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Advanced large-wing-span aircraft result in more structural flexibility and the potential for instability or poor

handling qualities. These shortcomings call for stability augmentation systems that entail active structural control.

Consequently, the in-flight estimation of wing shape is beneficial for the control of very flexible aircraft. This paper

proposes a newmethodology for estimating flexible structural states basedon extendedKalman filtering by exploiting

ideas employed in aided inertial navigation systems. High-bandwidth-rate gyro angular velocities at different

wing stations are integrated to provide a short-term standalone inertial shape estimation solution, and additional

low-bandwidth aiding sensors are then employed to bound diverging estimation errors. The proposed filter

implementation does not require a flight dynamics model of the aircraft, facilitates the often tedious Kalman

filtering tuning process, and allows for accurate estimation under large and nonlinear wing deflections. To

illustrate the approach, the technique is verified by means of simulations using sighting devices as aiding sensors,

and an observability study is conducted. In contrast to previous work in the literature based on stereo vision, a sensor

configuration that provides fully observable state estimation is found using only one camera and multiple rate gyros

for Kalman filtering update and prediction phases, respectively.

Nomenclature

D ∈ R3×3 = direction cosine matrix

H ∈ R3×3 = angular velocity to Euler angles rate trans-
formation

Hθ ∈ R1×3 = angular velocity to pitch rate transformation

Hϕ ∈ R1×3 = angular velocity to roll rate transformation

Hψ ∈ R1×3 = angular velocity to yaw rate transformation

K ∈ Z�� = number of cameras
M ∈ Z�� = number of rate gyros
N ∈ Z�� = number of mode shapes
Pb ∈ R = rigid-body angular velocity (x axis)

P̂b ∈ R = rigid-body rate gyro output (x axis)

Pj ∈ R = jth station angular velocity (x axis)

P̂j ∈ R = jth rate gyro output (x axis)

pk∕l ∈ R3 = position of marker kwith respect to camera l
Qb ∈ R = rigid-body angular velocity (y axis)

Q̂b ∈ R = rigid-body rate gyro output (y axis)

Qj ∈ R = jth station angular velocity (y axis)

Q̂j ∈ R = jth rate gyro output (y axis)

Rb ∈ R = rigid-body angular velocity (z axis)

R̂b ∈ R = rigid-body rate gyro output (z axis)

Rj ∈ R = jth station angular velocity (z axis)

R̂j ∈ R = jth rate gyro output (z axis)

r ∈ R3 = displacement vector

rf ∈ R3 = displacement vector in body frame

s ∈ R� = wing arc length

s0 ∈ R� = arbitrary wing arc length
sj ∈ R� = arc length of jth rate gyro

t ∈ R = time instant

w�g�
j ∈ R3 = jth rate gyro noise

xEKF ∈ R3N�3M = extended Kalman filter state

x̂�s� ∈ R3 = local wing x axis
x̂b ∈ R3 = body x axis
ŷ�s� ∈ R3 = local wing y axis
ŷb ∈ R3 = body y axis
ẑ�s� ∈ R3 = local wing z axis
ẑb ∈ R3 = body z axis
Γ ∈ R = wing dihedral angle

δθ ∈ RN = twist modal amplitudes error

δθi ∈ R = ith twist modal amplitude error

δϕ ∈ RN = anhedral modal amplitudes error

δϕi ∈ R = ith anhedral modal amplitude error

δψ ∈ RN = sweep modal amplitudes error

δψ i ∈ R = ith sweep modal amplitude error

εj ∈ R3 = jth rate gyro drift

Θ ∈ RM×N = modal to Euler pitch rates transformation

θ ∈ R = local twist angle

θ ∈ RN = twist modal amplitudes

θi ∈ R = ith twist modal amplitude
~θi ∈ R = ith twist mode shape

Λ ∈ R = wing sweep angle

Φ ∈ RM×N = modal to Euler roll rates transformation

ϕ ∈ R = local anhedral angle

ϕ ∈ RN = anhedral modal amplitudes

φ ∈ R3N = angular to modal rates transformation
~ϕi ∈ R = ith anhedral mode shape

ϕi ∈ R = ith anhedral modal amplitude

Ψ ∈ RM×N = modal to Euler yaw rates transformation

ψ ∈ R = local sweep angle

ψ ∈ RN = sweep modal amplitudes

ψ i ∈ R = ith sweep modal amplitude
~ψ i ∈ R = ith sweep mode shape

ωb ∈ R3 = rigid-body ground truth velocity

ω̂b ∈ R3 = rigid-body rate gyro output

ωj ∈ R3 = jth station ground truth velocity

ω̂j ∈ R3 = jth rate gyro output
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I. Introduction

