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Original Article 
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Shivani Rana a, Klaus Valentin b,*, Jana Riehl a, Aurélie Blanfuné c, Lauric Reynes c, 
Thierry Thibaut c, Inka Bartsch b, Ludwig Eichinger a,*, Gernot Glöckner a,1 
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A B S T R A C T   

Kelp species (Laminariales, Phaeophyceae) are globally widespread along temperate to Polar rocky coastal lines. 
Here we analyse the mitochondrial and chloroplast genomes of Laminaria rodriguezii, in comparison to the 
organellar genomes of other kelp species. We also provide the complete mitochondrial genome sequence of 
another endemic kelp species from a Polar habitat, the Arctic Laminaria solidungula. We compare phylogenetic 
trees derived from twenty complete mitochondrial and seven complete chloroplast kelp genomes. Interestingly, 
we found a stretch of more than 700 bp in the mitochondrial genome of L.rodriguezii, which is not present in any 
other yet sequenced member of the Phaeophyceae. This stretch matches a protein coding region in the mito
chondrial genome from Desmarestia viridis, another brown seaweed. Their high similarity suggests that these 
sequences originated through independent introduction into the two species. Their origin could have been by 
infection by yet unknown similar mitoviruses, currently only known from fungi and plants.   

1. Introduction 

Seaweeds are multicellular photoautotrophic macroalgal species. All 
brown algae (Phaeophyceae) are part of this non-taxonomic classifica
tion, since so far no unicellular members of this group were found [1]. 
Thus, multicellularity is one of the founding factors of brown algal 
evolution and factors enabling this were recruited early in the evolution 
of the branch. Similar functions are often established by using the same 
toolbox [2]. Therefore, we might learn from the analysis of one group of 
organisms, how and why other groups evolved. Intriguingly, similar 
factors seem to have been used to establish multicellularity in green 
plants and brown algae [3]. Thus, by comparative analyses of genomes 
from distantly related clades we might learn about common mechanisms 
of differentiation, habitat occupation, or pathogen susceptibility. 

Kelps are a subgroup of brown algal seaweeds, which constitute the 
order Laminariales in the Phaeophyceae. They form large marine forests 
which provide habitat and food to other species [4], analogue to land- 
based tree forests. They thus have a high impact on local environ
ments and need protection as a hot spot of biodiversity. Kelps are also of 

high economic value as providers of alginates and as a food source [5]. 
Despite their economical and ecological importance only the nuclear 
genomes of Saccharina japonica (Areschoug) C.E.Lane, C.Mayes, Druehl 
& G.W.Saunders [6], including different cultivars [7], and recently of 
Undaria pinnatifida (Harvey) Suringar [8] were published so far. This 
fact prompted the Phaeoexplorer project (https://www.france-geno 
mique.org/projet/phaeoexplorer/?lang=en) aiming at whole breadth 
genomics of brown algae. However, several organellar genomes of 
brown algae have been published. This is partly due to their over- 
representation regarding their copy numbers in eukaryote cells 
compared to the nuclear genome. Thus, reconstruction of organellar 
genomes needs far less sequencing reads than constructing a draft nu
clear genome. Moreover, the small size of organellar genomes enables 
their completion without the need of long read sequences from nanopore 
[9] or pacbio [10] sequencing. Thus, several genomes from kelp chlo
roplasts and mitochondria are available: 42 kelp mitochondrial genomes 
are stored in public databases, kelp chloroplast genomes are rarer with 
only yet 9 available at the NCBI nucleotide database. A number of 
chloroplast genomes were studied and published [11–14] yet only one 
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complete mitochondrial genome was so far analysed in more detail [15]. 
Other mitochondrial genomes were made publicly available but seem
ingly used for barcoding purposes only, e.g. [16,17]. In a previous study 
we analysed variation in kelp chloroplast genomes [11]. Only minor 
rearrangements took place during kelp chloroplast genome evolution 
and therefore available kelp chloroplast genomes appear collinear. This 
resembles the situation in land plants, which also mostly possess 
collinear chloroplast genomes [18,19]. However, kelp species are much 
younger than land plants with major speciation events occurring only 35 
million years ago [20]. As collinearity describes the maintenance of 
genes in corresponding orders over time we could analyse the abun
dance of single nucleotide polymorphisms over the complete length of 
available chloroplast genomes [11]. This analysis showed that likely 
incomplete lineage sorting contributed to chloroplast evolution. The 
phylogenetic relationships of genera within the kelp lineage were 
resolved recently using partial organellar and nuclear genome data [20]. 
Additional species can easily be fitted into this phylogenetic tree as they 
become available. Yet it is unclear whether these data are sufficient to 
finally get a robust tree topology. 

