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A contrario dip picking for borehole imaging

Joris Costes∗ and Gabriele Facciolo∗ and Rafael Grompone von Gioi∗ and Josselin Kherroubi‡ and
Enric Meinhardt-Llopis∗ and Jean-Michel Morel∗

ABSTRACT

We describe an algorithm to perform automatic dip
picking on borehole images. One key element of the
proposed method is a statistical validation, based on
the a contrario theory, which is used to decide whether
each candidate dip is to be accepted or not. The pro-
posed method also uses a randomized Hough trans-
form, which greatly improves the processing speed, al-
lowing for a real-time detection of dips during image
visualization. In addition, the same algorithm can be
applied at different scales to provide a multi-resolution
analysis of the structures. Our experiments show that
the proposed algorithm produces reliable dip picking
by an evaluation on three manually annotated bore-
holes: the proposed method detects from 60% to 90%
of the dips annotated by an expert, depending on the
complexity of the data.

INTRODUCTION

An essential tool in geological exploration are well logs,
which record the measurement of physical quantities along
the depth of a borehole. Modern measurement devices ac-
quire two-dimensional data over the whole surface of the
well. Meaningful information from the resulting borehole
images can then be extracted using powerful image pro-
cessing tools (Gonzalez et al., 2020; Jiang et al., 2020).

Dip picking is an important task in the geological inter-
pretation of borehole images for structural, sedimentary,
and fracture analysis (Lofts and Bourke, 1999). It con-
sists in extracting the planar structures observable in the
borehole image (known as dips) and characterizing them.
Borehole images are high-resolution measurements allow-
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ing for dip characterization (Lowell et al., 1999). As shown
in Figure 1, the imaging measurements are acquired on a
cylinder-shaped borehole and result from the unrolling of
this cylinder. As a consequence, the horizontal axis is the
apparent azimuth angle and the vertical axis is the mea-
sured depth along the borehole trajectory. Any planar
event crossing the borehole results approximately on a one
period sinusoid trace on the unrolled image. As soon as
this trace is extracted, the plane characteristics—dip in-
clination, azimuth and depth—can be directly computed.

The task of dip picking can be performed manually by
visual inspection and annotation of the borehole images.
This process is very time-consuming and requires a qual-
ified team of experts to annotate a whole well dataset.
Thus, several algorithms have been proposed in the liter-
ature to help in this task, either by computing the dips
automatically, or in a semi-supervised way. Dip picking
can be the basis of further geometrical analysis (Trice,
1999; Kherroubi et al., 2016).

The Hough transform (Hough, 1962; Duda and Hart,
1972; Illingworth and Kittler, 1988) is a feature extrac-
tion technique widely used to detect structures such as
lines, ellipses, or sinusoids. In the Hough transform each
pixel cast votes for the features compatible with its value
and coordinates, the votes of all the pixels are accumu-
lated in the parameter space of the sought structure. The
final state of the accumulator space is the result of the
transformation. Then, maxima in this transformed space
are used to extract candidate structures.

In the pioneering work of Torres (1992), the Hough
transform is used to extract sinusoidal structures in edge
maps (Marr and Hildreth, 1980) extracted from borehole
images. A later improvement of this method uses directly
the gradient of the borehole images instead of an edge de-
tector (Saito et al., 1999). Other methods also using the
Hough transform are Hall et al. (1996) and van Ginkel
et al. (2003). These methods produce an automatic dip
picking, their main drawback being the computational
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Figure 1: Borehole image: from cylinder to an unrolled
image. On the right image, a typical colormap used by ge-
ologists is applied on the grayscale image. We can clearly
see a fault crossing the middle of the image (the sinusoid
with high amplitude), surrounded by many sinusoids with
very small amplitude, thus nearly horizontal lines, corre-
sponding to the sedimentary structure. Image courtesy of
Schlumberger.

cost when a fine quantization of the parameter space is
required.

To obtain an interactive user experience, Wang et al.
(2007) discloses a user-guided dip picking method, which
is based in defining a top and bottom reference curve.
These constraints define a smaller subset of the parameter
space that can be sampled in real time to find the optimal
parameters of a family of sinusoids.

Assous et al. (2014) exploit the symmetries present in si-
nusoids to accumulate votes for finding likely structure lo-
cations. Sun and Pallottino (2003) use a shortest path al-
gorithm to trace a structure across an entire borehole im-
age, exploiting the connection between the left and right
sides of the image. Wedge et al. (2015) propose a method
for detecting sinusoids that group smaller edge elements,
which also exploit the vertical and horizontal sinusoidal
symmetries. In addition, the method provides interactive
access to the detections.

In this paper, we propose a dip picking method that can
process automatically the whole well data in one run, or
be integrated in a semi-supervised human/computer in-
terface where the user selects a region of interest. The
proposed method involves a statistical validation method
for each candidate sinusoid. Its criterion is based on the a
contrario theory (Desolneux et al., 2008). This statistical
test could be used directly to find a good set of sinusoids
(in the sense of number of false alarms, as explained be-
low) by an exhaustive exploration of the whole parameter
space. However, to obtain a real-time algorithm, we use
the randomized Hough transform (Xu et al., 1990) to ini-
tialize a local search in the parameter space. In addition,
the relatively slow variation of dip inclination and azimuth
allows for a local exploration of these two parameters, thus
reducing even more the required number of random sam-
ples to produce reliable candidates.

(a) (b)

(c) (d)

(e) (f)

Figure 2: (a) Cylinder of radiusR. (b) Intersection of the
cylinder with a plane. (c) When the cylinder is unrolled,
this ellipse becomes a sinusoid. See equation (4) for the
equation of a sinusoid h(w) in terms of its Hough param-
eters (a, b). (d) Sinusoid in Hough (a, b) coordinates. (e)
Dip detection in a synthetic image (red for dark-to-bright
and green for bright-to-dark detections). (f) Correspond-
ing votes in Hough space.