T HE resulting increased structural flexibility in high-aspect-ratio
wing designs progressively couples aeroelastics with flight

dynamics and generally gives rise to instability and/or poor handling
qualities. Stable and safe piloting calls for stability augmentation
systems (SASs) that simultaneously account for elastic and tradi-
tional flight dynamics degrees of freedom. Consequently, in-flight
estimation of wing shape is beneficial for the control of very flexible
aircraft (VFA). This paper presents a novel technique for wing shape
estimation in the presence of large wing deflections based on
approaches from the field of inertial navigation.
A state estimator is herein called a flight dynamics model-based

estimator if its design requires amathematical dynamicmodel of the

aircraft relating actuator values (e.g., ailerons deflection, flap con-

figuration) to system state trajectory (e.g., velocity, attitude, struc-

tural modal amplitudes). Such estimators are vehicle dependent,

and their application to modified aircraft designs entails lengthy re-

identification/tuning campaigns, e.g., wind tunnel testing, numeri-

cal simulations, and flight testing. Additionally, even when a model

is available, it is often not precise or observable enough to support

state observer-based controller design. To address this challenge,

this paper proposes a model-free approach towing shape estimation

using inertial sensors. The technique avoids strain gauges and fiber

Bragg gratings (FBG) [1] sensing due to their structural strain–

displacement modeling requirements, although their use as com-

plementary aiding sensors is still feasible.
An alternative flight dynamics model-free approach is to employ

sighting devices and stereo-vision tracking of visual references on the

wing.Whereas byusing existing rivets or joint lines (natural candidates

for markers) Tagai et al. [2] failed to achieve satisfactory estimation

accuracy on a Beechcraft Type 65 Queen Air, experiments with

artificialmarkers yielded subpixel precision.Alternatively,Meyer et al.

[3] employed the image pattern correlation technique (IPCT) to exploit

surfaces covered with random patterns (i.e., texture) to estimate wing,

slat, and flap deformations on anAirbusA320.Rudnik and Schwetzler

[4] exploited the same experimental apparatus to study low-speed high

lift and significantly enhance the accuracy and reliability of the pre-

diction of maximum lift for commercial aircraft.
Similarly, Kirmse [5] employed IPCT to estimate the wing shape

of a VUT100 Cobra airplane. During the flight, aircraft vibration

caused significant camera misalignment that ground vibration tests

failed to reproduce. To correct for misalignment during postflight

analysis, Kirmse [5] proposed a technique for recalibration of extrin-

sic parameters (e.g., camera position and orientation) based on visual

data. Camera misalignment also posed a challenge in Ref. [6] in the

study of a high-altitude long-endurance vehicle. In the latter, intrinsic

parameters remained practically constant during flight.
In computer vision, outdoor lighting poses additional problems. In

fact, Kurita et al. [7] devised the flight plan for experiments to
optimize lighting conditions to study static load deformations on a
Cessna Citation Sovereign. Interestingly, because the cameras were
installed inside the cabin, the intrinsic optical parameters were a
function of cabin pressure due to window displacement (and there-
fore compound lens reconfiguration) caused by fuselage deforma-
tion. Pang et al. [8] additionally warn of difficulties due to optimal
shutter speed values being dependent on lighting conditions, and
light reflection from the wing, which was significantly reduced by
application of a light dusting of nonreflective flat white paint for
accurate optical tracking of high-intensity light-emitting diodes
(LEDs). A similar approach using LEDs and videogrammetry was
previously developed for the measurement of wing twist and deflec-
tion as a function of time of an F/A-18 research aircraft at NASA’s
Dryden Flight Research Center [9]. However, the LED housings,
especially outboard toward the trailing edge of the wing, were barely
distinguishable from the background and called for manual selection
of target image locations. Graves and Burner [10] used retro-reflec-
tive tape targets to ensure high-contrast imagery. This allowed for
automated target detection employing blob analysis. Liu et al. [11]
provide a comprehensive and systematic summary of photogram-
metric techniques for aerospace applications.

All computer vision algorithms mentioned above are run offline
after flight testing. A different approach in Ref. [12] pursued in-flight
estimation from active LEDmarkers detection by analog electro-optic
receivers and allowed for continuous data sampling and processing.
However, accurate calibration of analog systems is challenging and
prone to noise; thus, engineering practice usually favors digital sys-
tems. Nevertheless, after an extensive and complex calibration pro-
cedure, this system successfully provided real-time continuous-time
data for a 0.44-scale model of a 17,000-lb fighter airplane.
In-flight wing shape estimators for use in SASs must satisfy hard

real-time computation constraints and high-bandwidth requirements,
thus prohibiting employment of standalone computer vision systems.
A practical alternative often pursued in navigation systems is to resort
to inertial sensors for high-bandwidth data while exploiting low-
bandwidth aiding sensors (e.g., global navigation satellite system
receivers, cameras) for bounding divergent estimation errors. In
Refs. [13,14], extended Kalman filters (EKFs) were implemented,
which combined data from flight dynamics models and inertial
sensors to obtain accurate results for bending; unfortunately, in
Ref. [13] the estimator failed to characterize twist satisfactorily.
Additionally, the techniques in Refs. [13,14] rely on an EKF formu-
lation that precludes simple tuning due to lack of information on
the statistics of the flight dynamics modeling errors. Finally, the
approach inRef. [13] assumed small wing deflections, thus hindering
its application to VFA.
To the best of the authors’ knowledge, this paper is the first attempt

to use the aided inertial navigation framework to estimatewing shape
without resorting to flight dynamics models, and its main contribu-
tion is a novel extended Kalman filter-based technique for wing
shape estimation based on distributed rate gyros and optional aux-
iliary sensors. Because of the use of Kalman filtering, there is great
flexibility in the choice of aiding sensors type, precision, sampling
rates, and number. Herein a case study with sighting devices illus-
trates the technique and its properties. The resulting real-time esti-
mator 1) does not require a flight dynamics model of the aircraft,
2) has a straightforward tuning procedure, 3) has an adequate band-
width for VFA control purposes, and 4) allows for large and nonlinear
wing deflections.
The remainder of the paper is organized as follows: Sec. II pro-

poses a standalone rate gyro algorithm forwing shape estimation, and
Sec. III illustrates the proposed formulation of an extended Kalman
filter to incorporate additional sensor data and enhance estimation
precision. Section IV illustrates the approach using cameras as aiding
devices. Section V investigates the sensor placement impact on filter
observability, and Sec. VI summarizes themain findings of the paper.