There are some kelp species, which are especially rare or growing in 
remote areas and thus are not easily collectable and readily available for 
analysis. Especially the endemic deep-water kelp species growing below 
the thermocline in deep warm-temperate to subtropical waters, such as 
Laminaria rodriguezii Bornet (Mediterranean Sea [21,22]), Laminaria 
abyssalis A.B.Joly & E.C. Oliveira (S-Atlantic) [23] or Laminaria philip
pinensis J.E.Petrov & M.V. Suchovejeva (Pacific Ocean), [24] have 
seldom been collected. Another habitat difficult to assess is the Arctic 
sublittoral where Laminaria solidungula (J. Agardh) thrives in shaded 
habitats [22]. Despite their differences in latitudinal distribution and 
temperature environment, these species all are subjected to especially 
low light conditions (e.g. [25,26]) and their environment seems to be 
rather constant compared to species with a wide horizontal or vertical 
distribution gradient (e.g. [27]). 

Laminaria rodriguezii is restricted to deep water habitats stretching 
between 70 and 120 m and rarely up to 50 m or down to 260 m 
[22,27,28]. Temperatures there seem to be quite constant year round at 
13–14 ◦C [27]. L. solidungula thrives in Arctic habitats where tempera
tures typically vary between − 1.5 and 5 ◦C and populations at their 
southern distribution boundary in south east Canada subduct to zones 
with year round cold temperatures ([29] and references therein). Both 
species endure low light conditions over most of the year. Besides its 
endemism L. rodriguezii also is distinctive from all other kelp species, 
except Laminaria sinclairii (Harvey ex J.D.Hooker & Harvey) Farlow, 
Anderson & Eaton [30], in its ability to form stolons and produce clonal 
sporophytes by vegetative propagation [31] thereby being able to 
bypass the obligate sexual life history of Laminariales [32]. 

To be able to compare available chloroplast and mitochondrial ge
nomes with those of endangered L.rodriguezii and L. solidungula, we 
sampled sporophytes of L. rodriguezii from its Mediterranean habitat via 
the GOMBESSA expedition on the 7-9th of July in 2019 at Banc de 
Magaud, a rocky ledge between 68 and 80 m depth off Le Levant Island 
(Provence, France) [33]. In addition, we cultivated Arctic L. solidungula 
from stock cultures to comparatively study their organellar genomes. We 
were interested to see whether these two species from extreme habitats 
and despite their phylogenetic difference [27], might share common 
characters or show signs of special adaptation in their organellar ge
nomes that deviate from each other or from kelp species with broad 
distribution ranges. 

2. Material and methods 

2.1. Sampling 

Cultivated sporophytes propagated from clonal gametophyte sam
ples of L. solidungula, originally sampled at Spitsbergen were used for 
DNA extraction and all cultivation details are given in [11]. Several 

samples of L. rodriguezii were taken from the Mediterranean Sea on the 
7-9th of July 2019 at Banc de Magaud, a rocky ledge between 68 and 80 
m depth off Le Levant Island (Provence, France; 6◦0.67375 E - 
43◦0.05624 N) [33]. The L. rodriguezii samples were from in situ spo
rophytes, silica dried and then used for DNA extraction. 

