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On the breaking inception of unsteady water
wave packets evolving in the presence of
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(Received 11 August 2020; revised 31 October 2020; accepted 15 January 2021)

The recent numerical study of Barthelemy et al. (J. Fluid Mech., vol. 841,
2018, pp. 463–488) investigated the local properties of two-dimensional (2-D) and
three-dimensional (3-D) nonlinear unsteady gravity wave packets in deep and uniform
intermediate depth water. Their study focused on the breaking inception transition zone
separating maximum recurrence and marginal breaking, and reported that a suitably
normalized energy flux localized at the steepest crest in the packet provides a robust
breaking threshold parameter. Our present study uses the fully nonlinear boundary integral
element method solver developed by Touboul & Kharif (Nat. Haz., vol. 84, issue 2, 2016,
pp. 585–598) to investigate breaking inception of 2-D deep water nonlinear water wave
packets propagating in the presence of a background current that varies linearly with
depth. We seek to validate whether the proposed generic breaking inception threshold
holds for the case of constant background vorticity. Results are presented for different
packet bandwidths and background vorticity levels.

Key words: surface gravity waves, wave breaking

1. Introduction

Despite its long research history, the physics underpinning the breaking of water waves
has remained incompletely understood, including prediction of its onset and strength. Yet,
this knowledge is of fundamental importance in quantifying atmosphere–ocean exchanges,
determining structural loadings on ships and platforms and optimizing operational
strategies for maritime enterprises.

Predicting the breaking onset of water waves has drawn the attention of many
studies since the pioneering work of Stokes (1847). Based on theoretical considerations,

† Email address for correspondence: julien.touboul@mio.osupytheas.fr
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numerical simulations, laboratory experiments and field observations, various criteria have 
been proposed to predict the onset of breaking within evolving wave groups. However, 
while adding many insights, until very recently these approaches have not yielded a 
robust breaking threshold for phase-resolved waves in the physical domain. In this context, 
we note that an important discrepancy has existed between the theoretical background, 
and numerical and experimental observations. No theory had been able to predict the 
occurrence of a fluid velocity exceeding the wave crest celerity until the recent works by 
Constantin (2015) and Martin (2016). These authors, based on a parametric description of 
the surface, demonstrated analytically that this feature becomes possible only through the 
appearance of asymmetry in the wave profile. This is consistent with the recent unsteady 
crest behaviour that underpins the breaking onset framework proposed in Barthelemy et al.
(2018).

Briefly, it has long been considered that breaking is a process characterized by 
a threshold, with criteria for predicting breaking onset falling into three categories: 
geometric, kinematic and energetic.

For clarity, we note that recent progress (e.g. Barthelemy et al. 2018; Derakhti, Thomson 
& Kirby  2020) highlights the important distinction between ‘breaking inception’ and the 
traditional descriptor ‘breaking onset’. The former refers to the initial instant when a wave 
crest begins evolving towards breaking, which precedes the subsequent visible ‘breaking 
onset’ phase. Moreover, ‘inception’ occurs when the wave crest tip is still single valued 
and unbroken, whereas ‘onset’ is visible as a multi-valued crest tip that rapidly evolves to 
a spilling or plunging breaker.

Most of the published breaking criteria rely on the evolution of geometric or kinematic 
parameters exceeding a given threshold. Such parameters include local wave steepness, 
maximum global steepness, wave asymmetry, occurrence of vertical faces within the 
forward wave face, Lagrangian crest acceleration or the ratio between phase velocity 
and crest fluid speed. A comprehensive review of such breaking criteria can be found 
in Perlin, Choi & Tian (2013). The recent contributions of Shemer (2013), Kurnia & 
Van-Groesen (2014), Shemer & Liberzon (2014) and Shemer & Ee (2015) add to this  
otherwise exhaustive coverage.

