
HAL Id: hal-03204006
https://hal.science/hal-03204006

Submitted on 23 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Higher-Order Automata, Pushdown Systems, and Set
Constraints

Jean Goubault-Larrecq

To cite this version:
Jean Goubault-Larrecq. Higher-Order Automata, Pushdown Systems, and Set Constraints. [Research
Report] LSV-01-9, LSV, ENS Cachan. 2001, pp.15. �hal-03204006�

https://hal.science/hal-03204006
https://hal.archives-ouvertes.fr


J. GoubaultïLarrecq

HigherïOrder Automata, 
Pushdown systems, 
and Set Constraints

Research Report LSVï01ï9, Nov. 2001

Ecole Normale Supérieure de Cachan 
61, avenue du Président Wilson
94235 Cachan Cedex France



http://www.lsv.ensïcachan.fr/Publis/
Research Report LSVï01ï9, Lab. Spécification et Vérification, CNRS & ENS de Cachan, France, Nov. 2001

Higher-Order Automata, Pushdown Systems, and Set
Constraints

Jean Goubault-Larrecq

LSV/CNRS UMR 8643, ENS Cachan
61, av. du président-Wilson

94235 Cachan Cedex, France

Abstract. We introduce a natural notion of automata, pushdown systems, and
set constraints in increasing order of expressiveness, on simply-typed -terms.
We show that recognizability of ground terms, and testing emptiness of higher-
order automata and pushdown systems, as well as the satisfiability of higher-order
set constraints, are decidable in non-deterministic double exponential time. This
uses a first-order clause format on shallow higher-order patterns, and automated
deduction techniques based on ordered resolution with splitting.

1 Introduction

The point of this note is to adapt the construction of [10], which defines a view of tree
automata, pushdown systems and set constraints as particular sets of clauses to the case
of simply-typed -terms modulo -conversions. The value is that it yields a particu-
larly natural notion of automata on the latter higher-order terms, which in addition has
the following properties: 1. recognizing a -terms modulo is decidable; 2. deciding
the emptiness of a higher-order tree automaton, resp. a pushdown system, is decidable;
similarly, the satisfiability of higher-order set constraints is decidable. The idea is to use
the same clausal format as in [10], except terms are replaced by Miller’s higher-order
patterns [14], limited at depth one—the so-called shallow patterns.

We give a few preliminary definitions in Section 2, then introduce shallow higher-
order patterns in Section 3, and prove a few properties on the most general unifiers of
shallow unifiers that we shall need later on. In Section 4, we recall a few mostly well-
known results on the completeness of ordered resolution with splitting, adapted here to
the case of a first-order logic with higher-order patterns in clause format. Restricting
clauses to use only shallow patterns (as introduced in Section 3), subject to a few other
technical conditions, allows us to define natural notions of higher-order automata, of
higher-order pushdown systems, and of higher-order set constraints, in increasing order
of expressiveness, in Section 5. Using the ordered resolution plus splitting format of
Section 4, we deduce that the satisfiability of higher-order set constraints, and there-
fore also the emptiness of higher-order pushdown systems (including higher-order au-
tomata), is decidable in non-deterministic double exponential time. As a consequence,
testing whether a given ground -term is in the language of a higher-order pushdown
system is also decidable.



2 Preliminaries

Recall that simple types, or types for short in this paper, are given by the grammar:

where ranges over a non-empty collection of base types. A signature is a map
from so-called constants to types. A signature is finite iff its domain is finite.
Fix a countably infinite set Var of universal variables , each equipped with
a unique type (let be the type of ). Also, fix a countably infinite set Var of
existential variables , each equipped with a unique type (let be the
type of ). The set of preterms , , , . . . , of type on the signature is
defined inductively by the rules:

We abbreviate as , and as
.

The set of -terms of type is the set of all preterms in whose free variables
are all existential. (This does not restrict generality in the sequel, as we can always add

s in front in order to bind all universal variables.) A -term is ground iff it has no free
(existential) variable.

All -terms that are -equivalent (i.e., differ only in the name of bound variables)
will be dealt with as though they were equal, using Barendregt’s naming convention [3].
We consider the following rewrite rules:

( not free in )

where denotes the standard capture-avoiding substitution. We write , ,
the corresponding one-step rewrite relations; if is a rewrite relation, we write

its reflexive-transitive closure, its transitive closure. We write , , for
the appropriate congruences.