2.2. DNA extraction and PCR analysis 

Freeze dried juvenile sporophytes of L. solidungula and silica dried 
sporophytic meristem discs of L. rodriguezii were grinded under liquid 
nitrogen to yield a fine powder, where all cell walls were destroyed. The 
DNA then was extracted according to Doyle and Doyle modified cetyl 
trimethyl ammonium bromide method (CTAB) [34]. PCR analysis with 
total DNA from L. rodriguezii, Laminaria digitata (Hudson) J.V.Lamour
oux, and L. solidungula was essentially performed as described [35]. The 
external primers were specific for the rpl31 and 16S rRNA genes, 
respectively, which are located directly up- and downstream of the 
L. rodriguezii ORF. The internal primers were specific for the 5′ and 3′

region of the L. rodriguezii open reading frame (ORF), respectively. 
Primers are listed in Table S1. 

2.3. Sequencing and assembly 

Total DNA (5 μg) was converted to an Illumina sequencing library 
and analysed on an Illumina Hiseq machine. Read sizes in the paired end 
library were 150 bases with a mean distance of reads of 235 bases. 
Trimming and further processing were done with the Illumina software 
suit. De novo assembly was performed with abyss-pe [36] using kmers 
40, 45, and 55. The resulting contigs were converted to a BLAST 
Table database and queried with the L. digitata chloroplast and mito
chondrial genome sequences. Matching contigs were used to reconstruct 
the complete chloroplast and mitochondrial genomes by closing gaps 
with Gapfiller [37]. 

2.4. Annotation, alignment and phylogenetic analyses 

The coding sequences (CDS) of the recently published L. digitata 
mitochondrial and plastid genomes [11] were used to find the corre
sponding CDS on the completed organellar genomes. Furthermore, with 
the algorithm implemented in tRNAscan [38] we detected the tRNA 
genes. Detection of the rRNA genes was done by BLASTing the respective 
L. digitata nucleotide sequences against the whole organellar genomes. 
We then scanned the sequence portions larger than 100 bases without 
any annotation for presence of additional open reading frames (ORFs). 
The completed annotated organellar genome annotation was converted 
to a GenBank file and visualized with OGDRAW [39]. 

Sequences of other mitochondrial and chloroplast genomes from 
kelp species used for phylogenetic analysis were retrieved from the NCBI 
database (Table 1). Collinearity of the assembled kelp chloroplast and 
mitochondrial genomes was tested with the nucmer tool of mummer 
[40]. All sequences were edited to start at the same position and then 
complete genomes were aligned with Clustal Omega [41,42]. Further 
manual inspection of the sequences was done to ensure proper align
ment for phylogenetic analyses. 

For phylogenetic analyses we used MEGAX [43] and MrBayes [44]. 
The evolutionary history was inferred by using the Maximum Likelihood 
method and General Time Reversible model [45]. Initial trees for the 
heuristic search were obtained automatically by applying Neighbor-Join 
and BioNJ algorithms to a matrix of pairwise distances estimated using 
the Maximum Composite Likelihood (MCL) approach, and then selecting 
the topology with superior log likelihood value. We performed 500 
bootstrap repetitions on the data sets. In case of the MrBayes analysis we 
set the evolutionary model to GTR with gamma distributed rate varia
tion and a proportion of invariable sites. We used 80,000 generations to 
get the standard deviation of split frequencies below 0.01 and then used 
a burn-in of 1000. 
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3. Results 

3.1. New organellar genome sequences 

We completely reconstructed the mitochondrial genomes of 
L. rodriguezii and L. solidungula and the chloroplast genome of 
L. rodriguezii from short read sequencing of extracted total DNA from the 
two species (Fig. 1). The organellar contigs were retrieved using related 
sequences. We closed the remaining gaps (one gap in the L. solidungula 
mitochondrial genome; three gaps in the L. rodriguezii chloroplast 
genome) from the assembly procedure using available raw read infor
mation (see methods). All these genomes were of similar length as their 

related counterparts from other kelp (Table 1). 

