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Abstract – A very low dimension frame-level motion 

descriptor is herein proposed with the capability to 

represent incomplete dynamics, thus allowing online action 

prediction. At each frame, a set of local trajectory 

kinematic cues are spatially pooled using a covariance 

matrix. The set of frame-level covariance matrices forms a 

Riemannian manifold that describes motion patterns. A set 

of statistic measures are computed over this manifold to 

characterize the sequence dynamics, either globally, or 

instantaneously from a motion history. Regarding the 

Riemannian metrics, two different versions are proposed: 

(1) by considering tangent projections with respect to 

updated recursive statistics, and (2) by mapping the 

covariance onto a linear matrix using as reference the 

identity matrix. The proposed approach was evaluated for 

two different tasks: (1) for action classification on 

complete video sequences and (2) for online action 

recognition, in which the activity is predicted at each 

frame. The method was evaluated using two public 

datasets: KTH and UT-Interaction. For action 

classification, the method achieved an average accuracy of 

92.27 and 81.67%, for KTH and UT-interaction, 

respectively. In partial recognition task, the proposed 

method achieved similar classification rate as for the whole 

sequence by using only the 40% and 70% on KTH and UT 

sequences, respectively. 

 

Keywords - Activity recognition, Motion descriptor, 

Motion analysis, Motion trajectories 

1. Introduction 

In computer vision, many applications require to describe or 

characterize the dynamics or the activities occurring in a video 

or in a region of interest [22,23]. Motion descriptors can either 

be hand-crafted or learned from a large database to address a 

specific application. In each case, the choice of the optimal 

duration of the spatio-temporal volume to be described is an 

open problem. In addition, most approaches require the 

reading and processing of the whole sequence to provide a 

descriptor, instead of producing one result at each frame. In 

addition, a good descriptor has to be discriminant, while being 

compact and invariant to different phenomena such as 

illumination changes, partial occlusions, strong variability 

within the classes, appearance variations, and large pose 

variations. 

In the domain of action recognition, scenarios are more and 

more complex, but it is generally assumed that the activity is 

present from the beginning to the end of the input sequence, 

i.e., its temporal support interval is a priori delimited. Despite 

significant efforts, the proposed methods are very sensitive to 

action phase shift, which induces considerable limitations in 

real-time applications. For instance, surveillance or online 

video indexing systems require any-time prediction capability 

on untrimmed videos. 

The main contribution of this work is a frame-level 

recognition approach that is able to recognize activities in a 

continuous video stream. First, a set of kinematic cues are 

computed from a semi-dense field of trajectories, which 

represent atomic activity motions, that are relatively invariant 

to appearance. At each frame, the set of computed cues are 

spatially aggregated within a covariance matrix. Along the 

sequence, the set of frame level covariance matrices forms a 

special Riemannian manifold, whose geometry represents the 

dynamic of the activities. Hence, a set of recursive statistics is 

computed along the manifold to capture the main action 

dynamic with the potential capability to be updated at each 

frame. Such statistics are used to outline the temporal 

deformations of the manifold, and allow to predict the ongoing 

activity in the current frame. The statistics computed along the 

manifold are the mean and variance as well as the forgetting 

version of the maximum and minimum of the covariance 

matrix at each frame. Finally, the updated version of the 

motion descriptor is mapped to a SVM and a predicted label of 

the activity is returned for the current frame. 

 

2. Related work 

 

2.1 Motion features 

Motion descriptors computed along dense point trajectories 

have been successfully used to represent activities and 

interpret video sequences [7, 25]. The most popular 

descriptors based on these trajectories are formed by local 

features such as HOF (Histograms of Optical Flow), MBH 

(Motion Boundary Histograms) and HOG (Histograms of 

Oriented Gradients), which are integrated within space-time 

volumes centered around each trajectory. In [7] and [24] local 

descriptors are also computed around each trajectory, where 
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motion trajectories are improved by correcting the camera 

motion. A major limitation of such descriptors is that the 

spatio-temporal volumes are empirically cut off to a fixed 

temporal length (for example 15 frames in [25]), which could 

result restrictive to represent a large variety of activities 

including long or non-periodic actions. Additionally, such 

works are based on the classical Bag-of-Features methodology 

that namely requires the complete computation of spatio-

temporal volumes to effectively compute the occurrence 

histograms and then assign an activity signature to the video. 

 

Other works have focused on dynamic characterization of 

dense beams of trajectories using for instance a regional 

motion characterization has been proposed by computing 

chaotic invariant features using a sparse coding method [27]. 

Likewise, in [10], a trajectory clustering is proposed to 

analyze and identify dominant motion regions. Such regions 

are used as reference to filter out camera motion and to 

coarsely segment regions respectively related to background 

and to foreground. Then, local patch descriptors are computed 

along the foreground trajectories and code-words are defined 

for their representation. 

 

2.2 Decision and learning strategies 

Currently, deep learning approaches have emerged on AR to 

automatically learn discriminative appearance and motion 

features, and perform prediction of relevant events on video 

sequences [8, 17]. For instance, trajectory-pooled deep 

convolutional descriptors have integrated convolutional 

feature maps learned from appearance and motion streams 

ConvNet along trajectories [26]. In such case, the trajectory 

locations are used as spatial support of the local ConvNet 

responses. Although these learning approaches achieve high 

accuracy rates on realistic datasets, they require huge quantity 

of training data to optimise ConvNet filter parameters. 