II. Standalone Rate Gyro Wing Shape Estimation

A. Algorithm Derivation

This section introduces a technique for estimatingwing shapeusing
an array of rate gyros. Consider an aircraft equippedwithM rate gyros
distributed along its right wing (see Fig. 1). Consider additionally, the
aircraft inertial navigation system (INS) and, accordingly, its associ-
ated global aircraft frame fx̂b; ŷb; ẑbg. The global aircraft frame will
be considered as the rigid-body reference towhich flexible frameswill
be defined. The structural deflection is modeled by defining a defor-
mation reference line (DRL) fixed to the wing structure (see Fig. 1).
Furthermore, theDRL is defined such that it contains allM rate gyros.
The DRL shape is parameterized by Euler angle functions ϕ�s; t�,
θ�s; t�, and ψ�s; t�, where s ∈ R� denotes the arc length along the
reference line (s � 0 at thewing root). In this work, the anglesϕ�s; t�,
θ�s; t�, and ψ�s; t� are called local anhedral, local twist, and local
sweep angles, respectively, and theymodel the orientation of the local
wing frame fx̂�s�; ŷ�s�; ẑ�s�g with respect to the body-fixed global
aircraft frame fx̂b; ŷb; ẑbg. This formulation is similar to the Frenet–
Serret trajectory-based frames approach [15] and neglects extension
effects. Therefore, to increase method accuracy, the DRL should be
located as close as possible to thewing neutral axis, i.e., the axis along
which there are no longitudinal stresses or strains.
Figure 2 further illustrates the proposed deformation description

and axes conventions. If all three local angles are zero at s � s0, i.e.,



ϕ�s0; t� � θ�s0; t� � ψ�s0; t� � 0, then the wing section axes at s �
s0 align with the aircraft body axes, as Fig. 2b suggests. Therefore,
zero local angles do not necessarily correspond to undeformed wing
shape. Additionally, spatially constant angle functions model sweep
and dihedral angles (Λ and Γ, respectively), as Fig. 2a suggests. This
paper defines the DRL as always tangent to the local ŷ�s�. Figures 2b
and 2c illustrate orientation and right-handed sign conventionswhere
the ẑ (ψ)−ŷ (θ)−x̂ (ϕ) rotation order is assumed from body to the
local wing section. This rotation order introduces a singularity in
θ � 90°, which is unlikely to happen even inVFA.On the other hand,
an alternative rotation order such as ẑ (ψ)−x̂ (ϕ)−ŷ (θ) introduces a
singularity in ϕ � 90°, which may occur in VFA.
The jth rate gyro is installed at s � sj, and it is considered aligned

with fx̂�sj�; ŷ�sj�; ẑ�sj�gwithout loss of generality. The corresponding
angle functions are described as a superposition of N basis modes, i.e.,

ϕ�sj; t� �
XN
i�1

~ϕi�sj�ϕi�t� for j � 1; : : : ;M (1)

θ�sj; t� �
XN
i�1

~θi�sj�θi�t� for j � 1; : : : ;M (2)

ψ�sj; t� �
XN
i�1

~ψ i�sj�ψ i�t� for j � 1; : : : ;M (3)

where the symbols ϕ, ~ϕi, and ϕi denote deformation angle, mode
shapes, and modal amplitudes, respectively. Furthermore, a column
vector of modal amplitudes is denoted by a bold symbol, e.g.,

ϕ � �ϕ1; : : : ;ϕN�T . The basis modes f ~ϕi; ~θi; ~ψ i: i � 1; : : : ; Ng; are
chosen to minimize N by accounting for most recurrent shapes
occurring during flight, for instance, by proper orthogonal decom-
position of finite element method simulations to varying loads or
eigenmodes of a representative mass condition [16].

The jth rate gyro yields angular velocity measurements such that0
BB@
P̂j

Q̂j

R̂j

1
CCA �

0
B@ Pj

Qj

Rj

1
CA� εj �w�g�

j (4)

where εj and w�g�
j are, respectively, jth rate gyro’s drift and noise.