3.2. Phylogeny of kelp species using complete mitochondrial and 
chloroplast genomes 

After annotation of the newly assembled genomes we checked all 
brown algal organellar genomes from the NCBI database for collinearity 
and retrieved 18 of the 42 collinear kelp mitochondrial genomes and 6 of 
the 9 collinear kelp plastid genomes (Table 1; Tables S2 and S3). Ac
cording to this analysis all Laminariales (kelp) organellar genomes are 
collinear. Additionally, the mitochondrial genome of the brown alga 
Desmarestia viridis (O.F.Müller) J.V. Lamouroux [46,47], which is not a 
kelp species, turned out to be collinear to kelp mitochondrial genomes, 
providing a suitable outgroup for phylogenetic analyses. Other known 
brown algal mitochondrial and chloroplast genomes exhibit structural 
recombination and are therefore not compatible with the analyses per
formed here. In a previous study [11], we only used the coding se
quences (CDS) for phylogenetic analyses of brown algal chloroplast 
genomes. As we here focus on the brown algal species with collinear 
organellar genomes, we can make use of this collinearity and employ 
complete organellar genome alignments directly for a phylogenetic 
analysis irrespective of their coding potential, thus also including tRNAs, 
rRNAs, and intergenic regions. Here, the alignment of intergenic regions 
is crucial to the outcome of the analysis. We therefore manually checked 
the alignments for incorrectly aligned portions and used a refined 
alignment for further analyses. The alignment of the mitochondrial ge
nomes can be found in the supplement (Supplemental alignment 1). The 
chloroplast phylogenetic reconstruction recapitulated the previously 
published topology of kelp species obtained with concatenated CDS 
[11], albeit without the possibility to root them with other brown algae 
(Fig. S1). We used 18 complete mitochondrial genomes of kelps for the 
calculation of the mitochondrial tree together with the newly sequenced 
mitochondrial genomes from L. solidungula and L. rodriguezii and 
D. viridis as an outgroup. We found no differences in species placements 
between the two organellar trees (Fig. 2 and Fig. S1) in cases where both 
trees contained the species. Thus, we could place the newly added 
species in the trees with high confidence. As the mitochondrial 
maximum likelihood tree was not well resolved in the Saccharina species 
complex due to scarce phylogenetic signal, we additionally used 
MrBayes (see Methods) to compare its outcome with the maximum 
likelihood tree. This approach confirmed the tree topology of the 
maximum likelihood method and delivered even higher support at the 
deeper branches with cumulative probability of 100% at all nodes 
(Fig. S2). MrBayes also yielded two alternative topologies with lower 
cumulative probability affecting the placement of S. japonica var. dia
bolica (Miyabe) and S. japonica var. ochotensis (Miyabe) [48] (not 
shown). 

3.3. Special features in organelle genomes 

Overall, all kelp species organellar genomes contain the same gene 
sets, i.e. no gene was missing or additionally present in any species with 
two exceptions: i) In a previous sequencing effort we found, that 
L. solidungula, in comparison to other Laminariales, lacks an ORF 
(YCF37) in its plastid genome [11]. YCF37 is also present in cyano
bacteria and it was reported that a deletion mutant shows enhanced 
susceptibility to high light [49]. L. solidungula is a low light adapted kelp 
and one of the reasons to sequence low light adapted L. rodriguezii and 
high light tolerant L. digitata was to investigate whether L. rodriguezii 
also lacks the ORF. This is, however, not the case and we also found no 
other common markers in the organellar genomes of the two low light 
species, L. solidungula and L. rodriguezii, which distinguishes them from 
the high light tolerant ones. ii) In this study we found in L. rodriguezii an 
additional ORF in the mitochondrial genome. This ORF is embedded in 
an approximately 700 bp stretch of DNA, is 456 bases or 152 amino acids 
long and, according to IPRscan [50], contains no recognizable domain. 

Table 1 
The organellar genomes used in this study. The IDs are the NCBI accession 
numbers.   

Species name ID Sequence 
length [bp] 

Reference 

Mitochondrial 
genomes 

Desmarestia 
viridis 

AY500367.1 39,049 [47] 

Lessonia spicata NC_044181.1 37,097 [66] 
Nereocystis 
luetkeana 

NC_042395.1 37,399 [67] 

Macrocystis 
integrifolia 

NC_042669.1 37,366 [68] 

Laminaria 
solidungula 

MT732098 37,862 This 
study 

Laminaria 
rodriguezii 

MT732097 38,047 This 
study 

Laminaria 
hyperborea 

JN099683.1 37,976 [69] 

Laminaria 
digitata 

AJ344328.1 38,007 [15] 

Saccharina 
latissima 

KM675818.1 37,659 [70] 

