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ABSTRACT

Let
〈
n
k

〉
,
〈
Bn
k

〉
, and

〈
Dn
k

〉
be the Eulerian numbers of the types A, B, and D, respectively—

that is, the number of permutations of n elements with k descents, the number of signed per-
mutations (of n elements) with k type B descents, the number of even-signed permutations (of
n elements) with k type D descents. Let Sn(t) =

∑n−1
k=0

〈
n
k

〉
tk, Bn(t) =

∑n
k=0

〈
Bn
k

〉
tk, and

Dn(t) =
∑n
k=0

〈
Dn
k

〉
tk. We give bijective proofs of the identity

Bn(t2) = (1 + t)n+1Sn(t)− 2ntSn(t2)

and of Stembridge’s identity

Dn(t) = Bn(t)− n2n−1tSn−1(t) .

These bijective proofs rely on a representation of signed permutations as paths. Using this repre-
sentation we also establish a bijective correspondence between even-signed permutations and pairs
(w,E) with ([n], E) a threshold graph and w a degree ordering of ([n], E), which we use to obtain
bijective proofs of enumerative results for threshold graphs.

1 Introduction

The Eulerian numbers
〈
n
k

〉
count the number of permutations in the symmetric group Sn that have k descent positions.

Let us recall that, for a permutation w = w1w2 · · ·wn ∈ Sn (thus, with wi ∈ { 1, . . . , n } and wi 6= wj for i 6= j), a
descent of w is an index (or position) i ∈ { 1, . . . , n− 1 } such that wi > wi+1.

This is only one of the many interpretations that we can give to these numbers, see e.g. [18], yet it is intimately order-
theoretic. The set Sn can be endowed with a lattice structure, known as the weak (Bruhat) ordering on permutations or
Permutohedron, see e.g. [14, 6]. Descent positions of w ∈ Sn are then bijection with its lower covers, so the Eulerian
numbers

〈
n
k

〉
can also be taken as counting the number of permutations in Sn with k lower covers. In particular,〈

n
1

〉
= 2n − n − 1 is the number of join-irreducible elements in Sn. A subtler order-theoretic interpretation is given

in [2]: since the Sn are (join-)semidistributive as lattices, every element can be written canonically as the join of join-
irreducible elements [10]; the numbers

〈
n
k

〉
count then the permutations w ∈ Sn that can be written canonically as the

join of k join-irreducible elements.
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Bijective proofs for Eulerian numbers of types B and D

The symmetric group Sn is a particular instance of a Coxeter group, see [4], since it yields a concrete realization
of the Coxeter group An−1 in the family A. Notions of length, descent, inversion, and also a weak order, can be
defined for elements of an arbitrary finite Coxeter group [3]. We shift the focus to the families B and D of Coxeter
groups. More precisely, this paper concerns the Eulerian numbers in the types B and D. The Eulerian number

〈
Bn
k

〉
(resp.,

〈
Dn
k

〉
) counts the number of elements in the group Bn (resp., Dn) with k descent positions. Order-theoretic

interpretations of these numbers, analogous to the ones mentioned for the standard Eulerian numbers, are still valid.
As the abstract group An−1 has a concrete realization as the symmetric group Sn, the group Bn (resp., Dn) has
a realization as the hyperoctahedral group of signed permutations (resp., the group of even-signed permutations).
Starting from these concrete representations of Coxeter groups of type B and D, we pinpoint some new representations
of signed permutations. Relying on these representations we provide bijective proofs of known formulas for Eulerian
numbers of the types B and D. These formulas allow us to compute the Eulerian numbers of the types B and D from
the better-known Eulerian numbers of type A.

Let Sn(t) and Bn(t) be the Eulerian polynomials of the types A and B:

Sn(t) :=

n−1∑
k=0

〈
n
k

〉
tk , Bn(t) :=

n∑
k=0

〈
Bn
k

〉
tk . (1)

In [18, §13, p. 215] the following polynomial identity is stated:

2Bn(t2) = (1 + t)n+1Sn(t) + (1− t)n+1Sn(−t) . (2)

Considering that, for f(t) =
∑
k≥0 akt

k,

f(t) + f(−t) = 2
∑
k≥0

a2kt
2k ,

the polynomial identity (2) amounts to the following identity among coefficients:〈
Bn
k

〉
=

2k∑
i=0

〈
n
i

〉(
n+ 1

2k − i

)
. (3)

We present a bijective proof of (3) and also establish the identity

2n
〈
n
k

〉
=

2k+1∑
i=0

〈
n
i

〉(
n+ 1

2k + 1− i

)
. (4)

Considering that, for f(t) =
∑
k≥0 akt

k,

f(t)− f(−t) = 2
∑
k≥0

a2k+1t
2k+1 ,

the identity (4) yields the polynomial identity:

2n+1tSn(t2) = (1 + t)n+1Sn(t)− (1− t)n+1Sn(−t) .
More importantly, (3) and (4) jointly yield the polynomial identity

(1 + t)n+1Sn(t) = Bn(t2) + 2ntSn(t2) . (5)

Let now Dn(t) be the Eulerian polynomial of type D:

Dn(t) :=

n∑
k=0

〈
Dn
k

〉
tk .

Investigating further the terms 2nSn(t), we could find a simple bijective proof, that we present here, of Stembridge’s
identity [28, Lemma 9.1]

Dn(t) = Bn(t)− n2n−1tSn−1(t) , (6)
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Figure 1: Signed permutations as paths and as barred permutations

which, in terms of the Eulerian numbers of type D, amounts to〈
Dn
k

〉
=

〈
Bn
k

〉
− n2n−1

〈
n− 1
k − 1

〉
.

The proofs presented here differ from known proofs of the identities (2) and (6). As suggested in [18], the first identity
may be derived by computing the f -vector of the type B Coxeter complex and then by applying the transform yielding
the h-vector from the f -vector. A similar method is used in [28] to prove the identity (6). Our proofs directly rely on
the combinatorial properties of signed/even-signed permutations and on two representations of signed permutations
that we call one the path representation and, the other, the simply barred permutation representation. The idea is
that a signed permutation of [n] can be organised into a discrete path from (0, n) to (n, 0) that only uses East and
South steps and that, by projecting onto the x-axis, we obtain a permutation divided into blocks, as suggested in
Figure 1. As a byproduct of these representations, we also obtain a bijection between even-signed permutations of
[n] and pairs (w,E) where ([n], E) is a threshold graph and w is a permutation or, better, a linear ordering of [n]
that is a degree ordering for ([n], E). Under the bijection, the ordering of Dn is coordinatewise, that is, we have
(w1, E1) ≤ (w2, E2) if and only if w1 ≤ w2 in Sn and E1 ⊆ E2. It is in the scope of future research to shed
some light on the lattice structure of the weak order on the Coxeter groups of type D using this representation of
the ordering. Our confidence that this is indeed possible relies on our progress studying these lattices, which yielded
the discovery of the path representation of signed permutations. In the meantime, the two representations of signed
permutations, together with the bijection between even-signed permutations and pairs (w,E) as mentioned above,
also yield a representation of threshold graphs as specific simply barred permutations. We exemplify once more the
convenience of these representations by deducing enumerative results for threshold graphs [24, 25].

2 Background

The notation used is chosen to be consistent with [18]. We use [n] for the set { 1, . . . , n } and Sn for the set of permu-
tations of [n]. We use [n]0 for the set { 0, 1, . . . , n }, [−n] for {−n, . . . ,−1 }, and [±n] for {−n, . . . ,−1, 1, . . . , n }.
We write a permutation w ∈ Sn as a word w = w1w2 · · ·wn, with wi ∈ [n]. For w ∈ Sn, its set of descents and its set
of inversions2 are defined as follows:

Des(w) := { i ∈ { 1, . . . , n− 1 } | wi > wi+1 } , Inv(w) := { (i, j) | 1 ≤ i < j ≤ n,w−1(i) > w−1(j) } . (7)

Then, we let

des(w) := |Des(w)| . (8)

2It is also possible to define Inv(w) as the set { (i, j) | 1 ≤ i < j ≤ n,wi > wj }. The definition given above is better suited
for the order-theoretic approach.
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Notice that a descent i of a permutation w1w2 · · ·wn is uniquely identified by the two contiguous letters wiwi+1 such
that wi > wi+1. Therefore, we shall often identify such a descent by these two contiguous letters. The Eulerian
number

〈
n
k

〉
, counting the number of permutations of n elements with k descents, can be formally defined as follows:〈

n
k

〉
:= |{w ∈ Sn | des(w) = k }| .