Additionally, the descriptor formed by ConvNet regions 

around trajectories is extremely large, which is prohibitive in 

real-time applications. In spite of growing importance of such 

convolutional descriptors, the design of such architectures 

remain empirical, with dependence of samples amount to 

achieve a proper representation. Specifically for video 

analysis, the coding of temporal information remains an open 

problem. For instance, it has been observed in [19] that the 

consecutive application of independent spatial (2D) and 

temporal (1D) filters achieved better performances than 3D 

spatio-temporal filters. 

Compact descriptors based on special manifolds have taken 

advantage of the data topology to carry out the video 

representation. For instance, optical flow features, like 

velocity, gradient and divergence, and shape / appearance 

features were coded and embedded in covariance matrices by 

using a linear sparse representation [6]. Nevertheless, such 

works are limited to off-line recognition where the global 

statistics of the whole video have to be collected to eventually 

form the activity descriptor. 

 

2.3 Online action recognition 

Regarding the online activity prediction, Gaidon et al. [5] 

proposed an incremental action representation by computing 

sequences of actoms that consider the temporal evolution of 

the activities. A main limitation of this approach is the 

supervised learning from annotated atomic action units to 

exploit such relationship. A rank learning machine is proposed 

in [2] to analyze the video-wide temporal evolution, under the 

assumption that temporal ordering of the activities is 

preserved. This ranking strategy captures the appearance 

patterns to model evolution of actions during time. 

Nevertheless, this representation can fail because of 

appearance pattern dependency, or in sequences with 

important action occlusions. 

 

Exhaustive learning strategies have been also proposed to deal 

with recognition of partial sequences. For instance, Varol et. al 

proposed long-term temporal convolutions (LTC-CNN) to 

represent actions [20]. This architecture learns from (3D) 

kernels applied on several time length intervals. This approach 

however requires fixed video divisions, being inadequate for 

untrimmed sequences. Also, in [21], a differential recurrent 

network is proposed to recover salient motions to represent the 

dynamic evolution of actions. This approach requires large 

size descriptors at each frame with additional requirements for 

dimensionality reduction, which results prohibitive in online 

applications. In contrast, the proposed approach describes 

actions from a very compact per-frame representation and 

provides a result at each time during the video sequence. 

 

 

3. Covariance manifold video representation 

Despite the evidence that the human visual system can 

recognize activities in a reactive and instantaneous manner, 

most of the proposed approaches are designed to find spatio-

temporal patterns over complete sequences. Then, a major 

challenge for online recognition is to capture temporal 

evolution of the activities from a proper dynamic 

representation. The pipeline of the proposed approach is 

illustrated in Figure 1. 

 

3.1 Local trajectory motion cues 

The proposed approach starts by computing a set of kinematic 

measures over dense trajectories, that serves as a low-level 

video representation. A set of improved dense motion 

trajectories are computed as reference to build the video 

descriptor [26]. Instead of using trajectories as central axis of 

neighboring block size descriptors [24, 26], we directly exploit 

the dynamic information of trajectories. Each trajectory 

represents a particle traveling from time t1 to tn, following a 

sequence of coordinates   ( )  *(     )    +    
    

estimated from optical flow. Then, a set of kinematic 

trajectory features (KTF) is computed along each trajectory. 

Herein, it was considered as KTF: 

 

- the velocity vt , dep c ed  y   s d  ec     θt = arg vt  and 

modulus st = || vt ||. 

- the normal acceleration    
 , representing the norm of the 

acceleration component toward the curvature of the trajectory. 

- the tangential acceleration    
  , representing the norm of the 

acceleration component along the trajectory. 

- the curvature      of the trajectory. 
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These features can be used separately or jointly, and the 

proposed framework is flexible to include any kind of local 

features. The resulting set of  d  kinematics forms the local 

KTF descriptor associated to a trajectory     at time t. A set of 

KTF is then computed over active trajectories estimated from 

a dense grid of points and expressed as a spatial function 

  ( )  *  ( )   ( )     ( )+, where each kinematic 

component    
 ( ) is a scalar image only defined at active 

points where trajectory information exists at time  t  (See an 

example in Figure 1-(b)). 

 

3.2 Frame covariance representation 

The covariance representation allows to compactly describe 

actions by measuring the correlation degree within the set of 

KTF (K), at each frame. Specifically, at each time  t  is 

computed a KTF covariance matrix  Ct , expressed for any pair 

of kinematics features as: 

 

  (   )  
 

 
∑   

 (  )  
 (  )

 
    

 

  
∑   

 (  )
 
   ∑   

 
(  )

 
        

(1) 

 

where  n  is the number of active trajectories at time  t, and  

  
  ,          is a particular kinematics. The covariance 

matrix          is symmetric  (     
 )  and positive  

(   (  )   ). It allows to describe and summarize complex 

KTF patterns, the diagonal being the partial variance of each 

kinematic feature, and the rest the covariances between 

features. 

 

3.3 A global intrinsic video-covariance descriptor 

To get global action description, it is necessary to temporally 

take statistic measures over frame-covariance matrices that 

represent a video sequence. This set of covariance matrices, 

that are symmetric and positive-definite, form a convex half-

cone subset on     . This subset is not a vector space, but a 

Riemannian symmetric space and therefore the use of 

Euclidean metrics are not suitable to compute statistics [4, 13]. 

For instance, some Euclidean-based statistic over such 

symmetric matrices could result on covariance estimations 

with negative eigenvalues. Hence, the sequence of KTF 

covariance matrices     (             )  computed along 

the video, lies within a Riemannian manifold   , whose 

geometry can be associated to a particular action. Each KTF 

covariance Ct corresponds to a point on a curved Riemannian 

manifold   , as illustrated by Figure 1. So, a video descriptor 

could be defined as a set of measures over such manifold to 

summarize a particular action or gesture. 