Saccharina 
longissima 

JN099684.1 37,628 [69] 

Saccharina 
japonica 
Dongfang No.6 

MG712776.1 37,657 [71] 

Saccharina 
japonica SJAPO 

AP011493 37,657 [72] 

Saccharina 
japonica var. 
religiosa 

AP011494.1 37,657 [72] 

Saccharina 
longipedalis 

AP011497.1 37,657 [72] 

Saccharina 
japonica var. 
diabolica 

AP011496.1 37,657 [72] 

Saccharina 
japonica var. 
ochotensis 

AP011495.1 37,656 [72] 

Saccharina 
cichorioides f. 
coriacea 

AP011499.1 37,500 [72] 

Saccharina 
angustata 

AP011498.1 37,605 [72] 

Saccharina 
sculpera 

KR350664.1 37,627 [73] 

Costaria costata KF384641.1 37,461 [74] 
Undaria 
pinnatifida 

KF319031.1 37,402 [75] 

Chloroplast 
genomes 

Lessonia spicata NC_044182.1 130,305 [66] 
Laminaria 
solidungula 

MH784528.1 130,784 [11] 

Costaria costata NC_028502.1 129,947 [14] 
Undaria 
pinnatifida 

NC_028503.1 130,383 [13] 

Laminaria 
digitata 

MH784527 130,376 [11] 

Saccharina 
japonica 

JQ405663.1 130,584 [12] 

Laminaria 
rodriguezii 

MT732096 131,092 This 
study  
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To exclude contamination or an assembly error we confirmed the 
presence of the ORF in L. rodriguezii and its absence in L. solidungula and 
L. digitata by PCR (Fig. S3). BLAST searches with the ORF against all 
published 90 complete mitochondrial genomes of Phaeophyceae 
(Table S4) did not result in any match. However, a search against all 
brown algae revealed significant similarity to a mitochondrial ORF in 
D. viridis [47], where the similarity covers the 3′ end of the L. rodriguezii 
ORF and at the 5′ end of the D. viridis ORF over a length of 234 bases or 
78 amino acids (Fig. 3B). Also, a short stretch of 45 bases upstream of 
orf211 in D. viridis is similar to ORF 2 in L. rodriguezii (Fig. 3A, C). 
Despite overall collinearity of the two mitochondrial genomes the two 
ORFs do not share the same relative position within the mitochondrial 
genome. While the D. viridis ORF is located between tRNA-K and tRNA-V 
adjacent to the 23S rRNA gene replacing tRNA-A, the L. rodriguezii ORF 
is placed between the 16S rRNA gene and rpl31 (Fig. 1B). The foreign 

sequences in both, L. rodriguezii and D. viridis, show no detectable sim
ilarity to any known sequences including brown algal or kelp nuclear 
genomes, bacteria associated with brown algae, or viruses. We also 
found no evidence for transcriptional activity of the foreign sequences as 
there are no similar sequences in any currently available brown algal 
transcriptome dataset [51–54]. 

4. Discussion 

4.1. Phylogenetic analysis 

Since currently no complete nuclear data are available for most kelp 
species our phylogenetic analysis was restricted to that of the organellar 
genomes. Only 9 kelp chloroplast genomes are yet sequenced (Table S3), 
but these are collinear with only minor rearrangements at the inverted 

Fig. 1. Newly sequenced organellar genomes. A: Laminaria solidungula mitochondrial genome. B: Laminaria rodriguezii mitochondrial genome. C: L. rodriguezii 
chloroplast genome. The arrow in B indicates the position of the ORF discussed in the text. The figures were made with OGdraw [39] and the legends are depicted 
in D. 
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repeat (IR) regions. Similarly, all 44, including the two new ones from 
L. rodriguezii and L. solidungula, available mitochondrial genomes from 
kelp species are collinear (Table S2) and we have used 18 for the phy
logeny (Table 1). Even the mitochondrial genome from D. viridis, a more 
distantly related brown alga from the sister order Desmarestiales, which 
was used as outgroup in the phylogenetic analysis, has the same gene 
order as the kelp species. Thus, we conclude that rearrangements of 
mitochondrial genomes in kelps are rare if not completely absent. The 
chloroplast and mitochondrial genome sequences can be aligned 
completely irrespective of coding or intergenic region. Thus, for 
phylogenetic analyses we have slightly more data per species at our 
disposal than previous studies [20,27], but limited to organellar ge
nomes only. With this data set it was impossible to resolve the Saccharina 
species complex with the maximum likelihood method indicating weak 
phylogenetic signal in mitochondrial genomes within this group. The 
MrBayes analysis however resolved the topology with high confidence 
values (99% each). 

