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Abstract. Modeling the lower limb muscles using the Finite Element (FE) method is required 

for various applications including injury mechanisms or when stress/strain distribution in the 

muscle is of interest. When the muscles are represented with 3D FE models, the interaction 

between the muscles can be taken into account that has an effect on their force production. 

However, the computational cost of such a method is considerably high. Besides, in many cases, 

a major part of this computational cost is committed to gain unnecessary information. For 

instance, when having two FE muscles in contact, both muscles need to get finely meshed to 

conserve their surface details even if having the stress/strain distribution inside one of the two 

muscles is not required. As a result, the current study aims to explore a model reduction 

technique based on mesh embedding to decrease the computational cost of such models. A 

combination of Computerized Tomography and Magnetic Resonance Imaging (MRI) data 

obtained from a volunteer subject was used to generate a musculoskeletal model of the 

quadriceps muscle group. The modeling process was performed in ArtiSynth which is an open-

source 3D modeling platform supporting combined simulation of multibody and finite element 

models. This platform allows the attachment of a passive embedded mesh to a FE body so that 

it deforms in accordance with the motion of the FE body. Considering that the external forces 

applied to the passive mesh can be propagated back to the FE body attached to it, contact can 

be defined between the embedded mesh and any other structure. A full and a reduced model are 

generated and are used to simulate a passive deep knee flexion to test the reliability of the 

method. The kinematic outcomes are compared against data points obtained from MRI at 

different flexion angles. The results show that the proposed methodology can be considered as 

a substitute to fully FE models without a substantial sacrifice on the outcomes despite having 

lower computational cost.  

1 INTRODUCTION 

Using the Finite Element (FE) method for modeling the muscles of the lower limb can be 
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beneficial in applications such as injury mechanisms or when stress/strain distribution in the 

muscle is of interest [1–4]. Having a 3D FE representation of the muscles provides the 

opportunity to model them in interaction with an environment of other muscles, connective 

tissue, and bones and not as isolated units that only transmit axial forces to bones via tendons. 

The surrounding tissues in the muscle’s environment can transfer transversal forces to the 

muscle tissue. These transversal forces have been shown to result in decreasing muscle force 

production [5]. Given that the lower limb consists of some of the largest skeletal muscles of the 

body, the aforementioned effect could be important in its muscular architecture.  

However, musculoskeletal (MS) models with 3D FE muscles suffer from having a high 

preparation time as well as a high computational cost due to the number of elements and 

complex contact between different muscles. This limitation acts as a major barrier to use them 

for further applications and especially for dynamic simulations. Furthermore, these models are 

rarely used for muscle recruitment problems due to the excessive computational burden. 

As a result, reducing this time seems to be a big improvement. In this sense, the objective of 

the current study is to explore the use of a model reduction technique on the MS model of the 

lower limb that includes the 3D FE representation of the quadriceps muscle group. This method 

can provide a simplified version of the model and we control the loss of accuracy that it can 

cause in comparison with the full model (that includes nonlinear hyperelastic material models 

with complex contacts between muscles). 

The proposed technique relies on mesh embedding that is a well-known approach in the 

computer graphics community but has more recently been applied to biomechanics [6,7]. The 

concept behind this technique is that a passive mesh (for instance a surface mesh) can be 

attached to an underlying FE grid. This passive mesh will be able to deform in accordance with 

the global deformation of the FE grid. This can be used as a model reduction technique because 

the number of dynamic DOFs for the resulting system is determined by the number of nodes in 

the embedding FE grid. By using a coarser FE grid this number can be significantly reduced. It 

is important to be mentioned that this technique can handle contact between the passive surface 

mesh and any other component that comes into contact with it using the conventional FE to FE 

contact detection methods. When the passive mesh comes into contact with another component, 

the contact force will be simply propagated back to the FE grid and deform the FE grid 

accordingly. 

In the following, the MS model of the lower limb with 3D FE representation of the 

quadriceps muscles is first described and used to simulate passive deep knee flexion. 

