
O eli | efivag, — [ I eli | x| <e®|efinay, — xk‘ < e fillco- (5.118)
3€Jo i€Jo
J>Jk J>Jk

which, together with (5.117) proves (5.116).

Step 2: Construction of a limit. We construct a possible limit. For each n > 2, let

. 1
si={ie s il > 1} (5.119)
Thanks to assumption (5.114), the sets J,, are finite and, moreover,

eni= > |filler 0. (5.120)

JjE€EI\JIn

Now, for each n > 2, we define g, € CJ by

e

n = ip. 5.121
gn(p) = 11 ep (5.121)
This defines a Cauchy sequence in the complete space C§. Indeed, for every n < n’ and p € Bs,
thanks to estimate (5.116), one has

g (P) = g P)[| < €%en. (5.122)

Hence, there exists g € CY towards which the sequence (g, )n>2 uniformly converges on B;s. By
(5.115), gy, is e*-Lipschitz on By for every n € N, thus so is g. By letting [n’ — oo] in the previous
inequality we obtain, for every n > 2 and p € Bs

19n(p) — g(P)I| < e%en. (5.123)

Step 3: Proof of convergence. We now prove that the ordered product of the efi over J converges
uniformly to g on Bs in the sense of Definition 5.27. Let € > 0. Let n > 2 large enough such that
e“e, < /2. For every finite set J; containing .J,,, condition (5.112) holds thanks to (5.123) and
(5.116). O

Now, let us emphasize that, by using estimates on &,(¢; ) and f, depending only on the length
of the Lie bracket b, it is not possible to prove the convergence of > |&,(¢;u)|||follcr, where the
sum ranges over b € B, an arbitrary generalized Hall basis of £(X).

On the one hand, one easily proves by induction on |b| that, for every b € B and v € L™
with ||ul|z~ < 1, there holds |&(¢;u)| < tI*l. However, by the first statement of Proposition 5.26,
when X contains at least two indeterminates, there are Hall bases (even compatible with length)
for which one may not expect an upper bound, function of |b| alone, that behaves better than
geometrically. Hence, we should consider the ¢/l bound to be sharp, when one restricts to bounds
depending only on |b|.

On the other hand, if the vector fields are locally analytic, there exists r,§ > 0 such that
fi € Cy" for i € I. By (3.23) with ry <— r and rp < r/e for every b € B,

I foller < (1+) (1ol = 1! (2)“)11?“, (5.124)
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where F' := max;er ||| fi]l|,.. However, by Remark 3.16, the dependence in (|b| —1)! is optimal (again,
if one restricts to bounds involving only [b]).
We deduce from the previous estimates that there exists C' > 0 such that

ot w)ll| foller < (CH)PIp. (5.125)

This bound does not provide the convergence of the considered series. Indeed, for every ¢t > 0,
(Ct)IPl|p|! — +00 as |b| — +o0, so an argument depending on |b| alone doesn’t even prove that the
general term tends to zero.

To prove the convergence of Sussmann’s infinite product expansion, one therefore either needs
a better sufficient condition than Lemma 5.28 or one needs to prove estimates on &, and f; that
take into account the structure of the bracket b, and not only its length.

Open problem 5.29. Does Sussmann’s infinite product converge for analytic vector fields?

In Section 6.4, we prove the convergence (for analytic vector fields) of some infinite subproducts,
by applying Lemma 5.28 with estimates on &, that depend on the structure of b.

6 Error estimates for control systems

In this section, we consider control-affine systems with drift, i.e. of the form

q

(1) = fo(x(t)) + Y wi(t)fi(x(t)) and @(0) =p, (6.1)

i=1

where fo, ..., f, are vector fields and u = (uy, ..., u,) € L'(R;K9). When well-defined, the solution
is denoted z(¢; f,u, p) where f = (fo,..., fy) and u = (uq,...,uq).

We prove error formulas at every order in ||ul/z:1 for the iterated Duhamel expansion, the
Magnus expansion in the interaction picture and for Sussmann’s infinite product expansion. In
each case, the error formula involves an infinite sum or an infinite product which turns out to be
well-defined. We also propose a counter-example for the validity of such error estimates for the
usual Magnus expansion, for which the infinite sum involved is not well-defined.

6.1 Iterated Duhamel or Chen-Fliess expansion

The convergence of the Chen-Fliess series, for control affine systems (6.1) with analytic vector
fields, under a smallness assumption on t and a uniform bound on u, is a classical result, see for
instance [28, Proposition 3.37] or [67, Proposition 4.3]. In this section we prove the convergence
of the Chen-Fliess expansion, (Proposition 6.1) under a smallness assumption on |lul|z1. We also
generalize the Chen-Fliess expansion to nonlinear systems (not necessarily affine) with scalar input
(Proposition 6.2), because this fact will be used in Section 7.2.

In the following statement ¢ € N*, I = [0,q]. For a word 0 = o1---0p € I*, with ¢ € N*,
o1,...,0¢ € I, and vector fields fo, f1,..., fq, we denote by f, the differential operator f, =
(for * V) (fo, V). For t > 0 and u = (u1,...,u,) € L'(0,t), the quantity fotug is defined
in (2.11), with u = 1.

Proposition 6.1. Let 6,7 > 0 and fo, f1,...,fq € C55". There exists n > 0 such that, for every
© € C¥"(Bys; K), t € [0,n] and u € L'((0,t); K9) such that ||u|p: <n and p € Bs, then

dtattrum = Y ([ t ) () ) (62)

oel*
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where the sum converges absolutely, uniformly with respect to (t,u,p). Moreover, for every ¢ €
C“"(Bas; K), there exists C > 0 such that, for every M € N, p € Bs, t € [0,n] andu € L((0,t); K9)
such that ||ul|pr < n, then

plalt fup) = 3 ( / u) (f29) (0| < (Cllull )™+, (6.3)

n(o)<M
where the sum ranges over words o € I* such that the number of non-zero letters is at most M.
Proof. For 0 = o1 ---0¢ € I*, let n(o) be the number of non zero letters in o, i.e. n(o) = [{i €
[1,€]; 04 # 0}] and ng(o) be the number of occurrences of the letter zero in o, i.e. no(c) = |{i €

[1,€];0; = 0}|. Then ¢ = n(o) + ng(c). One proves by induction on the length ¢ of o € I* the
following estimate, for every ¢ > 0 and u € L'((0,t); K9),

‘( / u)\ Ml el o1
0 n(o)!  ng(o)!
Let 1/l = S0 [1illl,» 1 = /(0] £]}), @ € C="(BasiK), t € [0,) and u € L((0,4); K¥) such
that ||ul L0, = doi; luillLio,r) < m and p € Bs. Using (6.4) and (3.18), we get
¢ n(o) 10 ¢
([ o) o) @] < 1l (32051 e, (65)

which proves the absolute convergence of the sum in (6.2), uniformly with respect to (¢, u, p)

The proof of the equality in (6.2) consists in applying (5.9) to f(t,z) = fo(z)+ Y1, wi(t) fi(x).
In particular the sum involved in (6.3) is the Taylor expansion of order M of u — @(z(t; f, u,p))
at v = 0. By adapting Lemma 3.10 to affine systems with L' controls, we get the real-analyticity
of the map u — @(x(t; f,u, p)) on Bri(o,)(0,7) uniformly with respect to (,p) € [0,7] x Bs which
ends the proof of (6.3). O

The last statement of this section focuses on nonlinear control systems with scalar input

= f(z,u) (6.6)

where f : K% x K — K% When well-defined, the solution of this ODE, with initial condition
x(0) = p is denoted z(¢; f, u,p). We introduce the notation

t
/ ub = / u(rp)fn - u(r)P dr (6.7)
0 7—(7L)(t)

for every t > 0, u € L((0,t); K), and every multi-index k = (k1,...,k,) € N* with n € N*.

Proposition 6.2. Let r,0,6, > 0, f € C*"(Bas X [0, 0,); K?) and fi := 508 f(-,0) for every
k € N. There exists T*,n > 0 such that, for every ¢ € C*"(Bas; K), t € [0,T], u € L*=((0,t); K)
with ||ul|p~ <1 and p € Bs

ettt = X ([) (G 9 (G 9) () 0 (6

neN
keN™

where the sum converges absolutely, uniformly with respect to (t,u,p). Moreover, for every ¢ €
C¥"(Bgs : K), there exists C > 0 such that, for every M € N, t € [0,T7], u € L*((0,t); K) with
llu||lp < and p € Bs

plattifur) - 3 (/uk) ((Fer - ) (- 9)) () @)] < (Cllullz=)*" (6.9)
keN™ [k|<M
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where the sum is taken over n € N and k = (ky,...,k,) € N" such that ky + -+ + k, < M.
Proof. We define ' = r/e,
r ) } r
T =mind —— 2 Ly min{s,, =\, 6.10
{wmfu [ flleo {ou 15} (6.10)

Let ¢ € C¥"(Bas;K), t € [0,T*], u € L*((0,t); K?) with |ul]lr~ < n and p € Bs. Then
(E(t, f»uvp) € B25'

Step 1: Uniform absolute convergence of the sum in (6.8). Using the iterated version of (3.8) and
(3.1), we get, for every k € N;

k k k k
Il < 5 () A< (=) me < (2) e, (6.11)

For every n € N* and k4, ..., k, € N, we have, using (3.18) and (6.11)

(U 90 (U 9)) () )] < (5) (78 IO [ =

n k14 +kn
5 5 n
<l () () A el

t
/ uk / w(y)f ()R dr
0 0<T < <7 <t

By definition of 7* and 7 we have 2 ||| ||, < 4 and 2|ju|[z~ < %, which gives the conclusion.