We compared our mitochondrial tree with the previously published 
comprehensive overview on kelp radiation [20] and found no differ
ence. Our tree includes other kelp species than Starko et al. [20], but the 
species used in both studies are placed at alike positions in the tree. We 
therefore are confident that the placement of L. solidungula and 
L. rodriguezii within our tree is also correct. Interestingly the close 
relationship between L. digitata and L. rodriguezii is also reflected in their 
temperature tolerance profiles which are more similar to each other than 
to L. ochroleuca Bachelot Pylaie, a southern European kelp species [55]. 
The tree topology within the Laminariaceae conforms to that, which was 
previously published using roughly 2 kb of data from internal tran
scribed spacer (ITS; nuclear), Rubisco spacer (chloroplast) and mito
chondrial cytochrome c oxidase sequences [27]. The number of 
informative sites present in organellar genomes thus seems to be suffi
cient to resolve the kelp phylogenetic tree with high confidence. When 
further kelp organellar genomes are being produced they can be readily 
added to the alignment. The phylogenetic position of L. rodriguezii pre
sented here builds the framework, on which our further interpretation of 
results relied. 

4.2. Deviations from collinearity in kelp organellar genomes 

In light of the overall collinearity of kelp mitochondrial genomes it is 
surprising that we observed a long stretch of DNA in the L. rodriguezii 
mitochondrial genome adjacent to the 16S rRNA gene without coun
terparts in 43 other kelp species and 48 other Phaeophyceaen mito
chondrial genomes (Table S4). We can exclude a technical (sequencing 
or assembly) problem here since neither the cultivating nor the 
sequencing laboratory ever handled D. viridis and the sequences in the 
two species differ enough to exclude an accidental co-cultivation with 
assembly errors afterwards. Nevertheless, we confirmed the presence of 
the ORF in the mitochondrial DNA of L. rodriguezii and its absence in 
L. digitata, and L. solidungula by PCR (Fig. S3). Part of the additional DNA 
in L. rodriguezii can be translated into an ORF and yields a potential 
protein of 152 amino acids. The encoded protein of this ORF has an 
overlap with high identity of 72% and a similarity of more than 88% to 
part of a protein encoded by an ORF in the D. viridis mitochondrial 
genome (Fig. 3B). The nucleotide identity is even higher than the amino 
acid sequence identity indicating mutational changes affecting all codon 
positions. Possible reasons for this could be fast evolution (positive se
lection) or degradation. The nucleotide sequence similarity of the region 
in which ORF211 from D. viridis resides, extends 5′ to its start codon 
(Fig. 3A, C), indicating that the annotated start codon of this ORF is not 
the original one. Furthermore, a stretch of 45 bases in the 5′ region of 
ORF211 has also high similarity of 80% to ORF2 of L. rodriguezii. These 
similarities, extending from the originally defined ORF, indicate that the 
ancient coding gene in D. viridis was longer than the extant one. Simi
larities on nucleotide level are very unlikely to have occurred by chance 
and should have originated from independent lateral introduction of the 
same gene from an unknown source. A vertical transfer between the two 
species is unlikely since they are separated by several other brown algae 
in the tree (Fig. 2). In case of vertical inheritance some traces of this 
transfer should have remained in at least some of the other mitochon
drial genomes of kelps. Moreover, the differing locations of the two 
ORFs argues against a vertical transfer in the light of the otherwise 
strictly collinear genomes. The different location together with the only 

Fig. 2. Phylogenetic analysis of kelp species with complete mitochondrial genomes. Maximum likelihood tree of aligned mitochondrial genomes. The evolutionary 
history was inferred by using the Maximum Likelihood method and General Time Reversible model [45]. 