To quantitatively assess the performance of our method,
we evaluate its performance on three borehole images with
manually annotated dips. We also conduct ablation stud-
ies to illustrate the impact of some key components of
the proposed method. Our experiments show that the
proposed method allows to extract dips reliably on full
borehole images. This is supported by the fact that the
method is currently used in production for a commercial
service. This method could also be applied on any bore-
hole imaging tool (whatever the measurement physics), in
wireline logging or measurement while drilling (Drilling
and Measurement). The same approach could also be
used for extracting dips from slab core pictures: in that
case, the Hough transform algorithm must be adapted to
extract lines instead of sinusoids.
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PROPOSED METHOD

For the sake of simplicity of exposition, we suppose that
the borehole is a straight and vertical cylinder (i.e., the
borehole does not change its trajectory); thus, the az-
imuth and depth have an absolute meaning. Furthermore,
assuming that the borehole is a perfect cylinder (i.e., that
the cross-section is a circle), planar events appear exactly
sinusoidal in the image. In practice, boreholes are never
straight, but the dip-picking is a local process that only
needs the borehole to be locally straight. The method
can easily be extended to the general case of a 3D bore-
hole path, including a varying and not perfect circular
cross-section; of course, the borehole parameters need to
be known.

Let us consider a borehole as a cylinder of radius R (see
Figure 2). The borehole image is obtained by unrolling the
surface of the cylinder into an image of size W ×H. Thus,
a pixel (w, h) ∈ [0,W − 1]× [0, H − 1] corresponds to the
3D point of coordinates(

R cos
2πw

W
, R sin

2πw

W
,

2πR

W
h

)
. (1)

Note that in the equation above, the third dimension is
scaled by a factor 2πR

W ; this factor is required to obtain
square pixels, having the same height and width in the 3D
space.

Let us consider a (non-vertical) 3D plane of equation z =
ax + by + c. If we assume that the plane is determined
by an inclination angle α and an azimuth angle β, then
the parameters correspond to a = K sin(α) cos(β) and b =
K sin(α) sin(β), where K is a constant. This plane inter-
sects the cylinder on an ellipse that can be parametrized
as

θ 7→ (R cos θ, R sin θ, aR cos θ + bR sin θ + c). (2)

When representing this curve on the image coordinates it
becomes

θ 7→
(
Wθ

2π
,
W

2π

(
a cos θ + b sin θ +

c

R

))
(3)

or, equivalently, as the graph of the function

h(w) =
W

2π

(
a cos

2πw

W
+ b sin

2πw

W
+
c

R

)
(4)

in the image plane (w, h). By replacing the expressions
of a and b and using a trigonometric addition formula,
the expression a cos θ + b sin θ + c can be rewritten as
to K sin(α) cos(θ − β) + c, parametrized by the inclina-
tion α and the azimuth β. Thus, the function h(w) is a
sinusoid of one period, whose phase determines the az-
imuth, and whose slope determines the inclination of the
dip.

The task of dip picking consists in detecting these sinu-
soidal structures in the borehole images, and assigning an
inclination, azimuth and depth to each. Here we propose
an algorithm to do that automatically. The core of the
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Figure 3: Workflow of the proposed method.

proposed method is a statistical test that decides whether
any candidate sinusoid is to be accepted or not; in other
words, whether the sinusoid separates two groups of pixels
whose intensities are significantly different. This criterion
is based on the a contrario theory (Desolneux et al., 2008)
and is described below.

Such a statistical test could be used directly to find
a good set of sinusoids by exhaustive exploration of the
whole parameter space. In that case one would traverse
the set of all possible sinusoids (a, b, c), and for each sinu-
soid compute the statistic test which requires evaluating
the image at about W positions. Such an exhaustive al-
gorithm would have a computational complexity of N4,
where N is the number of possible values for each of a,
b, c or W . Here, we propose a faster heuristic search on
this space, initializing the detection with plausible start-
ing dips.

Algorithm overview

The overall structure of the proposed algorithm is laid out
on Figure 3 and on Algorithm 1. The statistical test ac-
tually happens on the last steps of the method, because
it is used only to validate and refine a rough set of dips
obtained by a fast but somewhat imprecise Hough trans-
form.

The algorithm finds all the dips inside a sub-window
of the image specified by its vertical location h and scale
octave o. The octave determines a vertically down-scaled
version (by factors of 2o) of the original image. Working
on the down-scaled image allows to detect dips with large
slopes that would otherwise not fit in a window. But the
detection algorithm is the same regardless of the scale.
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Algorithm 1: dip-picker

input : Image J of size W ×H
input : Valid data mask M (W ×H)
input : Location h ∈ {1, . . . ,H}
input : Scale o ∈ {1, . . . , blog2Hc}
input : Positive parameters σ, µ, η, ρ, ε, κ,Nrand
output : List of sinusoids L

1 I ← extract-and-resample-window(J,M, h,o)
2 If ← fill-in-missing-data(I,M)
3 Iσ ← gaussian-blur(If , σ)
4 G← local-orientation(Iσ, µ)
5 H ← randomized-hough-voting(G,Nrand, κ)
6 Hη ← gaussian-blur(H, η)
7 (a, b)← arg maxHη(x, y)
8 L← locate-dips(Iσ,M, ρ, ε, a, b)
9 L← refine-dips-with-exclusion(Iσ,M, ρ, ε, L)

10 return L

This window can be either selected interactively by the
user, or slid along the whole image for an automatic anal-
ysis.

The algorithm relies on the local image orientation in-
side the target window. But two pre-processing are needed:
filling-in pad/flap traces, and dequantization and filtering.
Then, the local orientations are computed and used twice
in the method: first to estimate the main dip inside the
window (using the Hough transform), second to find the
optimal placement of meaningful dips using an a contrario
strategy.

In the following paragraphs we describe each of the
steps of the algorithm in detail.