 

To take measures over such manifold [13], each covariance 

point should be projected to a tangent plane (which is a vector 

space), from a logarithmic operation  ( 
   (  )
→       ( )). In 

a same way, a projected covariance could be mapped from 

Euclidean space to original Riemannian manifold, following 

exponential operation  (   ( )
    (  )
←     ). Hence, intrinsic 

manifold statistics such as mean and variance of manifold 

points can be defined from such mapping projections. 

Particularly, the mean of      in a set of covariance matrices 

C can be iteratively found by considering it as an optimization 

problem where the mean     is the point (matrix) with 

minimum distance     among the sample covariance matrices 

[4]: 

 

 ( )         
   

[
 

  
∑ (    )

 

 

   

] 

 

Regarding the variance, according to Fréchet definition, such 

measure can be expressed as the expected value of the square 

distance from the mean [4]. The        (  )  operation is the 

geodesic distance between a particular covariance Ct and the 

expected value     . Then Euclidean norm of such geodesic 

over all covariance matrices constitutes an approximation of 

the variance (see expression in Algorithm 1). Finally, the 

global video descriptor can be summarized as mean and 

variance of Riemannian manifold   , computed as described 

in Algorithm 1. 

 

Algorithm 1 Global video descriptor from intrinsic 

Riemannian measures 

Input:     (             ) 
1:  start with:        

2:  repeat 

3:          
 

 
∑      (  )
 
    

4:           ( )       (  ) 

5:  until  ‖  ‖    

6:    ( )   ∑ ‖       (  )‖
  

    

Output:  ,    ( )  
 ( )- 

 

The stop criterion, in line 5 of Algorithm 1, is defined as  

‖  ‖  ∑ (   (  ))
  

     where     are the respective 

eigenvalues. The log-map and exponential projection with 

respect to     are defined as: 

 

   (  )    

 
  (  

 
 
     

 
 
 )  

 
  

 

where   *       +. It is also expected that the variance 

inherits such error since it affects the base of the log-map. A 

final video descriptor is then formed by the concatenation of 

intrinsic measures such as the mean and the variance     
* ( )   ( )+. 
 

 

4. Recursive covariance metrics 

One of the principal goals of this work is to compute a 

reactive (on-the-fly) representation of the activities at each 

time of the sequence. From analysis of global Riemannian 

measures, recursive and partial measures were herein 

considered to update motion history over partial manifold 

while the sequence is run. For doing so, two different 

strategies were considered, described in the next subsections. 

 

4.1 Recursive measures by Proximity Mapping 

Under the assumption that consecutive covariance matrices are 

closer within the manifold, we can project covariance points 
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Fig. 1 Online action recognition from a Riemannian video representation. In (a) the method starts by computing point 

trajectories, along which the local motion cues are calculated. Then, at each frame, this kinematic information is spatially 

aggregated in a covariance matrix (see plot (b)). The set of frame-level covariances then forms a Riemannian manifold. To 

achieve a frame level recognition, a set of time-recursive statistics are computed in the manifold space (see plot (c)). 

 

on Euclidean space, taking as reference the previous 

covariance. In such case, the geodesics between manifold 

points, corresponding to successive frames, will exhibit a 

small value. Hence, a recursive version of mean starts by 

assuming           as the covariance computed in first frame 

where KTF are available. The propagation and updating of 

mean is then achieved by log-projecting covariance Ct with 

respect to historical mean       . This projection computes the 

geodesic distance between the mean and any new point in the 

covariance space. An   coefficient is introduced to weight the 

contribution of each new Ct into the recursive mean 

covariance. In such case, larger   values give more 

importance to current Ct observations, and temporal mean is 

significantly affected. After that, a back-projection to the 

manifold is achieved by computing the respective exponential 

operation. The resulting mean is then expressed as: 

 

          (       (   )) 

 

where         and         follow the rule expressed in 

equation 3.3. This formulation allows to perform incremental 

measures within the manifold  , as action is developed 

throughout the sequence. At each time, if we measure the 

square distance between the updated mean and each new 

covariance Ct , we obtain a recursive estimation of the 

variance. To initialize such statistics, we assume the initial 

variance as          (‖     (  )‖ 
). 

This way, a recursive variance can be expressed into a 

interpolation scheme, as follows: 

 

          [       ( ‖     (  )‖ 
)]                              (2) 

 

This recursive measure assumes local tangent planes regarding 

close recursive points. The recursive variance and mean can 

constitute a untrimmed and online action recognition 

description to represent partial dynamics coded into 

consecutive KFT covariances. It should be noted that each 

recursive statistics herein computed remains in the 

Riemannian manifold, as illustrated in Figure 1-(a). 

 

4.2 Recursive measures from Identity Mapping 

An alternative to compute recursive measures is to project 

manifold points to a tangent plane with respect to the identity. 

Hence, the projection to Euclidean and Riemannian space 

from identity, could be computed as   (  )     (  )  
 , 

where    are the eigenvectors of the matrix and   are the 

respective eigenvalues of matrix C [14]. Again,   represents 

either function  log  or  exp  and the recursive statistics remain 

on Euclidean space. 