Recently, several studies followed a third approach to describe the onset of breaking, 
falling into a dynamical category. This concept is based on the evolution of the intragroup 
energy flux, which causes the tallest crest of an unsteady wave group to break when a local 
stability threshold is exceeded. Monitoring of the energy flux field in this highly nonlinear 
unsteady flow environment makes rigorous analysis difficult. The overview article by 
Tulin & Landrini (2000) highlights the very insightful inroads made by Tulin and his 
collaborators over the previous decade into unsteady nonlinear wave group evolution and 
breaking, based on intragroup energy flux theory, simulations, observations and analyses. 
One of the key results they proposed from their studies is that breaking onset is initiated 
within a wave group when the crest particle speed exceeds the linear group speed. Pending 
verification of its general validity, this criterion would signal breaking onset much earlier 
than the traditional kinematic criterion.

Subsequently, Banner & Tian (2007), Song & Banner (2002) and the experimental study 
of Banner & Peirson (1998) investigated a growth rate based on a parametric energy 
convergence rate for two-dimensional (2-D) wave groups, using a frame of reference 
that tracks the wave group maximum. Perlin et al. (2013) discussed the merits of this 
approach based on the further study of Tian, Perlin & Choi (2008) for 2-D wave breaking. 
More recently, Derakhti & Kirby (2016) reported very encouraging support for this 
approach in their numerical study of unsteady 2-D wave packets in a model framework 
that can accommodate sequential (multiple) breaking events as the packet evolves.
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Breaking waves in the presence of vorticity

They confirmed the presence of systematic crest/trough leaning motions, as previously
observed by Johannessen & Swan (2001, 2003); Katsardi & Swan (2011), and investigated
in detail in Barthelemy et al. (2016).

Very recently, Barthelemy et al. (2018) investigated several 2-D and 3-D transient wave
packets evolving in deep and intermediate water depths, for a range of packet bandwidths.
They monitored a parameter B formed from the local energy flux normalized by the
local energy density and the local crest speed. On the wave surface, their B parameter
elegantly reduces to the ratio of fluid speed to crest speed, providing an analogy with the
kinematic criteria previously introduced. From an ensemble of numerical simulations, they
discovered that the tallest wave in every wave packet that evolved to breaking transitioned
through the value of B ∼ 0.855, while all non-breaking crests never reached this B level,
hence providing a robust, generic, breaking inception predictor for the ensemble of cases
they investigated. Subsequently, Derakhti, Banner & Kirby (2018) discovered that the
rate of change of this parameter, dB/dt normalized by the local carrier wave period
provided a generic predictor of the breaking strength parameter from which the wave
energy dissipation from the breaking event can be calculated.

Recent papers have emphasized the significant role of vorticity in the dynamics of water
waves (e.g. Rey, Charland & Touboul 2014). Several configurations were studied, and new
models were introduced (Touboul et al. 2016; Belibassakis et al. 2017, 2019; Belibassakis
& Touboul 2019; Touboul & Belibassakis 2019), including the specific case of steep waves
formed by dispersive focusing (Touboul & Kharif 2016; Kharif, Abid & Touboul 2017).

In this study, we seek to verify whether the proposed generic breaking inception
threshold B ∼ 0.855 holds for the case of constant background vorticity. Indeed, in
many natural configurations, wave breaking occurs in areas where vorticity is involved.
These configurations can arise through the action of wind, current interacting with abrupt
changes in the bathymetry or friction due to the bottom. While the current variation with
depth is not always linear, this assumption corresponds to a convenient description of these
flow configurations, involving water waves propagating with either positive or negative
vorticity.

It is thus natural to understand whether the breaking of steep, nonlinear water waves
will be affected by vorticity. To investigate this fundamental question, our approach is
based on a numerical analysis of transient, 2-D deep and intermediate depth water wave
packets, evolving in the presence of various background vorticity levels. Following a
brief description of the numerical approach, results for different bandwidth packets are
analysed, to determine the robustness of this breaking inception predictor. We investigate
their kinematic behaviour to determine the influence of the vorticity on near-breaking wave
groups, especially the capability of the parameter B to predict the inception of breaking. In
addition, we investigate the associated wave crest geometry of marginally breaking wave
crests propagating with and without vorticity.