(6.12)

and

tn k kn
< (6.13)

Step 2: Equality in (6.8) and error formula (6.9). We have f(-,u) = ;;08 u f; with convergence

in C,, 5’7"’ uniformly with respect to u € Bga(0, 7). Thus, the equality (6.8) is a consequence of Fubini
theorem and (5.9) applied to (¢,x) — f(z,u(t)). In particular the finite sum involved in (6.9) is the
Talyor expansion of order M of u — ¢(z(t; f,u,p)) at w = 0. By Lemma 3.10 u — @(z(t; f, u, p))
is analytic on By 7+)(0,7) uniformly with respect to (¢, p) € [0, 7] x Bs, which ends the proof
of (6.9). O

6.2 Magnus expansion in the usual setting: a counter-example

Contrary to other expansions, the usual Magnus expansion does not yield, in general, error es-
timates involving the size of the control. Indeed, the infinite segments which would need to be
summed do not converge, even for analytic vector fields, arbitrarily small times and even when the
drift vector field vanishes at the origin. The following statement illustrates that even the series
defining the terms which are linear with respect to the control does not converge.

Proposition 6.3. Let d := 2. There exists T,§ > 0, fo, f1 € Cf;’é with fo(0) = 0 and a control
u € C*=([0,TY)), such that, if one defines, fort € (0,T), the sequence of vector fields

n
Fo(t) := kz Caat, () (£ ) ad, (f1), (6.14)
=0
then, for each 6* € (0,68) and t € (0,T), the sequence F,(t) € Cs° does not converge in CY. .

Proof. We define the following vector fields for z € R? with |z| < 1,

fo(x) :=xz9eq and fi(x) := 1 —1x1 €s. (6.15)
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Then,

ok 1 klah
dk _ kY _ 2 o 1
adj, (f1)(x) fzax;f <1—x1)62 (1_x1)k+162 (6.16)
We now choose the particular control u(t) := ¢ for t € (0,7) with T" = 1 (the simpler choice,
u(t) := 1, would not produce a diverging counter-example). Using the expression (2.68) from
Example 2.38 for the coordinates of the first kind along the brackets adlj(o (X7) for this particular
control, we obtain, for ¢ € (0,T),

n

B b
_ _ \kt+1k+2 PE+1 2
F,(t)(z) = kE:O( 1) g p—y = (6.17)

Thus, for each ¢,6* > 0, the sequence of vector fields F, (¢) does not converge in C§., since for every
x9 # 0, the general term of the series does not tend to zero because of the asymptotic (2.67) for
Bernoulli numbers. O

6.3 Magnus expansion in the interaction picture

Proposition 6.4. For every M € N, there exists O € CO(R% xR3;Ry) and @y € CO(Ri+q;R+)
such that, for every 6 >0, T >0, fo € Cé\gQH with T|| follee <9, f1,...,fq € C%Q, Ul,...,Ug €
L'((0,7); K) with
q
lullpr < Om (8, T, | follgrzis Y I fslleare) (6.18)
j=1
p € Bs and t € [0,T)] then

w(t; fu,p) — 2T Wethop

< Jull 25 @ar (T [ follgsezsns illenz o [ fallosss) — (6:19)

where Zy(t, fo, f1) = Logy{g: }(t) in the sense of Definition 2.19, g; : [0,t] X Bys — K@ is defined

by
q

(1) = Y wi(®)(@o(t — 7)< fi(1)(y) (6.20)

i=1
and ®q : [0,T] x Bys — Bss is the flow associated with fo i.e. ®o(t;p) = etfo(p).
Proof. We define

q q
Om( T | follerz1s Y Ifilleaz) = Onr (Tl follgar4a) min{ 18}/ Y || fillare (6.21)

i=1 i=1

with O,/ as in Proposition 4.8. Then the assumptions of Proposition 6.4 imply (4.35) for fi(t,x)
Yodui(t)fi(x). Then (4.36) gives (6.19) because for every i € [1,¢] and 7 € [0,¢], ||(Po(t —
7)«fi(T)||car> is bounded by a continuous function of T', || fol|oa241 and || fil oar2 - O

6.4 Sussmann’s infinite product expansion

The goal of this section is to prove Proposition 6.7 which states that, despite the difficulties men-
tioned in Section 5.4.3 concerning the full convergence of Sussmann’s infinite product expansion,
some (infinite) subproducts of it do converge and yield error estimates at every order in the size
of the control for control-affine systems with drift of the form (6.1).

We start with an elementary remark (Lemma 6.5) on the structure of brackets of a generalized
Hall basis which allows to prove nice asymmetric estimates on the associated coordinates of the
second kind (see Lemma 6.6).
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Lemma 6.5. Let ¢ € N*, X = {X, X1,...,X,} and B a generalized Hall basis of L(X). For each
b € B, there exist m,m € N such that

b=ady ady, (b, (6.22)

where afo denotes the iterated right bracketing m times by Xo and b* € B is such that either
b*e X orb= [bl,bg] with by 75 Xo and by 75 Xo.

Proof. The key point is that, by the third condition in Definition 2.50, for each b € B\ X, A(b) < b.
Let b € B. We disjunct cases.

e If be X or (A(b) # Xo and u(b) # Xy), then (6.22) holds with m = m = 0 and b* = b.

e If A(b) = X, there exists a unique m € N* and b € B such that b = ad’y, (b) where b € X or
D) # Xo.
— Ifbe X or u(b) # Xy, (6.22) holds with 77 = 0 and b* = b.
— Otherwise, there exists a unique ™ € N* and b* € B such that b = %?0 (b*) where
b* € X or p(b*) # Xo.
« If b* € X, (6.22) holds.

* Else u(b*) # Xo. one has A\(b*) < b* as recalled. Moreover, since m > 1, [b*, X¢] € B
so b* < Xy (by the second point of Definition 2.50). Hence A(b*) < Xj. So we also
have A(b*) # X, and (6.22) holds.

o If u(b) = Xy, there exists a unique 7 € N* and b € B such that b = ﬁ?o (b) where b € X or
M(B) # Xo.
— If b € X, (6.22) holds with m = 0 and b* = b.
— Else u(b) # Xo. Since m > 1, [b, Xo] € B, so é < Xo. Since A(b) < b, this proves
A(B) # Xo. So (6.22) holds with m = 0 and b* = b.
Hence, the decomposition (6.22) always holds. O

We now turn to asymmetric estimates for the coordinates of the second kind, which, contrary
to Lemma 2.58, isolate the role of X associated with the implicit control ug = 1.

Lemma 6.6. Let g € N*, X = {Xo,X1,...,Xq}, B a generalized Hall basis of L(X) and (& )seB
the associated coordinates of the second kind. For every k € N*| there exists ¢, > 1 such that, for
each b € B with n(b) =k, T >0, u € L'((0,T); K?) and t € [0,T],

’ (th)no(b)
1€0(t; 1, u)| < ||U||’EgW (6.23)
and
Gt L) < Kla()[[ulf;* when np(b) = 0, 620
bl L, u)| > _ ) cr (e no(b)—1 .
lully (ktlu(e)] + mo(®) [l 1 0.y ) S5 when no(b) > 0

Proof. In this proof, we write & (t) instead of & (¢; 1, u) by concision for the value at time ¢ € [0, T
of the coordinate of the second kind associated with the control ug = 1 and u; for i € [1, ¢]. First,
when (6.24) holds on [0,7], then so does (6.23) by time-integration (with the same constant).
Hence, we only need to prove the bound on the time derivative of the coordinates.
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Step 1: Persistence of the estimates by right bracketing with Xo. Let k € N* and b € B such that
n(b) = k. We assume that (6.23) holds and we prove that b := [b, Xo| satisfies both estimates with
the same constant. Since &x,(t) = 1, we have

(ckt)"o(b)

no(b)!

Hence b satisfies (6.24) (and (6.23) by integration) because ¢ > 1 and ng(b) > 0.

165(8)] = 1&(D)Exo (D] < llullEo,r) (6.25)

Step 2: Persistence of the estimates by arbitrary long left bracketing with Xg, up to cg < 2ci. Let
k € N* and b € B with n(b) = k. We assume that (6.24) holds and we prove that, for every m € N*,
b := ad'y, (b) satisfies both estimates with a constant cj < 2c;. If ng(b) = 0, it is straightforward

to check that b satisfies (6.24) with ¢, < 1. If ng(b) = 1, we have

&) = |€X0() & (1)]

tm

g;ﬂwg%wwm+m@mmg

cu(ext) 7
no(b)!
o 6.26)
— m+n, no(b) t Fro®)t (
’le(kﬂu(m + (m+no(b))||u||L§>2 @)l )m

A
=

B B i tno(i))q
< el (ktha(®)] + no®lull ) (2e0) O

because n9(b) = m + no(b) and ¢ > 1. So b satisfies (6.24) with a constant ¢, + 2cx.

Step 3: Proof of the estimates by induction on k € N*.

Initialization for k = 1. For i € [1,q], €x,(t) = ui(t) so both estimates are satisfied with
constant 1 when b € {X1,...,X,;}. By Lemma 6.5, Step 1 and Step 2, we deduce that (6.23) and
(6.24) hold for k = 1 with ¢; = 2.