It is well-known that , , terminate on simply-typed terms [9]. Moreover,
any -normal preterm if of the form , where the head is a
constant, an existential variable or one of , . . . , , and , . . . , are -normal. If

is an existential variable, then is called flexible, otherwise it
is rigid.

We may define the -long normal form of any -normal preterm
by

2



where , a base type, , . . . ,
are fresh universal variables of types , . . . , respectively, and has type ,

. . . , has type . This is a correct definition by double induction on the size of
terms first, on the structure of types second. Then it is well-known [11] that any two -
terms of the same type are -equal if and only if they have identical -long -normal
forms; and that if is -long -normal, and is a substitution mapping variables to

-long -normal terms of the same types, then the -long -normal form of is its
-normal form (no need to perform -expansion). This allows to reason on -long -

normal forms only, reasoning up to -reduction and ignoring the -rule entirely.
From now on, we shall even abuse language and take terms to denote their -long -
normal forms. In particular, when we talk about a variable of type , we really mean

.
Higher-order unification [11] is the following problem: given two -terms of the

same type, find whether there is a substitution mapping variables to -terms of the
same types such that . By the above remarks, taking and to be -long -
normal, and restricting ourselves to substitutions mapping variables to -long -normal
terms, it is equivalent to ask that and have the same -normal form.

Miller’s patterns are -terms where existential variables are only applied to distinct
universal variables. For example, is a pattern, but

and are not. It is well-known that higher-order uni-
fication of patterns is decidable in polynomial time, and that there is a most general
unifier (mgu) if any unifier exists at all [14].

For convenience, we shall adopt Snyder and Gallier’s convention [15] that
abbreviates the sequence , or depending on context. If
is a one-to-one mapping from to , write the sequence

.

3 Unification of Shallow Patterns

To define higher-order automata, we shall need patterns that are not too deep:

Definition 1. A variable pattern is a -term of the form , where is a one-
to-one mapping from to .

A shallow pattern is either a variable pattern, or a pattern of the form ,
where for every , , is a variable pattern. Call the latter rigid shallow
patterns.

The value of shallow patterns is given by Lemma 2 below.

Lemma 1. Let be a finite set of pairs of terms of the same type, .
If every and every is a variable pattern, then the simultaneous mgu of each pair, if
any, maps variables to variable patterns.

Proof. By induction on . This is obvious if . Otherwise, consider and .
The simutaneous mgu of is the composite of that, , of with
that of and . By induction hypothesis, maps variables to variable patterns.
In particular, and are variable patterns. It therefore remains to show that the

3



mgu of two variable patterns, if any, maps variables to variable patterns. We will then
conclude by noticing that any composite of substitutions mapping variables to variable
patterns again maps variables to variable patterns.

So let and be two variable patterns. Then either they have the same head or they
do not.

– If they do have the same head, i.e., and ,
where and are two one-to-one mappings from to (with
the same , since this is the same is both cases). If is any unifier, then it
must map to some term of the form , where the -normal forms of

and coincide.
However, since is -normal already,

. Then it is easy to see that for every , , if
is free in , this implies that , hence that . In clear, the
only free universal variables in are the ’s, , such that .
Therefore every unifier of and must be an instance of

(1)

where is the subsequence of those ’s such that ,
, and is a fresh existential variable of the right type.

Conversely, it is easy to see that (1) unifies and , so it is an mgu. Indeed, instan-
tianting by (1) and reducing, we get

while doing the same with yields

which are equal precisely because , . . . , .
– If and have different heads, i.e., and ,

where and are two one-to-one mappings from , resp.
to . If is any unifier, then it maps to some and to some

, such that
, hence
. Since is one-to-one, it obtains

. Since the free universal variables of are
among , it must be that for every , , such that is free in ,
must equal some , . That is, the free universal variables of are
of the form where . Symmetrically, the free universal
variables of are of the form where . So every unifier of

and must be an instance of

(2)

where , . . . , is the sequence of integers that comprise , and
is a fresh existential variable of the right type. (The instance is obtained by

4



, or equivalently
, since these two

are equal.)
Conversely, it is easy to check that (2) unifies and , so that it is an mgu. Indeed,
instantiating by (2) and reducing, we get

Similarly, instantiating by (2) and reducing, we get

Lemma 2. The mgus, if any, of two shallow patterns and are substitutions mapping
variables to shallow patterns. Moreover, if both and are variable patterns, or both
of them are rigid shallow patterns, then the mgus maps variables to variable patterns.