Additionally, ωj � �Pj;Qj; Rj�T and ω̂j � �P̂j; Q̂j; R̂j�T denote

ground truth and measured angular velocities described in the jth
rate gyro local frame fx̂�s�; ŷ�s�; ẑ�s�g, respectively. Similarly,ωb �
�Pb;Qb; Rb�T and ω̂b � �P̂b; Q̂b; R̂b�T denote ground truth and

measured angular velocities expressed in the global rate gyro frame

fx̂b; ŷb; ẑbg, respectively. Angular velocities are related to the deriv-
atives of the Euler angles according to

∂
∂t

0
BB@
ϕ�sj; t�
θ�sj; t�
ψ�sj; t�

1
CCA

�

2
6664
1 sinϕ�sj; t� tan θ�sj; t� cosϕ�sj; t� tan θ�sj; t�
0 cosϕ�sj; t� − sinϕ�sj; t�
0

sinϕ�sj;t�
cos θ�sj;t�

cosϕ�sj;t�
cos θ�sj;t�

3
7775

|�������������������������������������������������{z�������������������������������������������������}
H�ϕ�sj;t�;θ�sj;t�;ψ�sj;t��

×

0
BBB@

Pj�t� −Db
j �t�Pb�t�

Qj�t� −Db
j �t�Qb�t�

Rj�t� −Db
j �t�Rb�t�

1
CCCA (5)

a)

( , )
( , )

( , )
( , )

( , ) ( , )
( , ) ( , )

b)

( , )

( , ) = 0

( , ) = 0
( , )

( , )
( , )

c)

( , )

( , )

( , ) ( , )

( , ) ( , )
( , ) ( , )

Fig. 2 Deformation examples.

Fig. 1 Rate gyros placement and deformation reference line s definition.



where Db
j �t� is the direction cosine matrix from fx̂b�t�; ŷb�t�; ẑb�t�g to fx̂�sj; t�; ŷ�sj; t�; ẑ�sj; t�g, given by

Db
j �t� �

2
4 cos θ cosψ cos θ sinψ − sin θ
�− cosϕ sinψ � sinϕ sin θ cosψ� �cosϕ cosψ � sinϕ sin θ sinψ� sinϕ cos θ
�sinϕ sinψ � cosϕ sin θ cosψ� �− sinϕ cosψ � cosϕ sin θ sinψ� cosϕ cos θ

3
5 (6)

and ϕ � ϕ�sj; t�, θ � θ�sj; t� and ψ � ψ�sj; t�, as a shorthand

notation.
The first, second, and third rows ofH are denoted byHT

ϕ,H
T
θ , and

HT
ψ , respectively, such that

Hϕ

�
ϕ�sj; t�; θ�sj; t�;ψ�sj; t�

�
�
h
1 sinϕ�sj; t� tan θ�sj; t� cosϕ�sj; t� tan θ�sj; t�

i
T

(7)

Hθ

�
ϕ�sj; t�; θ�sj; t�;ψ�sj; t�

�
�
h
0 cosϕ�sj; t� − sinϕ�sj; t�

i
T

(8)

Hψ

�
ϕ�sj; t�; θ�sj; t�;ψ�sj; t�

�
�
h
0

sinϕ�sj;t�
cos θ�sj;t�

cosϕ�sj;t�
cos θ�sj;t�

i
T

(9)

To avoid clutter, the compound function notation Hϕ�sj; t�,
Hθ�sj; t�, and Hψ �sj; t� will be used for the left-hand sides of

Eqs. (7–9). Furthermore, note that

∂
∂t
ϕ�sj; t� �

XN
i�1

~ϕi�sj� _ϕi�t� for j � 1; : : : ;M (10)

∂
∂t
θ�sj; t� �

XN
i�1

~θi�sj�_θi�t� for j � 1; : : : ;M (11)

∂
∂t
ψ�sj; t� �

XN
i�1

~ψ i�sj� _ψ i�t� for j � 1; : : : ;M (12)

and thus, using Eq. (5) and the definition of ωj, one obtains

HT
ϕ�ωj −Db

jωb� �
XN
i�1

~ϕi�sj� _ϕi�t� for j � 1; : : : ;M (13)

HT
θ �ωj −Db

jωb� �
XN
i�1

~θi�sj�_θi�t� for j � 1; : : : ;M (14)

HT
ψ �ωj −Db

jωb� �
XN
i�1

~ψ i�sj� _ψ i�t� for j � 1; : : : ;M (15)

which can be recast as the following systems of linear algebraic

equations:

0
BB@

HT
ϕ�s1; t��ω1 −Db

jωb�
..
.

HT
ϕ�sM; t��ωM −Db

jωb�

1
CCA �

2
664

~ϕ1�s1� · · · ~ϕN�s1�
..
. . .

. ..
.

~ϕ1�sM� · · · ~ϕN�sM�

3
775

|����������������������{z����������������������}
Φ

0
BB@

_ϕ1

..

.

_ϕN

1
CCA

(16)

0
BB@

HT
θ �s1; t��ω1 −Db

jωb�
..
.

HT
θ �sM; t��ωM −Db

jωb�

1
CCA �

2
664

~θ1�s1� · · · ~θN�s1�
..
. . .

. ..
.

~θ1�sM� · · · ~θN�sM�

3
775

|����������������������{z����������������������}
Θ

0
BB@

_θ1
..
.

_θN

1
CCA

(17)

0
BB@

HT
ψ �s1; t��ω1 −Db

jωb�
..
.

HT
ψ �sM; t��ωM −Db

jωb�

1
CCA �

2
664

~ψ1�s1� · · · ~ψN�s1�
..
. . .

. ..
.

~ψ1�sM� · · · ~ψN�sM�

3
775

|�����������������������{z�����������������������}
Ψ

0
BB@

_ψ1

..