Let us define a signed permutation of [n] as a permutation u of [±n] such that, for each i ∈ [±n], u−i = −ui. We use
Bn for the set of signed permutations of [n]. When writing a signed permutation u as a word u−n · · ·u−1u1 · · ·un,
we prefer writing ui = x in place of −x if ui < 0 and |ui| = x. Also, we often write u ∈ Bn in window notation, that
is, we only write the suffix u1u2 · · ·un; indeed, the prefix u−nun−1 · · ·u−1 is determined as the mirror of the suffix
u1u2 · · ·un up to exchanging the signs. The set Bn is a subgroup of the group of permutations of the set [±n] and, as
mentioned before, it is the standard model for the Coxeter group in the family B with n generators. General notions
from the theory of Coxeter groups (descent, inversion) apply to signed permutations.

The Cayley graph of a Coxeter group (which, by definition, comes with a set of generators) can always be oriented by
increasing length, where the length of an element is defined as the number of its inversions. The oriented graph is then
the Hasse diagram of a poset where descents of an element mark its lower covers. While for permutations the notions
of descent, inversion, and length are customary from elementary combinatorics, for signed permutations these notions
are subtler yet well studied, we refer to standard monographs such as [4, 18]. We present below, as definitions, the
well-known explicit formulas for the descent and inversion sets of u ∈ Bn. We let

DesB(u) := { i ∈ { 0, . . . , n− 1 } | ui > ui+1 } , InvB(u) := { (i, j) | 1 ≤ |i| ≤ j ≤ n, u−1(i) > u−1(j) } , (9)

where we set u0 := 0, so 0 is a descent of u if and only if u1 < 0,

desB(u) = |DesB(u)| ,
〈
Bn
k

〉
:= |{u ∈ Bn | desB(u) = k }| . (10)

The definition of the Eulerian polynomials in the types A and B appears in (1). Let us mention that the type A Eulerian
polynomial is often (for example in [5]) defined as follows:

An(t) :=

n∑
k=1

〈
n

k − 1

〉
tk = tSn(t) .

We exclusively manipulate the polynomials Sn(t) and never the An(t). Notice that Sn(t) has degree n− 1 and Bn(t)
has degree n.

We shall introduce later even-signed permutations and their groups, as well as related notions arising from the fact that
these groups are standard models for Coxeter groups in the family D.

For u ∈ Bn we let Des+B (u) := DesB(u) \ { 0 }, that is, Des+B (u) is the set of strictly positive descents of u. Let us
observe the following:

Lemma 2.1. | {u ∈ Bn | |Des+B (u)| = k } | = 2n
〈
n
k

〉
.

Proof. Recall that the window notation of a signed permutation u is the word u1 · · ·un. We identify the window
notation of u with the mapping ũ : [n] −−→ [±n] such that ũ(i) = ui, for each i ∈ [n].

We claim that maps arising as window notation of a signed permutation are in bijection with pairs (w, ι) where
w ∈ Sn and ι : [n] −−→ [±n] is an order preserving injection such that x ∈ ι([n]) iff −x 6∈ ι([n]). The bijection
goes as follows. Given a signed permutation u, the image ũ([n]) ⊆ [±n] of its window notation is a subset of
integers of cardinality n with the linear ordering inherited from integers. Thus, there exists a unique order preserving
bijection ψ : ũ([n]) −−→ [n]. We associate to ũ the pair (w, ι) where w = ψ ◦ ũ and where ι is the composition
of ψ−1 : [n] −−→ ũ([n]) and the inclusion ũ([n]) ⊆ [±n]. Notice that ũ = ι ◦ w, from which it follows that
ũ([n]) = ι([n]) and that x ∈ ι([n]) iff −x 6∈ ι([n]). Let us argue that this decomposition is unique. Notice that
ũ([n]) = ι([n]) uniquely determining ι. Since moreover ι is injective, if ι ◦ w = ũ = ι ◦ w′, then w = w′ as well.
Also, given such a pair (w, ι), ι ◦w is a preimage of (w, ι) via the correspondence, which is therefore surjective and a
bijection.

Next, the order preserving injections ι : [n] −−→ [±n] such that x ∈ ι([n]) iff −x 6∈ ι([n]) are uniquely determined
by their positive image ι([n]) ∩ [n], so there are 2n such mappings. Finally, let us argue that, for i = 1, . . . , n − 1,
ui > ui+1 if and only if wi > wi+1: ui > ui+1 iff ũ(i) > ũ(i + 1) iff ι(w(i)) > ι(w(i + 1)) iff wi > wi+1, since ι
preserves and reflects the ordering. It follows that Des+B (u) = Des(w), thus yielding the statement of the lemma.
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Example 2.2. Consider the signed permutation u := 34125. Then ũ = ι ◦ w with w = 52431 and ι the order
preserving map 5̄4̄2̄13 with ι([n]) ∩ [n] = { 1, 3 }. ♦

Let us end this section with a notational remark. We can index cells or points of a grid such as the one in Figure 1 in
two different ways. Either we consider them as being part of a matrix and index them by row (we count here rows from
the bottom to the top) and column, thus using the letters i, j. Or we can index them using the abscissa and ordinate
of the two-dimensional plane. We shall prefer the latter method when the axes are ordered in the standard way, and
the first method when the axes are ordered according to a permutation. For example, in Figure 1, the dashed path
makes an East-South turm at point (x, y) with x = 3 and y = 6. However, if we relabel the axes by means of the
permutation w = 4237615, then it makes sense to say that the path makes an East-South turn at row i = w(6) = 1
and column j = w(3) = 3. The use of both kind of indexing shall be unavoidable. The reader should be aware that
rows correspond to the ordinate and columns to the abscissa, so a point (x, y) yields the cell Mw(y),w(x) of a matrix
M and that a cell Mi,j is located at point (w−1(j), w−1(i)).

3 Path representation of signed permutations

We present here our main combinatorial tool to deal with signed permutations, the path representation.
Definition 3.1. The path representation of u ∈ Bn is a triple (πu, λux , λ

u
y ) where πu is a discrete path, drawn on a

grid [n]0 × [n]0 and joining the point (0, n) to the point (n, 0), λux : [n] −−→ [n], and λuy : [n] −−→ [−n]. The triple
(πu, λux , λ

u
y ) is constructed from u according to the following algorithm: (i) u is written in full notation as a word and

scanned from left to right: each positive letter yields an East step (a length 1 step along the x-axis towards the right),
and each negative letter yields a South step (a length 1 step along the y-axis towards the bottom) ; (ii) the labelling
λux : [n] −−→ [n] is obtained by projecting each positive letter on the x-axis, (iii) the labelling λuy : [n] −−→ [−n] is
obtained by projecting each negative letter on the y-axis.
Example 3.2. Consider the signed permutation u := 2316475, in window notation, that is, 57461322316475, in full
notation. Applying the algorithm above, we draw the path πu and the labellings λux , λ

u
y as follows:

7

7

4

4

2

2

3

3

1

1

6

6

5

5

Therefore, πu is the dashed path, λux is the permutation 7423165, and λuy is 7 4 2 3 1 6 5. ♦

It is easily seen that, for an arbitrary u ∈ Bn, (πu, λux , λ
u
y ) has the following properties:

(i) πu is symmetric along the diagonal,
(ii) λux ∈ Sn and, moreover, it is the subword of u of positive letters,

(iii) for each x ∈ [n], λuy (x) = λux (x) and, moreover, λuy is the mirror of the subword of u of negative letters.

In particular, we see that the data (πu, λux , λ
u
y ) is redundant since λuy is completely determined from λux .

Proposition 3.3. The mapping u 7→ (πu, λux ) is a bijection from the set of signed permutations Bn to the set of pairs
(π,w), where w ∈ Sn and π is a discrete path from (0, n) to (n, 0) with East and South steps which, moreover, is
symmetric along the diagonal.

We leave it to the reader to verify the above statement. Next, we argue for the interest of this representation by looking
at the inversion set of a signed permutation. According to the definition in (9), the type B inversions of a signed
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permutation can be split into its positive inversions, the pairs (i, j) with 1 ≤ i < j ≤ n, and the negative ones, those
of the form (i, j) with i ≤ 0 and 1 ≤ |i| ≤ j ≤ n. We claim that the positive inversions of u are the type A inversions
of λux and that its negative inversions are of the form (λuy (y), λux (x)) such that 1 ≤ y ≤ x ≤ n and the cell (x, y)

lies below πu. This idea is exemplified in Figure 2 with the signed permutation 2316475 from Example 3.2. Notice

1

1

2

2

3

3

4

4

5

5

6

6

7

7

1, 1 2, 1 3, 1 4, 1 5, 1 6, 1

2, 2 3, 2 4, 2 5, 2 6, 2

3, 3

7

7

4

4

2

2

3

3

1

1

6

6

5

5

7, 7 7, 4 7, 2 7, 3 7, 1 7, 6

4, 4 4, 2 4, 3 4, 1 4, 6

2, 2

Figure 2: Negative inversions of 2316475, indexed on the left by the abscissa and ordinate and on the right by λuy , λ
u
x

that, when 1 ≤ x < y ≤ n and (x, y) lies below πu, then (y, x) lies below πu as well (since πu is symmetric along
the diagonal) and therefore, according to our claim, (λuy (x), λux (y)) is a negative inversion of u. If we identify, when
x < y, the pair (λuy (y), λux (x)) with (λuy (x), λux (y)), then we can simply say that the negative inversions of u are of
the form (λuy (y), λux (x)) for (x, y) below πu.