Subsequently, the mesh embedding technique is explained and gets evaluated on this FE model  

to see if this technique can be used to reduce the computational cost by replacing the 

surrounding muscles to the Rectus Femoris (RF) muscle with embedded surfaces without a big 

compromise on the quality of the results. The kinematic outcomes of the models during passive 

deep knee flexion get compared against Magnetic Resonance Imaging (MRI) data obtained at 

different flexion angles for validation purposes.  

2 METHODS 

As the first step of the study, an MS model of the lower limb in presence of the quadriceps 

muscle group represented as 3D FE components is generated to simulate passive deep knee 

flexion. The motion of the tibiofemoral joint is controlled using the MRI data of a subject 
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collected at various knee flexion angles and the simulation gets validated by comparison of the 

kinematic outcomes of the patellofemoral joint with the MRI-based kinematic data points. A 

mesh embedding technique is used on the 3D FE muscle components to get evaluated as a 

method to reduce the computational cost of the model. The modeling is conducted in Artisynth 

that is an open-source Java-based modeling platform that allows the combination of the FE 

method with multibody modeling techniques while supporting contact and constraints [8] as 

well as embedded meshes [7] (www.artisynth.org).  

2.1 Geometry reconstruction  

A healthy subject (male, 40 years old, 94 kg, 1.73 m) was volunteered and gave his informed 

consent for participating in the experimental data collection that was part of a pilot study 

approved by an ethical committee (MammoBio MAP-VS pilot study, IRMaGe platform, Univ. 

Grenoble Alpes). The subject underwent a total of 5 sessions of non-weight-bearing MRI using 

a clinical MRI system (Achieva 3.0T dStream Philips Healthcare) and one session of computed 

tomography (CT) scan.  

The CT scan was taken to capture the surfaces of the bones precisely to be used as a reference 

for registering the bones segmented from different MRI sets. The first MRI session was 

performed to obtain the full geometry of the lower limb muscles while the subject was lying 

still in the supine position (6.99×0.97×0.97 mm3 intervals respectively in the axial, sagittal, and 

coronal views). The second MRI was obtained from the subject’s right knee to capture the 

articulation, the connective tissues, muscle insertions, and tendons more precisely 

(0.31×0.7×0.31 mm3 intervals in the axial, sagittal and coronal views). The subject was lying 

in the supine position with an approximate 25° knee flexion.  

The third to fifth MRI sessions were conducted to obtain the required data for simulating 

passive deep knee flexion as well as model validation. For this purpose, the subject was lying 

in the left lateral recumbent position and positioned his knee at three different flexion angles 

for each acquisition. The MRI of the right knee was captured having 0.5 mm intervals in all 

planes. The three different knee positions during the third to fifth MRIs are depicted from the 

sagittal view in Figure 1. The knee was flexed at 55.6°, 99.6° and 137.5° respectively during 

the first to the third MRI. Manual segmentation was performed on all the images of the subject 

in Amira 6.5.0 in order to prepare the model geometry. 

 
Figure 1: The sagittal view of the right knee MRI at three different flexion angles. 

2.2 Mesh generation  

The FE model of the quadriceps muscle group including Rectus Femoris (RF), Vastus 
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Medialis (VM), Vastus Lateralis (VL), Vastus Intermedius (VI), and the quadriceps tendon 

(QT) was generated using the muscle geometries reconstructed from the MRI segmentation 

(Figure 2). In order to control the number of finite elements and in particular to avoid very small 

elements, the segmented muscle surfaces were smoothed to remove the unnecessary surface 

details and spikes. The end regions where the muscles insert into the bone were also simplified 

to avoid very small elements and to facilitate the meshing process with methods such as solid 

map meshing. 

The process of mesh generation was conducted in HyperMesh 2019 (Altair Engineering, 

Inc., USA) to generate hexahedral dominant meshes (with control of element qualities and a 

limited number of wedge elements) for the four muscle parts as well as for the QT. The 

maximum element size was approximately 6mm to mesh the muscle parts and resulted in 2100 

elements for RF, 1325 for VI, 9290 for VL, and 2308 for VM. For the Quadriceps Tendon (QT), 

the approximate maximum element size was 3mm which resulted in a mesh with 5200 elements. 

 
Figure 2: Generated model of the lower limb for simulation of passive deep knee flexion while modeling the 

quadriceps muscle group as FE components.  