Filling-in pad/flap traces

In the case of pad-based borehole imaging tools, the im-
ages are incomplete due to blind spots between the pads/flaps
of the sensor (see the vertical stripes on Figure 1). In the
proposed method the decision of whether a dip is present
or not only uses the available data, ignoring the pad/flap
traces. Nevertheless, filling the missing data simplifies the
pipeline for proposing candidates by avoiding the tracking
of the missing parts. These traces could be inpainted using
advanced methods that aim at reconstructing the miss-
ing structures, such as the one proposed in Zhang et al.
(2019). In our case it is sufficient to handle the boundary
conditions between the known and unknown data. This is
done by solving the Laplace equation ∆u = 0 inside the
unknown region with boundary conditions given by the
known data. This creates a smooth interpolation of the
data (see Figure 4) which will not perturb the computa-
tion of the local orientation. This is the simplest possible
method of data interpolation using PDEs (Weickert and
Welk, 2006). Note that the quality of this filling is not
really important as it is only used to simplify the compu-
tations of the intermediate gradients, and that in the final

Figure 4: Example of Filling-in produced by the proposed
Laplacian interpolation method. This creates a smooth
interpolation of the data, which will not perturb the com-
putation of the local orientation.

validation the interpolated data is not used.

Dequantization and filtering

The next preprocessing step of the proposed method con-
sists in filtering the image by a Gaussian kernel of size σ.
This filtering serves two different goals: the dequanti-
zation of the local orientations and the selection of the
“grain/resolution” size for the analysis.

The dequantization is essential for computing the Hough
transform: if we set σ = 0, we do not obtain meaningful
results, due to severe quantization artifacts. These arti-
facts arise because the gradient direction of a quantized
image is not uniformly distributed as there is only a fi-
nite number of possible discrete orientations, and some
orientations turn out to be much more likely than oth-
ers (Desolneux et al., 2002). When computing the Hough
transform, this non-uniformity appears as a set of con-
centric circles around the origin of coordinates (Figure 5).
Smoothing the input images by a small Gaussian blur de-
quantizes the image and the artifacts on the transformed
image disappear, allowing to correctly locate the maxi-
mum.

The parameter σ also allows to control the resolution of
the analysis: using a larger σ permits to move the focus
of the algorithm from thin strata to thicker structures.
The impact of this parameter is discussed in detail in the
section Multiscale dip picking.

Local image orientation

The proposed method relies on a point-wise estimation of
the local orientation of the image structures. The sim-
plest measure of local image orientation is the image gra-
dient ∇Iσ = (∂xIσ, ∂yIσ), which can be computed with a
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Figure 5: Importance of image dequantization. These
images show the Hough transform of the same input im-
age, pre-filtered with different Gaussian kernels of the in-
dicated sigma. The circular artifacts are due to the quan-
tized gray levels of the image. They interfere severely
with the location of the maximum, which is indicated as
a red circle in the images. The transform is dequantized
by applying a small blur to the input images.

finite difference scheme. The main issue with the image
gradient is that it encodes both orientation and direction
(sign), which means that averaging gradients may cancel
them out. Despite this, the gradient provides valuable in-
formation about the image and can be used successfully
in the context of dip picking (Saito et al., 1999).

A better local image orientation descriptor is the struc-
ture tensor (Förstner and Gülch, 1987), which is a field
representing a local average direction (modulo π) of the
gradient vectors (modulo 2π). This is better than the
blurred gradient because opposed vectors will vote for
the same direction in Hough space (see next section).
The structure tensor field S is computed from the im-
age gradients field ∇Iσ by smoothing the singular matrix
field ∇Iσ⊗∇Iσ, namely S := Gµ∗(∇Iσ ⊗∇Iσ) where Gµ
is a Gaussian kernel, and ⊗ is the outer product of a pair
of vectors (rank-1 matrix).

Note that the Gaussian smoothingGµ is not interchange-
able with the previous smoothing Gσ used for remov-
ing the quantization artifacts. Indeed, the outer prod-
uct results in the components I2x, IxIy and I2y , which are
non-linear operations; thus, we cannot remove the first
smoothing step by using a stronger smoothing value µ.
These two smoothing steps are both needed for different
reasons, and if the quantization artifacts are not corrected
before, the resulting structure tensor will present artifacts
as those shown in Figure 5.

The local orientation is computed from the 2 × 2 ma-
trix Sµ(i, j), as the eigenvector associated to its largest
eigenvalue, and the strength of this orientation is the largest
eigenvalue. These eigenvalues will be used to weight the
Hough votes. The pseudo-code for computing the struc-
ture tensor and its largest eigenvector is detailed in Algo-
rithm 2.

Hough voting

The purpose of this step is to find the main bundle of
sinusoids (the average dip) appearing on the selected win-
dow. This is done by means of the Hough transform. The
Hough transform (Hough, 1962; Duda and Hart, 1972;

Algorithm 2: local-orientation-by-structure-tensor

input : Image Iσ : Ω→ R
input : Structure tensor filtering µ > 0
output : Local orientation field G : Ω→ R2

1 Ix ← ∂
∂xIσ // finite difference derivatives

2 Iy ← ∂
∂y Iσ

3 P ← gaussian-blur(I2x, µ)
4 Q← gaussian-blur(IxIy, µ)
5 R← gaussian-blur(I2y , µ)
6 for p ∈ Ω do

7
(
a b
b c

)
←
(
P (p) Q(p)
Q(p) R(p)

)
// structure tensor at p

8 T ← a+ c
9 D ← ac− b2

10 α← T+
√
T 2−4D
2 // largest eigenvalue

11 if |b| > 0 then
12 G(p)← (b, α− a) // eigenvector

13 else
14 G(p)← (a, 0)

15 return G

Illingworth and Kittler, 1988) can be used to find instances
of objects within a certain class of shapes by a voting pro-
cedure. The class of shapes must be described by a set
of parameters. This defines a parameter space in which
each point correspond to a particular shape. An accumu-
lator is defined in the parameter space to count the num-
ber of votes for each particular parameter value. Then a
voting procedure is carried out where each image feature
increases the accumulator for the shapes compatible with
the observation. The object candidates are obtained as
local maxima in the accumulator.

Recall that a dip of parameters (a, b) corresponds to
a certain sinusoid ha,b(w) as in equation (4). This dip is
compatible with a local image orientation (u, v) = S(w, h),
given by the structure tensor at pixel (w, h), if the vec-
tor (u, v) is perpendicular to the curve ha,b(w), namely if
the following condition holds(

1, h′a,b(w)
)
· (u, v) = 0. (5)

Developing the derivative, this condition becomes

u − a v sin

(
2πw

W

)
+ b v cos

(
2πw

W

)
= 0. (6)

This equation determines a straight line in the (a, b)-plane,
and the points of this straight line correspond to all the si-
nusoids compatible with the local gradient orientation (u, v)
observed at (w, h).