We collect these observations in a formal statement.

Proposition 3.4. Let u ∈ Bn. For each i, j with 1 ≤ |i| ≤ j ≤ n, (i, j) ∈ InvB(u) if and only if either 1 ≤ i < j ≤ n
and (i, j) ∈ Inv(λux ) or i < 0 and ((λux )−1(−i), (λux )−1(j)) lies below the path πu.

Proof. Consider a pair (i, j) such that 1 ≤ |i| ≤ j ≤ n and such that, if 0 < i, then i < j.

If 0 < i < j, then both i and j appear in λux , which is the subword of u (written in full notation) of positive integers.
Then u−1(i) > u−1(j) if and only if (λux )−1(i) > (λux )−1(j), that is, (i, j) ∈ InvB(u) if and only if (i, j) ∈ Inv(λux ).

We suppose next that i < 0. Observe that, as suggested in Figure 3, for j > 0 and i < 0, the cell identified by λuy , λ
u
x

as (i, j) is below πu if and only if the letter j appears before the letter i in u. Also, for such a pair, j appears before i
in u if and only if (i, j) ∈ Inv(u), where u is considered as a permutation of the set [±n] and the set of inversions is
computed w.r.t the standard linear order on this set.

Therefore, if (i, j) with i < 0 and 1 ≤ |i| ≤ j ≤ n, then (i, j) ∈ InvB(u) if and only if (i, j) ∈ Inv(u) if and only if
the cell identified by λuy , λ

u
x as (i, j) is below πu. If, instead of using λuy and λux to identify cells, we use the abscissa

and ordinate, this happens when ((λuy )−1(i), (λux )−1(j)) = ((λux )−1(−i), (λuy )−1(j)) is below πu.

Remark 3.5. The fact that (x, y) lies below πu if and only if (y, x) lies below πu suggests to look at negative inversions
of u as unordered pairs of the form {λux (x), λux (y)} (doubletons or singletons) such that (x, y) lies below πu. We shall
explore this graph-theoretic approach in Section 7. We illustrate this with the signed permutation of Example 3.2: we
can identify the set of type B inversions of 2316475 with the disjoint union of the set of type A inversions of 7423165
and the set of unordered pairs

{ {7, 7}, {7, 4},{7, 2}, {7, 3}, {7, 1}, {7, 6}, {4, 4}, {4, 2}, {4, 3}, {4, 1}, {4, 6}, {2, 2} } .

4 Simply barred permutations

We consider now a second way of representing signed permutations. We mostly consider simply barred permutations
as shorthands for path representations of signed permutations. While less informative than path representations, we
shall observe that the enumerative results of the following chapters mostly rely on this representation.

6



Bijective proofs for Eulerian numbers of types B and D

i i

j

j

•i,j

Figure 3: Characterizing inversions of the form (i, j) with i negative

Definition 4.1. A simply barred permutation of [n] is a pair (w,B) where w ∈ Sn and B ⊆ { 1, . . . , n }. We let SBPn
be the set of simply barred permutations of [n].

We think ofB as a set of positions ofw, the barred positions or walls. We have added the adjective “simply” to “barred
permutation” since we do not require that B is a superset of Des(w), as for example in [12].
Example 4.2. We write a simply barred permutation (w,B) as a permutation divided into blocks by the bars, placing
a vertical bar after wi for each i ∈ B. For example, (w,B) = (7423165, { 2, 4, 6 }) is written 74|23|16|5. Notice
that we allow a bar to appear in the last position, for example 34|1|265|7| stands for the simply barred permutation
(3412657, { 2, 3, 6, 7 }). Thus, a bar appears in the last position if and only if the last block is empty. The last block
is indeed the only block that can be empty, which amounts to saying that consecutive bars are not allowed in simply
barred permutations. This contrasts with other notions of barred permutation, for example the one appearing in the
proof of the alternating sum formula for the Eulerian numbers [5, Theorem 1.11]. ♦

Next, we describe a bijection—that we call ψ—from the set SBPn to Bn. Let us notice that, in order to establish
equipotence of these two sets, other more straightforward bijections are available. In the definition below, for w =
w1w2 · · ·wn, we let w := w1w2 · · ·wn. Moreover, we need to explain what we mean for the upper antidiagonal of a
subgrid. Notice that, in a grid [n]0× [n]0, we have two discrete paths that are closest to the the line y = n−x. We call
them the lower and upper (discrete) antidiagonal, respectively. This is suggested below with the lower and the upper
antidiagonal on the left and on the center, respectively.

1 3 5 62 4 7 8

Next, a subset B ⊆ [n] determines a subgrid (B ∪ { 0 })× (B ∪ { 0 }) which comes with its own upper antidiagonal.
We can extend this path with South steps before and East steps after, so to obtain a path from (0, n) to (n, 0). We
call this path the upper antidiagonal of the subgrid. An example appears above on the right, where the subgrid is
determined by B = { 1, 3, 5, 6 }.
Definition 4.3. For (w,B) ∈ SBPn, we define the signed permutation ψ(w,B) ∈ Bn according to the following
algorithm: (i) draw the grid [n]0 × [n]0; (ii) since B ⊆ [n], (B ∪ { 0 })× (B ∪ { 0 }) defines a subgrid of [n]0 × [n]0,
construct the upper antidiagonal π of this subgrid; (iii) ψ(w,B) is the signed permutation u whose path representation
(πu, λux , λ

u
y ) equals to (π,w,w).
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Example 4.4. The construction just described can be understood as raising the bars and transforming them into a grid.
For example, for the simply barred permutation 74|2|316|5 (that is, (w,B) with w = 7423165 and B = { 2, 3, 6 })
the construction is as follows:

7

7

4

4

2

2

3

3

1

1

6

6

5

5

2 3 61 4 5 7

The upper antidiagonal of the subgrid yields the dashed path above. The resulting signed permutation ψ(w,B) is
2316475 as from Example 3.2. ♦

The inverse image of ψ can be constructed according to the following algorithm: for u ∈ Bn (i) construct the path
representation (πu, λux , λ

u
y ) of u, (ii) insert a bar in w at each vertical step of πu (and remove consecutive bars),

(iii) remove a bar at position 0 if it exists. Said otherwise, (w,B) = ψ−1(u) is obtained from u by transforming each
negative letter into a bar, by removing consecutive bars, and then by removing a bar at position 0 if needed.

Even if we consider simply barred permutations as shorthands for path representations of signed permutations, some
remarks are due now:

Lemma 4.5. If u = ψ(w,B), then there is a bijection between the set B of bars and the set of East-South turns of πu.

Lemma 4.6. We have 0 ∈ DesB(ψ(w,B)) if and only if |B| is odd.

The lemma can immediately be verified by considering that 0 ∈ DesB(u) if and only if the first letter in the window
notation of u is negative, if and only if, in the path representation of ψ(w,B), the first step of πu after meeting the
diagonal is along the y-axis, in which case (and only in this case) πu makes an East-South turn on the diagonal. This
happens exactly when πu has an odd number of East-South turns.

5 Descents from simply barred permutations

We start investigating how the type B descent set can be recovered from a simply barred permutation.

Proposition 5.1. For a simply barred permutation (w,B), we have

desB(ψ(w,B)) = |Des(w) \B|+
⌈ |B|

2

⌉
. (11)

Proof. Write u = ψ(w,B) in window notation and divide it in maximal blocks of consecutive letters having the same
sign. If the first block has negative sign, add an empty positive block in position 0. Each change of sign +− among
consecutive blocks yields a descent. These changes of sign bijectively correspond to East-South turns of πu that lie
on or below the diagonal. By Lemma 4.5, each bar determines an East-South turn and, by symmetry of πu along the
diagonal, the number of East-South turns that are on or below the diagonal is

⌈
|B|
2

⌉
. Therefore this quantity counts

the number of descents determined by a change of sign.

The other descents of ψ(w,B) are either of the form wiwi+1 with wi > wi+1 and wi, wi+1 belonging to the same
positive block, or of the form wi+1wi with wi > wi+1 and wi, wi+1 belonging to the same negative block. These
descents are in bijection with the descent positions of w that do not belong to the set B.

8
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For each k ∈ { 0, 1, . . . , n }, we let in the following SBPn,k be the set of simply barred permutations (w,B) ∈ SBPn

such that |Des(w) \B|+
⌈
|B|
2

⌉
= k.

Corollary 5.2. The set SBPn,k is in bijection with the set of signed permutations of [n] with k descents.