2. Mathematical and numerical modelling of the problem

2.1. General equations
For simplicity, the problem described here is considered to be two-dimensional in the
vertical plane. The current field is assumed to be steady, constant in the horizontal (x)
direction, and to vary linearly with depth,

U(z) = U0 + Sz. (2.1)

where U0 refers to the current velocity at the free surface, and S corresponds to its variation 
with depth. Since 3-D effects are neglected in this study, the vorticity Ω within the flow

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

65
D

ow
nl

oa
de

d 
fr

om
 h

tt
ps

://
w

w
w

.c
am

br
id

ge
.o

rg
/c

or
e.

 U
ni

ve
rs

ite
 D

e 
To

ul
on

 E
t D

u 
Va

r,
 o

n 
09

 M
ar

 2
02

1 
at

 1
5:

07
:2

6,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2021.65
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


J. Touboul and M.L. Banner

is constant, with Ω = S. It is straightforward to show that such a current, associated
with the hydrostatic pressure P(z) = p0 − ρgz, is a solution of the Euler equations
when considering a problem of constant depth, ρ being the density of water, and g the
acceleration due to gravity. Thus, wavy perturbations can be assumed in the form of a
velocity field (u(x, z, t), v(x, z, t)), associated with the pressure field p(x, z, t). The total
flow fields are then given by

ũ(x, z, t) = u(x, z, t)+ U(z),

ṽ(x, z, t) = v(x, z, t) and

p̃(x, z, t) = p(x, z, t).

⎫⎪⎬
⎪⎭ (2.2)

Using this decomposition, the Euler equations reduce to

ut + (U + u)ux + vUz + vuz = −px

ρ
and (2.3)

vt + (U + u)vx + vvz + g = −pz

ρ
, (2.4)

which has to be satisfied together with the continuity equation

ux + vz = 0. (2.5)

As demonstrated in Simmen (1984), and more recently in Nwogu (2009), the wavy
perturbations propagating in such current conditions are irrotational. Indeed, since the
second derivative of the background current Uzz is zero, the vorticity conservation equation
involves no source term, and the vorticity field does not exchange any vorticity with the
wavy perturbations. Yet, it should be emphasized that the presence of constant non-zero
vorticity in the background flow might be responsible for substantial changes in the
dynamical phenomena, even when considering classical scenario of symmetric travelling
water waves. An interesting illustration of such changes is provided by the appearance of
the so-called Kelvin cat’s eye patterns, which correspond to the occurrence of flow reversal
within the orbital velocity field. Discussion of these patterns can be found in Constantin,
Strauss & Varvaruca (2016) and Dyachenko & Hur (2019). However, provided the absence
of exchange of vorticity between the mean flow and the wavy flow, we can introduce
a velocity potential φ(x, z, t) from which to derive the perturbation induced velocities
(∇φ = (u, v)). It is emphasized that the continuity equation (2.5) is automatically satisfied
if the velocity potential is a solution of Laplace’s equation

Δφ = 0. (2.6)

The kinematic free surface condition can also be expressed, and if (X, Z) denotes the
location of a fluid particle at the free surface, this condition might be expressed

dX
dt

= u and
dZ
dt

= v − U(η)
∂η

∂x
, (2.7a,b)

where d/dt refers to the material derivative d/dt = ∂/∂t + u∂/∂x + v∂/∂z and Z =
η(x, t).