 

Then, an initial recursive mean from this approximation is 

defined as     (  )     (  ). So, a progressive version of 

the mean is achieved by projecting each new Ct w.r.t the 

identity and updating previous mean      . In this case too, an 

  value allows to weight the importance of mean KTF 

covariance history. Then, the recursive mean can be expressed 

as follows: 

 

   (  )     (    )   (   (  )     (    ))               (3) 

 

Accordingly, we can estimate a recursive variance by 

projecting each of the points to an identity Euclidean space, 

and defining a recursive square distance regarding the 

expected value. This recursive variance can be expressed as: 
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   (  )     (    )   ((   (  )     (  ))
     (    ))   

(4) 

 

An additional advantage of such general Euclidean projection 

with respect to the identity is the easy and intuitive extension 

to other statistics and measures. For instance, we can define 

non-linear and recursive operators, such as the forgetting 

minimal     (    )  and maximal value    (    ), expressed 

as: 

 

   (   
 
)      (  )  (   )     (   (  )     (   

   
)) 

 

   (   
 
)      (  )  (   )     (   (  )     (   

   
)) 

 

All the recursive measures described above (or a subset of 

them) constitute a video descriptor that is able to operate at 

frame level and allows to obtain a video representation at each 

time of the sequence. Such estimation can be integrated to 

obtain a more robust description of the partial activities along 

the sequence. 

 

 

5. Evaluation and results 

In this work we are interested in measuring the capability of 

the proposed covariance manifold to represent human 

activities in videos. Two tasks are considered: global action 

classification and per-frame action recognition. The proposed 

approach is evaluated in terms of recognition accuracy but 

also in terms of complexity of the algorithm and size of the 

descriptor. In both schemes, the video descriptor is constituted 

by measures over the Riemannian manifold, namely, the 

temporal mean and variance of spatial covariances. Each of 

the video-descriptors is mapped to a previously trained 

classifier. The Support Vector Machines (SVM) is chosen as 

action classifier, because of its efficiency in terms of inference 

time, which is compatible with our fast online approach. 

Another determining advantage of SVM is its flexibility: 

higher dimensional boundaries are conveniently obtained by 

mapping the samples to a feature space using a non-linear 

kernel function. For the following experiments, a Radial Basis 

Function kernel (RBF) produced desirable results with 

acceptable processing time. It should be noted that the SVM 

works into a Euclidean space and therefore any covariance 

measure is mapped as     (  ). To assess the relevance of the 

different kinematic features and temporal statistics of our 

descriptor, different combinations of KTS and statistics were 

evaluated. 

 

Scheme 1: Global recognition (detailed in 5.2). For action 

classification, a unique prediction was considered for whole 

video sequence. The SVM is trained with intrinsic global 

statistics computed from complete sequences. Then for each 

new video a set of KTF is computed and coded as per-frame 

covariance matrices, forming a temporal video manifold. A set 

of intrinsic statistics, namely, mean and variance are taken 

from such manifold to represent the action, which thereafter is 

mapped to the SVM. 

 

Scheme 2: Online recognition (detailed in 5.4). Regarding 

the evaluation of action recognition, we compute and update 

recursive statistics from new KTF covariance at each frame. 

The SVM was trained also with recursive estimations, from 

training videos, at different sections of video sequences. For 

testing, the video descriptor is available at each frame for 

every video. Hence, this recursive video descriptor was 

mapped to the trained SVM to obtain an online prediction. The 

set of proposed recursive metrics depends on the temporal 

scale   that represents the memory depth: larger   scales 

consider larger intervals of time. Different   values are 

evaluated:    *                + . 
 

5.1 Data 

The proposed approach has been evaluated on two well-

known public human action datasets. Here is a brief 

description of these datasets: 

 

- KTH [11] contains six human action classes: walking, 

jogging, running, boxing, waving and clapping. Each action is 

performed by 25 subjects in four different scenarios with 

different scales, clothes and scene variations. This dataset 

contains a total of 2391 video sequences. Each video has a 

spatial resolution of 160×120 pixels and a frame rate of 25 fps. 

The proposed approach was evaluated following the original 

experimental setup which specifies training, validation and 

test groups of files as well as a five-fold cross validation 

suggested in [16]. 

 

- UT-Interaction [15] contains six different human interactions 

between different people: shake-hands, point, hug, push, kick 

and punch. The dataset is made of two subsets of 60 

sequences, with all 6 actions but one with static camera (UT-

set1) and the other one (UT-set2) with some jitters camera 

motions. Each video has a spatial resolution of 720×480 and a 

frame rate of 30 fps. A ten-fold leave-one-out cross-validation 

was performed, as described in [15]. 

 

5.2 Global Action evaluation 

 

5.2.1 Impact of the kinematics 

The first evaluation aims to evaluate the relevance of 

individual kinematics in the action recognition task, and also 

to define the sets of kinematic features that provide a good 

trade-off between accuracy and computation costs. Then, 

resulting covariance of each kinematic feature was computed 

together with spatial (x,y) location and time activation t. 

Figure 2 illustrates the performance achieved by the proposed 

approach using KTH dataset, first for each type of 

combination of isolated kinematic features. In general, single 

features correlated with spatial coordinates report an 

interesting classification accuracy, as shown by Figure 2(a). 

The addition of temporal trajectory activation further improves 

the performance (Figure 2(b)). Interestingly, using only the 

velocity angle to form the vector ,       - , the proposed 

approach reaches a performance of 80%. Figure 2(c) finally 

displays the performance when adding successively the best 

kinematic feature into the covariance descriptor. The best 

result is achieved with a per-frame covariance that integrates 

all kinematics, obtaining an average score of 92.27%. 
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Fig. 2 Impact of the kinematic features on the classification accuracy, using the KTH datasets. (a) evaluation of a single 

kinematic feature     included in the descriptor vector    ,     - ; (b) same experiment with temporal variable    
,       - ; (c) evaluation of the multiple descriptor when increasing the number of kinematic features (ordered from better to 

worse as individual feature)    ,             -
 . 