Proof. Consider three cases:

– Both and are variable patterns. This is dealt with by Lemma 1.
– and are rigid shallow patterns. If and are unifiable, then they must have the

same heads, so write as , as . Then any unifier of and
must unify with , . . . , with . Conversely

any simultaneous unifier of the latter unify and . Since every and every
, , is a variable pattern, we conclude by Lemma 1.

– is a variable pattern, and is a rigid shallow pattern. (The symmetric case is anal-
ogous.) Write as , where is a one-to-one mapping from
to , and as .
If and unify, then let . Let be . Then

is obtained by reduction from , and is clearly -normal.
On the other hand, the -normal form of is , where is the -normal
form of , , so . Since is one-
to-one, must be . Since the only free universal
variables of are among , the head must either be a constant or some ,

(so if it is not, then unification fails). In particular, must be an instance
of

(3)

where if is a constant, if , and , . . . , are distinct
fresh existential variables of the appropriate types. (We have made a slight abuse
of language, e.g., we have written instead of its -long normal form

.)

5



Then must be the composite of (3) with some unifier of
and . (We use here the fact that if and unify, then

cannot occur free in , by the rigid path argument [12].) By the previous case, any
mgu of the latter maps variables to variable patterns. We obtain the mgus of and

by precomposing with (3), which always yields a substitution mapping variables
to shallow terms: is mapped to a rigid shallow term, and the other existential
variables are mapped to variable patterns.

4 Ordered Resolution in First-Order Logic with Higher-Order
Patterns

The technical tool we shall use in the sequel is resolution in a first-order logic with
higher-order patterns. This is in the spirit of Joyner [13]. Although it would be possi-
ble to define a Tarskian semantics for this logic (use domains of individuals indexed
by types, forming a Henkin applicative structure [1], then build a Tarskian semantics
for first-order formulas atop these domains), we shall only be interested in Herbrand
semantics here, where the domain of individuals of type is the set of ground -terms
of type , up to -conversion—alternatively, the set of -long -normal forms of type

. In fact, we will only consider clausal formats, where existential quantifiers are absent
and universal quantifiers are implicit.

As far as syntax is concerned, fix a set of predicate symbols , , , . . . , each com-
ing with an arity, which is a sequence of types. The atoms , , . . . , are ,
where is a predicate symbol of arity , is a -term of type , . . . , is
a -term of type . Literals are either atoms or negations of atoms . We also
write for , for . Clauses are finite disjunctions of literals.
Clause sets are conjunctions of clauses (possibly infinite, although our interest is in
finite ones).

The semantics is as follows. Let the Herbrand universe of type , , be the set of
all -long normal forms of type . A Herbrand interpretation is just a set of ground
atoms. Herbrand interpretations are ordered by inclusion. A valuation , giving values
to each variable, is a substitution mapping each variable of type to a ground term of
type (that is, in ). The value of a term under is . We define the satisfaction
relations by:

iff (4)
iff (5)
iff for every , for some , , (6)
iff for every in , (7)

We say that a clause set is satisfiable if and only if for some Herbrand inter-
pretation . It is unsatisfiable otherwise.

Let us now restrict the set of terms we consider to higher-order patterns, so that
every pair , of terms has exactly one mgu, as soon as they unify. Denote this mgu by

6



. Define the resolution rule [5] by:

(Binary resolution)

(Factoring)

where it is understood that, in binary resolution, the clauses and are
renamed so that they have no common free existential variable, and in factoring, two
literals and unify provided they have the same signs and the underlying atoms
unify. Resolution is a sound deduction calculus, in the sense that if we can derive the
empty clause from by resolution, then is unsatisfiable. In fact, every conclusion
of the rules above is logically implied by the premises.

Given an ordering on -long -normal atoms, we say that it is stable if and only if
implies that the -normal form of is greater than, in the sense of , to the -

normal form of . Ordered resolution is the refinement of resolution where: in binary
resolution, is a -maximal atom in , is a -maximal atom in ;
in factoring, letting , then is -maximal in . The following is
standard.