The basic idea of Hough voting consists in choosing a
finite discretization of the (a, b) parameter plane. Then,
each point in the image votes for the corresponding straight
line in the (a, b) space according to equation (6). The vote
is weighted by the magnitude of the local orientation de-
scriptor. Once all the points in the image domain have
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voted, the site on the (a, b) plane with the most votes is
selected as a candidate structure. The complexity of this
algorithm is O

(
N1.5

)
where N is the number of pixels

in the images (assuming that the size of Hough space is
proportional to N).

An alternative voting strategy named randomized vot-
ing (Xu et al., 1990) reduces this complexity to O(N).
This technique considersN randomly chosen pairs of points
in the image domain. Each pair of points in the image
domain will vote for a single point in the Hough domain,
namely the intersection of the straight lines correspond-
ing to each of the two image points. The strength of the
vote can be a function of the local orientation strengths
of the two points, for instance the product, the sum, or
the minimum. Alternatively, the vote can be weighted by
the norm of the vector product of the corresponding line
parameters. We choose the latter so that parallel lines
contribute less.

The traditional Hough space for the sinusoid identifi-
cation problem (Torres, 1992; Saito et al., 1999; Wang
et al., 2007) has the three parameters (a, b, c) of a dip z =
ax + by + c. The advantage of our proposal is that votes
accumulate on a 2D space instead of a 3D one. This is
much faster because a smaller number of votes is enough to
fill-in the 2D space and to obtain stable and well-localized
maxima. Intuitively, this strategy is aggregating the votes
for all the heights in the given window; this is natural
because the sinusoids are very often nearly parallel and
would correspond to vertically aligned points in the 3D
space.

The randomized voting strategy is detailed in Algo-
rithm 3. This algorithm fills an image H(a, b) with the
Hough votes for each candidate pair (a, b). The table of
votes is initialized to zero (step 1). Then Nrand pairs of
points are randomly sampled on the image domain (steps
3 and 4) and the local orientations at these points are
extracted (steps 5 and 6). Next, we find two straight
lines `1,`2 that are compatible with these local orienta-
tions (steps 7 and 8). These lines are expressed in ho-
mogeneous coordinates which facilitates computing their
intersection point as the cross product (step 9). The ho-
mogeneous coordinates of the intersection point are nor-
malized to obtain its Euclidean coordinates (steps 10 and
11), which is identified to a site in the Hough domain.
Then a weighted vote is cast for that site (steps 13 and 14).

Hough space discretization and smoothing

The Hough space is discretized as a W ×W regular grid
covering the square [−κ, κ]2 of the (a, b)-plane. The range
of values spanned by this grid is given by the maximum
slope of a plane capable of being represented, usually [−1, 1]2,
which corresponds to 45◦. In order to handle dips with
larger slopes a multi-scale approach is applied, as detailed
in the section Multiscale dip picking. The scales are verti-
cally down-scaled versions of the original image by powers
of two, called “octaves”. In the o-th octave the (a, b)-

Algorithm 3: randomized-hough-voting

input : Local orientations G : [0,W ]2 → R2

input : Maximum values for a dip κ
input : Number of random trials Nrand
output : Hough votes H : [−κ, κ]2 → R

1 H ← 0
2 for n = 1, . . . , Nrand do
3 p1, q1 ← random-point([0,W ]2)
4 p2, q2 ← random-point([0,W ]2)
5 u1, v1 ← G(p1, q1)
6 u2, v2 ← G(p2, q2)

7 `1 ←
(

sin
(
2π
W p1

)
,− cos

(
2π
W p1

)
, u1/v1

)
8 `2 ←

(
sin
(
2π
W p2

)
,− cos

(
2π
W p2

)
, u2/v2

)
9 x, y, z ← `1 × `2

10 a← x/z
11 b← y/z
12 if (a, b) ∈ [−κ, κ]2 then
13 H(a, b)← H(a, b) + ‖`1 × `2‖

plane extends to [−2o, 2o]2.
We need to localize the dips very accurately in the (a, b)

space, thus in practice we chose the same size W ×W as
the input window. The Hough space is used (Algorithm
1, step 7) to find the main dip direction on a window as
the site (a, b) with the maximum number of votes. To
improve the localization of this maximum, the Hough im-
age H(a, b) is smoothed with a Gaussian kernel of stan-
dard deviation η (which is a parameter of the method).
Due to this smoothing, the actual resolution W ×W of
the Hough size is not a critical parameter as long as η is
larger than the pixel size used to discretize H.

The a contrario theory

The a contrario theory (Desolneux et al., 2000, 2008)
is a statistical framework used to set detection thresh-
olds automatically in order to control the number of false
detections. It is based on the non-accidentalness prin-
ciple (Witkin and Tenenbaum, 1983; Lowe, 1985) which
informally states that an observed structure is meaningful
only when the relation between its parts is too regular to
be the result of an accidental arrangements of independent
parts. In the words of D. Lowe, “we need to determine
the probability that each relation in the image could have
arisen by accident, P (a). Naturally, the smaller that this
value is, the more likely the relation is to have a causal
interpretation” (Lowe, 1985,p. 39).

A stochastic background model H0 needs to be defined,
where the structure of interest is not present and can only
arise as an accidental arrangement. For example, some ge-
ometrical feature detection methods such as line segments
or elliptical arcs are based on the orientation of the im-
age gradient (Grompone von Gioi et al., 2010; Pătrăucean
et al., 2017). In such cases, the background model H0



A contrario dip picking 7

assumes that the gradient orientations at each pixel are
independent random variables, uniformly distributed in
[−π, π). Under this background model, a region of the im-
age where the gradient orientation follows a regular struc-
ture would be a rare accident and is detected as such.