Induction (k — 1) — k. Let k > 2 and let us assume that the estimates are proved for every
b € B with n(b) < (k—1). Let b € B with n(b) = k. By Lemma 6.5, Step 1 and Step 2, we can
assume that b = ady; (bz) with b1,bo € B, by # Xo and (by € X or A(b2) < b1) and (by # Xo or
m > 1). Assume that by # Xo. Then the induction assumption applies to both b; and by. Let
k1 :=n(b1) and kg := n(b2). Then k = mky + ka, no(b) = mng(by) + no(b2) > no(b2). Using the
induction assumption and (3.2) with a + (m + 1), we obtain, when ng(bs) > 0,

\Mﬂ=%@dﬁﬂﬂ
(Ck1 ) no(b1)\ ™ ko—1 ck2(ck2t)n0(b2)71
< — A T 2T katlu(t b ———  (6.27
< Qw ) Ml (el + o) fullsy ) #2252 — (627
. mn ) o) 00!
< 3 (Relu(e)] + mo Bl 2o e @ =

Since m < k, we have the two desired estimates with ¢ := 2 - 2¥ max{c;;j € [1,k — 1]}, where
the first factor 2 comes from Step 2. When ng(b2) = 0, the proof is similar and easier. When
by = Xo, the induction hypothesis applies because m > 1 so n(b;1) < n(b) and the proof is
straightforward. O

These estimates allow to prove the main result of this section.
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Proposition 6.7. Let ¢ € N*, X = {Xo, X1,...,X,}, B a generalized Hall basis of L(X) and
(&)veB the associated coordinates of the second kind. Let M € N, r,6 > 0, fo,...,fq € Cy3".
There exists n,Cyr > 0 such that, for every u € L*((0,T);K9) with T < n and lull 10,7y < 1, the
ordered product of the e€BLWIv guer the infinite set BN Sy converges uniformly on Bs and, for

each t € [0,T] and p € Bs,

—
wts frup) =, TS0 < Opllul| 275 (6.28)

Proof. In this proof, to simplify the notations, we write x(t), & (¢) and ||u|| instead of x(¢; f, u, p),

& (t;1,u) and [|ul|£1o,)- Let (cx)ren+ be the increasing sequence of constants of Lemma 6.6. We
define

18
C. ::M max  C, (6.29)

r k€[1,2M]
. g min{1, §} }
:= min , 6.30
! {2||f||c21 2C.(q + 1)M!(1 +7) (6.30)
Cu = e (1+7)(2M) (g + )M OMH (6.31)

For t € [0,T) and u € L'((0,7); K9) with T < n and |Ju|| < n, using (6.30),

q
tl folleo + D luillzr ol filleo < nll fllco < 6. (6.32)

i=1
Hence, for each p € By, z(t; f,u,p) € Bas.

Strategy. Since the product involved in (6.28) is indexed by the infinite set B N Sy, the proof
strategy consists in considering the sequence of finite products By ) N Sy for L € N* and let
L — +00. The error between the true solution and the finite product contains both a term scaling
like ||u||**+! which will persist in the limit and a transitory error term which vanishes as L — +oo.
Each bracket in b € B is either, not involved at all in the process, involved in the final error,
involved in the transitory error term, or involved in the finite product, depending on L, M, n(b)
and ng(b) as pictured in Fig. 1. In Steps 2, 3 and 4, L > M + 1 is fixed. In Step 5, we take the
limit L — +o0.

n(b)

Never part of the process

2M < n(b)

Part of the final error

M < n(b) <2M

N
N\
N

n(b) < M and |b| < L\\
\

—t—t—+—t+——+—+> no(b)

Finite product

Figure 1: Decomposition of B along the Lazard elimination process for the product on BN Sy,.
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Step 0: Preliminary estimates. First, using estimate (6.24) from Lemma 6.6, for each b € B with
n(b) = k, one has in particular

(ckt)”o(b)
Taking into account that for every m € N*, |B,,| < (¢+1)™ and using the analytic estimate (3.23),
we obtain the following estimate for the terms which can be part of the final error

Yoo bl folles

€]l < [full® (6.33)

bGBﬁ(SQ]u\SM)
2M k+no
t 9
< 3 S el Oy (YT

k=M+1no=0 (6.34)

2M +oo

<(A+r)EM-1! > (@+DCuul)* > ((g+1)C.T)"™
k=M+1 no=0

< (1+r)2M) (g + 1)MHECHH o M

because |lul| < n, T <nand (¢+1)Cin < 1. For the terms which can be part of the finite product
or of the transitory error, there holds similarly

Y &l fsller

beBNS
M +oco k+no
cxt 9
< Tl foller + Z Z |Bk+n0|||u||k( k ) (1+7) ( ||f|||r> (k +mng —1)!
k=1mn0=0 (6.35)
M +00
<T|foller + (L+7)(M =D ((g+ DCullul)* > (g + 1)C.T)™
k=1 no=0

< Tl foller + (1 + )M g + DCullu]| < 6.

Step 1: Convergence of the ordered product of the ef*®fo over BN Sy, uniformly on By, towards
a Lipschitz map. Thanks to (6.35), we have

> la®llifller < Y Nl lifsller <6 (6.36)
beBNS beBNS
and Lemma 5.28 gives the conclusion of Step 1.

Step 2: Lazard structure on By pjNSy. We use the notations of Definition 2.49 to describe By, 1.
There exists m € N and an extraction ¢ such that

BHLLH NSy = {b¢(1) << b¢(m+1)}. (6.37)
Let i € [1,m + 1] and n = ¢(¢). By Definition 2.49, there exists a unique factorization
bo(iy = bn = adl"~* - - ad]! (by) (6.38)

where by € X, j1,...,Jn—1 € N (one just identifies left and right factors in Br(X)). For every
Jj€e[l,n—1]\ ¢([1,7 — 1]), b; contains at least (L + 1) occurrences of the variables X1,..., Xg,
thus it cannot be involved in the factorization of b,,. This proves that

b¢(1) c }A}o = X,

by(z) € Y11= {adi¢(1)(v);j e N,v e Yo\ {byn)}},
(6.39)

bsmi1) € Yo = {adgm) (v);5 € N,v € Yono1 \ {bg(m) }
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Bp1,,p NSy N Yoni1 =0, (6.40)

where Y11 := {adi¢(7n+1)(”)?j eNv e Y\ {bgimt1)}t}-

Step 3: Proof of estimates along the Lazard elimination on Bpy ;N Syr. To simplify the notations,
from now on, we write By, 1) NSy = {b1 < -+ < bpy1} and we use (6.39) and (6.40) with ¢ = Id.
Let zo(t) := z(t). By (6.36), for every j € [1,m + 1],

zi(t) == e % O0fo; L om0 (D or (1) (6.41)
is well-defined and belongs to Bss. The goal of Step 3 is to prove by induction on j € [0,m + 1]
that
0y {50 = e nse, GO5( 0) +2(0), 6
z;(0) = p,
where )
legllzr < el Mt gyl a 43 7 11g el i o, (6.43)

BEZj

where Z; C (BN Sanr) \ (Bpi,zy N Sar) is defined in (6.50).
First (Ho) holds with €9 = 0 because €x,(t) = 1 and €x;,(t) = u;(t) for i € [1,¢]. Now, let
J € [1,m + 1] and assume that (#;_1) holds. We deduce from the definition of z; that

() = e O (251 (1) = ®; (=&, (1), 251 (1)) (6.44)
and thus that

iy (t) = > & (t) (@5 (=&, (1)), fo) (25(1) +-1(), (6.45)

beB1, L1NSMNY; 1\ {b;}

where {’-Zvj,l(t) = 8p<I>j (—fbj (t),xj,l(t)) Ejfl(t). We get (7‘[]) with

gj(t) == > () +&-1(1) (6.46)

bEB, L)NSMNY;_1\{b;}
where, for every b € By ,j N Sy N }7]-,1 \ {b;},

, : MO k)
g (t) = &(t) (D5 (=&, (1), fo) (x5(t) — Z fb(ﬂ;fi!fad’gj ) (2;(t)) (6.47)

k=0
where h(b) € N* is the maximal integer such that
n(b) + (h(b) — 1) n(b;) < M and |b] + (h(b) — 1)]b,| < L. (6.48)
By (3.41),
)| < &(t &, (1)) = &EWO|f 6.49
B O] < [&( ”Wufadg;b)(b)”@ = &Il f3llco, (6.49)
for b := ade(b)(b). Hence, (6.43) holds with
Z; = {ady " (b); b€ By N Su N Y1\ {b;}}. (6.50)

This yields Z; C (BN Sanr) \ (Bpy,yp N Sar) thanks to (6.48).
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Step 4: Proof of an estimate on the finite product over By rj N Sy By (6.43), (6.36) and (6.34),
we have

lemrillos <€ > €12 | folleo + € > €1l 21l foll o
bEBN(S2nr\Sar) be(BNSM)\B[1,1] (6.51)
< e Curl[ull™* + 05 400 (1),

because the series in (6.35) converges. We deduce from (6.42) and (6.40) that

—

O e selttlig(r) - P’ = |21 () = pl < e Curllul| M + 0p 100 (1) (6.52)
bEB[[l)L]]ﬂSM

—
By (6.36), the map II e~ g ¢ Lipschitz on Bss. Then, by (6.52),
beB[[l)L]] NSar

z(t) — ﬁ e—Eb(t;Lu)fbp

=¢C e oo(1 6.53
beB1,L1NS M < Cullull + 05— 100(1) ( )

Step 5: Infinite subproduct limit. By Step 1, the infinite product over BN Sy, is well-defined. By
letting L — 400 in estimate (6.53), we obtain the conclusion of Proposition 6.7. O

7 Refined error estimates for scalar-input affine systems

In this section, we consider scalar-input affine systems with drift, i.e. of the form
@(t) = fo(z(t)) +u(t)fi(z(t)) and 2(0) =p, (7.1)

where fo, fi are vector fields on K¢ and u € L((0,7);K). When well-defined, its solution is
denoted xz(t; f,u,p). Such systems have been extensively studied in control theory, as toy models
for more complex situations.