We introduce next loosely barred permutations only as a tool to index simply barred permutations independently of
the even/odd cardinalities of their set of bars.
Definition 5.3. A loosely barred permutation of [n] is a pair (w,B) where w is a permutation of [n] and B ⊆
{ 0, . . . , n } is a set of positions (the bars). We let LBPn be the set of loosely barred permutations of [n].

For D ⊆ [n], let ξD : P ([n]0) −−→ P ([n]) be the map defined by

ξD(B) := (D∆B) \ { 0 } = D∆(B \ { 0 }) ,
where ∆ stands for the symmetric difference in P ([n]0). Then, we define Θn : LBPn −−→ SBPn by

Θn(w,B) := (w, ξDes(w)(B)) .

We shall investigate properties of the map Θn, for which we first need to collect properties of the map ξD. These are
listed in the following lemmas.
Lemma 5.4. The map ξD is a surjective two-to-one map. That is, each C ⊆ [n] has exactly two preimages, B1 :=
D∆C and B2 = (D∆C) ∪ { 0 }.

In view of D \ ξD(B) = D ∩B, the following relation holds if 0 6∈ B:

|D|+ |B| = 2|D \ ξD(B)|+ |ξD(B)| .
Given this relation, the reader shall have no difficulties verifying the properties stated in the next lemma.
Lemma 5.5. The parity of |ξD(B)| can be computed from |D| and |B| according to the following rules:

1. if |D|+ |B| = 2k and 0 6∈ B, then |D \ ξD(B)|+
⌈
|ξD(B)|

2

⌉
= k and, in this case, |ξD(B)| is even;

2. if |D|+ |B| = 2k and 0 ∈ B, then |D \ ξD(B)|+
⌈
|ξD(B)|

2

⌉
= k and, in this case, |ξD(B)| is odd;

3. if |D|+ |B| = 2k + 1 and 0 6∈ B, then |D \ ξD(B)|+
⌈
|ξD(B)|

2

⌉
= k + 1 and, in this case, |ξD(B)| is odd;

4. if |D|+ |B| = 2k + 1 and 0 ∈ B, then |D \ ξD(B)|+
⌈
|ξD(B)|

2

⌉
= k and, in this case, |ξD(B)| is even.

The next lemma restates these properties on the side of preimages.
Lemma 5.6. For C ⊆ [n], let B1, B2 be the two preimages of C via ξD. Then, the following statements hold:

1. if |D \ C| +
⌈
|C|
2

⌉
= k and |C| is even, then the two preimages B1, B2 of C satisfy |D| + |B1| = 2k and

|D|+ |B2| = 2k + 1;

2. if |D \C|+
⌈
|C|
2

⌉
= k and |C| is odd, then the two preimages B1, B2 of C satisfy |D|+ |B1| = 2k− 1 and

|D|+ |B2| = 2k.
Definition 5.7. For each n ≥ 0 and k ∈ [2n]0, we let LBPn,k be the set of loosely barred permutations (w,B) such
that |Des(w)|+ |B| = k.
Proposition 5.8. For each n ≥ 0 and k ∈ [n]0, the restriction of Θn to LBPn,2k yields a bijection Θn,k from LBPn,2k
to SBPn,k.

Proof. By the first two items of Lemma 5.5, the restriction of Θn to LBPn,2k takes values in SBPn,k. The restriction
map is injective. Indeed, if Θn(w,B) = Θn(w′, B′), then w = w′ and, for D = Des(w), C = ξD(B) = ξD(B′).
Lemma 5.6 states that each C ⊆ [n] has at most one ξD-preimage B satisfying |D| + |B| = 2k, whence B = B′.
This map is also surjective: using Lemma 5.6, if (w,C) ∈ SBPn,k, D = Des(w), and B1 6= B2 are such that 0 6∈ B1

and ξD(B1) = ξD(B2) = C, then (w,B1) is a preimage of (w,C) if |C| is even, and (w,B2) is a preimage of (w,C)
if |C| is odd.
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Let us recall that, for u ∈ Bn, Des+B (u) denotes the set of strictly positive descents of u, see Lemma 2.1.

Definition 5.9. For each k ∈ [n− 1]0, we let SBPkn be the set of simply barred permutations (w,B) ∈ SBPn such that
|Des+B (ψ(w,B))| = k.

Let us pinpoint the following characterization of the set SBPkn:
Lemma 5.10. For each simply barred permutation (w,C) ∈ SBPn,

(w,C) ∈ SBPkn iff


|C| is even and |Des(w) \ C|+

⌈
|C|
2

⌉
= k, or

|C| is odd and |Des(w) \ C|+
⌈
|C|
2

⌉
= k + 1 .

Proof. We have

|Des+B (ψ(w,C))| = k iff

0 6∈ DesB(ψ(w,C)) and desB(ψ(w,C)) = k, or

0 ∈ DesB(ψ(w,C)) and desB(ψ(w,C)) = k + 1 .

The statement of the lemma follows using Lemma 4.6 and Proposition 5.1.

Proposition 5.11. For each k ∈ [n− 1]0, the restriction of Θn to LBPn,2k+1 yields a bijection Θk
n from LBPn,2k+1 to

SBPkn.

Proof. By items 3. and 4. in Lemma 5.5, and also using Lemma 5.10, the restriction of Θn to LBPn,2k+1 takes values
in SBPkn. The restriction map is injective. Indeed, if Θn(w,B) = Θn(w′, B′), then w = w′ and, for D = Des(w),
C = ξD(B) = ξD(B′). Lemma 5.6 states that eachC ⊆ [n] has at most one preimageB satisfying |D|+|B| = 2k+1,
whence B = B′. This map is also surjective. Let (w,C) ∈ SBPkn, D = Des(w), and B1 6= B2 be such that 0 6∈ B1

and ξD(B1) = ξD(B2) = C. By Lemma 5.6, if |C| is even, then (w,C) has the preimage (w,B2), and if |C| is odd,
then (w,C) has the preimage (w,B1).

To end this section, we collect the consequences of the bijections established so far.
Theorem 5.12. The following relations hold:〈

Bn
k

〉
=

2k∑
i=0

〈
n
i

〉(
n+ 1

2k − i

)
, (3)

2n
〈
n
k

〉
=

2k+1∑
i=0

〈
n
i

〉(
n+ 1

2k + 1− i

)
. (4)

Proof. We have seen that signed permutations u ∈ Bn such that desB(u) = k are in bijection (via the mapping ψ of
Definition 4.3) with simply barred permutations in SBPn,k. Next, this set is in bijection (see Proposition (5.8)) with the
set LBPn,2k of loosely barred permutations (w,B) ∈ LBPn such that des(w) + |B| = 2k. The cardinality of LBPn,2k
is the right-hand side of equality (3).

The left-hand side of equality (4) is the cardinality of the set of signed permutations u such that |Des+B (u)| = k, see
Lemma 2.1. This set is in bijection with the set SBPkn (via ψ defined in 4.3 and by the definition of SBPkn) which, in
turn, is in bijection (see Proposition (5.11)) with the set LBPn,2k+1 of loosely barred permutations (w,B) ∈ LBPn
such that des(w) + |B| = 2k + 1. The cardinality of this set is the right-hand side of equality (4).

Theorem 5.13. The following relation holds:

Bn(t2) = (1 + t)n+1Sn(t)− 2ntSn(t2) . (12)

Proof. By (3),
〈
Bn
k

〉
, which is the coefficient of t2k in the polynomial Bn(t2), is also the coefficient of t2k in (1 +

t)n+1Sn(t). By (4), 2n
〈
n
k

〉
is the coefficient of t2k+1 in the polynomials 2ntSn(t2) and (1 + t)n+1Sn(t). Therefore

Bn(t2) + 2ntSn(t2) = (1 + t)n+1Sn(t) , (5)

whence equation (12).
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6 Stembridge’s identity for Eulerian numbers of type D

We recall that a signed permutation u ∈ Bn is even signed if the number of negative letters in its window notation is
even. The even-signed permutations of Bn form a subgroup Dn of Bn and in fact the groups Dn are standard models
for the abstract Coxeter groups of type D.

Definitions analogous to those given in Section 2 for the types A and B can be given for type D. Namely, for u ∈ Dn,
we set

DesD(u) := { i ∈ { 0, 1, . . . , n− 1 } | ui > ui+1 } , (13)

where we have set u0 = −u2,

desD(u) := |DesD(u)| ,
〈
Dn
k

〉
:= |{u ∈ Dn | desD(u) = k }| , Dn(t) :=

n∑
k=0

〈
Dn
k

〉
tk .

The formula in (13) is the standard one, see e.g. [4, §8.2] or [1]. The reader will have no difficulties verifying that, up
to renaming 0 by −1, the type D descent set of u can also be defined as follows, see [18, §13]:

DesD(u) := { i ∈ {−1, 1, . . . , n− 1 } | ui > u|i|+1 } , (14)

where now u−1 = −u1, as normal if u is written in full notation.