We also need to define a family of events of interest
T . For feature detection the family of events is the set of
all the geometrical events considered, i.e., all the line seg-
ments and elliptical arcs considered in the image domain.
Then, we need to assess the accidentalness of a candidate
feature. For example, if a line segment is present in an im-
age, the gradient orientation at the corresponding position
would be orthogonal to the line segment. Then, given a
candidate line segment, one measures how well the image
gradient corresponds to the candidate event, and evalu-
ates the probability of observing such a good agreement
by chance in the background model. A rough agreement
could arise just by chance and thus does not correspond
to an interesting event; conversely, a very good agreement
would be rare and suggest the presence of a structure in-
stead of just a lucky accident. In other words, when this
probability is small enough, there exists evidence to re-
ject the null hypothesis and declare the event meaningful.
However, one needs to consider that multiple candidates
are tested. If 100 tests were performed, for example, it
would not be surprising to observe among them one event
that appears with probability 0.01 under random condi-
tions. The number of tests NT needs to be included as
a correction term, as it is done in the statistical multiple
hypothesis testing framework (Gordon et al., 2007).

Following the a contrario methodology (Desolneux et al.,
2000, 2008), we define the number of false alarms (NFA)
of an event e observed up to an error k(e) as:

NFA(e) = NT · P
[
KH0

(e) ≤ k(e)
]
, (7)

where the right hand term is the probability of obtaining
in the background model H0 an error KH0(e) smaller or
equal to the observed one k(e). The smaller the NFA,
the more unlikely the event e is to be observed by chance
in the background model H0; thus, the more meaningful.
The a contrario approach prescribes accepting as valid
detections the candidates with NFA < ε for a predefined
value ε. It can be shown (Desolneux et al., 2000, 2008)
that under H0, the expected number of tests with NFA <
ε is bounded by ε. As a result, ε corresponds to the mean
number of false detections under H0. In many practical
applications, including the present one, the value ε = 1 is
adopted. Indeed, it allows for less than one false detection
on an image or on a set of images, which is usually quite
tolerable.

A contrario dip detection

The maximum of the Hough transform gives the param-
eters (a, b) of the best bundle of sinusoids for the current
analysis window. But we still need to determine if this
detection is meaningful (in case we are observing a win-

dow without sinusoids) and then extract the individual
dips. For this we propose to apply an a contrario valida-
tion (Desolneux et al., 2008). The test for validating in-
dividual dips is similar to the one used in Grompone von
Gioi et al. (2010), but evaluating the image orientation
along the sinusoid at each depth instead of along straight
lines. For a given borehole image size, it selects a thresh-
old on the number of pixels with gradient perpendicular
to the sinusoid being tested.

Algorithms 4 and 5 describe the method. The main
inputs are the image gradient at each point in the win-
dow of interest of size W ×H, and the parameters (a, b)
of the sinusoid bundle to be validated. There are two
parameters to be set: ρ and ε. The parameter ρ is a nor-
malized angular tolerance. For example, a tolerance of
45◦ leads to ρ = 45

180 = 0.25. Here, the NFA corresponds
to an upper bound of the expected number of dips, with
at least as many correctly oriented gradients as the one
currently considered, that will be observed by chance per
window. The NFA provides a measure of the quality of
the detection that is easier to interpret and to threshold
than the quantity of well-aligned pixels. The lower the
NFA, the less probable it corresponds to an accidental de-
tection, thus the more probable it corresponds to a real
dip. Automatic detections are made by keeping candi-
dates with NFA < ε. The parameter ε corresponds to an
upper bound to the number of false alarms that one can
accept per window. The output of the algorithm is the
set L of parameters of the validated sinusoids relative to
the window being analyzed, see Figure 6.

The a contrario detection algorithm builds a list L of
“accepted dips”. The set L is initially empty (line 1 of
Algorithm 5). Then, all the depths h in the range of the
window will be tested one by one (line 2). For each depth,
the number n of pixels along the sinusoid with defined
values (i.e., belonging to the pad/flap traces) are counted.
Among them, the number k of pixels with the image gra-
dient orientation compatible with the sinusoid are also
counted; both n and k are initialized to zero (lines 1 and 2
of Algorithm 4). To count these numbers, all the columns
i of the image are evaluated (line 3) and for each one the
corresponding coordinate j(i) in the sinusoid at depth h
is computed (line 4). Also, the vector N(i) normal to
the sinusoid at pixel (i, j(i)) is computed (line 5). If the
borehole image is defined at (i, j(i)) as determined by a
mask M (line 6), then the pixel provides information that
may match or not the sinusoid; n is increased to count
the point (line 7). If the angle between the normal to the
sinusoid N(i) and the actually observed image gradient
∇Iσ(i, j(i)) is less than the tolerance ρ ∈ (0, 1) (line 8),
then the pixel is compatible and k is increased (line 9).

With n and k, the NFA can be computed (line 10) by:

NFA = W 2H ·B(n, k, ρ), (8)

where W ×W is the size of the discretization grid defined
above (section “Hough space discretization”), H is the
height of the observed window, and B is the tail of the
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binomial distribution, defined as:

B(n, k, p) =

n∑
i=k

(
n

i

)
pi(1− p)n−i. (9)

The binomial tail can be computed efficiently using the
incomplete beta function.

Finally, if the NFA of the sinusoid being evaluated is
smaller than ε (line 4 of Algorithm 5), the corresponding
sinusoid (a, b, h) is added to the output set L (line 5).
Figure 6 shows an example of the detected sinusoids.

Note that if there are no sinusoidal structures (com-
patible with a, b), then the previous algorithm should not
detect any dip. If there are several candidate parameters
(a, b), the algorithm is applied for each pair. If no dip
is detected for any candidate plane orientation, then the
window is declared to be without sinusoids.