S. Rana et al.                                                                                                                                                                                                                                    



Genomics 113 (2021) 646–654

651

S. Rana et al.                                                                                                                                                                                                                                    



Genomics 113 (2021) 646–654

652

partial overlap suggests independent introductions of the two ORFs into 
the genomes and thus the overlapping conserved region. 

In our opinion, the conservation of nucleotide sequences could have 
been achieved by two reasons: Functional conservation, i.e. purifying 
selection, or recent introductions from a similar source into the two 
species, so that only a few mutations could accumulate. Yet, in the 
overlapping stretch the nucleotide conservation is higher than the amino 
acid conservation, which points to loss of functional constraint and rapid 
degradation. We thus prefer the idea, that relatively recent independent 
events introduced these sequences into the mitochondrial genomes of 
L. rodriguezii and D. viridis, respectively. The origin of such sequences 
could lay in the nuclear genome, yet we could not find such a conserved 
gene in the published genome of a Saccharina species [7] and in our draft 
assembly of L. digitata. Thus, a horizontal gene transfer (HTG) of the 
genes from external sources is currently the best explanation for the 
presence of these sequences. Since we found no similarities to other 
sequences the source of this HTG remains unknown. We can, however, 
speculate, where this sequence came from. A HTG is often achieved via a 
vector, be it plasmid or virus. We therefore searched for potential can
didates of the observed HTG, and found that in certain evolutionary 
branches so-called mitoviruses exist, which are exclusively found in 
mitochondria. Such mitoviruses replicate in mitochondria only and 
encode a single protein on their RNA(+) strand, an RNA-dependent RNA 
polymerase. They are so far known from fungi [56] and plants [57] only. 
In fungi they are transmitted via spores, mating or cytoplasmatic mixing, 
but can also be transmitted between distantly related species by un
known means [56]. The viral RNA polymerases are generally not well 
conserved [58,59] and therefore it is not surprising that we found no 
match of the brown algal ORF to publicly available mitovirus sequences. 
Even the complete mitovirus sequences from plants and fungi cannot be 
aligned together and branch specific alignments (fungi or plants) yield 
only a few conserved residues [57]. Moreover, the apparent degradation 
of the ORFs likely affected the identifiability of the scarce conserved 
amino acids in RNA-dependent RNA polymerases. Nevertheless, mito
viruses are reasonable candidates for the independent infestation of the 
mitochondria of the two brown algae. Consequently, we also searched 
brown algal genome and transcriptome data for similar sequences but 
without positive match. One explanation for this situation could be that 
mitoviruses normally do not integrate into DNA and thus are mainly 
present in transcript data [57]. However, such data are currently scarce 
for brown algae and unfortunately focussed on polyA+ mRNAs only, 
which renders the probability to detect RNA viruses marginal. 

From gene and virus integration assays it is known that such se
quences preferentially integrate into transcriptionally highly active 
portions of a genome [60,61]. From the analysis of mammalian and 
plant mitochondrial genomes it is also known that the rRNA genes are 
normally expressed at a much higher level than the rest of the mito
chondrial genome, which seems to be transcribed as one large RNA 
[62,63], however, sometimes post transcriptional regulation may 

account for different levels of steady state levels of RNA [64]. Taken 
together it is intriguing to speculate that the observed locations of the 
two similar sequences in the vicinity of rRNA genes are due to the higher 
propensity of DNA pieces to integrate at highly expressed sequences. 

5. Conclusion 

Here we present three newly sequenced organellar genomes from 
kelp species together with a thorough analysis of their specific features 
and phylogenetic information content in comparison to other kelp 
organellar genomes. Collinearity of the organellar genomes within the 
kelp species together with their considerable length and thus informa
tive positions make them suitable as very robust phylogenetic markers 
for the entire order. Our finding of an independent introduction of ho
mologous nucleotide sequences into two brown algal mitochondrial 
genomes, potentially of mitovirus origin, is unprecedented and should 
be the beginning of endeavours to search for similar sequences in other 
brown algae, e.g. via the PHAEOEXPLORER project, and ultimately 
target complete mitovirus genomes from kelp. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ygeno.2021.01.003. 
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