It is convenient to consider a more flexible representation of elements of Dn. If u ∈ Bn, then its mate is the signed
permutation u ∈ Bn that differs from u only for the sign of the first letter. Notice that u = u. We define a forked
signed permutation (see [18, §13]) as an unordered pair of the form {u, u} for some u ∈ Bn. Clearly, just one of the
mates is even signed and therefore forked signed permutations are combinatorial models of Dn.

The path representation of a forked signed permutation is insensitive of how the diagonal is crossed, either from the
West, or from the North. The following are possible ways to draw a forked signed permutation on a grid:

1

1

2

2

3

3

4

4

5

5

1

1

2

2

3

3

4

4

5

5

1

1

2

2

3

3

4

4

5

5

Even if the formulas in (13) and (14) have been defined for even-signed permutations, they still can be computed for
all signed permutations. The formula in (14) is not invariant under taking mates, however the following lemma shows
that this formula suffices to compute the number of type D descents of a forked signed permutation and therefore the
Eulerian numbers

〈
Dn
k

〉
.

Lemma 6.1. For each u ∈ Bn, 1 ∈ DesD(u) if and only if −1 ∈ DesD(u). Therefore desD(u) = desD(u).

Proof. Suppose 1 ∈ DesD(u), that is u1 > u2. Then u−1 = −(−u1) = u1 > u2, and so −1 ∈ DesD(u). The
opposite entailment is proved similarly.

For the last statement, observe that DesD(u) = ∆u ∪{ i ∈ { 2, . . . , n− 1 } | ui > ui+1 } with ∆u := { i ∈ { 1,−1 } |
ui > u|i|+1 } and, by what we have just remarked, we have |∆u| = |∆u|. It follows that |DesD(u)| = |DesD(u)|.

Our next aim is to derive Stembridge’s identity

Dn(t) = Bn(t)− n2n−1tSn−1(t) , (15)

see [28, Lemma 9.1], which, in term of the coefficients of these polynomials, amounts to〈
Dn
k

〉
=

〈
Bn
k

〉
− n2n−1

〈
n− 1
k − 1

〉
. (16)

Definition 6.2. A signed permutation u is smooth if u1, u2 have equal sign and, otherwise, it is non-smooth.
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1

1
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2

3

3

4

4

5

5

1

1

2

2

3

3

4

4

5

5

1

1

2

2

3

3

4

4

5

5

1

1

2

2

3

3

4

4

5

5

Figure 4: Two pairs of mates, the smooth mates are on the left

The reason for naming a signed permutation smooth arises again from the path representation of a signed permutation:
the smooth signed permutation is, between the two mates, the one minimizing the turns nearby the diagonal, as
suggested in Figure 4 with two pairs of mates as examples.

Lemma 6.3. If u ∈ Bn is smooth, then −1 ∈ DesD(u) if and only if 0 ∈ DesB(u) and therefore desD(u) = desB(u).

Proof. Suppose 0 ∈ DesB(u), so u1 < 0 and u2 < 0 as well, since u is smooth. Then u−1 = −u1 > 0 > u2, so
−1 ∈ DesD(u). Conversely, suppose −1 ∈ DesD(u), that is, u−1 > u2. If u1 > 0, then 0 > −u1 = u−1 > u2, so
u1, u2 have different sign, a contradiction. Therefore u1 < 0 and 0 ∈ DesB(u).

Corollary 6.4. There is a bijection between the set of smooth signed permutations in Bn with k type B descents and
the set of even-signed permutations in Dn with k type D descents.

Indeed, if u ∈ Bn is smooth and even signed, then we let v = u, so DesB(u) = DesD(v), by Lemma 6.3. If u is smooth
but not even signed, then its mate u is even signed. We let then v = u and then DesB(u) = DesD(u) = DesD(u),
using Lemmas 6.1 and 6.3.

Next, we consider the correspondence—let us call it χ—sending a non-smooth signed permutation u ∈ Bn to the pair
(|u1|, u′), where u′ is obtained from u2 · · ·un by normalising this sequence, so that it takes absolute values in the set
[n− 1]. For example χ(6123475) = (6, 123465) and χ(2316475) = (2, 215364), as suggested below:

6123475 (6, 123475) (6, 123465) , 2316475 (2, 316475) (2, 215364) .

Notice that this transformation is reversible. Consider for example the pair (3, 1̄54̄23). We can first rename 1̄54̄23 so
3 is not the absolute value of any letter, thus obtaining 1̄65̄24. We can then add ±3 in front of this word, having two
choices, 31̄65̄24 and 3̄1̄65̄24. There is exactly one choice yielding a non-smooth signed permutation, namely 31̄65̄24.

The process of normalizing the sequence u2 . . . un can be understood as applying to each letter of this sequence the
unique order preserving bijection Nn,x : [±n] \ {x, x } −−→ [±n − 1] where, in general, x ∈ [n] and, in this case,
x = |u1|.
Lemma 6.5. Let n ≥ 2. For each pair (x, v) with x ∈ [n] and v ∈ Bn−1, there exists a unique non-smooth u ∈ Bn
such that χ(u) = (x, v).

Proof. We construct u firstly by renaming v to v′ so that none of x, x appears in v′ (that is, we apply to each letter of
v the inverse of Nn,x) and then by adding in front of v′ either x or x, according to the sign of the first letter of v′.

Lemma 6.6. The correspondence χ restricts to a bijection from the set of non-smooth signed permutations u ∈ Bn
such that desB(u) = k to the set of pairs (x, v) where x ∈ [n] and v ∈ Bn−1 is such that |Des+B (v)| = k − 1.

Proof. We have already argued that χ is a bijection from the set of non-smooth signed permutations u of [n] to the set
of pairs (x, v) with x ∈ [n] and v ∈ Bn−1. Therefore, we are left to argue that, for a non-smooth u and v such that
χ(u) = (x, v), desB(u) = k if and only if |Des+B (v)| = k−1. Said otherwise, we need to argue that, for such u and v,
|Des+B (v)| = desB(u)− 1. To this end, observe that (i) |DesB(u) ∩ { 0, 1 }| = 1, since u1, u2 have different sign, (ii)
Des+B (v) = { i− 1 | i ∈ DesB(u)∩{ 2, . . . , n− 1 } }, from which the relation |Des+B (v)| = desB(u)− 1 follows.

Theorem 6.7. The following relations hold:〈
Bn
k

〉
=

〈
Dn
k

〉
+ n2n−1

〈
n− 1
k − 1

〉
, Bn(t) = Dn(t) + n2n−1tSn−1(t) .

12



Bijective proofs for Eulerian numbers of types B and D

Proof. Every signed permutation is either smooth or non-smooth. By Corollary 6.4, the smooth signed permutations
with k type B descents are in bijection with the even-signed permutations with k type D descents. By Lemma 6.6, the
non-smooth signed permutations u ∈ Bn with k type B descents are in bijection with the pairs (x, v) ∈ [n] × Bn−1

such |Des+B (v)| = k − 1. Using Lemma 2.1, the number of these pairs is n2n−1
〈
n− 1
k − 1

〉
.

Example 6.8. We end this section exemplifying the use of formulas (3) and (16) by which computation of the Eulerian
numbers of type B and D is reduced to computing Eulerian numbers of type A. Let us mention that our interest in
Eulerian numbers originates from our lattice-theoretic work on the lattice variety of Permutohedra [23] and its possible
extensions to generalized forms of Permutohedra [19, 22, 13]. Among these generalizations, we count lattices of finite
Coxeter groups in the types B and D [3]. While it is known that the lattices Bn span the same lattice variety of the
permutohedra, see [6, Exercise 1.23], characterizing the lattice variety spanned by the lattices Dn is an open problem.
A first step towards solving this kind of problem is to characterize (and count) the join-irreducible elements of a class
of lattices. In our case, this amounts to characterizing the elements u in Bn (resp., in Dn) such that desB(u) = 1 (resp.,
such that desD(u) = 1). The numbers

〈
Bn
1

〉
and

〈
Dn
1

〉
are known to be equal to 3n − n− 1 and 3n − n− 1− n2n−1

respectively, see [18, Propositions 13.3 and 13.4]. Let us see how to derive these identities using the formulas (3) and
(16). To this end, we also need the alternating sum formula for Eulerian numbers, see e.g. [5, Theorem 1.11] or [18,
page 12]: 〈

n
k

〉
=

k∑
j=0

(−1)j
(
n+ 1

j

)
(k + 1− j)n . (17)

For type B, we have〈
Bn
1

〉
=

〈
n
0

〉(
n+ 1

2

)
+

〈
n
1

〉(
n+ 1

1

)
+

〈
n
2

〉(
n+ 1

0

)
=

(
n+ 1

2

)
+ (2n − n− 1)(n+ 1) +

〈
n
2

〉
=

(
n+ 1

2

)
+ (2n − n− 1)(n+ 1) + 3n − 2n(n+ 1) +

(
n+ 1

2

)
, by (17)

= 3n − (n+ 1)2 + 2

(
n+ 1

2

)
= 3n − (n+ 1)(n+ 1− n) = 3n − n− 1 .