The goal of this section is to improve, in this particular framework, the error estimates of the
previous section: the new bound is not expressed in terms of ||ul|r: but in terms of the L>° norm
of the time-primitive of the input, which heuristically corresponds to the W =1 norm of .

This refined estimate is somehow optimal in the scale of Sobolev spaces (as shown by the one
dimensional system #(t) = u(t)) and specific to the scalar-input case (see Section 7.5).

Lowering the Sobolev regularity required on the input is of paramount interest for applications
in control theory (see e.g. [10]) and might also be useful for applications to stochastic ODEs where
the input is a noise with low regularity (see e.g. [11]).

Definition 7.1 (Integrated input). Let T > 0 and u € L'((0,7);K). In this section, U always
denotes the time-primitive of u vanishing at zero, i.e. defined by U(t) := fof u(s)ds fort € [0,T].

7.1 Auxiliary system trick

Enhancing the estimates relies on the following trick which factorizes the dependence of the input
and introduces an auxiliary system involving the time-primitive U of the input (and not w itself).

Proposition 7.2. Let 6 > 0, fo, f1 € C§5 and n* > 0 small enough so that the two following maps
are well defined and (globally) analytic

_J[=n",n*] x Bas  — Bss an ) Bas x [=n*,n*] — K4
e {w,q) serhig T {<q,r> s (@1(=r). fo)a).

Let T > 0 be such that T||F||co <.

(7.2)
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1. For every p € Bs and U € C°([0,T);K) with ||U||L~ < n*, there exists a unique solution
x1 € CLH([0,T); K%) to

$1(0) =D

denoted x1(t; F,U,p). It takes values in Bas. Moreover, the map (p,U) — z1(-; F,U,p) is
analytic from Bs x Beojo 71(0,1*) to C*([0,T]; K?).

{:'Ul(t) = F(x1(t), U(t)), (7.3)

2. For every p € Bs, t € [0,T] and u € L'((0,T);K) such that |U||p~ < n*,

Proof. The existence of * such that ®; and F are well defined and globally analytic results from
the third statement of Lemma 3.24. The analytic dependence of z; with respect to (p,U) is given
by Lemma 3.10. By definition of x;, the right-hand side of (7.4) solves the same Cauchy problem
as  thus the two functions are equal. O

7.2 A new formulation of the Chen-Fliess expansion

The goal of this section is to derive of a new formulation of the Chen-Fliess expansion for scalar-
input affine systems (7.1).

Proposition 7.3. Let 6,7 > 0 and fo, fi € Cs5". There exists n > 0 such that for every ¢ €
C¥"(Bss;K), t € [0,7], u € L((0,t); K) such that |U||p~ <7 and p € Bs,

otatt fum) = 3 S0 ([ 04 (9 et () 9w (1)) ()0 (7)
i o

with the notation (6.7), where the sum converges absolutely, uniformly with respect to (t,u,p).
Moreover, for every ¢ € C*"(Bss; K), there exists C > 0 such that, for every M € N*, ¢t € [0,7)],
u € LY((0,t); K) such that |U||L~ <n and p € Bs,

lats ) = S GO [[0) (159w ()9 oy () 9) (o) 0
S °

t
SC«M+1 (|U(t>|M+1—|—/ |UM+1>
0

(7.6)
where the sum is taken over £ € N, n € N and k = (k1,...,kn) € N” such that {+ky+---+k, < M.
Proof. Let n*, T,z be as in Proposition 7.2, || f|| == || folll. + Il f1]ll, and

) . i r
ni= mm{T’” AT W } .7

Let ¢ € C¥"(Bss;K), t € [0,n], u € L*((0,t);K) such that ||U||p~ < 1 and p € Bs. Then
z1(t; F,U, p) € Bys and, by (7.4) and (7.7), z(t; f,u,p) € Bss.

Step 1: Proof of the absolute convergence in (7.5) uniformly with respect to p € Bs. Let r' :=r/e.
Then, by Lemma 3.15, for every k € N, adl;l(fo) € Cyy" and

[Jects. ][, < & (2)k||f’““- (79)
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Thus, by (3.18),
(7 - 9) (adfy (o) - 9) -+ (adfi (o) - V) (w)(p)’

n+4
neor(z) ik etz
ntt . ks (7.9)
kn! (9 k! (9
n+z( ) ||f||€e(r> ||f|’“”“--~;<r) T

14 ntltkyt otk
<e "(n+ Oyl k! (f”) :
T

Moreover, recalling notation (6.7),
D0 | [ [ e
AV T (£)

1l kple- k!
Thus it is sufficient to prove the summability over £ € N,n € N* kq,...,k, € N of the following

quantity

n n+l+ki+-+ky

E (n+€)‘ 14Hf|| ! ||U||€+k1+“'+kn
n!f! L=

adkn

t" 1
< Ut . (7.10)

dr 0 kgl

e T
£\ " 14 nt+lt+ki+-+kn
< <e> 2n+[ ( |7|ﬂf||> ||U|‘itfl+ +kn (711)
28t £11\" (28Il e,
g( U
er T

which is ensured by (7.7).
Step 2: Proof of (7.5) and (7.6). Applying Lemma 3.20 and Proposition 6.2 we get

pla(t: f.u.p) = ¢ (VM1 (£ F.U.p))

L
(fl . V)ng(xl(ta F7 Uap))
=0 : (7.12)

iy S ([ 09) (i) 90+ a0 ) (2) 0

neN
keN™

=

(e}

The bound proved in Step 1 allows to exchange the differential operator (f; - V)¢ and the second
sum, which proves (7.5). To prove (7.6), one bounds the queue of the series thanks to (7.9) and
the following consequence of Holder’s inequality, valid when ¢ 4 |k| > (M + 1)

<o) (|U<t>|M“ +f t |U|M+1) L (1)

O

U(t)f/ U(rp)fr - U(m) dr
Tiny (1)

Remark 7.4. The bound (7.6) between the exact solution and the truncated Chen-Fliess series (in
its’ original formulation) is used by Stefani in [64, Lemma 8.1 and Corollary 3.1]. Our proof is
both different and shorter.

Remark 7.5. Equality (7.5) where the sum converges absolutely proves that appropriate packages
of the Chen-Fliess expansion are absolutely summable under a smallness assumption on |U|| L,
which is weaker than the smallness assumption on ||ul|pr which is used in Proposition 6.1 for
multi-input systems.
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7.3 Magnus expansion in the interaction picture

In this section, we prove the following enhanced error estimate for the magnus expansion in the
interaction picture with scalar input. Our proof relies on an appropriate approximation for the
auxiliary system x; introduced in Section 7.1.

Proposition 7.6. Let § > 0 and fo, f1 € C5. For every M € N, there exist na, Cyr > 0 such
that, for every T € [0,np], w € LY((0,T); K) such that |U||p~ < nar, t € [0,T] and p € Bs,

< Cu <|U(t)|M+1 + /Ot U|M+1) . (7.14)

w(t; fou,p) — M S Wethop

Proof. In Section 7.3.1, we introduce a vector field Yy (¢, f, U) such that e¥» &:F£:U)etfo(p) is a good
approximation of the auxiliary state x; defined in (7.3). Since, by (7.4), z(t) = eV /1 (2 (1)), the
desired estimate then relies on the following decomposition

a(t; fou, p) — eZM(tf,u)etfop = x(t; f,u,p) — U N eyM(t7f,U)etf0p

1
+ eU(t)fleyM(t»faU)etfop _ eZA4(t,f7u)etfop. (7.15)
Using Proposition 7.7 and Proposition 7.11 (see further) for the first and second lines, we get

w(t; f,u,p) — eFMETWetlop) < Cop (JUNITE + UM+ UIIAE) (7.16)
L L

which gives the conclusion since U]l < ¢ ||U||L£v1+1. O

In Section 7.3.1, we define Y (¢, f,U) and prove in Proposition 7.7 that it indeed provides
a good approximation of the auxiliary state. In Section 7.3.2, we explain the link between
VX1V (6. XU) g 2m(6Xou) gt the formal level. In Section 7.3.3, we show in Proposition 7.11
that this formal link entails that eV ()f1eYm®LU) g close to e2M(h:fw),

7.3.1 An approximation of the auxiliary state

We use the error formula of Proposition 4.8 for the Magnus expansion in the interaction picture
to obtain an approximation of the auxiliary state.