Proposition 1 (Completeness). Ordered resolution w.r.t. is complete, provided that
is stable. That is, given a finite set of clauses, is unsatisfiable if and only if the

empty clause can be derived from by ordered resolution.

Proof. The if direction is soundness. Conversely, assume unsatisfiable. Then by con-
struction the (usually infinite) set of ground instances of clauses in is unsatisfiable.
However it is easy to see that this is equivalent to the fact that is propositionally un-
satisfiable. By the compactness of propositional logic, contains a finite unsatisfiable
subset . Since propositional ordered resolution is complete, there is a propositional
ordered resolution deduction of from . This can then be lifted to a corresponding
ordered resolution deduction of from .

Similarly, every form of, say, hyper-resolution is complete.
Given a clause , we say that is a block if and only if every pair of atoms in

has a common free existential variable. We can always write clauses as a disjunction
of non-empty blocks that pairwise do not share any free existential

variable. Moreover, this decomposition is unique [13]. In our decision procedures, we
shall use an additional rule to split clauses into their blocks:

(Splitting)

where and do not share any free existential variable, and are non-empty. This
means that we shall split the current set of clauses in 2 sets, adding to the first, and

to the second. In other words, we define a tableau calculus in the following way. A
branch is a finite clause set, and a tableau is a finite set of branches. A branch is closed

7



if and only if it contains the empty clause . A tableau is closed if and only if all its
branches are closed. We read a tableau as the disjunction of its branches.

As far as deduction is concerned, our tableau rules are as follows. We may either
add a new clause to some branch by using resolution on this branch, or use splitting to
replace some branch of the tableau such that contains by branches

, . . . , . We write if we can go from tableau to by
applying one of these rules. This calculus is clearly sound, in the sense that if
then implies . So, if we can close some tableau by these deduction rules, then it is
unsatisfiable: no Herbrand interpretation satisfies any of its branches. It is also clear that
this tableau calculus is complete, even under some stable ordering restriction, because
already the calculus without splitting is (Proposition 1).

There is a folk theorem that says that splitting can be applied eagerly. That is, we
may use the resolution rule on just those branches that contain only blocks without
losing completeness.

5 Higher-Order Automata, Pushdown Systems and Set
Constraints

We define higher-order automata, higher-order pushdown systems, and higher-order set
constraints as particular sets of clauses. The idea dates back to Fribourg and Veloso-
Peixoto [8], and to Podelski and Charatonik [6].

5.1 Definitions

We consider clauses build from unary predicate symbols and shallow patterns. Consider
first Horn clauses of the form:

(8)

where are variable patterns, is rigid, and every , , is free in
. In the first order case, this simplifies to

. In the special case ,
this is a transition of a tree automaton: if is recognized at state , . . . , and is
recognized at state , then is recognized at state . In case some oc-
curs twice as an argument of , we get tree automata with equality constraints between
brothers [4]. In case some does not occur on the left-hand side of the implication,
then this is a don’t care. In the higher-order case, these don’t cares are a proper exten-
sion of tree automata, since there is no automaton recognizing all (ground) terms of a
given type [7].

Sets of clauses of the form (8) will be called higher-order automata. Note that the
versatility offered by the one-to-one mappings , . . . , , and those hidden in , . . . ,

allows us to permute and drop some bound arguments, which we could not do at the
first order.

These can be enriched by, say, Horn clauses of the form:

(9)

8



with the same variable in each atom. This corresponds to clauses of the form
in the first-order case. If , these are -transitions

(“every term recognized at state must be recognized at state , too”). If ,
we get conjunctive transitions (“if a term is recognized at states , . . . , simultane-
ously, then it must be recognized at ”). Disjunctive transitions are handled naturally
by having several -transitions reach the same state.

Sets of clauses of the form (8) or (9) will be called alternating higher-order au-
tomata. Notice again that the use of one-to-one mappings that shuffle bound variables
around allows us to do a few more tricks than just intersections and unions.