2.3 Using embedded surface mesh for the quadriceps muscle group 

In order to explore the application of the mesh embedding technique on the generated model, 

we assume that the RF muscle and QT to be the most important components that we want to 

monitor in terms of stress distribution. The other muscles (VI, VL, and VM) are the surrounding 

muscles of our main muscle and their stress distribution is assumed not to be a priority. Thus 

we will be replacing these muscles with embedded surfaces in a coarse FE grid to reduce the 

overall computational cost.  

 To describe the further steps of this reduced model, it is first required to explain the 

mechanism of “attachment” in the Artisynth platform [7], which enables us to connect surface 

mesh voxels to a deformable FE body. 

The attachment mechanism works by defining the coordinates of the attached component 

(𝑥𝑎) to be a function of the coordinates of one or more master components to which it is attached 

(𝑥𝑚) as follows: 

𝑥𝑎 = 𝑓(𝑥𝑚)       (1) 
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This implies that the velocities of these components have a linear relationship similar to: 

ẋa = Gam (ẋm),   Gam ≡ ∇f(xm) 
(2) 

Based on the principle of virtual work, the force ( 𝑓𝑎) of the attached point will be able to 

propagate back to the master components (𝑓𝑚 ) as follows: 

fm = Gam
T  fa     (3) 

Now with this background, for a point attached to a FEM (for instance each vertex of the 

embedded surface mesh that is attached to a FEM grid), its position and velocity is a weighted 

sum of nearby nodal positions 𝒙𝒋 as follows: 

xa = ∑ wjxjj ,   ẋa = ∑ wjẋjj  (4) 

Forces applied to each vertex (𝑓𝑎) then propagate back to each node according to: 

𝑓𝑗 = 𝑤𝑗  𝑓𝑎     (5) 

Given this information, to apply the technique to the VI, VM, and VL muscles, a coarse 

FEM grid was generated for these muscles to embed their surface meshes. An example of the 

embedded mesh in comparison to the normal FE mesh is depicted for the VI muscle in Figure 

3. It is important to mention that the embedded surface mesh does not require a high level of 

treatment and simplification of the insertion sites. This significantly reduced the preparation 

time of the model. Figure 4 illustrates the model having the RF and QT as finely meshed 

components and the other muscles represented as surfaces embedded in a coarse FE grid. 

 
Figure 3: The image on the left is the hexahedral dominant mesh with 1325 elements, generated for the VI 

muscle and used in the finely-meshed FE model. The image on the right is the polygonal surface mesh embedded 

in a coarse FE mesh composed of 324 voxel elements of a maximum of 2 cm edges. 

 
Figure 4: Generated lower limb model while considering the RF and QT as main FE components that are 

finely meshed (highlighted in yellow). The other muscles are modeled as surface meshes embedded in FE grids. 



E. Elyasi, A. Perrier, M. Bailet and Y. Payan 

 

 

 

 

 

6 

2.4 Material Properties 

The muscle normally experiences large displacements and strains and has a nonlinear 

stress/strain curve. As a result, when the muscle is in the passive state and has no activation, its 

behavior can be best represented by using a hyperelastic material model [9]. In the passive deep 

flexion simulation of the current study, the focus is mainly put on the overall behavior of the 

muscles and the patellofemoral kinematics. Therefore, we have assumed that the passive muscle 

behavior can be modeled with a nearly incompressible isotropic neo-Hookean hyperelastic 

material model. The parameters used for the quadriceps muscles were defined based on the 

findings of Affagard et al. who presented an in vivo method to identify the behavior of the thigh 

muscles based on a displacement field obtained from ultrasound and digital image correlation 

techniques [10]. For the QT, a linear elastic material was assumed; with values of 30 MPa for 

Young’s modulus and 0.46 for the Poisson ratio. The cartilages and bones are modelled as rigid 

bodies for simplicity reasons and as their impact was assumed to be minimal on the outcomes.  

Regarding the embedded parts, to account for the FEM voxels that are either empty or 

partially filled with the embedded surface mesh, the mass and the stiffness values of the 

embedding FEM are weighted based on the methods proposed by Nesme et al. to improve the 

resulting behavior of the model [6]. This technique is fully implemented in Artisynth. 