The computation of type D is then immediate from Stembridge’s identity (16):〈
Dn
1

〉
=

〈
Bn
1

〉
− n2n−1

〈
n− 1

0

〉
= 3n − n− 1− n2n−1 . ♦

7 Threshold graphs and their degree orderings

Besides presenting the bijective proofs, a goal of this paper is to illustrate the path representation of signed permuta-
tions and exemplify its potential. The attentive reader might object that the path representation is not in use within
Section 6. Indeed, after discovering the bijective proof of Stembridge’s identity via the path representation, we re-
alized that the proof could be simplified and reach a larger audience by avoiding mentioning the representation. It
might be asked then whether the path representation yields more information, in particular with respect to the lattices
of the Coxeter groups Dn. We answer this question in this section. The type D set of inversions of an even-signed
permutation can be defined as follows:

InvD(u) := InvB(u) \ { (−i, i) | i ∈ [n] } ,
which, graphically, amounts to ignoring cells on the diagonal:

3

3

4

4

1

1

5

5
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2

×
×

×
×

×
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Figure 5: The (unlabelled) graphs 2K2, P3, and C4

As mentioned in Remark 3.5, we can identify the set of inversions of a signed permutation u with the disjoint union
of Inv(λux ) and a set of unordered pairs. For even-signed permutations, this identification yields:

InvD(u) = Inv(λux ) ∪ Eu with Eu := { {i, j} | i, j ∈ [n], i 6= j, ((λux )−1(i), (λux )−1(j)) lies below πu } . (18)

Therefore, we consider ([n], Eu) as a simple graph on the set of vertices [n]. Let us observe that the definition of the
set of edges Eu in (18) makes sense for all signed permutations, not just for an even-signed permutations. Moreover,
for mates u and u, we have Eu = Eu. Before exploring further the graph ([n], Eu), we recall some standard graph-
theoretic concepts. For an arbitrary simple graph (V,E) and a vertex v ∈ V , we let:

NE(v) := {u ∈ V | {v, u} ∈ E } , degE(v) := |NE(v)| , NE [v] := NE(v) ∪ { v } .
NE(v) is the neighbourhood of the vertex v, degE(v) is its degree, and NE [v] is often called the star of the vertex
v. A linear ordering v1, . . . , vn of V is a degree ordering of (V,E) if degE(v1) ≥ degE(v2) ≥ . . . ≥ degE(vn).
A preorder on a set V is a reflexive and transitive binary relation on V . The vicinal preorder of a graph (V,E),
denoted CE , is defined by v CE u iff NE(v) ⊆ NE [u]. Notice that the relation NE(v) ⊆ NE [u] is equivalent to
NE(v) \ {u } ⊆ NE(u) \ { v }. The vicinal preorder is indeed a preorder, see e.g. [15]. For completeness, we add a
statement and a proof of this fact.
Lemma 7.1. The relation CE on a simple graph (V,E) is reflexive and transitive.

Proof. Reflexivity is obvious. For transitivity, let us consider u, v, w ∈ V such that u CE v CE w. If u, v, w are
not pairwise distinct, then u CE w immediately follows. Therefore, let us assume that u, v, w are pairwise distinct
with NE(u) ⊆ NE [v] and NE(v) ⊆ NE [w]. Let x ∈ NE(u). If x 6= v, then x ∈ NE(v) ⊆ NE [w]. If x = v, then
v ∈ NE(u), thus u ∈ NE(v) ⊆ NE [w] and since u 6= w, u ∈ NE(w); thus w ∈ NE(u) ⊆ NE [v], so w ∈ NE(v) and
x = v ∈ NE(w). Therefore NE(u) ⊆ NE [w].

Next, we take Theorem 1 in [7] as the definition of the class of threshold graphs and consider, among the possible
characterizations of this class, the one that uses the vicinal preorder.
Definition 7.2. A graph (V,E) is threshold if it does not contain an induced subgraph isomorphic to one among 2K2,
P3 and C4 (these graphs are illustrated in Figure 5).

A binary relation R on V is total if and only if, for each v, u ∈ V , vRu or uRv.
Proposition 7.3 (see e.g. [15, Theorem 1.2.4]). A graph (V,E) is threshold if and only if the vicinal preorder is total.

We develop next a few considerations on threshold graphs.
Lemma 7.4. For a simple graph (V,E) and a total ordering < on V , the following conditions are equivalent:

(i) (V,E) is a threshold graph and < is a degree ordering,

(ii) u < v implies v CE u, for each v, u ∈ V .

If any of the above conditions hold, then, for each u ∈ V , NE(u) is a downset in the following sense: if v ∈ NE(u)
and w 6= u is such that w < v, then w ∈ NE(u).

Proof. We observe firstly that v CE u implies degE(v) ≤ degE(u). Indeed, this follows from the fact that v CE u
amounts to NE(v) \ {u } ⊆ NE(u) \ { v } and that u ∈ NE(v) if and only if v ∈ NE(u). Notice also that the same
argument can be used to argue that if v CE u and u 6CE v, then degE(v) < degE(u).

Let therefore (V,E) and < be as stated. By the remark above, if < satisfies (ii) then it is a degree ordering and the
relation CE is total, since if u 6CE v, then u 6< v, so v ≤ u and v CE u; thus (V,E) is a threshold graph. Suppose
next (V,E) is a threshold graph and that < is a degree ordering, so u < v implies degE(v) ≤ degE(u). Let u < v
and suppose that v 6CE u. Since the vicinal preorder is total, we have then u CE v and so degE(u) < degE(v),
contradicting degE(v) ≤ degE(u).
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Figure 6: Paths as height functions

For the last statement, for such u, v, w, the relation w < v implies NE(v) \ {w } ⊆ NE(w) \ { v }. Since v ∈ NE(u),
then u ∈ NE(v) \ {w } and u ∈ NE(w) \ { v }, so w ∈ NE(u).

We establish now the connection between threshold graphs on the set of vertices [n], paths, and even-signed permu-
tation. We achieve this through the order-theoretic notion of Galois connection, see e.g. [8, §7] or [17]. A Galois
connection on [n]0 is a pair of functions f, g : [n]0 −−→ [n]0 such that, for each x, y ∈ [n]0, y ≤ f(x) if and only if
x ≤ g(y). We say that a map f : [n]0 −−→ [n]0 is a height function (we shall discover few lines below the reason for
the naming) if it is is antitone—that is, x ≤ y implies f(y) ≤ f(x), for each x, y ∈ [n]0—and moreover f(0) = n.
Observe that, for a Galois connection (f, g), f is a height function. It is part of elementary order theory that a map
f : [n]0 −−→ [n]0 is part of a Galois connection exactly when it is a height function. Moreover, for f : [n]0 −−→ [n]0,
there is at most one function g : [n]0 −−→ [n]0 such that (f, g) is a Galois connection.

Paths from (0, n) to (n, 0) that are composed only by East and South steps bijectively correspond to height functions.
The bijection is realized by the correspondence sending a path π to heightπ : [n]0 −−→ [n]0 such that heightπ(x)
is the height of π after x East steps; Figure 6 illustrates this correspondence. We refer the reader to [20] for the
correspondence between paths and this kind of functions in the discrete setting. For a height function f : [n]0 −−→ [n]0,
we say that x is negative if x ≤ f(x) and that x is positive if f(x) ≤ x. Notice that x is both positive and negative if
and only if it is fixed point of f . Let Nf (resp., Pf ) be the set of negative (resp., positive) elements of f . Observe that
Nf 6= ∅, so we can define γf , the center of f , as the maximum of this set, γf := maxNf .
Lemma 7.5. For a height function f : [n]0 −−→ [n]0, Nf is a downset, Pf is an upset, and |Nf ∩ Pf | ≤ 1. In
particular, f has at most one fixed point, necessarily γf .

Proof. If x ≤ y ≤ f(y), then f(y) ≤ f(x), so Nf is a downset. Similarly, Pf s an upset. Also, if x is positive,
then f(x) is negative, and if x is negative, then f(x) is positive. Next, the intersection Nf ∩ Pf can have at most one
element. Indeed, if x, y are distinct fixed points and x < y, then y = f(y) ≤ f(x) = x, a contradiction.

Lemma 7.6. For f = heightπ , (γf , γf ) is the (necessarily unique) intersection point of π with the diagonal.

Proof. A straightforward geometric argument shows that the intersection point of π with the diagonal exists and is
unique. Let x = γf , so x ≤ heightπ(x) and heightπ(x + 1) ≤ x. Thus, at time x, π moves from (x,heightπ(x)) to
(x, heightπ(x + 1)) through a sequence of South steps. Since heightπ(x + 1) ≤ x ≤ heightπ(x), the path π meets
the point (x, x).