Proposition 7.7. Let §,p > 0, fo, f1 € C33”. For every M € N, there exist nar, Car > 0 such that,
for every p € Bs, t € [0,ma], u € LY((0,t); K) such that ||U||p~ < nar,
w(t; fu,p) — eV Ohedu LU thop | < Oy U 24F (7.17)

where Yar(t, f,U) := Log {G:}(t), and Gy : [0,t] x Bas — K% is defined by

s— ) U(s)k
Gi(s,y) := Z ( glt) UEC') adfo adkl(fo)(y) (7.18)
et ! !
£eN

and this sum converges absolutely in C;}”’l with p' = p/e. Moreover,

_ (_1)m71 (Tr - t)[" U(Tr)kr o (Tl - t)el U(Tl)kl -
Iult .U =D /Tr(t) AR AR (719)

[+ [adf; (adf; (o). adfy (adf~ (fo))] - adf (adf (o)

where the sum is taken over r € [1, M], m € [1,7], r € N, {y,..., 0. € N, kq,..., k. € N* and
the sum converges absolutely in C4i” .
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Proof. Step 1: Convergence in (7.18) and (7.19). By (3.21), for every s € [0, 1],

thus the sum in (7.18) converges absolutely in Cg"(;’pl when t and ||U||p~ are <

(s =) U(s)*

L k
o w M adh (o)

k40 (9 "
S O L A =

p

_p
18]I1LA1Il,

For every r € [1,M], m € [1,7], r € N™ {1,...,¢. € N, ky,..., k. € N*, using (3.2) and the
non-decreasing of ¢ € [1,00] || - || ¢ for t € [0, 1], we get

(r+ 101+ k] = 1)! (91"”>W+|k|1
p

’/ (1 — t)&« U(Tr)kT (Tl — t)él U(Tl)k1 dr
+(t)

2, k! 2 kq!
r T 1 1 (7.21)
36||f|| €] +]k| -1
< @ ot (240 1)
Thus, by (3.21), the sum in (7.19) converges absolutely in Cg"é’pl when ¢ and ||U|| -~ are < %.

Step 2: Proof of (7.17). Let T,n* and F as in Proposition 7.2. We introduce the function
Fy :]0,T) x Bas — K¢ defined by

8

h i
Fi(t.9) = FU0) ~ foly) = Y 7 ad, (o)) (122

Il
-

where the sum converges in C;Jé’p/ when [|U|[Le < gy Let M € N. There exists C' > 0 such
P

that, for every t € [0,T], U € C°([0,T]; K) with ||U]||~ < n*, the function F; defined by (7.22)
satisfies

IF1l L1 (0,0),c2) < ClIULr(0,6) < CT||U || oo (0,1)- (7.23)
Let ©); be as in Proposition 4.8 and
. ., p2~M min{1,d}
= T T —_— 5. .24
T]M mln{]'?n 736|||f|||p7®M( 3||fOHCJV12+1) CT (7 )

Let p € Bs, t € [0,ma], u € LY((0,t); K) such that |U| |~ < nas. Then, the convergences of Step 1
hold and ||F1||L1((0 pem2y < O (T, || follgar2+1) min{1; 8} thus we can apply Proposition 4.8 and
Proposition 4.9 to the equation @1 = fo(x1) + Fi(t, 1)

$1(t; F, U,p) _ eyM(t,f,U)etfop < CM”GtH%—(FO{t)’cMz)- (7.25)

Moreover, there exists C’ (depending only on n*, fo, f1) such that
||Gt||L1((o,t),cM?) < CI”UHLl(O,t)- (7.26)

Thus, we get (7.17) by applying the e” I/1ller _Lipschitz map eV to (7.25). O

In the next paragraphs, we will use the following technical result about Yy, (¢, f,U) and its
decomposition in homogeneous components with respect to U.

Lemma 7.8. Let §,p > 0, fo, f1 € C33”. For every M € N*, there exists nar,Car > 0 such that,
for every j € N*, t € [0,ma], u € LY((0,¢),K) such that |U| L=~ < nar, the sum in the right-hand
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side of (7.19) taken over r € [1, M], m € [1,r], r e N 4y,...,¢. € N and k1,..., k. € N* such
that kv + ...+ k, = j, converges absolutely in C4i” and its sum, denoted Y3,(t, f,U), satisfies

[Pece. .00, < € (”U””)j (72)

2nm

where p’ = p/e. Moreover, Y (t, f,U) = 3 ;- Vi.(t, f,U) where the sum converges in ngp/.

Proof. Let np > 0 be as in Proposition 7.7, t € [0,7a/] and u € L'((0,t); K) such that ||U||pe <

nar- The sum involved in V3, (¢, f, U) converges absolutely in C43” because it is a subfamily of the
one considered in Proposition 7.7. By (7.21), there exists Cs > 0 (independent of ¢ and U) such
that, for every j € N*, (7.27) holds. The non-decreasing of g € [1,00] = || - [|zs (since ¢ < 1) gives
the last conclusion. O

7.3.2 Identification procedure at the formal level

In this paragraph, we highlight at the formal level the link between VX1V (6. X.U) g e2m (8.Xou)
in £(X). We start with a new formal factorization, well adapted to estimates with respect to the
primitive of the scalar input.

Proposition 7.9. Let X = {Xo, X1} and u € L*(Ry;K). For every 2* € A(X), the solution x
to the formal differential equation

{i% j;( )(Xo +u(t) X)), (728)
satisfies, for everyt € Ry,
x(t) = 2" exp (tX0) exp (Voo (t, X, U)) exp (U (t) X1) (7.29)

where Voo (t, X,U) € E(X) is defined by Voo(t, X,U) = Log.{B:}(t) and 5 : [0,t] — E(X) is
defined by

_t 0 U k
Bi(s) = e~ (t=9)%0 ((?U(s)xlXoe—U(s)x1 B Xo) (=) X0 _ Z (s —1)" U(s) adﬁo ad%. (Xo)

14 k!
keN*
teN
(7.30)
i.€.
)™t U(r)kr (m =) U(m)™
Voo, X,U / &
( )= Ta(t) ' k! 4! kq!
[ . [ad’f (ad¥. (X)), ad’y, " (ad% " (X0))| ..., ad%, (ad% (Xo))
(7.31)
where the sum is taken over r e N*, m € [1,r], r e N {1,..., 0, € N, ky,..., k. € N*.

Proof. First, in the same way as Theorem 2.26 has been generalized to an infinite alphabet in the
proof of Theorem 2.39, it is possible to generalize Theorem 2.39 to an infinite alphabet.
The function z; : [0,7] — A(X) defined by x;(t) := 2(t)e” VX1 satisfies x1(0) = z* and

T xl(t)eU(t)XlXoe*U(t)Xl — 1.1 ( 0)) (7.32)

keN*
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This equation is of the form @1 (t) = 1 (t)(Xo +>_ ey ar(t)Yr) for some indeterminates Y. Thus,
Theorem 2.39 (adapted to an infinite alphabet) and the algebra homomorphism sending Y to
ad’j(l (Xo) prove that

21(t) = 2" exp(tXo) exp(Voo (t, X, U)). (7.33)

which gives the conclusion. O

We now use the formal expansion (7.29) to obtain an alternative formula for Z. (¢, X, u) defined
by Theorem 2.39, in terms of the primitive of the scalar input. For r, v € N, we introduce the finite
dimensional subspace of £(X)

L, (X) :=span{eval(b); b€ Br(X),no(b) =v,n1(b) =1} (7.34)

~

and P, : L(X) — L, ,(X) the associated canonical projection.

Proposition 7.10. Let X = {Xo, X1}, T > 0, u € L'((0,T);K), t € [0,T], Yoo(t, X,U) defined
by Proposition 7.9 and Z(t, X,u) defined by Theorem 2.39. Then, in L(X),

Z.o(t, X, u) = CBHD o (Voo (t, X, U), U(£)X1) . (7.35)
In particular, for every M € N*, r € [1, M] and v € N,
P2y (t, X,u) = P, CBHD Va8, X, U0),U(t)X1) (7.36)

In this statement, CBHD, is defined in Corollary 2.32, CBHD; is its truncation used in Corol-
lary 4.4 and Zy(t, X, u) is defined in Theorem 2.39 and used in Proposition 4.8.

Proof. We deduce from Proposition 7.9 and Theorem 2.39 that
exp(Zoo (t, X, u)) = exp(Voo (t, X, U)) exp(U (t) X1). (7.37)
Thus Corollary 2.32 proves (7.35). Let M € N*, r € [1, M], v € N. We deduce from (7.35) that
PryZso(t,X,u) = Py, CBHD o (Voo (t, X, U), U(£)X1) . (7.38)
By definition, Z., (¢, X,u) — Z5(t, X, u) is a linear combination of brackets all involving at least
(M + 1) occurrences of X1, thus P, Z5(t, X,u) = P, Zm (¢, X, u). By definition, YV (¢, X, U) is
a sum of brackets involving all at least one occurrence of X7, thus

P, CBHD (Vo (t, X,U),U(t)X1) = P, CBHD; (Voo (¢, X, U), U (¢) X1) . (7.39)

Moreover Voo (t, X, U) =YV (t, X, U) is a linear combination of brackets involving all at least (M +1)
occurrences of X; thus

Py, CBHD y (Voo (t, X, U), U (t)X1) = P,,, CBHDy; (Vas (t, X, U), U(£)X1) (7.40)

which ends the proof of (7.36). O

7.3.3 Error formula for analytic vector fields

We prove in Proposition 7.11 an error bound between eV ()f1eYmt.LU) apd e2m(t.fu)
Proposition 7.11. Let §,p > 0, fo, f1 € C43”. For every M € N, there exist nar,Car > 0 such
that, for every t € [0,na], p € Bs and u € L((0,t); K) such that |U||L~ < nas,

t
eU(t)fleyM(t,ﬁU)etfop _ ezM(t,ﬁu)etfop <Cy <|U(t)|M+1 +/ U|M+1) ) (7.41)
0
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Proof. We split the difference as

eU(t)fl eyM(t»faU)etfop _ 6CBHDM(yM(t,f»U),U(t)fl)etfop

(7.42)

1 CBHD M (Vs (6.£.U),U (D 1) tfogy o Zaa(t.fu) ot fo

b= p.