.

_ψN

1
CCA

(18)

Note thatΦ,Θ, andΨ depend only on the choice of basis functions

and sensor placement. Assuming M > N and invertibility of ΦTΦ,

ΘTΘ, and ΨTΨ, the least-squares solutions of Eqs. (16–18) are

given by0
BB@

_ϕ1

..

.

_ϕN

1
CCA � �ΦTΦ�−1ΦT

0
BB@

HT
ϕ�s1; t��ω1 −Db

jωb�
..
.

HT
ϕ�sM; t��ωM −Db

jωb�

1
CCA (19)

0
BB@

_θ1
..
.

_θN

1
CCA � �ΘTΘ�−1ΘT

0
BB@

HT
θ �s1; t��ω1 −Db

jωb�
..
.

HT
θ �sM; t��ωM −Db

jωb�

1
CCA (20)

0
BB@

_ψ1

..

.

_ψN

1
CCA � �ΨTΨ�−1ΨT

0
BB@

HT
ψ �s1; t��ω1 −Db

jωb�
..
.

HT
ψ �sM; t��ωM −Db

jωb�

1
CCA (21)

Integrating Eqs. (19–21) in time yields the standalone rate gyro

wing shape estimation (RG-WSE) algorithm. All estimated outputs

from the RG-WSE algorithm are represented in this work with a hat

on its corresponding symbol. For instance, ϕ̂1�t� is the RG-WSE

estimate of ϕ1�t�. Additionally, in state-space representation,

Eqs. (19–21) can be recast as _x � φ�x; u�, where x � �ϕ; θ;ψ�
and u � �ω1; : : : ;ωM;ωb�. Figure 3 illustrates the algorithm’s input

and output variables. Inputs are angular velocity measurements atM
multiple wing locations and at the global aircraft frame, and outputs

are modal amplitudes in a truncated N-dimensional space of defor-

mation modes, i.e., ϕ̂, θ̂, and ψ̂ ∈ RN .

Fig. 3 Schematic of RG-WSE algorithm.



B. RG-WSE Angles to Displacement Formulation Transformation

Although the RG-WSE algorithm uses an angle-based parameter-

ization of wing deformation, displacement-based coordinates are

often desired instead. This section presents how to transform between

these descriptions.
Figure 4 illustrates both descriptions at the same point s � sj. At

any given time t, the displacement formulation r�s; t� maps a given

point s units of distance away from the wing root along the wing

shape. At a fixed instant of time t, note that

∂r
∂s

�s; t� � ŷ�s; t� (22)

since r�s; t� is parameterized by the arc length. In the body-fixed

frame fx̂b; ŷb; ẑbg, integrating Eq. (22) yields

rf�s; t� �
Z

s

0

D�ϕ�s; t�; θ�s; t�;ψ�s; t��T� 0 1 0 �T ds (23)

where rf is the displacement vector described in the body frame, and

D�ϕ; θ;ψ� is the direction cosine matrix given by

D�ϕ; θ;ψ� �
2
4 cos θ cosψ cos θ sinψ − sin θ
�− cosϕ sinψ � sinϕ sin θ cosψ� �cosϕ cosψ � sinϕ sin θ sinψ� sinϕ cos θ
�sinϕ sinψ � cosϕ sin θ cosψ� �− sinϕ cosψ � cosϕ sin θ sinψ� cosϕ cos θ

3
5 (24)

where ϕ�s; t�, θ�s; t�, and ψ�s; t� are obtained according to Sec. II.A.

C. RG-WSE-Based Wing Coordinates

In previous sections, the wing deformation was kinetically

described as an elastica with torsion and two bending degrees of

freedom related to the local angles attached to points on thewing. All

rate gyros were considered installed on the DRL. However, addi-

tional sensors might be installed in stations disjoint from the DRL. In

this case, an extrapolationmodel for positioning points not belonging

to the deformation line is required.
Each point on the wing can be described by the sum of a reference

point rf�s0; t� in the deformation line in s0, and aΔp vector orthogo-

nal to the DRL.
This work assumes that cross sections normal to the DRL are rigid

under wing deformation. This implies that Δp is always written as

�Δx; 0;Δz� in the fx̂�s0�; ŷ�s0�; ẑ�s0�g basis, where Δx and Δz are

constant in time. Therefore, every point on thewing at any given time

can have its position described as the triple �s0;Δx;Δz�; these are

hereafter called wing coordinates, and relate to global frame position

pf according to

pf � rf�s0; t� �D
�
ϕ�s0; t�; θ�s0; t�;ψ�s0; t�

�
T

0
@Δx

0

Δz

1
A (25)

III. RG-WSE Error Model for Extended Kalman
Filtering

For fusing sensor output data with extended Kalman filtering, this

work uses a linearized model for RG-WSE errors. To best conform

with RG-WSE, the state vector to be estimated is composed of modal

amplitude errors and rate gyro drifts. Accordingly,

xEKF�
�
δϕ1 ·· · δϕN δθ1 ·· · δθN δψ1 · ·· δψN εT1 ·· · εTM εTb

�
T

(26)

where δϕi, δθi, and δψ i are defined as the difference between the

ground truth and the RG-WSE-computed values. Therefore,

δϕi � ϕi − ϕ̂i for i � 1; : : : ; N

δθi � θi − θ̂i for i � 1; : : : ; N

δψ i � ψ i − ψ̂ i for i � 1; : : : ; N (27)

or, in matrix notation, δϕ � ϕ − ϕ̂, δθ � θ − θ̂, and δψ � ψ − ψ̂ .
Assuming a constant rate gyro bias model (i.e., _εj � 0), linearizing
Eq. (27) with respect to the EKF state and noise yields