Algorithm 4: dip-nfa

input : Image Iσ (W ×H)
input : Valid data mask M (W ×H)
input : The sinusoid parameters (a, b, h)
input : Number 0 < ρ < 1
output : A positive number NFA

1 n← 0 // total number of points

2 k ← 0 // number of well-aligned points

3 for i = 0, . . . ,W − 1 do // (i,j)=graph of the sinusoid

4 j(i)← a cos
(
2π
W i
)

+ b sin
(
2π
W i
)

+ h
5 N(i)←

(
− 2π
W a sin

(
2π
W i
)

+ 2π
W b cos

(
2π
W i
)
, 1
)

6 if M is valid at (i, j(i)) then // avoid pads/flaps

missing data

7 n← n+ 1
8 if Angle(N(i), ∇Iσ(i, j(i))) < ρπ then
9 k ← k + 1

10 NFA←W 2H ·B(n, k, ρ)

Algorithm 5: locate-dips

input : Image Iσ (W ×H)
input : Valid data mask M (W ×H)
input : The sinusoid parameters (a, b)
input : Number 0 < ρ < 1
input : Number ε > 0
output : A set of sinusoids L

1 L← ∅
2 for depth h = 0, . . . ,H − 1 do
3 NFA← dip-nfa(Iσ,M, ρ, a, b, h)
4 if NFA < ε then
5 L← L ∪ {a, b, h}

Local dip refinement

The sinusoids detected by the previous step may not be
very accurate because their (a, b) parameters are com-

puted globally for the whole window (using the Hough
transform). Indeed, the NFA test (Algorithm 4) reduces
the set of candidate sinusoids in the current window by de-
termining whether a sinusoid is meaningful or not. How-
ever, all of these sinusoids have the same parameters (a, b).
The goal of the refinement step is to slightly adjust the
three parameters of each sinusoid so that it better fits to
the local geometry of the image. In what follows we pro-
pose a method to iteratively refine the parameters of each
individual sinusoid by a simple discrete coordinate descent
optimization (see Algorithm 6).

The refinement described in Algorithm 6 uses the NFA
score as a measure of fit. It tests small variations of the
parameters and selects the one yielding the smallest NFA
value. This process is iterated until no improvement of
the NFA can be achieved. Notice that the potentially
infinite loop in this algorithm halts because the search
space is finite (it is restricted to sinusoids that intersect
the current window).

Algorithm 6: refine-dip

input : Image Iσ (W ×H)
input : Valid data mask M (W ×H)
input : Sinusoid to optimize s = (a, b, h)
output : A refined sinusoid s

1 repeat
2 N ← neighbors(s) // list of candidate neighbors

positions

3 for n ∈ N do
4 if dip-nfa(Iσ,M, n) < dip-nfa(Iσ,M, s)

then
5 s← n // select optimal neighbor

6 until s does not change // iterate until a local optimum

is found

Redundancy reduction

After the local optimization step described in the previous
section, we find that the output list of sinusoids is very re-
dundant. There are two reasons for that. First, sinusoids
that were very close may collapse to the same local min-
imum. Second, different local minima may be very close.
To avoid these redundancies and to obtain a cleaner list
of dips, we propose to apply an exclusion criterion. The
criterion works by enforcing the following condition: each
pixel in the input image is owned by at most one sinu-
soid, only the pixels owned by each sinusoid are used to
compute its final NFA value.

This exclusion criterion is described by Algorithm 7.
This is a greedy algorithm that traverses one time the
list of all candidate sinusoids by increasing order of their
NFA, from the most to the least meaningful detection (re-
call that the lowest NFA corresponds to the best match).
The precise implementation of the algorithm depends on
the function exclude-around(G,s). This function finds
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(a) (b) (c)

Figure 6: Example of dip picking results using the proposed method. (a) shows the input window. (b) shows the
extracted Hough space with its detected maximum highlighted in yellow. (c) shows the validated detections highlighted
(red and green denote opposed orientations of the sinusoid) over a grayscale version of the image.

the pixels around a thin band of fixed width around the
sinusoid s, and marks them as undefined in the mask M .
Thus, they will not be counted when updating the NFA
value (see line 6 of Algorithm 4), just as if they were out-
side the image domain.

Algorithm 7: refine-dips-with-exclusion

input : Image Iσ (W ×H)
input : Valid data mask M (W ×H)
input : Number ε > 0 (NFA threshold)
input : L list of sinusoids to be refined
output : L′ list (possibly shorter) of refined

sinusoids

1 L′ ← ∅ // output accumulator

2 L← sort-sinusoids-by-growing-nfa(L, Iσ,M)
3 for s ∈ L do // traverse sinusoids in order

4 s′ ← refine-dip(Iσ,M, s) // refine this sinusoid

5 if dip-nfa(Iσ,M, s′) < ε then // if meaningful

6 L′ ← L′ ∪ {s′} // add it to list

7 M ← exclude-around(M, s′) // and mark

neighboring pixels as undef.

Parameters

Table 1 summarizes the meaning and reasonable values
for all the parameters of the proposed method.

The most important parameter is µ of the structure ten-
sor filtering. Increasing µ, the precision of the detection
increases, but the localization becomes worse; if it is too
large (at around µ = 20) it starts losing structures. In
practice, µ is always set to 11.

The second most important parameter is σ. This is the
resolution at which the local orientations are computed.

Table 1: Summary of the meaning and reasonable values
for all the parameters of the proposed method.

parameter default
value

meaning

σ 1.0 pre-filtering (dequantization)
µ 11.0 structure tensor filtering
κ 1.0 maximum values for a dip (a, b)
η 30.0 blur of the Hough space
ρ 0.25 normalized angular tolerance
ε 1.0 number of false alarms

Nrand 106 number of random trials

Setting it larger than 1.0 removes a lot of noise, aliasing
and artifacts in the input images, but then small struc-
tures may be lost. Although it could be used to control
the level of detail in the image, in practice it is always set
to 1.0.

The parameter κ selects how much of the Hough space
we want to consider. A value of κ = 1.0 allows for dips at
a slope of 45◦. If higher slopes are required, it is better
to use a higher level of the pyramid than to increase κ.
Decreasing κ may improve the precision of near-horizontal
dips, at the price of ignoring high slopes. In practice, κ is
always set to 1.0.

The value of the parameter η is not very important,
provided it should be large enough to allow a rough es-
timation of the maximum in the Hough transform. In
practice, η is always set to 30.0.

