
HAL Id: hal-03203780
https://hal.science/hal-03203780v2

Submitted on 23 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bijective enumeration of planar bipartite maps with
three tight boundaries, or how to slice pairs of pants

Jérémie Bouttier, Emmanuel Guitter, Grégory Miermont

To cite this version:
Jérémie Bouttier, Emmanuel Guitter, Grégory Miermont. Bijective enumeration of planar bipartite
maps with three tight boundaries, or how to slice pairs of pants. Annales Henri Lebesgue, 2022, 5,
pp.1035-1110. �10.5802/ahl.143�. �hal-03203780v2�

https://hal.science/hal-03203780v2
https://hal.archives-ouvertes.fr


Bijective enumeration of planar bipartite
maps with three tight boundaries, or how

to slice pairs of pants
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November 23, 2022

We consider planar maps with three boundaries, colloquially called pairs
of pants. In the case of bipartite maps with controlled face degrees, a simple
expression for their generating function was found by Eynard and proved
bijectively by Collet and Fusy. In this paper, we obtain an even simpler
formula for tight pairs of pants, namely for maps whose boundaries have
minimal length in their homotopy class. We follow a bijective approach based
on the slice decomposition, which we extend by introducing new fundamental
building blocks called bigeodesic triangles and diangles, and by working on the
universal cover of the triply punctured sphere. We also discuss the statistics
of the lengths of minimal separating loops in (non necessarily tight) pairs of
pants and annuli, and their asymptotics in the large volume limit.
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1. Introduction

Context and motivations. The study of maps (graphs embedded into surfaces) is an
active field of research, at the crossroads between combinatorics, theoretical physics and
probability theory. The combinatorial theory of maps started with the pioneering work
of Tutte in the 1960’s [Tut68], and we refer to the recent review by Schaeffer [Sch15]
for an account of its many developments ever since. In theoretical physics, maps are
intimately connected with matrix models and two-dimensional quantum gravity: see for
instance the review by Di Francesco, Ginsparg and Zinn-Justin [DFGZJ95], the book
by Ambjørn, Durhuus and Jonsson [ADJ97], and the book by Eynard [Eyn16] for more
recent mathematical advances including the theory of topological recursion. Probability
theory aims at understanding the geometric properties of large random maps and their
limits: this topic is covered in several sets of lecture notes [LGM12, Mie14, Bud17, Cur19],
and we also mention the review by Miller [Mil18] which discusses the connection with
Liouville quantum gravity, a rigorous approach to two-dimensional quantum gravity.

A key tool in the study of maps is the bijective approach, which consists in finding
correspondences between different families of maps, or with other combinatorial objects
such as trees or lattice walks. Bijections often yield elementary derivations of enumerative
results, but are also useful to understand properties of maps such as distances (see the
aforementioned references). There exists by now several general bijective frameworks,
and in this paper we focus on a specific one, called the slice decomposition.

Colloquially speaking, the slice decomposition consists in performing a canonical de-
composition of maps, by cutting them along leftmost geodesics. It was first mentioned
in the papers [BG09b, BG12, AB12], mostly as a reformulation of the decomposition
of mobiles [BDFG04]. Its real significance was highlighted in the paper [BG14]—see
also [Bou19, Chapter 2] for a recent exposition—which considers so-called irreducible
maps for which bijections were not known before. The slice decomposition also passes
naturally to the scaling limit [LG13, BM17]. However, it has so far been understood only
in the case of disks and annuli, namely planar maps with one or two boundaries. Our
purpose is to understand the case of maps with other topologies, with the long-term goal
of developing a bijective approach to topological recursion.

In this paper, we make a first step in this direction, by considering pairs of pants,
namely planar maps with three boundaries. For simplicity, we restrict to the case of
bipartite maps with controlled face degrees (also known as Boltzmann maps), though
we believe that our treatment can be extended to the non bipartite or to the irreducible
settings as considered in [BG12, BG14]. A simple explicit expression of the generating
function of bipartite pairs of pants was given by Eynard [Eyn16, Proposition 3.3.1] and
derived bijectively by Collet and Fusy [CF12]. We note that equivalent formulas appeared
previously in the physics literature, see for instance [AJM90, Equation (45)] or [ADJ97,
Equation (4.94)]. Here, we obtain an even simpler formula for tight pairs of pants, namely
for maps whose boundaries have minimal length in their homotopy class. As we shall
see, our formula is equivalent to the Eynard-Collet-Fusy formula, but our derivation is
fundamentally different.