_xEKF �
 
φ�x;u�−φ�x̂; û�

03M×1

!
≈

"
∂φ
∂ϕ

∂φ
∂θ

∂φ
∂ψ

∂φ
∂u

0 0 0 0

#
|������������{z������������}

A

xEKF�
∂φ
∂u|{z}
G

w�g�

(28)

where w�g� aggregates all the sensor noise vectors, i.e., w�g� �
�w�g�

1 ; : : : ;w�g�
M ;w�g�

b �, and all the Jacobians are evaluated at �x̂; û�,
obtained here numerically by means of first-order finite differences.

Similarly, a discrete-time model is obtained by

xEKF�tk� ≈ xEKF�tk−1� � _xEKFΔt

� �AΔt� I�|�����{z�����}
Fk

xEKF�tk−1� � GEKF|{z}
Gk

∂w�g� (29)

where ∂w�g� is the discrete-time white noise equivalent of w�g�. The
statistics of ∂w�g� should conform to rate gyro manufacturer specifi-

cations. The prediction step of the EKF is then written as

x̂kjk−1 � Fkx̂k−1jk−1

Pkjk−1 � FkPk−1jk−1FT
k �GkQkG

T
k (30)

where Qk, Pkjk, and Pkjk−1 are the covariance of the rate gyros noise,
the a posteriori error covariance matrix, and the a priori error covari-

ance, respectively. This formulation provides a simple recipe for EKF

tuning because Qk is directly related to rate gyro manufacturer spec-

ifications. However, artificial process noise inflation might be neces-

sary to account for linearization errors and aliasing in RG-WSE.
Figure 5 illustrates the proposed aided inertial wing shape estima-

tor architecture. Additional aiding sensors (e.g., cameras, strain

gauges, accelerometers) could be added to the architecture by means

of adequate modeling of their EKF observation equations. The next

section illustrates an application using sighting devices as aiding

sensors. Periodical correction of RG-WSE must be performed with

the acquired EKF estimates to decrease the effect of linearizationFig. 4 Angle-based and displacement-based descriptions.



errors. Additionally, the estimated rate gyro drifts are calibrated
during flight by subtracting in software their biases based on Eq. (4).

IV. Camera-Aided Rate Gyro Wing Shape Estimation

It will now be shown that integration in time of rate gyro drift and
noise in Eqs. (19–21) yields unbounded RG-WSE estimation errors.
Therefore, additional sensors are required to prevent estimation errors
from diverging in time. Auxiliary devices can be incorporated in the
RG-WSE framework by means of EKF observation equations. This
work proposes an implementation of EKF update phase that employs
mappings from modal amplitude errors (i.e., δϕ, δθ, and δψ) to
auxiliary sensors output. This section illustrates this for a sighting
device case studywherevisualmarkers are 1) placed at knownpositions
on thewing, and are 2) tracked by cameras rigidly installed close to the
wing root. For a given camera, the auxiliary sensor output is defined as
the difference in pixels between a measured marker position and the

predicted marker position based on RG-WSE outputs ϕ̂, θ̂, and ψ̂ , and
camera–marker positioning. Multiple markers, Mk, k � 1; : : : ; K,
tracked by multiple cameras, Cl, l � 1; : : : ; L, are considered.

A. EKF Observation Equations

The proposed rate gyro and sighting device data fusion technique
is based on tracking visual markers Mk, each with a priori known
wing location �sk; xk; zk�. Recall from Sec. II.C that points fixed to
the wing are modeled assuming constant wing coordinates during
deformation. For each marker Mk, its position with respect to a

camera Cl, denoted by pk∕l ∈ R3, is described in the Cl camera
coordinate frame using a pinhole camera model as

pk∕l � −Df
l r

Cl

f �Df
l rf�sk; t�

�Df
l D�ϕ�sk; t�; θ�sk; t�;ψ�sk; t��T

0
BB@
xk

0

zk

1
CCA (31)

whereDf
l and r

Cl

f denote the direction cosinematrix from body frame

to camera Cl frame, and camera position with respect to wing root in

body frame, respectively (see Fig. 6). All cameras are assumed fixed

in body frame and thus Df
k is constant. Hence the camera measure-

ment zk∕l ∈ R2 in pixels is given by

zk∕l � Π
fpk∕l

� 1 0 0 �pk∕l (32)

where f ∈ R is the focal length in pixels and Π is defined by

Π �
�
0 1 0

0 0 1

�
(33)

Given these assumptions, zk∕l depends exclusively on modal

amplitudes ϕi, θi, and ψ i, i � 1; : : : ; N. Therefore, zk∕l linearization
yields

zk∕l�ϕ; θ;ψ� − zk∕l�ϕ̂; θ̂; ψ̂�|�����������������������{z�����������������������}
≜Δzk∕l