Third, we may also consider Horn clauses of the form:

(10)

where is free in the rigid shallow term . In the first-order case, this would
simplify to : this is a pushdown transition, which allows
us to state that if some functional term is recognized at state , then its
th argument must be recognized at state . Again, the use of bound variables allows

us to state slightly more in the higher-order case.
In general, we consider clauses of the following form:

Definition 2. An automatic clause is any clause of the form

(11)

where , and , , are shallow patterns such that:

if every is a variable pattern, then they all have the same head, say ;
otherwise, all the ’s that are not variable patterns are rigid shallow patterns

, and containing every free existential variable in the clause.

In the first case, we call the clause an -block. In the second case, it is a complex clause.
A higher-order pushdown system is any finite set of Horn automatic clauses. Finite

sets of (not necessarily Horn) automatic clauses are called higher-order set constraints.

The reason why finite sets of automatic clauses are called higher-order set constraints
is by analogy with the first-order case. (Ordinary, first-order) set constraints are defined
as follows. Let the set expressions be defined by the grammar:

where ranges over all function symbols (of arity ), and ranges over a set of so-
called set variables. In expressions of the form , we require . Each
set expression is interpreted, under a valuation that maps each set variable to a set of
ground terms, as a set of ground terms. denotes the complement of ,
denotes the set of terms where is in , . . . , is in , and
denotes the set of terms such that some term is in .

The elementary constraints are , where and are set expressions. Set
constraints are finite conjunctions of elementary constraints. It is easy to translate the

9



semantics of set constraints into sets of automatic (first-order) clauses by first associat-
ing with each set expression occurring as sub-expression of expressions in a distinct
unary predicate , and writing out the definition of as clauses as shown in Figure 1.
Then, for each inclusion , we generate the clause . Note
that this translation does not use every feature that are available in automatic clauses,
even at first-order; notably, this does not use any equality constraint between brothers.
It should be clear that any set constraint is satisfiable if and only if the corresponding
translation is satisfiable.

definition

(for all )

Fig. 1. Set constraints as first-order automatic clauses

5.2 Deciding Satisfiability of Higher-Order Set Constraints

We now show that the satisfiability of higher-order set constraints is decidable.
To this end, we first need a stable ordering on shallow patterns such that any rigid

shallow pattern with free in it is strictly greater than any variable pattern
of the same type, with head . (This is the natural extension of the subterm ordering in
the first-order case.) Take if and only if, for every well-typed substitution such
that and are ground, the depth of the -long -normal form of is greater than
that of , for example. We define the depth if as plus the maximum depth
of , ( if ). In the sequel, we fix such an ordering , and do ordered
resolution w.r.t. , as defined in Section 4.

10



Lemma 3. Every factor of an automatic clause is an automatic clause.

Proof. Consider the clause , and its factor , where
. (The case is entirely analogous.) If one of ,

is a variable pattern, say with head , and the other is a rigid shallow pattern, then by
condition is free in the rigid shallow term, hence this case is impossible (rigid
path condition), as already noticed in the proof of Lemma 2. So by Lemma 2 maps
variables to variable patterns. Therefore, the factor is an -block if the original clause
was, and it is a complex clause otherwise.

Lemma 4. Every ordered binary resolvent of automatic clauses is either an automatic
clause or a disjunction of -blocks that pairwise do not share free variables.

Proof. Consider two automatic clauses and .
If and are both variable patterns, or both rigid shallow patterns, then the mgu

if any of and maps variables to variable patterns by Lemma 2. If or contains
any non-variable pattern at all, then it is easy to check that is a complex
clause. Otherwise, is a disjunction of literals where is a variable
pattern, hence can be written as a disjunction of -blocks that pairwise do not share free
variables. It may be the case that we do not case a single -block, e.g. already in the
first-order case, resolving on and

yields .
If is a variable pattern and is a rigid shallow pattern ,

then the mgu if any of and maps to some rigid shallow pattern ,
and the free variables in to variable patterns, as shown in the proof of Lemma 2.
Examining carefully this proof reveals that, additionally, each free variable of occurs
as the head of some , . Since is a complex clause, by not
only has head , but also contains the heads of every , , therefore every free
variable of . Moreover, since is a variable pattern, by the ordering condition every
atom in has a variable pattern as argument, so by is an -block. It follows that
every literal of is of the form with some rigid shallow pattern with head

containing every free variable of . So, if is not empty or if contains some
rigid shallow pattern, then the resolvent is a complex clause. Otherwise, it
is trivially a disjunction of -blocks that pairwise do not share free variables, as above.
The case where is a variable pattern and is a rigid shallow pattern is analogous.