For the patellar ligament and the medial and lateral retinaculum, each of their bundles was 

represented by a discrete number of strands. Tensile forces were computed assuming each 

strand behaved as a non-linear stiffening spring at low strains (e<0.06) and having a linear 

stiffness at higher strains [11]. The patellar ligament was represented with a total of seven 

bundles consisting of three bundles for the central region and two bundles for each of the medial 

and lateral regions based on the results of the cadaveric study of Yanke et al. [12]. The bundle 

stiffness values were adapted from the literature [12]. The total stiffness of the central region 

of the patellar ligament was set to 278 𝑁/𝑚𝑚2. The total stiffness of medial and lateral regions 

were set to 201 𝑁/𝑚𝑚2 and 173 𝑁/𝑚𝑚2 respectively. The nominal reference strain was 

assumed to be 0.02 for all the bundles of the patellar ligament at full extension. Five bundles 

were defined to represent the medial and lateral patellar retinaculum with the respective total 

stiffness of 31 𝑁/𝑚𝑚2 and 97 𝑁/𝑚𝑚2 adopted from the literature [13,14] while a 0.01 

reference strain was assumed for them. 

2.5 Load and boundary conditions 

The passive deep knee flexion is simulated by imposing the motion of the tibiofemoral joint. 

As the quadriceps muscles are all connected to QT and the QT is attached to the patellar bone, 

changing the modeling technique of the quadriceps muscles will affect the kinematics of the 

patellofemoral joint that is free to react to the forces transmitted to it through the soft tissues 

and contact forces.  

The idea is to impose the motion of the tibiofemoral joint based on the MRI segmented bones 

at the highest level of flexion and then to take the patellofemoral joint kinematics as the output 

of the simulation. This output can be directly compared to the bone positions obtained from 

MRI at various flexion angles and enables us to validate the simulation outcomes by comparing 

the patellofemoral kinematics. A schematic view of the setup used for the simulation of passive 

deep knee flexion is depicted in Figure 5. 

As demonstrated in Figure 5, the bone positions at 25° knee flexion (the first MRI position) 
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are used to define the initial position of the model. The pelvic bones and femur are fixed in their 

initial positions. The foot bone and the fibula are constrained to the tibia and considered as a 

single segment. The patella is free to move in all its six Degrees of Freedom (DOFs) and its 

motion will be in response to the forces transmitted to it through the muscles and tendons, as 

well as contact forces.  

 

Figure 5: Schematic view of the passive deep knee simulation setup. The position of the combined shank and 

foot segment is controlled through the transformation matrix obtained from MRI at different knee flexion angles. 

The thigh and pelvic segments are non-dynamic. The patella is free to move in response to forces transmitted to 

it through the soft tissues and to contact with the femur. 

Sliding is modeled between all surfaces (bone, FE muscle, embedded muscle surfaces) that 

may come into contact. The gravity is neglected and inertial parameters of the segments are not 

considered as they will not have any impact on the simulation of passive flexion. The reason 

for this assumption is that the femur and pelvic segments are considered non-dynamic and the 

motion of the combined shank and foot segments is imposed through a pre-calculated 

transformation matrix at each time increment. 

The nodes located in the proximal insertion of all the four muscles are attached to the femur 

head (that is supposed to be fixed in this simulation). The nodes of the VI that are closer than 

one millimeter to the femur surface are attached to the femur. To represent the distal insertion 

of the four muscles to the QT, a distance limit with the QT is defined for each muscle, and all 

the nodes that are closer to the QT than the distance limit are attached to the proximal part of 

the QT. The nodes located in the distal part of the QT are attached to the patella.  

2.6 Model validation through comparison with MRI based kinematics 

Defining the local coordinate frames for the shank, patella, and thigh segments were required 

to impose the motion of the shank and to extract the kinematics of the patella. The bony 

landmarks and knee Joint Coordinate System (JCS) are defined based on the ISB standards 

[15,16]. For the calculation of the translations, the origins of the femur and shank local frames 

were both defined to be placed midpoint between the medial and lateral femoral epicondyles at 

neutral position (considered to be the bone positions while taking the CT scan). For the patellar 

segment, the origin was defined to be located on the most distal point of the patella bone. As 

the patellofemoral kinematics was observed in response to the passive flexion of the tibia, the 

tibiofemoral flexion angle was defined as the independent variable and all the 6 DOFs of the 
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patella were considered to be dependent on it. 