� ∂z
∂ϕ

k∕l
δϕ� ∂z

∂θ
k∕l
δθ� ∂z

∂ψ
k∕l
δψ

(34)

Consequently, an appropriate model for an observation equation is

given by

Δzk∕l �
�
∂z
∂ϕ

k∕l ∂z
∂θ

k∕l ∂z
∂ψ

k∕l ∂z
∂ε1

k∕l
· · ·

∂z
∂εM

k∕l ∂z
∂εb

k∕l
�

|������������������������������������������������{z������������������������������������������������}
Hk∕l

xEKF

�wk∕l
CAM (35)

where wk∕l
CAM ∈ R2 is additive white Gaussian noise with statistics

depending on camera quality, tracking algorithm performance, and

marker–camera positioning, �∂zk∕l∕∂εj� � 0 for all j � 1; : : : ;M,

and �∂zk∕l∕∂εb� � 0. With a linear sensor model in hand, the

EKF incorporates measurements through the classical Kalman filter

formulas [17]:

yk � Δzk∕l −Hk∕lx̂kjk−1

Sk � Hk∕lPkjk−1�Hk∕l�T � Rk

Kk � Pkjk−1�Hk∕l�TS−1k
x̂kjk � x̂kjk−1 � Kkyk

Pkk � �I − KkH
k∕l�Pkjk−1 (36)

whereRk � E�wk∕l
CAM�wk∕l

CAM�T � is themeasurement noise covariance,

and the mean of the measurement noise is assumed to be zero. In

practice, artificial Rk inflation with respect tow
k∕l
CAM might be neces-

sary to account for additional sources of uncertainties, e.g., camera

vibration.
Rate gyro-based EKFprediction updates occur at a higher rate than

EKF observation updates from the camera measurements. Thus

a) Camera axis definition and symbols b) Camera view

Fig. 6 Camera-related symbols and frame definitions.

Fig. 5 Aided inertial wing shape estimator overall architecture.



between two updates from the camera measurements per Eq. (36)
therewill bemultiple prediction updates from the gyromeasurements
per Eq. (30). This allows for heterogeneous sensor configurations
with respect to sampling time, and favors nonuniform sampling.
In this work, camera tracking algorithms are not considered;

instead, it is assumed that image processing already took place with
precision represented by wk∕l

CAM. Examples of target-tracking image
processing algorithms in the context ofwing deformation are given in
Refs. [8,10]. However, Pang et al. [8] build upon a stereo vision setup
to update an EKF with estimated 3D positions of markers. The
present camera-aided rate gyro wing shape estimation (CRG-WSE)
approach eliminates the need for stereo vision because it uses the 2D
projections of markers in the camera plane directly. As a conse-
quence, any number of cameras can be employed independently,
rendering camera frame synchronization unimportant.

B. Standalone and Aided Methods Comparison

By means of computer simulation, two experiments were con-
ducted to illustrate the degrees of observability of standalone and
aided observer algorithms. In both numerical experiments, rightwing
shape estimation of an aircraft is pursued while performing a har-
monic motion given by

ϕ�s; t� � Γ� sΓ0 sin�ωt�
θ�s; t� � 0

ψ�s; t� � Λ

ωb�t� � 0 (37)

where 0 < t < tsim, 0 < s < b. Additionally, Γ, Γ0, Λ, and Λ0 are
scalar constants given in Table 1. The overall trajectory of the wing
due to this deformation profile is illustrated in Fig. 7a. For algorithm
implementation, polynomial shape basis and N � 2 are assumed,
thusmatching the number ofmodes in ground truth, and, accordingly,

~ϕ1�s� � ~θ1�s� � ~ψ1�s� � 1

~ϕ2�s� � ~θ2�s� � ~ψ2�s� � s (38)

leading to ground truth values given by

ϕ�t� �
 
ϕ1�t�
ϕ2�t�

!
�
 

Γ

Γ0 sin�ωt�

!
; θ�t� �

 
θ1�t�
θ2�t�

!
�
�
0

0

�
;

ψ�t� �
 
ψ1�t�
ψ2�t�

!
�
�Λ

0

�
(39)

Ten rate gyros were installed in thewing according to the position-
ing defined in Fig. 7b. In the camera-aided case, additional visual
trackers and sighting devices are installed as also depicted in Fig. 7b.
Their biases and noise characteristics are described in Table 2, and are
purposely deteriorated with respect to the performance of low-cost
inertial measurement units (IMUs) readily available in the market
(e.g., the Xsens MTi 100-series) to reduce simulation time.
Figure 8 illustrates the simulation results for both standalone and

camera-aided experiments. Modal amplitude and bias estimation
errors are plotted with their respective 2σ EKF covariances. More-

over,
																																				
δϕ2

1 � δθ21 � δψ2
1

p
and

																																				
δϕ2

2 � δθ22 � δψ2
2

p
are plotted sepa-

rately due to their distinct orders of magnitude.
Note that standalone estimation has its errors diverging with time;

thus, its use imposes an upper bound on the duration of missions. On
the other hand, the camera-aided estimator yields bounded errors.
However, for the given sensor imperfection statistics, rate gyro drift is
negligibly estimated because its initial covariance is only marginally
greater than the steady-state filter covariance.