Taking into account that ||Vas(t, f,U)|lon2 < Cl|Ul|L1(0,4), the first line is bounded by Corol-
lary 4.4. Using Gronwall’s lemma and Proposition 7.12 bounds the second line. O

Proposition 7.12. Let 6,p > 0, fo, f1 € C5:” and p' := p/e. For every p’ € (0,p'), M € N, there
exist nar, Cpr > 0 such that, for every t € [0,ma], u € LY((0,t); K) such that ||U||L~ < nar,

1230(t ) = CBHD s (et F.U). U0 < Cor (1014 [0pe ). ()

In particular, Zp(t, f,u) is the sum of the terms homogeneous with degree at most M with respect
to U in CBH]:)M (yM(ta f7 U)? U(t)fl)

Proof. Step 1: Finite approximation of Yar(t, f,U). First, by Lemma 7.8, one can write

tfv ZyMtfa Zyjjw(tafaU):yM(t7f7U)+RM(t7f7U)a (744)

J>M
where the remainder satisfies [|[Ra (¢, f, U)|l| , < C’||UH24M++11 . By the triangular and Young inequal-
ities, it is therefore sufficient to prove (7.43) with Vs replaced by the finite truncation Y (¢, f, U).

Step 2: Identification at the free level. Let A : £L(X) — C%; be the homomorphism of Lie algebra
such that A(X;) = f;. The relation (7.36) is made of finite linear combinations of brackets of X
and X;. Let M € N. By applying A to this equality, we get, for every r € [1, M], v € N

PT,VZM(t7 f7 ’U,) = P’I”,l/ CBHDM (yM(ta fu U)7 U(t)fl) . (745)
By definition
Mt fou) = Z Py Zu(t, fou) (7.46)
veNr=1

where the sum converges in C;, ’p for appropriate p’ € (0, p), by Proposition 4.9. Thus, with the
notations of (2.40),

m(t, f,u) = CBHDy (Y (t £,U), UM A) = > FanVit £U),U®f), (747
jhi+ha>M

where the sum is taken over j, hy, he € [1, M].

Step 3: Proof of (7.43). From now on, 1y > 0 is given by Proposition 7.7 and Lemma 7.8,
t € [0,mas], u € LY((0,t); K) is such that ||U]|z~ < nas and p” € (0, p). For each term in the finite
sum (7.47), one has, thanks to Lemma 7.8,

. . h1
|tz v@n| |, < || s o@aig:

4 . (7.48)
< C’IIUIIJ’“IU(t)IhQ < OO P s U ()
which concludes the proof thanks to Young’s inequality since jh; + hy > M + 1. O
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7.4 Sussmann’s infinite product expansion

When the input is scalar, the estimates of the coordinates obtained in Lemma 6.6 can be enhanced
to involve only the primitive of the input, at least for generalized Hall bases where X is minimal,
which in turn improves the estimate of Proposition 6.7 (see Proposition 7.14 below). The hypothesis
that X7 is the minimal element can be seen as the formal counterpart of the auxiliary system trick
of Section 7.1.

Lemma 7.13. Let X = {Xo, X1}, B be a generalized Hall basis of L(X) for which X, is the
minimal element and (&)pen the associated coordinates of the second kind. For every k > 1, there
exists cy, > 1 such that, for each b € B\ X with n(b) =k, T >0, u € L*((0,T);K) and t € [0,T],

(th)no(b)fl

t;1 < e lUNh —i— 7.49
Ifb( ) 7U')| CkH ||Lk ( (b) _ 1)] ( )
and
U (t)[* when ng(b) = 1,
|6 (t; 1, u)| < )0 (B) -1 )00 =2 (7.50)
cﬂU(t)Vg%—&—ckHUHk % when ng(b) > 2.

Proof. As for Lemma 6.6, estimate (7.49) is obtained, for each b, by time integration of (7.50).
Moreover, still as in Lemma 6.6, both estimates are invariant by right-bracketing with Xy, and
also by arbitrary long left-bracketing with Xo, up to ¢x + 2c;. Let us prove (7.49) and (7.50) by
induction on k.

Initialization for k = 1. We have &x,(t) = U(t) and {[x, x,(t) = U(t). Hence [X1,Xo] € B
(because X1 < X)) satisfies both estimates. By Lemma 6.5, when n(b) = 1, there exist m,m € N
such that b = ad¥ aLd;?0 (X1). Since X; is minimal, if b # X;, m > 0. Thus, by the previous
invariant properties we get the conclusion with ¢; := 2.

Induction (k — 1) — k. Let k > 2 and let us assume that the two estimates are proved for every
be B\ X with n(b) < (k—1). Let b € B with n(b) = k. By Lemma 6.5 and the previous invariant
properties, we may assume that b = ady (b2) with m € N*, by < by € B, b1 # Xo, (b2 € X or
A(b2) < by) and (b2 # Xo or m > 1).

o If by = X, then by = X (otherwise, if by ¢ X, A(b2) < X1, which is impossible since X7 is
minimal). Thus

16 (t)] = |U( )| (7.51)

so (7.50) with ¢ = 1 holds since ng(b) = 1 and k: =m

e If by # X, then by satisfies (7.50) for some ky € [1,k — 1]. Moreover, either by = Xy or
by ¢ X (because it cannot be X7). The case (by = Xy and m > 1) is easier and left to the
reader. Thus we are left with the case where b, satisfies (7.50) for some ks € [1,k — 1]. One
has k = mk; + ko and v := ng(b) = mng(by) + no(ba) =: mvy + vo. Thus,

NI (g gy oy (Chal)> (cayt)> 2
t L U(t 227 U 2‘71,, .
o) < A O (o C o, O
7.52)
Thanks to Holders’ inequality,
HUllmklllUllku < IUN5xt™. (7.53)
Thanks to Holder’s inequality and Young’s inequality,
WiEo @ < e (10l + Ul (7.54)
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Moreover, thanks to (3.2), for i € [1,2],

1 1 1 : 1
— < 2(m+D=i) : 7.55
m! (v — D™ (vg — i) — (v—1)! (7.55)

Combining these inequalities proves (7.50) with ¢, := 282 max{c;;j € [1,k — 1]}

These enhanced estimates yield the following result.

Proposition 7.14. Let X = {Xy, X1}, B a generalized Hall basis of L(X) for which Xy is the
minimal element and (&)pep the associated coordinates of the second kind. Let r,§ > 0, fo, f1 €
Cyi". For each M € N*, there exist na,Car > 0 such that, for every uw € L'((0,T);K) with
T < and ||U||py+10,7) < M, the ordered product of the eSo LWl oyer the infinite set BN Sy
converges uniformly on Bs and, for each t € [0,T] and p € Bg,

.
x(t; f,u,p) — besl;lsMegb(t’l’u)fbp < Cu U5 0 4y- (7.56)

Proof. The proof is the same as the proof of Proposition 6.7. The only difference is that we use
estimates of Lemma 7.13 instead of those of Lemma 6.6. The fact that these enhanced estimates
are not valid for b € X doesn’t come into play. Indeed, neither Xy nor X; are involved in the final
error term (6.34). O

7.5 Failure of the primitive estimate for multiple inputs

Proposition 7.6 relying only on the primitive of the input is specific to the scalar-input case and
fails for multiple inputs. As an illustration, for 6 > 0 and fo, fi € C5°, in the degenerate case
M = 0 and the particular case fy(0) = 0, p = 0, estimate (7.14) implies that, for every T' > 0,
there exists Cr > 0 such that, for ¢t € [0,7] and u € L*(0,T) with ||U]|p~ < 1,

|z(t;u,0)] < Cp||U]| Lo (7.57)

As illustrated by the following example, even this very crude estimate fails for multiple inputs,
because the W 1> norms are not sufficient to bound the nonlinear terms arising in the dynamic.

Example 7.15. Let T > 0 and consider the following system on R2:
T = u,
{ ! (7.58)
To = VT,
where u and v are two scalar inputs. There exists un,v, € L*(0,T) such that
[Unllee + [Valle =0 and  [x(t; (un, vn),0)] # 0, (7.59)

where Uy, is the primitive of w, and V, the primitive of V,,. Indeed, let n € N* and define
un(t) == ncosn?t and v, (t) := nsinn?t. Then one has

2
[UnllLoe + [[VallLe < o (7.60)
Moreover, x1(t) = Uy, (t) = (sinn?t)/n and
T T T
29(T) = / o (DU (1) dt = / sin? (n2) dt = (7.61)
0 0

as n — +o0o. This proves (7.59).

Remark 7.16. Although Proposition 7.6 does not hold for multiple inputs, we expect that the proof
method can be adapted to obtain asymmetric estimates, involving for example |U||p= + ||v||p= in
the two-inputs case (or the converse). Such asymmetric estimates have been used successfully to
obtain sharp results for particular control systems in [36].
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8 On direct intrinsic representations of the state

The expansions studied above in this paper unfortunately don’t provide a direct intrinsic repre-
sentation of the state. The Magnus and Sussmann expansions are given with intrinsic quantities
(Lie brackets of the vector fields) but they require to compute one or multiple flows in order to
recover the state. The Chen-Fliess expansion gives directly a formula for the state, but it depends
on non-intrinsic quantities (see Remark 2.16 and Remark 8.7). In this section, we investigate the
possibility of finding a direct intrinsic formula for the state. We discuss this possibility in the
context of affine systems.

8.1 Approximate direct intrinsic representations

We prove in this section approximate direct intrinsic representations which achieve the desired goal
up to a small error. We believe that the formulas we derive can be of interest for applications to
control theory as they give approximate expressions for the state in terms of the inputs and Lie
brackets of the vector fields evaluated at the origin.