 

Figure 3 illustrates the performance achieved by the proposed 

approach on the two UT-interaction sets. Here also, a higher 

accuracy is obtained by including the temporal variable. As 

expected, a much better performance is achieved on UT-set1 

because of the relative static camera and the plane 

background. In this case, kinematics of first order (      ) 
achieved the best performance of action representation with 

73.3%, 71.6% and 70% respectively. Nevertheless, it should 

be noted that in set UT-set2, some individual features (    ) 

both achieve a classification rate of 65%, and that the best 

accuracy for multiple features is achieved with only the best 

three kinematics, i.e., (       ) for an average accuracy of 

68%. Regarding UT-Interaction sequence 1, additional testing 

has shown that a significant improvement is obtained by 

excluding kinematic   , which generates an accuracy of 85% 

for features {                 }. Interestingly, when 

kinematic     is added, performance decreases to 81.6%. As 

for UT sequence 2, a slight improvement occurred when 

concatenating kinematics {          } obtaining 68.3%. 

 

Recursive and intrinsic statistics can be used as a global 

descriptor of video sequences. In the next experiments we 

analyze the global performance of such statistics in a 

classification task. First, a covariance sample is computed in 

each frame. Then, global statistics are computed as general 

descriptors of the video content. Figure 4 collects the resulting 

classification scores. Best classification scores are achieved by 

using the computation of intrinsic mean (I. Mean) for full 

video sequences, following the algorithm proposed by 

Fletcher [3]. Also, recursive mean and variance versions were 

herein used as global classifiers to compare the performance 

with intrinsic measures. 

 

5.3 Global classification 

Table 1 illustrates the comparison of best achieved result on 

KTH w.r.t baseline approaches based on local dense blocks 

[11] and trajectory-based descriptors [24]. The proposed 

approach achieved a performance of 92.27% comparable with 

state of the art techniques, but using a descriptor size of only 

78 scalar values. In contrast, trajectory based descriptors [24] 

Approaches KTH 

 Size Accuracy 

Laptev 2008 [12] 4000 91.80 

Wang 2011 [25] 4000 94.20 

Our method 78 92.27 

 

Table 1 Comparison with state of the art methods on the KTH 

dataset. Comparable methods, i.e. based on pooling local 

motion descriptors, were chosen as baseline: local block 

(Laptev 2005) and trajectory based descriptors (Wang 2011). 

 

take more than 4000 scalar values, computed after an BoW 

occurrence histograms. In table 1 it is worth noting that the 

proposed descriptor is much more lightweight, which 

increases the possibility to carry out classification in very 

short time, and also to be used as a complementary descriptor 

to analyze complex scenarios and movements with negligible 

additional cost. 

 

Table 2 summarizes the achieved scores on UT-interaction 

dataset by the proposed approaches and some state-of-the-art 

strategies. In UT-Interaction the best classification scores, 

using the same descriptor, achieved in average 81.6% and 

65%, for UT-set1 and UT-set2 respectively. After a selection 

of kinematic features, on UT-set1 was achieved an accuracy of 

85%. Because UT-interaction sets exhibit more complex 

activities, with dynamic backgrounds, the temporal variance of 

spatial covariance was required to achieve a better 

performance. 

 

The main advantages of the proposed approach are the 

compactness and the efficient computation of video descriptor. 

Best baseline results are achieved by propagative voting with a 

computational cost of   (  )   (   ), being    the 

number of matches over a sequence with resolution W, H, T. 

In such case, the      is computed by using random projection 

trees, an expensive and prohibitive strategy for online 

applications. Other baseline approaches require relative large 

descriptors with a natural dependence of number of points 

(np), which are proportional to image dimension. 
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Fig. 3 Kinematic feature evaluation using both UT-interaction sets: the UT-set1 (top) and the UT-set2 (bottom). As for KTH (see 

in Figure 2) the evaluation was carried out including spatial (first column) temporal correlations (second column). Similarly, for 

UT was analyzed an incremental kinematic descriptor. 

 

 

 
 

Fig. 4 Evaluation of complete (offline) video descriptors by using different statistics (Left: KTH, right: UT-Interaction). In such 

case it was computed for whole sequence intrinsic and recursive mean and variance statistics. This chart also illustrates the 

performance of combining different statistics. 

 

Approaches  UT-Set 1 UT-Set 2 

 Size Accuracy Accuracy 

Propagative voting 

[28] 
162 × np 93.3 91.7 

Daysy [1] 192 × np 71.67 56.67 

Laptev [11] + SVM 41800 × np 68 65 

Slimani 2014 [18] 22500 40 66 

Xiaofei [9] 252 83 - 

Proposed approach 312 81.6 65 

 

Table 2 Average accuracy for different reported state of the 

art strategies. Although the propagation voting achieves better 

results in terms of accuracy, the match of features using 

random projection trees is computationally expensive. The 

Xiaofei et al. work integrates BoW occurrence histogram with 

HoG, representing again a high computational time. 

 

Table 3 summarizes typical times of our non-optimized 

implementation. Each of the steps of the proposed approach 

were measured and the average time is reported for each video 

sequence. Column (a) reports the average times to compute all 

motion trajectories on each video sequence and column (b) 

collects the times needed for the kinematic computation. 