The value ρ of the validation step controls the balance
between being tolerant to imprecise sinusoids at the cost
of requiring larger observed parts of the sinusoids. The
value 0.25 results in a good balance. Even if in some
images a slightly smaller or slightly large value improves
a little the result, in practice it is always set to ρ = 0.25.
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(a) (b)

(c) (d)

Figure 7: Results of the multiscale analysis. The same
part of the well is analyzed at octaves 0 (original resolu-
tion, input (a) and output (b)) and 3 (vertical zoom-out
of factor 8, input (c) and output (d)). Notice that some
very “tall” sinusoids only become visible at high enough
scales. Depths are in meters.

The value of the parameter ε is not very important and
does not have an important effect in the final result. In
practice, ε is always set to 1.0.

The parameter Nrand affects linearly the running time
of the algorithm. It should be as large as possible while
being practical. In practice Nrand = 106 provides a good
balance between quality of the result and computation
time.

MULTISCALE DIP PICKING

The basic data structure for exploring such large images is
the multi-scale pyramid. This data structure is straight-
forward: it is the union of several vertically down-scaled
versions of the original image by factors that are successive
powers of two, called “octaves”. Notice that this notion
of octave is different from the one commonly used in im-
age processing: here we only perform a zoom-out in the
vertical direction, thus all the octaves preserve the image
width.

As observed in Figure 7, when the borehole direction is
nearly parallel to the geological strata, the image contains

Figure 8: A contrario dip picking (with local refinement)
on a synthetic image. In the left column the detections are
highlighted (red for dark-to-bright and green for bright-
to-dark detections) over a grayscale version of the image
which is depicted on the right column in false color (the
resistivity is single channel). The center column illustrates
the smoothed Hough voting space, with the location of the
maximum highlighted with a green dot. The three rows
correspond to different dip configurations. In the second
and the third row we see two dips in the same analysis
window.

nearly vertical structures. These patterns are actually si-
nusoids of very large amplitude, as can be seen by looking
at the higher octaves. Our algorithm correctly finds these
sinusoids once they appear entirely inside the selected re-
gion of interest.

Automatic dip picking

The proposed algorithm can be used to process a whole
borehole automatically. Two parameters need to be spec-
ified: a window size ω and the number of spatial scales
O. The borehole image is processed at full resolution and
at O − 1 consecutive dyadic spatial scales. At each scale,
the image is processed by windows of height ω, advanc-
ing by half-window steps of ω/2. All the dips found at
different windows and scales are put together. This can
generate repeated dip detections, to filter them we apply
the exclusion criterion described above.

In Figure 8 we show a typical run of our algorithm on
three windows of a very well behaved synthetic image.
In the first window, the correct dip is detected as the
position of the maximum in Hough space. In the sec-
ond window, when there is more than one dip (e.g., near
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a “cross-bedding”), there are two competing maxima in
Hough space, and the one corresponding to the dip with
largest area on the region of interest is chosen. In the
last window, the second maximum becomes larger and
the other dip is detected. It is the task of the exclusion
criterion to merge the whole set of dips without redun-
dancy.

Computational cost

The first steps of the method all have a computational
cost proportional to the number of pixels in the image or
window being processed. This includes the extraction of
the window, the filling-in of missing data, the Gaussian
filtering and the computation of local orientations. The
randomized Hough transform step has a computational
cost proportional to the number of random trials Nrand.
The a contrario validation and refinement step have a
computational cost proportional to the number of candi-
dates being evaluated, thus proportional to the number
of windows evaluated. All in all, the computational com-
plexity is O(N), where N is the number of pixels in the
borehole image.

In practice, the randomized Hough transform is very
effective and the algorithm computes the result in real-
time when applied to windows in a semi-supervised hu-
man/computer interactive interface. When applied auto-
matically, a non-optimized code can process a whole bore-
hole of 200,000 pixel rows, corresponding to about 1450 m
(4800 feet), in less than 30 s on a modern laptop computer.

EXPERIMENTS

In this section we present experiments for evaluating the
performance of the proposed algorithm. First we will
carry out a quantitative evaluation comparing against man-
ually annotated dips on three borehole images. Then we
will perform an ablation study to analyze the impact of
some components of the proposed algorithm. Lastly, we
present a qualitative analysis of the results and discuss its
limitations.

Quantitative evaluation

To evaluate the proposed method we shall compare against
three manually annotated borehole images. These datasets
(denoted A, B and C) are described below:

• A: 221 manually annotated dips along 30 m (97 ft) of
borehole, from 4078 m to 4107 m (13380 to 13476 ft);

• B: 3766 manually annotated dips along 1485 m (4873 ft)
of borehole, from 3110 m to 4596 m (10205 to 15079 ft);

• C: 194 manually annotated dips along 3345 m (1099 ft)
of borehole, from 3037 m to 3372 m (9964 to 11063 ft).

The proposed multiscale algorithm was applied to the
three borehole images using five octave scales and default

parameters for the detection. This yielded a list of detec-
tions each with an associated NFA (which can be seen as
a confidence measure).

To compare the manual annotations and our results we
analyzed the dips on a rolling window along the well. We
set the size of the rolling window to 6 m (20 ft) for the
second and third boreholes (B and C), while for the first
one (A) we used 0.6 m (2 ft) because the density of events
is much higher for such a short borehole. The results can
be seen in Figure 9. We computed and show the density
of dips within each window, the dominant azimuth angle
(computed as the mode of the azimuths), and the mean
of the dip inclination. From the plots we can observe
that the proposed method produces meaningful dips with
parameters close to the manual annotations. As manual
labeling is not exhaustive, it is to be expected that the
proposed method can produce many more dip detections.

To further assess the pertinence of the detected dips we
evaluated the error with respect to the manually anno-
tated ones. For each manually annotated dip, we searched
for the closest detected dip in terms of root mean squared
error (RMSE) between the two graphs

d(h1, h2) =

√
1

W

∑
w=1,...,W

|h1(w)− h2(w)|2. (10)

Note that this error has distance units and can be used to
set a threshold to identify false-positive detections. Here
we considered all the correspondences to analyze the dif-
ferences in the parameters of the two dips. We computed
the difference of depth, azimuth, and inclination of the
matched dips. The distributions of these errors for each
one of the annotated borehole images are shown in Fig-
ure 10. We observe that all the histograms of errors are
concentrated around zero. This means that close to most
of the manual annotations, there was a detection with
similar parameters. In the borehole B we observe a higher
error, this is likely due to higher density and variability of
events present in this borehole.