We start with an elementary result, which bounds the error when replacing a flow by the value
of the vector field.

Lemma 8.1. Let § > 0 and z € C} such that ||z|co < 6. Then
|€%(0) = 2(0)] < [2(0)|[| Dz[|coe! PZllee. (8.1)

Proof. Let z(t) := €'#(0) for t € [0,1]. Then, for every ¢ € [0, 1],
t 2 t
() — 2(0)] S/O |2(z(7)) = 2(0)| d7 < %HDZ||C°|Z(O)| +/O [Dz[lcol(r) — 72(0)[d7  (8.2)

and by Grénwall’s lemma, |z(t) — t2(0)| < %”DzHco‘Z(O)|et”DZ”CO_ O

This elementary estimate allows to obtain approximate direct intrinsic representations from the
various Magnus expansions described above.

Proposition 8.2. Let M € N*, § > 0 and q € N*.

1. Let I =1[0,q]) or I =[1,q]. Let f; € CM* fori e I. For T >0 and u € L>®((0,T);KY), if
x(t; f,u,0) denotes the solution to (4.51) with p =0 and Zp(t, f,u) denotes the vector field
defined in Proposition 4.8 (called Znr(t,) ;c;uifi) in this statement), then, as T — 0,

x(t; fyu,0) = Zp(t, f,u)(0) + O (tM+1 + tla(t; f, u, 0)|) . (8.3)

in the following sense: there exist C,n > 0 such that, for every T € (0,n] and u €
L>((0,T); K?) with ||u||p~ < 1, for each t € [0,T],

(8 f,u,0) — Zn(t, f,u)(0)] < C (tMH + t|a(t; f,u,0)]) . (8.4)

2. Let T >0, fo,..., fq € C%?Jrl with fo(0) = 0 and T|follco < 6. For u € L'((0,7);K9),
if z(t; f,u,0) denotes the solution to (6.1) with p = 0 and Z(t; f,u) denotes the vector field
defined in Proposition 6.4, then, as ||u||px — 0,

£(t; £,0,0) = Znr(t, £,0)(0) + O (Il ¥+l ot £,,0)]) (5.5)
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3. Let fo, fi € Cy5 with fo(0) = 0. Let T > 0 as in Proposition 7.2. For u € L*((0,T);K),
if z(t; f,u,0) denotes the solution to (7.1) with p = 0 and Z(t, f,u) denotes the vector field
defined in Proposition 6.4 (with ¢ = 1), then, as (T, ||U||L~) — 0,

2t £,0,0) = Zar(t. £, 0)(0) + O (WIS + WUl fe(ts £, 0)] + [e(t: £, 0)1) - (8.6)

where U(s) := [; .
Proof. Proof of the first statement. By Proposition 4.3, there exists C; > 0 and T > 0 such that
for every u € L>((0,7*); K?) with ||ul|z= <1 and t € [0,T%],
‘m(t; fou,0) — eZu L )| < oML, (8.7)

By the explicit expression of Zy (¢, f, u), there exists Cy > 0 such that for every v € L>((0,7*); K9)
with [Ju|lp~ <1 and ¢ € [0,T%],
1Z0m (¢, f,u)]ler < Cat. (8.8)

Thus, by Lemma 8.1, there exists C3 > 0 such that, for every for every u € L>((0,7*); K?) with
|lul|L~ <1 and ¢ € [0,T*],
ZM WL (0) = Zyr(t, f,u)(0)] < Cst | Zag(t, f,u)(0)] - (8.9)
Then, by triangular inequality, for every v € L>((0,7*); K?) with ||u|p~ <1 and ¢ € [0,T7%]
| (t; f,u,0) = Zar (L, f,u)(0)] < Crt™* 4+ Cat| Z (¢, f, ) (0)] (8.10)
and in particular, for t < T < 1/(2C3)
| Zn (¢, f,u)(0)] < 2a(ts fou, 0)] + 2011 (8.11)
This gives (8.4) with C' = max{2C1;2C5} and n := min{7T*,1/(2C3)}.
Proof of the second statement. The strategy is the same: one starts from the estimate in Propo-
sition 6.4, then applies Lemma 8.1 to Zp/(¢, f,u) and concludes thanks to the following estimate,
implied by the explicit expressions of the vector field
120t fouw)ller = O (llullzio,) - (8.12)

llull .10

Proof of the third statement. First, one can assume that f;(0) # 0. Indeed, otherwise, both
x and Zj,; vanish identically, so the desired estimate is void. Using Proposition 7.12 and the
explicit expression of the vector field CBHD vy (Vs (t, f,U), U(t) f1), we obtain in the asymptotics
(@t [Ullzg=) — 0

1201 (¢, fw)ler = O (UMD +|Ullz10,0)) - (8.13)
Thus, using fo(0) = 0, Proposition 7.6 and the same strategy as above, we obtain in the asymptotics
(& [|Ul|zg) = 0

(8.14)
The following proposition and Hélder inequality give the conclusion. O

2(t; f,u,0) = Zm(t, f,u)(0) + O (|U(Tt)|MJrl +/0 T+ (U@ + U ) (s £u,0)

~_

Proposition 8.3. Let § > 0, fo, f1 € C§ with fo(0) =0 and f1(0) # 0. There exists T,n,C > 0
such that, for every u € L*((0,T),K) with |U||p~ <n and t € [0,T],

U] <€ (Jolt: £u.0) + Uy ) (8.15)
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Proof. With the notations of Proposition 7.2, z(t; f,u,0) = eV /12 (t; F, U, 0) tends to zero when
|Ul|z~ — 0. A Taylor expansion of order 2 in z(t; f,u,0) = eV® /1 (t; F,U,0) provides C; > 0
such that, for every t € [0,7] and u € L'((0,T);K) such that ||U]|p~ < n*,

|2 (t; f,u,0) — 21 (t; F,U,0) = U(t) f1(0)] < CL{U(1)* + C1{U (t)| |21 (¢; F, U, 0)]. (8.16)
Moreover, by Gronwall’s lemma, there exists Co > 0 such that
|x1(t;F7 U,O)‘ < C2||U||L1(O,t)- (8'17)

Let P: K¢ — K9 defined by P(y) = (y, f1(0))/|f1(0)|2. Applying P to the vector in the left-hand
side of (8.16) and using (8.17), we get the conclusion, when ||U||= is small enough. O

Remark 8.4. Estimate (8.6) proves that, for a situation in which fot |U|M*1 is negligible, the state
is well approzimated by Zn(t, f,u)(0), which is a convergent series of iterated Lie brackets of fo
and f1 evaluated at 0. We expect that this representation can be useful for applications to control
theory, where one tries to relate controllability of the system with geometric relations on the Lie
brackets evaluated at zero.

8.2 Diffeomorphisms and Lie brackets

Lie brackets behave very nicely with respect to local changes of coordinates. Let f; be smooth
vector fields for i € I, p € K% and 6 be a smooth local diffeomorphism near p. If z(¢) denotes the
solution to (4.51), we define y(t) := 0(x(t)). Then, one checks that y is the solution to

(1) =D wi(t)gi(y(t)) and y(0) =g, (8.18)

el

where g; := 0, f; and ¢ := 6(p). By iterating Lemma 3.23, Lie brackets of the vector fields defining
the dynamics for y can be computed explicitly from those of . More precisely, for every b € Br(X),

9o = 0s fo (8.19)

with the notation of Definition 3.13. In particular, there exists a linear invertible map L, : K¢ —
K%, L, := D0(p), such that, for every b € Br(X),

95(a) = Lfu(p). (8.20)

Conversely, if the f; and g; for ¢ € I are analytic vector fields, the existence of points p and
g and a linear invertible map L, such that (8.20) holds is a sufficient condition for the existence
of a local smooth diffeomorphism 6 with 6(p) = ¢ and such that, for every controls u;, there
holds y(t) = 6(x(t)) where z and y denote the solutions to (4.51) and (8.18) for the same set of
controls. This nice property is proved in [49, Theorem 1] and was then extended with a more
general geometric viewpoint in [66] (see also [4, Theorem 5.5] for a modern presentation).

When (8.20) only holds for brackets up to some length M € N and the controls are uniformly
bounded in L, one can prove (see [50]) the existence of a local smooth diffeomorphism 6 and a
constant C' such that

[y(t) — B ()] < I, (8:21)
Up to our knowledge, the converse, which is conjectured to be true in [50], is a nice open problem.
Open problem 8.5. Let I = [1,q] and X = {X1,...X,}. Letp,q € K%. Assume that there exists
a smooth diffeomorphism 0 from a neighborhood of p to a neighborhood of ¢ and M € N such that,

or every controls uy,...us € L>®(0,T) with ||u;|]| <1, estimate (8.21) holds for every trajectories
Y q ) y traj

x and y corresponding to the same controls. Does this imply that there exists a linear invertible
map such that, for each b € Br(X) with |b| < M, (8.20) holds?
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Open problem 8.6. Same question in the context of affine systems with drift, i.e. when I = [0, q],

= {Xo, X1,...X,} and the first control ug is constrained to be identically equal to 1. This
question might be harder because one gets less information from (8.21) as it is valid for less choices
of controls since uq is heavily constrained.

Remark 8.7. Property (8.20) is specific to Lie brackets and does not hold for products of differ-
ential operators. For example, consider on R? the vector fields fo(x) = (0,21) and fi(x) = (1,0)
and let 0(x) := (z1,22 + 23). Then go(y) = (0,y1) and g1(y) = (1,2y1). In particular, one has
(fr-V)fi =0 but (g1- V)g1 = (0,2). So one cannot hope for a relation such as (8.20) to hold for
products of differential operators. This explains why we consider that the Chen-Fliess expansion
s mot an intrinsic representation of the state, as it depends on quantities which are not invariant
through local changes of coordinates.