Because the time for each kinematic is negligible, it was only 

reported time for all kinematics on each video sequence. In 

column (c) is reported the time consumed to build whole per-

frame covariance and compute the video descriptor for each 

sequence. The last column reports the time to train a SVM 

model. The experimental setup involved used one core of an 
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Intel Xeon CPU E5-1650 v3 at 3.50GHz with 32Gb RAM 

with a Gnu C++ compiler. 

 

5.4 Online Action evaluation 

The recursive statistics proposed in section 4 allowed to get a 

description of the video activity at each frame. Table 4 and 5, 

and table 6 and 7 collect the classification accuracy for each 

configuration, on dataset KTH and UT-Interaction 

respectively. For these experiments, all 9 kinematic features 

are embedded in the feature vector. These results summarize 

performance of different recursive statistics for different   

values for both datasets. First of all, the best results are 

obtained by using the mapping onto the Identity space: 

89.93% versus 82.37% for KTH; 80% versus 76.66% for UT-

Interaction 1; 78.33% versus 76.66% for UT-Interaction 2. In 

addition, the statistics calculated after mapping are faster to 

compute. Also, the computation of recursive statistics results 

very close in accuracy w.r.t the descriptor built from the 

intrinsic measures. Additionally, the assumption of the identity 

reference preserves the accuracy while remaining faster  to 

compute w.r.t. the other statistics. Best performance was 

achieved with large scales, because the smoothness on 

statistics tends to provide a more stable action representation. 

The scale has a varying impact on the accuracy results.  It both 

depends on the dataset and on the nature of the statistics. As 

for the scores over the descriptor formed by all-statistics 

shown the best performance, achieving a performance of 

89.93 and 82.37% for Identity Mapping, i.e. the mapping in 

the Euclidean space according to the identity reference and the 

Proximity Mapping, respectively. 

 

 (a) (b) (c) (d) 

KTH 0.971 ms 105.65 ms 1.94 s 36.06 s 

UT-Interaction 47.16 ms 73.51 ms 9.08 s 3.13 s 

 

Table 3 Average computation time for each stage for intrinsic 

mean method over KTH (top) and UT-Interaction set 1 

(bottom) datasets using 78 and 312 scalar values respectively. 

Stages: (a) Reading all trajectories, (b) calculating kinematics 

for each sequence, (c) frame descriptor for each sequence and 

(d) SVM model training. 

 

As expected, KTH and UT-Interaction (set 1) datasets showed 

accurate results since the camera motion and artifacts are not 

significant on controlled environments. Thanks to the natural 

flexibility of the covariance framework, we can easily 

introduce additional features in order to be more robust to 

some common issues like illumination and appearance 

variability. 

 

One of the main contributions of this work is the online 

character of the proposed descriptor, that allows to predict 

actions at any time of the sequence. A final evaluation was 

carried out to test the performance of the proposed approach to 

predict partially developed actions. To that purpose, the 

accuracy of the classification is computed for different 

percentages of the ongoing action. Figure 5 illustrate the 

performance of the proposed approach to represent partial 

action along the video sequences at different percentages of 

the video. The different combinations 

of statistics were evaluated in such online and untrimmed 

recognition. In each case, two temporal scales are considered, 

namely        and        . As expected, the proposed 

KFT recursive covariance coding allows a robust 

representation of partial actions. Since KTH exhibits in many 

cases periodic actions, a very compact descriptor is possible. 

As expected, best performance is achieved by using all the 

recursive statistics, but using only the recursive mean already 

achieves competitive results. In such case, the video descriptor 

is summarized in only 156 scalar values, which results very 

useful for embedded applications. 

 

For this dataset, and for some statistical combinations, using 

only 50% of video sequences achieves more than 70% of 

accuracy on recognition task. Thereafter, 80% of video 

sequences is sufficient to achieve a maximum accuracy score 

for the whole video sequences. In both time intervals (i.e. 

values of      and      for   ), was observed same 

performance of action coding, being the more stable result the 

combination of all the statistics, but resulting interesting the 

performance of mean and min statistics alone. 

 

Same evaluation was carried out over the two UT-interaction 

sets. Figure 6 summarizes the online recognition over UT-

set1, by using different combinations of recursive statistics, 

computed with same two   values. First of all, it should be 

noted that for the first 20% of the video segments a random 

classification is obtained. This is due to the fact that most of 

the time, there is no motion in the first frames of the video-

sequence, and therefore the KFT recursive covariance 

matrices are not meaningful. For UT-set1, the best results are 

achieved by using short motion history memory, i.e. with 

      , that achieves a progressive increasing of accuracy 

until 80%. Best performance is also obtained by statistics 

whose covariances are projected w.r.t to a common tangent 

plane, following the identity matrix. Such fact could be 

associated to stability of common tangent plane, and also less 

numerical error because in such strategy it is not necessary to 

back-project to Riemannian manifold from exponential 

operation. For small   values, the mean and the minimum 

statistic measures result very effective and compact to 

recognize online actions. 

 

Figure 7 shows the online prediction performance for different 

recursive statistics in the more challenging UT2 dataset. It is 

interesting to observe that statistics projected over Riemannian 

manifold result more stable, with an increasing trend for 

complete KFT video descriptor, but also for combination of 

non-linear operation (min and max) with the recursive mean. 

For the most complete combinations, an efficient video 

representation is achieved after 60% of the video-sequence. 