Lemma 5. Up to renaming of free existential variables, there are only finitely many
automatic clauses on any given finite set of predicate symbols and constants.

Proof. Let be the number of predicate symbols, the number of constants. There is
an upper bound on the number such that is a subtype of the
arity of predicate symbols, or of the types of constants.

Let us count the number of -blocks. Up to renaming, there is only one choice for
the free variable . In variable patterns , there is no choice as to the names
of bound variables, up to -renaming. If has arity , then there are
choices for the one-to-one function from to . This is always at
most , which is bounded above by . Since , we have at most

11



variable patterns with head as arguments to predicate symbols. So we can choose
our atoms from a set of at most atoms. Therefore, there are at most -blocks.

Let us now count the number of complex clauses. Consider any rigid shallow pattern
, . Fix the names of free variables. There are choices for , and

for each argument , there are at most choices of for each variable head, and
at most possible variable heads for . So there are at most choices
for a rigid shallow pattern on the given fixed variables. Since , there are at
most possible patterns on the given fixed variables. Since ,
this is at most . So the number of atoms of the form
is at most . Similarly to the previous case, the number of atoms with
variable patterns as arguments is at most , times (number of possible heads), i.e.,
at most . So, up to the name of free variables, complex clauses are build from at
most atoms. There are therefore at most

complex clauses.
To conclude, there are only finitely many automatic clauses, namely at most

This is exponential in the number of predicates and constants, and doubly exponential in
the maximal arity of types. An interesting subcase is when all variable patterns

are such that is monotonic. We call the resulting higher-order set constraints
non-permuting. Then, given that has arity , there are at most strictly increasing
functions , and this is at most , yielding at most

clauses. This is still doubly exponential. If in variable patterns we always have
and is the identity function, then we can only choose among atoms in blocks, once
the name of the unique variable head is fixed. If additionally variable heads of arguments
to rigid shallow pattern always occur in the same order in any given complex clause,
then the only choice in rigid shallow patterns of complex clauses is in the predicate
symbol and the rigid head, allowing for at most possibilities. Therefore, in
this case, we have at most

clauses. This is only singly exponential, and includes the case of first-order set con-
straints.

It follows that:

Theorem 1 (Decidability). The satisfiability of higher-order set constraints is decid-
able in non-deterministic double exponential time.

If is bounded above by a constant (or even by for some ),
then this is decidable in non-deterministic single exponential time. It is well-known
that the problem is NEXPTIME-hard, since it contains the problem of satisfiability of
first-order set constraints [2].

12



5.3 Deciding Emptiness of Higher-Order Pushdown Systems

Let be a higher-order pushdown system. Since is a set of Horn clauses, if has
a model—a Herbrand interpretation such that —then it has a least one. The
argument is standard: if is a family of models, then is a model again.
Notice that if is a set of definite clauses—with exactly one positive atom—, then is
satisfiable: the Herbrand interpretation containing every ground term is a model.

Definition 3 (Language). Given a satisfiable higher-order pushdown system , and
a finite set of unary predicates , . . . , (the final states), the language defined by

is the set of ground terms such that is in the least model of .

Proposition 2. Given a satisfiable higher-order pushdown system , and final states
, . . . , , it is decidable whether the language of is empty.

Proof. We claim that this language is non-empty if and only if plus the clauses
, . . . , , is unsatisfiable. The proposition will then follow from Theo-

rem 1.
If plus the clauses , . . . , is satisfiable, then let be some

model of it. Clearly, since satisfies the clauses , . . . , , there is no
term such that any of , . . . , is in . Since is a model of , too, it contains
its smallest model. Therefore the smallest model contains no , : the
language of is empty.

Conversely, if plus the clauses , . . . , is unsatisfiable, in par-
ticular the smallest model of does not satisfy it. So there is some , , such
that does not satisfy . Therefore there is a ground term such that .
So the language of contains , and is therefore not empty.

Lemma 6. Given a ground -term , there is a satisfiable higher-order pushdown sys-
tem and a unary predicate such that the language of is exactly .