A streamfunction ψ can also be introduced, so that (∂ψ/∂z,−∂ψ/∂x) = (u, v). The
Euler equations (2.3) and (2.4) can now be integrated in space, giving

∂φ

∂t
+ U(z)

∂φ

∂x
+ ∇φ2

2
− Sψ + gz = − p

ρ
. (2.8)

When applied to the free surface, where the pressure is constant, this equation provides 
the classical dynamic boundary condition. Introducing the material derivative used in the
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Breaking waves in the presence of vorticity

kinematic condition, this condition reduces to

dφ
dt

+ U(η)
∂φ

∂x
− ∇φ2

2
− Sψ + gη = 0. (2.9)

At this point, the knowledge of the streamfunction ψ at the free surface is still needed. We
note the relationship

∂ψ

∂τ
= −∂φ

∂n
, (2.10)

where (τ ,n) refer respectively to the tangential and normal vectors at the free surface.
Thus, the streamfunction ψ can be evaluated at the free surface as soon as the normal
derivative of the velocity potential is known.

2.2. Numerical solution
The numerical approach used to solve this set of equations is based on a boundary
integral element method (BIEM) coupled with a mixed Euler–Lagrange procedure. At
each time step, Green’s second identity is discretized to solve numerically the Laplace
equation (2.6). Thus, the potential and its normal derivative are known numerically, and
the streamfunction ψ can be deduced by integration of (2.10) along the free surface. This
numerical integration is performed in the up-wave direction, starting from the down-wave
end of the basin and using zero as initial value. Then, the time stepping is performed
by numerical integration of (2.7a,b) and (2.9) using a fourth-order Runge–Kutta scheme.
Full details of the implementation can be found in Touboul & Kharif (2010). The method
has already been implemented and used successfully in the framework of focusing wave
groups in the presence of uniform current (Touboul, Pelinovsky & Kharif 2007; Merkoune
et al. 2013), or uniform vorticity (Touboul & Kharif 2016; Kharif et al. 2017).

In these previous studies, extensive testing and validation of the methodology were
performed. Nonetheless, given the precision required for the present study, a convergence
test was conducted, and the results are presented in figure 1. A nearly breaking, recurrent
wave packet was propagated in the absence of vorticity. The maximum value of the
parameter Bx, as defined by (2.14), was computed. Figure 1 shows the relative error for
the results obtained as a function of the number of nodes used to describe the free surface
numerically. Given these results, all the simulations conducted within this study involved
1500 nodes, with a numerical time step of dt = 10−2. This corresponds to an average of
150 nodes per wavelength. This choice reduces the relative numerical error to less than
1 % when computing key parameters of the study.

For the final stages of the simulations, a partially automated mesh refinement/time-
splitting algorithm was used, leading the local value of dx to evolve from dx = 5.10−2

to dx = 5.10−4, and the time step to reduce to dt = 10−4. Thus, the breaking onset was
confirmed for each identified breaking case without any ambiguity. The criterion adopted
for confirming breaking onset was the occurrence of a multi-valued surface elevation of
the deforming crest, featuring a transient vertical tangent segment.
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Figure 1. Evolution of the relative error on the maximum value of the breaking parameter Bx for the
maximum recurrent wave as a function of the number of nodes used in the simulation.

2.3. Hydrodynamical conditions
The present study considers chirped wave packets, as defined by Song & Banner (2002)

Xp(t) = −0.25Ap

(
1 + tanh

(
4ωpt
Nπ

))(
1 − tanh

(
4
(
ωpt − 2Nπ

)
Nπ

))

sin

(
ωp

(
t − ωpCcht2

2

))
. (2.11)

In the equation above, Ap refers to the wave packet amplitude, ωp the average angular 
frequency of the waves, and N is the number of waves present in the packet. Each 
wave packet is propagated numerically, considering various background flow conditions. 
Since the purpose of this work is to emphasize the role of vorticity on the marginal 
breaking criterion, the parameter U0 is disregarded, and kept constant at 0. Thus, the 
current variability in this study relies on a single parameter, S, providing a depth 
varying background current distribution according to (2.1). Besides, two values of the 
normalization length scale, kp = π and kp = π/2 are considered in this study. These 
values provide wave trains propagating, respectively, in deep water conditions and at 
intermediate water depth. The values of the associated depth parameters are respectively 
kh = 2π and kh = π. Two carrier wave peak frequencies ωp are considered, taking the 
values ωp = 2π and ωp = 4π for the sake of normalization. Thus, in both cases, the peak 
linear carrier wave phase velocity c0 is then fixed, with the value c0 = 2.