 

 

6. Discussion and concluding remarks 

We proposed a very compact covariance-based descriptor for 

untrimmed video action recognition. The proposal starts with a 

multiple kinematic motion representation, in the purpose to
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Statistic over   / Scale(     ( )) 5 6 7 10 

,   (  )- 85.02 80.22 76.69 77.68 

,   (  )- 74.43 74.85 70.19 69.35 

,   (    )- 83.05 85.02 85.16 84.74 

,   (    )- 84.46 85.59 86.15 87.14 

,   (  )    (  )- 85.59 81.49 79.51 77.82 

,   (  )    (    )- 87.28 88.70 87.42 86.44 

,   (  )    (    )- 86.86 86.29 82.90 84.60 

,   (  )    (  )    (    )     (    )- 88.98 88.70 88.84 89.83 

 

Table 4 Experiments results using Identity Mapping on the KTH dataset. The whole 9 Kinematics are used to compute the 

statistics, which are combined to form different descriptors. 

 

Statistic over   / Scale 5 6 7 10 

,  - 77.28 74.39 71.72 69.52 

,  - 70.10 67.32 69.87 69.87 

,     - 77.86 75.78 73.46 72.19 

,      (    )- 80.64 81.22 81.34 81.34 

,      (    )- 78.79 79.95 78.33 78.56 

,         (    )    (    )- 81.34 81.34 82.73 80.18 

 

Table 5 Experiments results using Identity Mapping on the UT-Interaction dataset. An interesting point is combination with non-

linear recursive statistics that were computed from identity matrix. 

 

Statistic over   / Scale 
5 6 7 10 

Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 

,   (  )- 76.66 60 65 50 53.33 41.66 46.66 45 

,   (  )- 63.33 53.33 50 40 45 40 50 40 

,   (    )- 61.66 55 70 60 66.66 61.66 68.33 65 

,   (    )- 56.66 60 61.66 66.66 70 70 76.66 71.66 

,   (  )    (  )- 71.66 60 60 50 56.66 45 50 45 

,   (  )    (    )- 73.33 70 78.33 73.33 73.33 78.33 70 73.33 

,   (  )    (    )- 80 61.66 75 70 70 70 66.66 65 

,   (  )    (  )    (    )     (    )- 76.66 66.66 75 71.66 70 75 75 75 

 

Table 6 Experiments results using Identity Mapping on the UT-Interaction dataset. Statistics were computed at different scales 

that take different intervals of time and tested on both sets. 

 

Statistic over   / Scale 
5 6 7 10 

Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 Set 1 Set 2 

,  - 76.66 58.33 66.66 41.66 60 35 48.33 35 

,  - 51.66 41.66 43.33 40 45 41.66 46.66 31.66 

,     - 66.66 56.66 60 41.66 53.33 40 48.33 35 

,      (    )- 68.33 70 75 71.66 66.66 76.66 66.66 66.66 

,      (    )- 76.66 65 65 65 61.66 66.66 58.33 68.33 

,         (    )    (    )- 71.66 61.66 73.33 66.66 70 71.66 70 68.33 

 

Table 7 Experiments results using Proximity Mapping on the UT-Interaction dataset. The whole statistics and their respective 

combinations were evaluated at different scales. The combination of mean with non-linear operators result the best combination 

on this approach. 
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Fig. 5 KTH action online recognition. Video descriptors that code different statistic combinations were evaluated. As expected, a 

growing accuracy is achieved while the statistics are updated along time. In almost all cases, after 60% of the sequence is 

achieved stable and coherent results. 

 

 
 

Fig. 6 UT1 online action recognition performance. The best performance is observed over statistics computed on Euclidean 

space by projecting incoming covariance to identity tangent plane. In almost all cases, a limitation on action representation is 

reported when the variance statistic is included on action descriptor. Projecting from  on manifold results interesting as it 

improves the stability after 65% of the video sequence. 

 

achieve a good trade-off between accuracy and speed of 

computation. The support trajectories contain by themselves 

relevant kinematic information that result robust to appearance 

changes, allow a natural fusion of different features that can 

compactly represent activities. These KTFs are spatially 

pooled into covariance matrices that lie within a video 

Riemannian manifold. 

 

This action covariance-based descriptor represents each 

particular sequence as Riemannian manifold, whose statistics 

approximate topology and geometry of actions in such space. 

In this work we analyze intrinsic statistics to operate on the 

video Riemannian manifold, which are treated as an 

optimization problem by projecting tangent planes and 

operating in such corresponding Euclidean space. From such 

statistics we achieve competitive action classification results, 

by coding complete video sequences with video descriptors of 

only 78 scalar values. In many cases, the intrinsic Riemannian 

mean results sufficient to model an individual activity 

recorded in a video sequence. For more complex cases, an 

extension of such statistics was herein proposed to build video 

descriptors on the fly, using a recurrent scheme, where each 

statistic is updated and mapped to a machine learning 

algorithm to obtain a frame level prediction. In all cases, the 

computed recursive statistics result compact and relevant to 

represent actions over the evaluated datasets. 

 

For KTH, where the actions are periodic and with a relatively 

controlled background, the video descriptor only requires 40% 

of video sequence to achieve stable prediction results. 

Regarding UT interaction, it was obtained a progressive 

accuracy on partial representations with stable results at 70% 

of the sequences. In almost all experiments, the mean and the 

recursive mean result the most descriptive measures to code 

activities. Such measures generally regularize covariances and 

filter out abrupt changes during the development of the 

activity. On the other hand, the variance often showed limited 

representation power for activities. 
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Fig. 7 UT2 online action recognition performance. In both projections it is illustrated a similar maximum performance. The 

variation of   parameter result important to obtain a smooth or stepped incremental accuracy. In almost whole case, the 

integration with variance limit the description of activities. Such fact could be related with abrupt motion of cameras and 

background. 