Let us say now that a height function f is self-adjoint if (f, f) is a Galois connection. That is, f is self-adjoint if
y ≤ f(x) is equivalent to x ≤ f(y), for each x, y ∈ [n]0. We say f is fixed-point-free if f(x) 6= x, for each x ∈ [n]0.
Lemma 7.7. For a height function f : [n]0 −−→ [n]0, let π be the unique path such that heightπ = f . Then f is
self-adjoint if and only if π is symmetric along the diagonal, in which case f is fixed-point-free if and only if its first
step after meeting the diagonal is an East step.

Proof. For a path π, let π′ be the path obtained from π by reflecting it along the diagonal. It is straightforward that
y ≤ heightπ(x) if and only if the point (x, y) lies below and on the left of π, if and only if the point (y, x) lies below
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and on the left of π′, if and only if x ≤ heightπ′(y). Therefore, by identifying paths with height functions, the adjoint
of π is the path obtained by reflecting along the diagonal. In particular, π is self-adjoint if and only if π is symmetric
along the diagonal.

Let us argue that, for f = heightπ self-adjoint, f is fixed-point-free if and only if π’s first step after meeting the
diagonal is towards East. Let (γf , γf ) be the intersection point of π with the diagonal of [n]0. We shall verify whether
γf is a fixed point, since, by Lemma 7.5, it is the only candidate with this property. If the following step is a South
step, then the last step before meeting the diagonal is an East step, which implies that γf = heightπ(γf ), thus f has a
fixed point. If the following step is an East step, then the last step before meeting the diagonal is a South step, which
implies that γf < heightπ(γf ) = f(γf ), so f is fixed-point-free.

Proposition 7.8. For f : [n]0 −−→ [n]0 a self-adjoint height function, define

Ef := { {x, y} | x, y ∈ [n], x 6= y, y ≤ f(x) } .
Then ([n], Ef ) is a threshold graph and < is a degree ordering of ([n], Ef ). The mapping f 7→ Ef restricts to a
bijection from the set of self-adjoint height functions on [n]0 to the set of threshold graphs of the form ([n], E) such
that the standard linear ordering of [n] is a degree ordering.

Proof. If y < x and z ≤ f(x), then z ≤ f(x) ≤ f(y), since f is antitone. As a consequence, if y < x, then
NEf (x) ⊆ NEf (y) ∪ { y } = NEf [y], so ([n], Ef ) is a threshold graph and < is a degree ordering, by Lemma 7.4.

Conversely, let ([n], E) be a threshold graph for which the standard ordering is a degree ordering. As we have seen,
NE(x) is a downset: if y ∈ NE(x) and z 6= x is such that z < y, then z ∈ NE(x). Define then fE(x) :=
maxNE(x), with the conventions that max ∅ = 0 and NE(0) = [n]0, so fE : [n]0 −−→ [n]0. Observe that the
following equivalences holds, by the definition of fE and the fact that NE(x) is a downset: {x, y} ∈ E if and only if
y ∈ NE(x) if and only if x 6= y and y ≤ fE(x). It immediately follows that y ≤ fE(x) if and only if x ≤ fE(y), so
fE is self-adjoint; fE is fixed-point-free since x 6∈ NE(x).

It is easily seen that EfE = E and, whenever f is fixed-point-free, fEf = f so under the latter hypothesis the two
transformations are inverse to each other.

Let in the following TGdgo
n be the set of pairs (w,E) such that ([n], E) is a threshold graph and w ∈ Sn is a degree

ordering of ([n], E). We can state now the main result of this section:

Theorem 7.9. The mapping sending u to (λux , E
u) restricts to a bijection from Dn to TGdgo

n .

Proof. Firstly, we claim that the pair (λux , E
u) is constructed through intermediate steps, as suggested in the following

diagram (the notation being used is explained immediately after):

u ∈ Dn (λux , π
u) (λux , π˜u) ∈ Sn × Pi+E,S([n]0, [n]0)

(λux ,heightπ˜u) ∈ Sn × HFfpfsa([n]0)

(λux , E
u) (λux , λ

u
x ◦ Eheightπ˜u ) ∈ TGdgo

n

We also claim that each step in the upper leg of the diagram yields a bijection. In a second time, we shall verify that
the pairs that may appear in the bottom right corner are exactly the elements of TGdgo

n .

We explain the notation used in the diagram. For u ∈ Dn, we let ˜u ∈ {u, u } be such that ˜u1 > 0. The first step of π˜u
after crossing the diagonal is an East step and therefore the height function corresponding to π˜u is fixed-point-free. We
let Pi+E,S([n]0, [n]0) denote the set of East and South step paths from (0, n) to (n, 0) that make an East step after meeting
the diagonal, and that are symmetric along the diagonal. We let HFfpfsa([n]0) denote the set of fixed-point-free self-
adjoint height functions of [n]0. Then the height function is a bijection from Pi+E,S([n]0, [n]0) to HFfpfsa([n]0). For
f ∈ HFfpfsa([n]0), Ef is the set of edges defined in the statement of Lemma 7.8. Finally, if E is a set of edges on the
vertices [n] and σ ∈ Sn, then we let

σ ◦ E := { {σ(x), σ(y)} | {x, y} ∈ E } = { {i, j} | {σ−1(i), σ−1(j)} ∈ E } .
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We justify now the equality on the bottom line of the diagram. Notice that

Eu = λux ◦ Eπu with Eπu := { {x, y} | x, y ∈ [n], x 6= y, (x, y) lies below πu }
and that Eπu = Eπ˜u = Ef where f = heightπ˜u . Indeed, the condition that (x, y) lies below π˜u amounts to saying
that y is less than the height of π˜u after x East steps. This shows that Eu = λux ◦ Ef with f = heightπ˜u .

Finally, the following equivalences are clear: f is a fixed-point-free self-adjoint height function on [n]0 if and only if
< (the ordering given by the identity permutation) is a degree ordering of the threshold graph ([n], Ef ) (by Proposi-
tion 7.8), if and only if the ordering given by the permutation σ is a degree ordering for the threshold graph σ ◦ E.
Thus, in the right bottom corner of the above diagram we have all the pairs (w,E) such that ([n], E) is a threshold
graph and the linear ordering given by the permutation w ∈ Sn is among its degree orderings.

Remark 7.10. Let f be a choice of mates, that is, a function f : Bn −−→ Bn such that f(u) = f(u) ∈ {u, u }.
Let Dfn = { f(u) | u ∈ Bn }. In view of Eu = Eu and λux = λ

u
x , the same argument appearing in the proof of

Theorem 7.9 shows that the mapping u 7→ (λux , E
u) restricts to a bijection from Dfn to TGdgo

n . In particular, we shall
consider the function sm : Bn −−→ Bn picking the unique smooth mate sm(u) ∈ {u, u }. Then Dsmn is in bijection
with TGdgo

n .

Theorem 7.9 yields a natural representation of the weak ordering on Dn as follows. Order TGdgo
n by saying that

(w1, E1) ≤ (w2, E2) if and only if w1 ≤ w2 in the weak ordering of Sn and, moreover, E1 ⊆ E2, so TGdgo
n is clearly

a poset.
Theorem 7.11. The poset TGdgo

n is a lattice isomorphic to the weak ordering of the Coxeter group Dn.

Notice that TGdgo
n is only loosely related to the lattice of threshold graphs of [16] where unlabeled (that is, up to

isomorphism) threshold graphs are considered. While many are the remarks that we already could develop using this
characterisation of the weak order on Dn, it is in the scope of future research to complete them and to give a satisfying
description of this ordering.

8 Counting threshold graphs

Proposition 7.8 and Theorem 7.9, originally conceived for achieving a better understating of the structure of the lattices
of Coxeter groups of type D, can also be used to enumerate threshold graphs. As the number of paths from (0, n) to
(n, 0) that are symmetric along the diagonal and begin with an East step is easily seen to be 2n−1, Proposition 7.8 yields
a simple proof that the number of unlabeled threshold graphs is 2n−1. Enumeration results for labeled threshold graphs
appear in [24] and, more recently, in [25, 11] (see also [26, Exercise 5.25] and [27, Exercise 3.115]). Theorem 7.9 can
be used to give bijective proofs of these results. The ideas that we expose next have been suggested by the bijection
described in [25, §1], that we adapt here to fit the correspondences between threshold graphs coming with a degree
ordering, signed and even-signed permutations, and simply barred permutations. Our starting point is the following
observation:
Lemma 8.1. Let ([n], E) be a threshold graph. Then, there exists a unique degree ordering w of ([n], E) such that, if
degE(i) = degE(j) and i < j, then w−1(i) < w−1(j).