In this study, the values of S investigated correspond to moderate values of the vorticity 
in relation to the wave orbital velocities. For example, the current velocity associated with 
the background shear current corresponding to S = 1.0 has a velocity at the maximal crest 
elevation comparable with the orbital velocity of the steepest non-breaking waves.

Finally, the parameters used within the study are N, a measure of the bandwidth of 
the chirped group, and Ap, its initial amplitude. For a given choice of parameters (S, N), the 
wave amplitude Ap is varied incrementally in order to capture as accurately as possible the 
transition between the steepest recurrent wave group and the least steep breaking group. An 
increment of δAp = 10−3 was used to quantify the upper and lower transition boundaries
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Breaking waves in the presence of vorticity

kp S N Ap kp S N Ap

π −1.0 7 0.045–0.064 π −1.0 9 0.040–0.059
π −0.5 7 0.035–0.054 π −0.5 9 0.030–0.049
π 0 7 0.025–0.044 π 0 9 0.020–0.039
π 0.5 7 0.020–0.039 π 0.5 9 0.015–0.034
π 1.0 7 0.015–0.034 π 1.0 9 0.010–0.029

π/2 −0.5 7 0.185–0.204 π/2 −0.5 9 0.190–0.209
π/2 −0.2 7 0.140–0.159 π/2 −0.2 9 0.155–0.174
π/2 0 7 0.125–0.144 π/2 0 9 0.125–0.144
π/2 0.2 7 0.100–0.119 π/2 0.2 9 0.100–0.119
π/2 0.5 7 0.085–0.104 π/2 0.5 9 0.085–0.104

Table 1. Hydrodynamical conditions and wave group properties simulated.

separating recurrent and breaking wave packets. A list of the simulations performed is
presented in table 1.

2.4. Post-processing of the data
For a given set of parameters (S,N,Ap), each simulation produces a set of data describing
the free surface evolution. These data are post-processed to obtain accurate estimation of
the prescribed quantities. Firstly, a wave detection algorithm is introduced, identifying the
time evolution of each carrier wave in the packet. The waves, and more specifically their
crests, are defined by their corresponding zero up-crossing and the zero down-crossing
abscissa, xzuc(t) and xzdc(t) respectively. Their crest location xc(t) and its time evolution
are easily obtained, together with the wave amplitude Ac(t).

The instantaneous phase velocity is defined as the time derivative of the crest location,
cx = dxc/dt, for each wave crest. This point is crucial, since the parameters used in this
study depend strongly on the accuracy used to compute the local phase velocity. For
instance, an elegant procedure introduced by Seiffert, Ducrozet & Bonnefoy (2017), based
on the Hilbert transform of the free surface, provides a local wavenumber, which they link
to a local phase velocity by means of the linear dispersion equation. This approach was
initially considered for this study, but while computationally efficient, it turned out to be
sensitive to the filtering procedure used to estimate the Hilbert transform. Phase velocities
computed through this procedure were found to differ by up to 40 % in comparison with
the direct computations that we adopted.

For kinematics purposes, we introduce a mean crest location, xzc(t), defined by the mean
location of the two zero crossings, xzuc and xzdc, namely xzc = (xzuc + xzdc)/2. Its velocity
is obtained from

czc = dxzc

dt
. (2.12)

It is also straightforward to define a local crest steepness Sc = πAc/λc, where λc is a
characteristic wavelength scale, defined by the distance between the two zero crossings
xzuc and xzdc.