8.3 Replacing the Magnus flow by a diffeomorphism

Let f; for ¢ € I be smooth vector fields. We consider the solution z(¢;u) to (4.51) with p =
0. Let Zps(t,u) be the vector field defined in Proposition 4.3 (and called Zps(t,> o, uifs) in
this statement). By Proposition 4.3, for each M € N, z(¢t;u) is given by the time-one flow of
the autonomous vector field Zy/(¢,u), up to an error scaling like tM*1 when the controls u; are
uniformly bounded in L.

In this paragraph, inspired by the nice properties of Lie brackets with respect to diffeomorphisms
recalled above, we attempt to replace the computation of the time-one flow by a diffeomorphism.
This can be seen as a converse of the classical question of whether a given diffeomorphism can be
represented as the time-one flow of an autonomous vector field (see e.g. [5, 6]).

This also corresponds to replacing the terms z(¢; u)+o(]x(¢; w)|) in Proposition 8.2 by 6(x(t; u)),
where 6 is a smooth local diffeomorphism of K.

We start with a definition.

Definition 8.8. Let T > 0 and n € N. We say that a functional 8 : [0,T] x L>((0,T7); K?) — K
is homogeneous of degree n with respect to time when, for every u € L*°((0,T);K?), A € (0, 1]
and t € (0,77,

Bt ur) = A"B(t, u) (8.22)

where u* is defined by uN(\t) := u(t) fort € [0,T] and u (A\t) :=0 fort > T.

In particular, the product of two homogeneous functionals of degree n and m with respect to
time is an homogeneous functional of degree n + m. The coordinates of the first kind (p(t, u),
pseudo-first kind 7 (¢, ) and second kind & (¢, u) are all homogeneous of degree |b| with respect to
time. An interesting property of homogeneous functionals is given by the following statement.

Lemma 8.9. Let T > 0, n € N and § : [0,T] x L>=((0,7); K?) — K, homogeneous of degree n
with respect to time. Assume that there exists C > 0 such that, for every uw € L*((0,T); K?) with
|l oo o,y < 1 and each t € [0,T7,

|B(t,u)| < Ct" L, (8.23)

Then 8 = 0.

Proof. Let t € [0,7] and u € L*((0,T);K?) such that ||ul[ze,r) < 1. On the one hand, for
each A € (0,1], B(\t,u*) = A"B(t,u). On the other hand, |B(At,u’)| < C ALt hecause
|[uM|L = |lu||z < 1. Hence |B(t,u)| < CAt"*! for each X € (0,1] so B(t,u) = O

One could wonder if the following proposition holds.

False proposition 8.10. Let X = {X;;i € I}, B be a monomial basis of L(X). Let T > 0. There
exists a family (By)pep of functionals from [0,T] x L>°((0,T);K?) to K, with B, homogeneous of
degree |b| with respect to time, such that the following statement holds. Let 6 > 0 and f; € C§° for
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i € I. There exists a smooth diffeomorphism 6 of K¢ near p = 0 such that, for each M > 0, there
exists Cpr, Tag > 0 such that, for every u € L>®((0,T);K?) with ||ul|p~ < 1, for each t € [0, Tas],

10((t; 1)) — yar (tu)| < Cort™ 2, (8.24)
and
yar(t;u) = 0(0) + > By(t, u)gn(6(0)), (8:25)
[b|<M

where gy = 0, fp and x(t;u) is the solution to (4.51) starting from p = 0.

The functionals 5, would be the analog of the coordinates of the first and second kind described
earlier. A formula such as (8.25) would be ideal for applications to control theory for example, since
it is expressed on intrinsic quantities (Lie brackets) and allows to compute z(¢;u) directly without
solving for flows (one recovers z(t;u) ~ 671 (y(t;u))). In some sense, it corresponds to asking if
there exists a local change of coordinates for which the Chen-Fliess expansion only involves Lie
bracket terms (and all the non-Lie bracket terms vanish).

Unfortunately, it is impossible in general, as illustrated by the following counter-example.

Proposition 8.11. Let X = {X(, X1}. Let T > 0 and consider, in R3, fo(x) := (0,21 + 2%, x122)
and fi(z) := (1,0,0), i.e. the following affine system with drift

.i‘l = u,
To =1 + x%, (826)
T3 = 1172,

together with the initial data x(0) = 0. There exists a monomial basis B of L(X), such that,
for every functionals By : [0,T] x L>®((0,T);R) — R for b € B, homogenous of degree |b| with
respect to time and for every local C® diffeomorphism 6 of R3, there exists M € [1,6] and a control
u € L*((0,T);R) with ||u||re <1 such that (8.24) does not hold, even for small times.

Proof. Let B be a length-compatible Hall basis of £(X) with X, < X;.

Step 1: Computation of ye(t). We define By = {b € B;ny(b) = ¢} for every £ € N. Then
B = {ad’ﬁ(o (X1); k € N}. The computation shows that the only elements b € By such that f; # 0
are

bl = le b2 = [X07X1]7 C1 = [X07 [XOle]]a (8'27)
fo, (z) = €1, Joo () = —(1 4 221)ea — zoe3, fer () = x%eg. (8.28)

Thus, the only elements b € By that could satisfy f, # 0 are [b1,bs], [b1,c1], [b2, ¢1]. The compu-
tation shows that, among them, only the two first ones do satisfy the condition:

b3 = [Xl,[Xo,Xl]], Cy = [Xl,adﬁ(o(Xl)], (829)
fos () = —2e9, feo () = 2271 5. (8.30)
Thus, the only elements b € Bs with length at most 6 that could satisfy f, # 0 are [by, bs], [by, ca],

[ba, b3], [b2, 2], [c1,b3]. The computation shows that, among them, only the second and the third
ones do satisfy the condition:

b4 = adi(l ad2X0 (Xl), b5 = HX07X1}7 [Xla [XOleﬂ]v (831)
o) = 265, oo () = —2¢5. (8.32)

Thus the only elements b € B, with length at most 6 that could satisfy f, # 0 are [b1,bs] and
[b1,b5], but the computation shows that they satisfy f, = 0. Therefore, for every b € 54U Bs U B,
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f» = 0. In conclusion, by,...,bs are the only elements b € B such that f;(0) # 0. In particular,
none of them have length 4 or 6, thus

ys(t) = 6(0) + DA(0) (51 (t,u)er — Balt, u)es — 2Bs(t, u)es + 2(Balt, ) — 55(7:,“))63) (8.33)

is the sum of 4 homogeneous functionals of degree 1,2,3 and 5. Here and below we write 3; instead
of By, for brevity.

Step 2: Computation of homogeneous terms with degree 4 and 6 in 0(x(t)). In this step, we consider
a local C® diffeomorphism 6 of R? defined on a neighborhood of p = 0. For u € L>=((0,T);R), we
denote by U the primitive of u such that U(0) = 0 and V' the primitive of U such that V(0) = 0.
Straightforward explicit integration of (8.26) yields

z(t;u) = U(t)er + V(t)es +/0 U?(s)dseq + %Vz(t)eg —|—/0 U(s) /03 U?(s')ds dses,  (8.34)

where the five terms are respectively functionals homogeneous of degree 1 through 5 with respect
to time in the sense of Definition 8.8. Using a Taylor expansion of 6 at 0, one obtains (vector
valued) functionals vy for k € [1, 6], homogeneous of degree k with respect to time such that for
every M € [1,6]

M

O(z(t)) = 0(0) + Y _ (t,u) + O ™). (8.35)

k=1

In particular

) = GVAHORI0) + V() [ U0120(0) + 5V*(0)000)

; : (8.36)
+ §U2(t)V(t)ama(0) + I(J‘*(t)@j*@(())
and
Yot u) = U (D) /O U(s) /0 U (s')2ds dsdhs(0) + %v3(t)3239(0) + % < /O U2> D220/(0)
n iU?(t)VZ(t)auge(o) + %U(t)V(t) /0 U201926(0) + %V3(t)82229(0) .

1 t 1
+ U / U2011126(0) + U OV (1)011206(0)
0

%V(t)U‘l(t)&f@g&(O) + éUG(t)afH(O).

_|_
Step 3: Denying (8.24). We proceed by contradiction, assuming that there exists a local C°
diffeomorphism 6 of R? such that, for each M € [1, 6], there exists Cps, Tps > 0 such that (8.24)
holds for every t € [0, Th] and u € L>®((0,Tys); R) with |lul|pe < 1.

By induction on M, estimate (8.24), Lemma 8.9 and (8.33) imply that v, = $1910(0), 72 =
—B2020(0), 73 = —283020(0), 74 = 0, 75 = 2(81 — B5)036(0) and 6 = 0.

On the one hand, by choosing u such that U(¢) = 0 but V(t) # 0, the relation ~4(t,u) = 0
implies that 0220(0) = —3936(0) # 0 because 6 is a local diffeomorphism. On the other hand,
by choosing u such that U(t) = V(t) = 0 but fot U? # 0, the relation ~4(¢,u) = 0 implies that
0220(0) = 0. This concludes the proof, since we have found incompatible conditions on 9226(0). [

Remark 8.12. This section is written with a focus on time-based estimates. However, a similar
“false proposition” could be stated for control-based estimates. The same counter-example also
negates this possibility.
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