Ablation study

We performed three simple “ablation” experiments to as-
sess the validity of the method by comparing its perfor-
mance to manual dip annotations by expert geologists.
Unfortunately, we cannot compare the performance of the
proposed method to other publicly available methods, as
we could not find any.

More precisely, we studied the impact of three crucial
steps of the pipeline: the gradient dequantization prepro-
cess (controlled by the parameter σ), the multi-scale se-
lection scheme (controlled by the parameters o), and the
local dip refinement (implemented in Algorithm 6).

For that, we will define a true positive measure based on
the RMSE error between matched dips of equation (10).
This error measure has distance units: the distance be-
tween two sinusoids is defined as the average distance of
the corresponding ellipses on the boundary of the cylin-
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Figure 9: Analysis of dips on a sliding window. The three
rows correspond to the three evaluation boreholes A, B
and C with manual annotation. The plots in each column
show: the number of dips on the rolling window, the dom-
inant azimuth angle (which is computed as the the mode
of the azimuths in the window), and the mean inclination
within the window.
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Figure 10: Analysis of errors in the detected dips. For each
manually annotated dip, we matched it with the closest
automatically detected dip. Then we analyzed the differ-
ence of depth, azimuth, and inclination of the matched
dips. The three rows correspond to the three annotated
boreholes (denoted A, B and C). The standard deviation
of the errors are also shown in the plot.

der. We will say that a manually annotated dip is cor-
rectly found by an algorithm if the error with the matched
dip is smaller than 30.48 cm (1 feet). Note that we can-
not easily define a measure for false positives because the
manually annotated dips are not exhaustive (large swaths
of the image were not annotated).

This true positive score allows us to evaluate the per-
formance of variants of the proposed algorithm obtained
by removing different components. In Table 2 we present
the results of these experiments. We consider reducing
the number of scales (using only the first octave, the first
two, or all the 5 octaves), removing the dequantization
blur (σ = 0 for removing it), and removing the iterative
local dip refinement (by setting the refinement iterations
to 0 and 3). All these variants lead to a reduced per-
formance, most notably removing the multiscale and the
iterative refinement.

Qualitative evaluation and discussion

Let us now see results of our algorithm on some examples
(see Figures 11 and 12). In all cases, the initial dip (a, b)
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scales dequant. σ ref. iter. A B C
all 1 100 89% 59% 88%

1 oct. 1 100 28% 34% 28%
2 oct. 1 100 81% 48% 76%

all 0 100 84% 52% 85%
all 1 3 86% 56% 85%
all 1 0 72% 45% 71%

Table 2: Ablation study. True positive rate for different
variant of the algorithm evaluated on the three annotated
borehole images A, B and C. The first three columns cor-
respond to options of the proposed dip-picking algorithm:
number of octaves considered in the multiscale scheme,
dequantization parameter σ, and number of iteration of
local dip refinement.

was computed by the Hough transform algorithm (line 6
of Algorithm 1), and the parameters (a, b) were used as
input for the NFA computation. Notice that in most cases
the correct dip is obtained, even for fragmented sinusoid
as seen in Figure 11

The sequence of detections on Figure 12 shows the be-
havior of the algorithm around a fracture and a cross-
bedding. Notice that, for each position of the sliding win-
dow, a single dip is selected by the Hough transform, the
one that is present on the largest part of the window. This
is the slope (a, b) that is given to the a contrario refining
step, which determines the set of depths c where sinusoids
are detected. For this particular example, the detections
flip from one side to the other of the cross-bedding, which
happens between the second and third images in the se-
quence.

Limitations

The proposed method is far from perfect and there is room
for improvement. This can be seen in the quantitative
evaluation were the performance on the dataset B is below
the other two. This borehole is hard as it presents many
events, this can be seen in the annotation in Figure 9, see
in particular at depth 3627 m (11900 ft).

One can see some examples of wrong detections in Fig-
ure 12. There is an erroneous dip by the lower part of
the second image. In this case, the Hough step proposed
the wrong candidate due to the cross-bedding. Then, the
refining step did not explore enough variations to fit pre-
cisely the actual dip. In addition, due to the blurred as-
pect of the edges, the gradient orientation roughly match
the wrong dip, producing a barely meaningful detection.
In most cases, this problem is solved by the exclusion cri-
terion when all the dips at all windows and scales are put
together; indeed, the dips detected in the third image for
the same part of the image have better NFA value and will
be preferred. But there are still cases where this strategy
fails. A similar example of wrong detection, although less
extreme, can be seen in the middle of the second image.

(a) (b)

Figure 11: A contrario dip picking on two challenging
zones, one of them (a) with low contrast, the other (b)
suffering from pad misalignment. In both cases correct
dips are being identified, with just a couple of false alarms
on the first one. Depths are in meters.

CONCLUSIONS

We have proposed a method to perform fast and auto-
matic dip picking on borehole images, amenable to an
embedded online implementation due to its lower com-
putational requirements. The method is based on an a
contrario criterion to control the number of false detec-
tions, coupled with a search space optimization based on
Hough spaces. Our experiments show that the algorithm
detects correctly the evolution of the dip along the bore-
hole depth, and gives no dip when there are no apparent
structures in the data. A quantitative evaluation on an-
notated borehole images shows that the proposed method
can detect from 60% to 90% of the dips annotated by
an expert in a completely unsupervised way. The same
method can also be integrated in an interactive dip anno-
tation tool to assist the annotation.

DATA AND MATERIALS AVAILABILITY

The dataset of three manually annotated borehole images
and the supplementary material associated to this paper
are available at https://cmla.github.io/dip-picker/.
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Figure 12: A contrario dip picking, on a sliding window traversing a change of inclination (from column 2 to 3) and a
cross-bedding with no change of inclination (from column 3 to 4).
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