Following Barthelemy et al. (2016), a leaning parameter L was also introduced, defined
as

L = 2
xc − xzdc

xzuc − xzdc
− 1. (2.13)
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This parameter takes the value 1 for a wave presenting a vertical front on its forward face,
and the value −1 for a wave presenting a vertical front on its rear face. Finally, accordingly
to the definition introduced by Barthelemy et al. (2018), we considered the ratio between
the local energy flux normalized by the local energy density and the local crest speed.
On the wave surface, this quantity simplifies to the ratio of fluid speed ux to crest speed cx.
Thus, at the surface, it reads

Bx = ux

cx
. (2.14)

As an aside, we note that in the framework of linear theory, this value further reduces to 
Bx = Sc.

3. Results and discussion

3.1. Kinematics of marginally recurrent wave groups
Firstly, the influence of vorticity on the kinematic behaviour of these marginally recurrent 
chirped wave groups is investigated in the neighbourhood of their maximum amplitude 
location. Results are presented in figure 2. The four panels of this figure describe the 
time evolution of the kinematic parameters introduced in § 2.4, for  an N7 wave packet  
propagating with or without vorticity. Panel (a) is the local steepness Sc,(b) is the leaning
parameter L, (c) corresponds to the phase velocity cx, while (d) depicts the evolution of 
the velocity of the mean crest location, czc, which is defined by (2.12).

The first striking result concerns the significant role played by vorticity on the 
kinematics of the process. While this influence is seen in the results presented in figure 2, 
its importance becomes highlighted in the appreciable change that can arise in the limiting 
wave height at breaking, as is seen in figure 6 below. Indeed, vorticity is known to 
play a significant role in the focusing time (see e.g. Touboul & Kharif 2018). However, 
the kinematic behaviour observed in previous studies (Fedele 2014; Barthelemy et al. 
2016) is reproduced here when waves propagate in the absence of vorticity. Indeed, when 
approaching the breaking inception threshold, the steepness of the tallest wave in the 
group maximizes, after which the steepness begins to decrease. This is accompanied by 
a generic leaning motion, where the wave crest region, which leans forward (L > 0) at 
the early stages of the focusing, maximizes and then decreases, transitioning to leaning 
backwards (L < 0) when the wave crest location xc exceeds the mean crest location 
xzc. This behaviour corresponds to an initial strong increase of the crest velocity cx, 
followed by a significant, generic slowdown as the crest attains its maximum value. These 
local changes in the crest velocity can amount to 20 % of the linear theory phase speed 
c0. However, we note that the mean crest velocity, czc, which describes an ‘average’ 
propagation speed of the waveform, shows a behaviour much closer to linear theory, 
confirming the similar finding in Banner et al. (2014).

In the presence of vorticity, the values of these four parameters are modified, but not 
substantially. The evolution of the crest steepness, Sc, is changed slightly due to asymmetry 
associated with the sign of the vorticity. In comparison with the zero vorticity evolution, 
with respect to the maximum steepness location, negative background vorticity delays the 
initial crest steepening phase and then reduces the rate at which the crest steepness declines 
after it maximizes. The opposite occurs for positive background vorticity. The minimum 
leaning value reached by L is also affected, the backward-leaning motion being stronger 
for positive vorticity, and smaller for negative vorticity. Similar observations can be made 
for both velocities cx and czc. Overall, it is interesting to note that the general behaviour
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Figure 2. Time evolution of the normalized wave properties, while tracking a marginally recurrent N7 wave
packet, kp = π/2, propagating with or without initial vorticity. (a) shows the normalized local wave steepness
Sc/Scmax, (b) shows the leaning factor L, (c) shows the crest velocity cx/c0, while (d) corresponds to the
mid-point zero-crossing velocity czc/c0.

described above is not qualitatively affected by the presence of vorticity, with the generic
leaning motion of the wave crest little changed.