To compare the kinematic predictions of our knee models with the MRI-based data points, 

the Normalized Root-Mean-Square Deviation (NRMSD) from the MRI data was computed. 

Normalization was performed for each DOF because the scale and units are different. The sum 

of the normalized RSMD is computed over all 6 DOFs (Equation 6) and reported as the total 

NRMSD for each perturbation. 

𝑁𝑅𝑀𝑆𝐷 =  ∑
𝑅𝑀𝑆𝐷𝑖

𝑋̅𝑖
𝑖=𝐷𝑂𝐹       (6) 

𝑅𝑀𝑆𝐷𝑖  is the root-mean-square deviation of the patellar motion in its ith DOF from the MRI 

data points in that DOF. 𝑋̅𝑖 is the mean of the three MRI data points in the 𝑖th DOF. Lower 

values of NRMSD mean less deviation from the MRI data points that are directly extracted 

from images at different flexion angles.  

3 RESULTS AND DISCUSSION 

The model of the embedded surface mesh for VI, VL, and VM muscles were successful to 

simulate the whole deep knee flexion. The deformed state of the full and reduced models at 

various steps of the simulation is depicted in Figure 6. Regarding the simulation time, the finely-

meshed FE model took more than 8 hours to complete while the embedded model took about 

two hours and a half, despite that the Rectus Femoris and quadriceps tendon are still finely 

meshed. As previously mentioned, since all our modeled muscles are indirectly connected to 

the patella, the first comparison of the results between our two simulations was the comparison 

of the patellofemoral kinematics. 

 

Figure 6: left: The deformed state of the finely-meshed FE model at various steps of passive knee flexion. 

Right: The deformed state of the model with embedded surrounding muscles at various flexion degrees. 
 

The predicted patellofemoral kinematics are demonstrated in Figure 7 and compared with 

the outputs of the finely meshed FE model. The predicted kinematics by the two models are 

compared against MRI data points through computing the NRMSD values as presented in Table-

1. As the results of this table are suggesting, the patellofemoral kinematic outcomes did not 

substantially change and were not compromised by using the reduced model.  
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To perform a preliminary investigation on the impact of changing the modeling technique 

of the VI, VL, and VM muscles on the predicted stress distribution of the RF muscle, we have 

also monitored the maximum principal stress in the RF muscle throughout the simulation time. 

The result is presented in Figure 8. The RF maximum principal stress was not noticeably 

impacted by changing the modeling technique despite the reduced computational time. 

 

Figure 7: The effect of replacing the FE model of the VI, VL, and VM muscles with embedded surface 

meshes in a FEM grid on the patellofemoral kinematics. 

 
Figure 8: Maximum principal stress of the RF muscle that was considered as the main muscle throughout the 

passive deep knee flexion simulation with finely meshed FE models of the quadriceps muscle group and QT 

(blue line), and finely meshed RF and QT, but replacing the VI, VL, and VM muscles with surface meshes 

embedded in coarse FE grids with voxel elements (orange line). 
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Table 1: NRMSD computed for each DOF of the patella from the MRI data points for different models. The 

sum of the deviation of all DOFs is presented in the last column.  

                 Patella DOF  

 

Muscle Model Lateral Anterior Proximal Flexion Rotation Tilt Sum 

FE model of all muscles 0.21 0.06 0.35 0.08 1.08 1.63 3.40 

Embeded mesh for VI, VM and VL  0.22 0.06 0.37 0.08 1.10 1.69 3.52 

 

4 CONCLUSION  

The current study evaluated mesh embedding to be used as a model reduction technique in 

the MS models of the lower limb that represent the muscles with FE components. The full and 

reduced lower limb models were used to simulate passive deep knee flexion and the kinematic 

outcomes were compared against the MRI images of the same subject at different flexion 

angles. The use of the mesh embedding technique was successful to substantially reduce the 

computational cost of the simulation as well as model preparation time. The outcomes of the 

reduced model did not show a substantial difference from the full model.   
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