 

Nevertheless, this statistic is helpful in the case of quick 

changes and strong variations on the dynamic of the activities. 

Representing videos by covariance Riemannian manifolds 

proves a powerful tool to compactly describe actions. In both 

cases, action classification and recognition, competitive results 

were achieved from very compact representations. Such 

representation could be complemented with additional image 

features or included in more sophisticated learning 

representations. Future works include evaluation of the 

proposed descriptor in more complex scenarios. Likewise, this 

descriptor will be extended to recognition of interactive 

actions such as human group activities. 

 

Acknowledgements This research is funded by the RTRA 

Digiteo project MAPOCA. 

 

 

References 

1. Cao, X.t.: Action recognition using 3d daisy descriptor. Machine vision and 

applications 25(1), 159–171 (2014) 
2. Fernando, B.t.: Modeling video evolution for action recognition. In: CVPR, 

pp. 5378–5387 (2015) 

3. Fletcher, P.T., Joshi, S.: Principal geodesic analysis on symmetric spaces: 
Statistics of diffusion tensors. In: Computer Vision and Mathematical 

Methods in Medical and Biomedical Image Analysis, pp. 87–98 (2004) 

4. Fletcher, P.T., Joshi, S.: Riemannian geometry for the statistical analysis of 

diffusion tensor data. Signal Processing 87(2), 250–262 (2007) 

5. Gaidon, A., Harchaoui, Z., Schmid, C.: Actom sequence models for 

efficient action detection. In: CVPR 2011, pp.3201–3208. IEEE (2011) 
6. Guo, K., Ishwar, P., Konrad, J.: Action recognition from video using 

feature covariance matrices. IEEE Transactions on Image Processing 22(6), 

2479–2494 (2013) 
7. Jain, M., Jegou, H., Bouthemy, P.: Better exploiting motion for better 

action recognition. In: CVPR, pp. 2555–2562 (2013) 

8. Ji, S., Xu, W., Yang, M., Yu, K.: 3d convolutional neural networks for 
human action recognition. IEEE transactions on pattern analysis and machine 

intelligence 35(1),221–231 (2012) 

9. Ji, X., Wang, C., Zuo, X., Wang, Y.: Multiple feature voting based human 
interaction recognition. International Journal of Signal Processing, Image 

Processing and Pattern Recognition 9(1), 323–334 (2016) 

10. Jiang, Y.G., Dai, Q., Liu, W., Xue, X., Ngo, C.W.: Human action 
recognition in unconstrained videos by explicit motion modeling. IEEE 

Transactions on Image Processing 24(11), 3781–3795 (2015) 

11. Laptev, I.: On space-time interest points. International journal of computer 
vision 64(2-3), 107–123 (2005) 

12. Laptev, I., Marsza lek, M., Schmid, C., Rozenfeld, B.: Learning realistic 

human actions from movies. In: CVPR (2008) 
13. Pennec, X.: Intrinsic statistics on riemannian manifolds: Basic tools for 

geometric measurements. Journal of Mathematical Imaging and Vision 25(1), 

127 (2006) 
14. Pennec, X., Fillard, P., Ayache, N.: A riemannian framework for tensor 

computing. International Journal of computer vision 66(1), 41–66 (2006) 

15. Ryoo, M.t.: An overview of contest on semantic description of human 
activities (sdha) 2010. In: ICPR, pp. 270–285. Springer (2010) 

16. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local 

svm approach. In: ICPR 2004., vol. 3, pp.32–36 (2004) 
17. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for 

action recognition in videos. In: Advances in neural information processing 

systems, pp. 568–576(2014) 
18. Nour el houda Slimani, K., Benezeth, Y., Souami, F.: Human interaction 

recognition based on the co-occurrence of visual words. In: CVPR, pp. 455–

460 (2014) 
19. Tran, D.t.: A closer look at spatiotemporal convolutions for action 

recognition. In: CVPR, pp. 6450–6459 (2018) 

20. Varol, G., Laptev, I., Schmid, C.: Long-term temporal convolutions for 
action recognition. IEEE transactions on pattern analysis and machine 

intelligence 40(6), 1510–1517 (2018) 

21. Veeriah, V., Zhuang, N., Qi, G.J.: Differential recurrent neural networks 
for action recognition. In: Proceedings of the IEEE international conference 

on computer vision, pp. 4041–4049 (2015) 

22. Vishwakarma, S., Agrawal, A.: A survey on activity recognition and 
behavior understanding in video surveillance. The Visual Computer 29(10), 

983–1009 (2013) 

23. Vrigkas, M., Nikou, C., Kakadiaris, I.A.: A review of human activity 
recognition methods. Frontiers in Robotics and AI 2, 28 (2015) 

24. Wang, H., Schmid, C.: Action recognition with improved trajectories. In: 

CVPR, pp. 3551–3558 (2013) 
25. Wang, H.t.: Action recognition by dense trajectories. In: CVPR (2011) 

26. Wang, L., Qiao, Y., Tang, X.: Action recognition with trajectory-pooled 

deep-convolutional descriptors. In: CVPR, pp. 4305–4314 (2015) 
27. Wu, S., Oreifej, O., Shah, M.: Action recognition in videos acquired by a 

moving camera using motion decomposition of lagrangian particle 

trajectories. In: CVPR, pp. 1419–1426. IEEE (2011) 
28. Yu, G., Yuan, J., Liu, Z.: Propagative hough voting for human activity 

recognition. In: ECCV 2012, vol. 7574, pp. 693–706 (2012) 