Figure 3 revisits these results in a slightly different manner. Indeed, this figure shows
the time evolution of the wave crest in the parameter map provided by (Sc, cx/c0).
Each trajectory corresponds to an individual crest lifecycle. The arrow indicates the
beginning of the trajectory. For reference, the fifth-order Stokes wave dispersion equation
is also plotted in this parameter map. Firstly, it is confirmed that, in such chirped wave
groups, the crest velocity does not depend strongly on the local steepness. Remarkably,
this result extends to the cases involving vorticity. Secondly, during this marginal recurrent
cycle, each crest velocity reduces to a value close to 80 % of the linear phase velocity c0,
for times which do not necessarily correspond to the maximum steepness reached. In the
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Figure 3. Time evolution of the local steepness Sc, while tracking a marginally recurrent N7 wave packet,
kp = π/2, plotted versus crest celerity, for the maximum recurrent wave obtained with or without vorticity.
Black solid line corresponds to the fifth-order Stokes theory.

2015105
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1.0

Bx

Figure 4. Evolution of the breaking parameter Bx as a function of time for recurrent wave groups obtained 
with or without vorticity. The horizontal black lines at 0.85 < Bx < 0.86 are the threshold which segregates 
breaking from non-breaking cases.

absence of vorticity, a loop is observed, showing the existence of hysteresis behaviour. 
In the presence of vorticity, the trajectories might be affected, since the phasing of 
the slowdown of the crest, with respect to the maximum steepness, is modified. In the 
presence of positive vorticity, or in the absence of vorticity, the crest slows down, reaches 
its maximum steepness value and then keeps slowing down, finally reaching its slowest 
celerity at a steepness lower than the maximum value. It then re-accelerates while the 
steepness continues to decrease. In the presence of negative vorticity, on the other hand, 
the minimum crest velocity and maximum steepness are reached at the same instant, and 
the crest re-accelerates while the steepness starts decreasing. In every case, a hysteresis 
behaviour is observed, but its phasing is affected by the vorticity.
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Figure 5. Breaking parameter Bx plotted against local steepness Sc. Each point was obtained by tracking the
maximum Bx for every crest in each wave packet simulated. The horizontal black lines at 0.85 < Bx < 0.86
are the threshold which segregates breaking from non-breaking cases. The vertical line located at Sc > 0.72
corresponds to the classical Stokes corner in deep water conditions. The dashed line is the linearization Bx =
Sc. Top: deep water conditions (kp = π), Bottom: intermediate water depth (kp = π/2).

3.2. Inception of breaking
In figure 4, the time evolution of the breaking parameter Bx, as defined by (2.14), is
presented. The figure compares this evolution for marginally recurrent N7 wave groups,
propagated in the presence of positive vorticity S = 0.5, negative vorticity S = −0.5 and
with no vorticity S = 0. Here again, previous results from Barthelemy et al. (2018) are
confirmed in the absence of vorticity, and generalized when vorticity is involved. Indeed,
the recurrent wave group evolution generates important fluctuations of the breaking
parameter Bx, also when vorticity is present. If this parameter overshoots the breaking
inception threshold value located at 0.85 < Bx < 0.86, the wave group will evolve to
breaking. Whenever its evolution maintains it beneath the threshold value, the wave group
will remain recurrent.