Recall that w−1(i) < w−1(j) means that i occurs before j in the permutation w, written as a word. The proof of
the Lemma, straightforward, amounts to the remark that, given a degree ordering, we can permute vertices of equal
degree and, in doing so, obtain a degree ordering. We call the ordering of Lemma 8.1 the canonical degree ordering
of ([n], E).

In order to count threshold graphs we can count simply barred permutations (w,B) that, along the ideas developed in
the previous section, bijectively correspond to some (w,E) such that w is the canonical degree ordering of ([n], E).
To this goal, recall that, for (w,B) a simply barred permutation, the bars B split [n] into blocks, the last of which
might be empty. Observe that i, j ∈ [n] appear in the same block of (w,B) if and only if they have equal height, by
which we mean that, with u = ψ(w,B) (cf. Definition 4.3), heightπu(w−1(i)) = heightπu(w−1(j)).
Definition 8.2. We say that a simply barred permutation (w,B) is normal if, whenever i, j belong to the same block
and i < j, then w−1(i) < w−1(j).

Observe from now that an ordered partition of [n] yields two normal simply barred permutations. The partition is
written as a word, where the blocks, already ordered, are written in increasing order and separated by a bar. This is the
standard construction allowing to compute the number of partitions of [n] into k blocks from the Eulerian numbers,
see e.g. [12] or [5, Theorem 1.17]. If we add to the same word a bar in the last position n, then we obtain a second
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simply barred permutation. The following definition, more involved, shall receive a more intuitive meaning with the
lemma that immediately follows.

Definition 8.3. The central block of a simply barred permutation (w,B) is the k-th block, with k =
⌈
|B|+1

2

⌉
.

Lemma 8.4. Let (w,B) be a simply barred permutation, let u = ψ(w,B), and consider the path πu. If πu makes an
East-South turn when meeting the diagonal, then the central block is the block of equal height immediately before the
diagonal. If πu makes a South-East turn when meeting the diagonal, then the central block is the block of equal height
immediately after the diagonal.

Proof. Let, as before, f = heightπu and γf be such that πu meets the diagonal in (γf , γf ).

Suppose that πu makes an East-South turn when meeting the diagonal. Since bars bijectively correspond to East-
South turns (cf. Lemma 4.6) and πu is symmetric along the diagonal, then |B| is odd, say |B| = 2k − 1. The path πu
therefore makes k−1 East-South turns strictly on the left of the diagonal. Thus, there are k−1 vertical bars strictly on
the left of γf and therefore, for k =

⌈
|B|+1

2

⌉
, the k-th block is the group of equal height immediately before meeting

the diagonal—that is, the block containing w(γf ).

If πu makes a South-East turn when meeting the diagonal, then |B| is even. Say |B| = 2k − 2, so k =
⌈
|B|+1

2

⌉
. The

path πu makes k− 1 East-South turns before meeting the diagonal, and therefore there are k− 1 bars on the left of γf .
Since πu makes a South-East turn when meeting the diagonal, the last of these bars is in position γf . The k-th block
immediately occurs after γf : it is the block of equal height containing w(γf + 1).

Definition 8.5. We say that a simply barred permutation (w,B) is compatible if, for u = ψ(w,B) and i, j ∈ [n],
degEu(i) = degEu(j) if and only if i, j appear in the same block of B.

Lemma 8.6. For a simply barred permutation (w,B), the following are equivalent:

1. (w,B) is compatible,

2. ψ(w,B) is smooth,

3. the central block has at least two elements.

Proof. Let us argue that 1. is equivalent to 2. For u = ψ(w,B), consider the path representation (πu, λux , λ
u
y ) and

the threshold graph ([n], Eu), so w = λux . For readability, we also let f = heightπu . Recall that i, j appear in
the same block of B if and only if f(w−1(i)) = f(w−1(j)). On the other hand, degEu(i) = f(w−1(i)) − 1, if
w−1(i) ≤ f(w−1(i)) and, otherwise, degEu(i) = f(i). That is, up to a renaming of vertices, the degree is computed
as the height modulo a normalisation by one before meeting the diagonal. Therefore (w,B) is not compatible, if
and only if, for some x, y such that x ≤ f(x) and f(y) < y, we have f(x) − 1 = f(y). Considering that x < y
and that f is antitone, this happens exactly when f(γf ) − 1 = f(γf + 1). The latter condition holds exactly when
πu, immediately after meeting the diagonal, either takes a South step followed by an East step, or takes an East step
followed by a South step. In turn, this condition amounts to saying that u is not smooth.

Let us argue that 2. is equivalent to 3. If πu makes an East-South turn when meeting the diagonal, then u is smooth if
and only if also its second step after meeting the diagonal is a South step, if and only if, before meeting the diagonal,
πu takes two East steps, if and only if the central block has at least two elements. If πu makes an South-East turn
when meeting the diagonal, then u is smooth if and only if also its second step after meeting the diagonal is an East
step, if and only if the central block has at least two elements.

Theorem 8.7. There is a bijection between the set of threshold graphs on the vertex set [n] and the normal simply
barred permutations whose central block has at least two elements. The bijection sends vertices of equal degree to
vertices in the same block.

Proof. Given the threshold graph ([n], E), let w be its canonical degree ordering.

For (w,E) ∈ TGdgo
n , we let u ∈ Bn be the unique smooth signed permutation corresponding to (w,E) under the

bijection described in Theorem 7.9 and Remark 7.10, and let (w′, B) = ψ−1(u). Notice that w = w′. Then,
by Lemma 8.6, the central block of (w,B) has cardinality at least two, since it corresponds to a smooth signed
permutation. Since two vertices have equal degree if and only if they belong to the same block, (w,B) is normal if
and only if w is the canonical degree ordering of ([n], E).
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The following corollary allows us to simplify the counting arguments that follow.
Corollary 8.8. There is a bijection between the set of threshold graphs on the set [n] and the set of normal simply
barred permutations such that the first block has at least two elements.

Proof. Given a normal simply barred permutation whose central block has at least two elements, we move this central
block in first position by permuting the blocks. This transformation is reversible, since we can determine the position
where to move back the first block from the cardinality of B.

We can count then the labeled threshold graphs on [n] according to the number i of blocks of equal degree. By the
previous considerations, this amounts to counting normal simply barred permutations whose first block has at least
two elements. Considering that normal simply barred permutations are sort of ordered partitions, recall that

{
n
i

}
, the

Stirling number of the second kind, counts the number of unordered partitions of an n-element set into i blocks. We
immediately recover the formula from [24, §3] for the number Tn,i of threshold graphs on n vertices with i different
degrees:

Tn,i = 2 · (i! ·
{
n
i

}
− n · (i− 1)!

{
n− 1
i− 1

}
) = 2 · (i− 1)! · (i ·

{
n
i

}
− n ·

{
n− 1
i− 1

}
) .

The formula can be understood as follows: out of all the ordered partitions of [n] into i blocks, eliminate those whose
first block is a singleton; transform then such an ordered partition into a simply barred permutation by adding or not
a bar in the last position. Notice that, under the bijection, there is a bar in the last position if and only if no vertex is
isolated (i.e. has degree 0).

It is well known that an ordered partition, when transformed into a simply barred permutation as before, is determined
by its set of descent positions (that are always barred), and by the set of the other barred positions (ascent positions,
those that are not descent positions). Whence, we can count simply barred permutations according to the number of
descents. This yields the formula from [25] for counting the number Tn of threshold graphs as the sum of the numbers
τn,k:

Tn =
∑

k=0,...n−2

τn,k , with τn,k = 2 · P (n, k) · 2n−2−k = P (n, k) · 2n−1−k .

Above P (n, k) = (k + 1) ·
〈
n− 1
k

〉
is the number of permutations of the set [n] having exactly k descents, and whose

first block has at least two elements, see [25, Lemma 6]. The number τn,k can be interpreted as the number of threshold
graphs whose ordered partition determined by equal degree has exactly k descents. The explicit formula for τn,k stems
from the fact that, in order to construct such a partition, we can choose a permutation whose first block has at least two
elements, and then add other bars at ascent positions except for the first ascent position.

That threshold graphs are related to the families B and D in the theory of Coxeter groups has already been observed,
see e.g. [9], [26, Exercise 5.25], and [27, Exercise 3.115]. It needs to be emphasized, however, that the way we
came up with threshold graphs is orthogonal to the way threshold graphs are being used in these works. As part of
future research, we wish to investigate the bijections presented in Theorems 7.9 and 8.7 (which can be adapted to fit
the type B) with the goal of understanding whether they play any role with respect to the problem, dealt with in [9],
of characterizing free sub-arrangements of the Coxeter arrangements of type B. We also aim to understand whether
the connection with threshold graphs established here can shed some light on the problem of giving combinatorial
characterisations of the notion of free arrangement [26, §4].

Acknowledgment. The author is thankful to the referees for their help to improve a first version of this paper and for
their numerous hints.
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