Proof. By induction on the depth of , taking to be -long -normal. Write as
, where is a constant or among . For each , , by induc-

tion hypothesis, there is a satisfiable higher-order pushdown system and a unary
predicate such that the language of is exactly . Without loss of
generality, assume that no two ’s share any predicate symbol. Then create a fresh
unary predicate symbol , and let be plus the clauses:

The result is then clear.

Proposition 3. Given a satisfiable higher-order pushdown system , and final states
, . . . , , it is decidable whether the ground -term is in the language of

.

13



Proof. Without loss of generality, we may assume that the arity of each is the type of
. (All other predicates contribute nothing in recognizing the term .) Now use Lemma 6

to create a new clause set such that the language of is exactly . Without loss
of generality, we may assume that the set of predicates in is disjoint from that of .
Then build the set . We claim
that this clause set is unsatisfiable if and only if is in the language of .

If is satisfiable, then let be a model of . Since , the only ground term
in is . Since is a model of , for every , , then

, so since , is not in . Since no is in , and
is a model of , no is in the least model of either, so is not in the language of

.
Conversely, if is unsatisfiable, then build a Herbrand interpretation as follows.

On the predicate symbols that comprise , take the least model of . (More precisely,
for every predicate symbol in , let the ground atoms in be those that are
in the least model of .) On the predicate symbols that comprise , take any of its
models, which exist by Lemma 6. Since does not satisfy , but satisfies both and

, there must be an , , such that . So there is a
ground term such that and . By Lemma 6, must be . So

. Therefore is in the language of .

All decision procedures work in non-deterministic double exponential time, but are
almost surely less complex. We conjecture that the test for emptiness of higher-order
pushdown systems is in deterministic double exponential time, as well as language
membership.

References

1. P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth through
Proof. Computer Science and Applied Mathematics. Academic Press, 1986.

2. L. Bachmair, H. Ganzinger, and U. Waldmann. Set constraints are the monadic class. In
Proceedings, Eighth Annual IEEE Symposium on Logic in Computer Science, pages 75–83.
IEEE Computer Society Press, 1993.

3. H. Barendregt. The Lambda Calculus, Its Syntax and Semantics, volume 103 of Studies in
Logic and the Foundations of Mathematics. North-Holland Publishing Company, Amster-
dam, 1984.

4. B. Bogaert and S. Tison. Equality and disequality constraints on direct subterms in tree
automata. In A. Finkel and M. Jantzen, editors, Proceedings of Symposion on Theoretical
Aspects of Computer Science (STACS ’92), volume 577 of LNCS, pages 161–172, Berlin,
Germany, Feb. 1992. Springer.

5. C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving. Computer
Science Classics. Academic Press, 1973.

6. W. Charatonik and A. Podelski. Set-based analysis of reactive infinite-state systems. In
B. Steffen, editor, TACAS’98, pages 358–375. Springer Verlag LNCS 1384, 1998.

7. H. Comon and Y. Jurski. Higher-order matching and tree automata. In M. Nielsen and
W. Thomas, editors, 11th Workshop on Computer Science Logic (CSL’97), pages 157–176,
Aarhus, 1997. Springer-Verlag LNCS 1414.

8. L. Fribourg and M. Veloso Peixoto. Automates concurrents à contraintes. Technique et
Science Informatique, 13(6):837–866, 1994.

14



9. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1989.

10. J. Goubault-Larrecq. Examen de démonstration automatique. http://www.lsv.
ens-cachan.fr/˜goubault/autoans.ps, Apr. 2001.

11. G. P. Huet. A unification algorithm for typed -calculus. Theoretical Computer Science,
1:27–57, 1975.

12. G. P. Huet. Résolution d’équations dans les langages d’ordre , , , . Université Paris
VII, 1976. Thèse d’état.

13. W. H. Joyner Jr. Resolution strategies as decision procedures. Journal of the ACM,
23(3):398–417, July 1976.

14. D. Miller. A logic programming language with lambda-abstraction, function variables, and
simple unification. Journal of Logic and Computation, 1(4):497–536, 1991.

15. W. Snyder and J. Gallier. Higher order unification revisited: Complete sets of tranformations.
Journal of Symbolic Computation, 8(1 & 2):101–140, 1989. Special issue on unification. Part
two.

15