The results summarizing each simulation computed in this study are presented in
figure 5. In this figure, each point corresponds to the maximum value of Bx, plotted
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Figure 6. Free surface evolution of a marginal breaking wave obtained by propagating a N9 wave packet.  
Left-hand panel plots are obtained in the presence of a negative vorticity S = −0.5, for an initial wave packet 
of amplitude Ap = 0.046. Centre-panel plots are obtained in the absence of positive vorticity S = 0.0, for an 
initial wave packet of amplitude Ap = 0.037. Finally, right-side panel plots are obtained in the presence of a 
positive vorticity S = 0.5, for an initial wave packet of amplitude Ap = 0.030.

against the corresponding value of Sc, for each wave during a modulation cycle. Every 
simulation run for this work is presented here. When breaking occurred, the symbol is 
filled, and it is open when the wave packet was recurrent. In addition, the two horizontal 
black lines, located at 0.85 < Bx < 0.86, correspond to the breaking inception threshold 
identified by Barthelemy et al. (2018), while the vertical line at Sc = 0.72 is the classical 
limiting steepness that corresponds to the highest amplitude Stokes wave obtained in deep 
water. Finally, the black dashed line corresponds to the linear relation Bx = Sc, which 
tends to be valid for the smallest waves. From this figure, it is clear that the breaking 
inception criterion proposed by Barthelemy et al. (2018) still holds in the presence of 
vorticity. While vorticity seems to have an impact on the location of waves in this plot, it 
is clear that this limit still segregates breaking waves from non-breaking ones. This result 
constitutes the major finding of this study – that the breaking criterion recently proposed 
by Barthelemy et al. (2018) is also able to predict wave breaking inception generically for 
waves propagating in the presence of constant vorticity.

3.3. Breaking waves
At first sight, it might be concluded that vorticity does not play a significant role in 
the dynamics of wave breaking when induced through dispersive focusing. Hence, it is 
interesting to examine the free surface deformation for a marginally breaking wave group. 
Figure 6 presents several snapshots of the free surface for two typical cases. Plots in the 
left column panels are obtained by propagating a N9 wave packet of initial amplitude 
Ap = 0.046 with a negative vorticity S = −0.5. The plots in the central column panels 
show the evolution of the free surface obtained by propagating a N9 wave packet of initial
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amplitude Ap = 0.037 without vorticity S = 0.0. Finally, the plots in the right column
panels correspond to a N9 wave packet of initial amplitude Ap = 0.030 propagated in the
presence of positive vorticity S = 0.5. The values of Ap were selected to describe the
smallest breaking wave packet, for each value of the vorticity. The global trend of Ap is
thus observed from this analysis. The critical value of Ap characterizing the inception of
breaking strongly decreases with the increasing value of S.

When considering the geometry of the breaking wave, it is interesting to note that these
three cases exhibit very different behaviours. In the absence of vorticity, or in the presence
of positive vorticity, a small jet develops on the front face of the crest, as typically seen
in most breaking cases described within the literature. However, the shape of the breaking
crest seems to be very different when a negative vorticity is involved. The wave seems to
be destabilized initially at the crest, then subsequently on its rear face, where a small jet
oriented backwards is developed. This behaviour is very unusual, and, to our knowledge,
has not been previously observed. Unfortunately, our BIEM code could not continue to
track its further development, and pursuit of this aspect is left to a future study.

4. Conclusions

In this study, chirped deep and intermediate depth water wave packets were produced
and propagated numerically by means of a boundary integral element method (BIEM).
By varying their initial amplitude, it was possible to investigate the kinematics of the
wave crest in the neighbourhood of breaking inception. This study focused on the effect
of a uniform vorticity, vertically sheared current on the kinematics and dynamics of water
waves approaching breaking inception.

It is found that previous observations describing the crest slowdown and its leaning
forward and backward during its amplification cycle, still hold in the presence of vorticity.
However, the shape of the breaking crest appears to be significantly affected by the
presence of vorticity. For the case of a positively propagating crest within a sufficiently
strong negative vorticity field, a small jet appears to form at the rear face of the wave
crest, which departs substantially from the familiar forward spilling jet associated with the
classical pattern of breaking. Nevertheless, the breaking inception criterion introduced by
Barthelemy et al. (2018) is still found to be valid. Thus this criterion segregates breaking
waves from non-breaking waves, even in the presence of a background uniform vorticity
field which can significantly distort the wave surface geometry.
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