V. Observability Analysis

This section studies the impact of rate gyros and visual markers
number and placement on the proposed camera-aided estimator
precision. For that purpose, the numerical experiment in Sec. IV.B
is repeated with different sensor configurations. Since N � 2 was
assumed, a minimum of two rate gyros is required for RG-WSE
implementation, as discussed in Sec. II.A. Avarying quantity from 2
to 10 rate gyros in even numbers is examined assuming equally
spaced placement along the semispan b (see Fig. 9a). For each rate
gyro configuration, the visual markers quantity is also varied from 2
up to 10 in even numbers. Their placement starts at the wingtip
(s � b) and proceeds inward with 2 m spacing (see Fig. 9b). Addi-
tionally, odd- and even-numbered markers are placed toward the
leading and trailing edges, respectively, but always 2 m away from
the DRL.
Although a universal figure of merit for measuring observability is

nonexistent [18], observability is evaluated herein through end-of-
simulation EKF Pkjk covariances comparison. In this sense, smaller

Table 1 Wing shape movement description in
simulation

Γ Γ0 Λ tsim b ω

−0.09 rad 0.03 rad 0.36 rad 20 s 17 m π rad/s

a) Deformation trajectory b) Sensor positioning

o o o o o o o o o ox
x

x

x

x

o: Rate-gyro (×10)
x: Visual Marker (×5)

Fig. 7 Simulation wing trajectory and sensor positioning.

Table 2 Sensor bias and noise statistics in simulation

εb εj Rate gyro noise density (w�g�
j ) Camera noise standard deviation (ωk∕l

CAM)

0.1 ⋅ �1; 1; 1� deg ∕s 0.2 ⋅ �1; 1; 1� deg ∕s 0.01 deg ∕s∕Hz 0.01 m (assuming f � 1)



covariances are associated with more observable, thus more precise,
configurations. Figure 10 displays end-of-simulation EKF standard
deviations for each proposed configuration. Because EKF covariances
vary slightly across simulation runs, due to different EKF Jacobians
values occurring due to RG-WSE random errors, Fig. 10 displays the
root mean square (RMS) values of Monte Carlo simulations with 10
independent runs for each configuration. Each independent simulation

randomly samples different rategyros drift εj andnoisew
�g�
j values.As

expected, observability increases with the number of sensors and
markers. However, as the number of markers increases, the impact
on system accuracy of increasing the number of rate gyros gets
diminished. Additionally, modal error standard deviations decrease
log-linearly with the number of visual markers.
The comments above suggest some design guidelines for choosing

sensor quantity numbers. First, the designer determinesN by deciding
how many (and which) basis modes best represent the bulk of the

in-flightwingdeformations. The number of rategyrosM shouldmatch
N, and there is little gain in adding additional units. Subsequently, the
number of markers K is chosen to attain the desired performance or
should be as large as the visual tracking algorithm allows without
violating robustness and real-time requirements. Note that a system
with no camera updates would have estimation errors diverging,
whereas a system with no rate gyros would have low bandwidth as
measurements are available only at camera sampling instants.

Fig. 8 Comparison of estimated error and predicted EKF covariance for standalone estimation (on the left) and aided estimation (on the right).

b) Positioning of K markers, K     {2, 4, . . . , 10},     = 2 m

a) Positioning of M rate gyros, M     {2, 4, . . . , 10}

Fig. 9 Sensorpositioningpatterns for observability analysis experiments.

Fig. 10 EKF 2σ values at the end of the simulation (t � 100 s) for
different instrumentation quantities.



Although RG-WSE imposes rate gyros installation on the DRL,
visual markers are allowed to be anywhere on the wing. However,
some practical considerations must be respected. For example,
Fig. 11 shows the outcome of a numerical experiment where five
equally spaced visual markers are positioned on the reference
deformation line (instead of closer to the leading and trailing edges
as before). The noticeably degraded observability in θ, by a factor of
10 in precision with respect to the other components (and previous
experiments in Sec. IV.B), reinforces the intuitive result that a line
cannot fully define a rigid-body orientation. Therefore, rectilinear
placement of markers should be avoided if wing twist estimation is
pursued.

VI. Conclusions

This paper proposed a novel technique for high-bandwidth real-
time estimation of wing shape using an array of rate gyros, and lays
the groundwork for tight EKF interfacing with additional sensors.
Tight EKF coupling eliminates suboptimal assumptions that often
reduce precision and make tuning impracticable in reality. To further
facilitate tuning, the proposed technique avoids resorting to flight
dynamics models because their uncertainties are difficult to charac-
terize. Furthermore, design guidelines are provided for tuning and
deciding on sensor number and placement.
The proposed technique inherits the benefits of Kalman filtering,

e.g., multirate asynchronous aiding sensors integration, low compu-
tational cost, and fault detection, isolation, and recovery capabilities.
In particular, this work shows that tight optical system integration
yields a fully observable state estimation using a single camera. This
contrasts with previous research, where loosely coupled integration
called for stereo vision approaches (thus two sighting devices or
more). Finally, much room remains for future research. This includes
the analysis of the case when gyros are not installed on the DRL, and
impact on the accuracy at higher frequencies when the camera may
fail to capture all the information.
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