Our approach, whose general idea is displayed in Figure 1.1, consists in decomposing
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Figure 1.1: Illustration of the main bijective construction discussed in this paper. Start-
ing from elementary pieces, namely two bigeodesic triangles and three bi-
geodesic diangles (top), one builds a pair of pants with three tight bound-
aries (bottom right). To better visualize the construction, we pass through
an intermediate partial assembling (bottom left). Conversely, the building
blocks can be recovered by cutting along appropriately defined bigeodesics,
here displayed in purple.

tight pairs of pants into geometric pieces which we call (bigeodesic) diangles and triangles.
While the former are, in a sense, generalizations of the existing notion of slices, the
second are new objects (although they appear implicitly in earlier work [BG08], see the
discussion in Appendix B). As was pointed to us by Bram Petri, the way in which the
elementary pieces are assembled is very much reminiscent of classical constructions of
pairs of pants in hyperbolic geometry from ideal hyperbolic triangles, see for instance
[Thu97, Section 3.4]. In particular, some notions of importance in this paper, which we
refer to as “equilibrium vertices” in triangles and “exceedances” in diangles, have natural
analogs in hyperbolic geometry: the equilibrium vertices correspond to tangency points
of the inner circles of the ideal triangles, and the exceedances correspond to the invariants
d(v) in [Thu97].

We believe that many other connections exist between these classical concepts and
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Figure 1.2: An intuitive way to think of a boundary-vertex: we remove a small disk
around it, and keep all incident edges connected along a circle made of special
(dashed) edges, which are considered as having length zero. Note that a path
passing through a boundary-vertex may “circumvent” it in two ways, which
will correspond to different homotopy classes when there are other boundaries.

our work. In particular, in the context of the classification of Riemann and hyperbolic
surfaces [IT92], pants decompositions play a fundamental role. It is therefore natural to
expect that similar decompositions should exist in the context of maps. In particular,
the tightness constraint which we introduce should be an important ingredient: indeed,
it should translate the natural idea of cutting surfaces along closed geodesics, in order to
obtain canonical decompositions. Such pants decompositions will be explored in future
research, but provide one of our main motivations for the present paper.

Overview. A planar map is a connected multigraph embedded into the sphere without
edge crossings, and considered up to homeomorphism. It consists of vertices, edges, faces
and corners, see [Sch15] for precise definitions. Until further notice, we only consider
finite maps, i.e. maps with a finite number of edges (hence of vertices, faces and corners).
A path on a map is a sequence of consecutive edges, and the length of a path is its number
of edges. Given a face, its contour is the closed path formed by its incident edges, and
its degree is the length of the contour. A planar map is bipartite if all its faces have even
degree.

A boundary is either a marked face or a marked vertex on the map. We will use the
denominations boundary-face and boundary-vertex when we wish to specify the nature of
a boundary. We define the length of a boundary as being equal to its degree in the case
of a boundary-face, and to zero in the case of a boundary-vertex. Faces which are not
boundaries are called inner faces. A map is said essentially bipartite if all its inner faces
have even degree. The sum of the lengths of the boundaries of an essentially bipartite
map is necessarily even.

We intuitively think of boundaries as representing punctures on the sphere. This
is rather natural in the case of a boundary-face (we just remove its interior from the
surface), but slightly less in the case of boundary-vertex: see Figure 1.2. A path on the
map, together with a choice of circumventing direction when passing through a boundary-
vertex, corresponds to a path on the punctured sphere. Two closed paths are said to be
in the same homotopy class, or freely homotopic, if they can be continuously deformed
into one another on the punctured sphere. A boundary-face is said tight if its contour
has minimal length in its homotopy class (if the boundary-face is incident to a boundary-
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generic case I generic case II

degenerate cases

b < a+ c

b > a+ c

b = a+ c

c = 0

a = b, c = 0

a = 0, c = 0

Figure 1.3: The possible types of maps with three tight boundaries and no inner face.
Tightness implies that there are no vertices of degree one, except possibly
boundary-vertices, indicated here by blue crosses. To identify the different
types, assume without loss of generality that the boundary lengths are b ≥
a ≥ c. There exists two generic situations, denoted I and II, corresponding
to the cases b < a + c and b > a + c respectively. The degenerate cases
correspond to having b = a + c or/and some lengths equal to zero. We may
check that there are a+ b+ c− 1 vertices different from boundary-vertices in
all cases.

vertex, the contour should be considered as the contour of the corresponding face in the
map modified as in Figure 1.2). A boundary-vertex is by convention always tight.

We are interested in essentially bipartite planar maps with three distinct boundaries
which are labeled (distinguishable). Such maps cannot have symmetries, and therefore
we do not root (i.e., mark a corner on) the boundaries. Two situations may occur: either
all the boundary lengths are even, and the planar map is truly bipartite, or two lengths
are odd and the third is even, and following [CF12] we say that the map is quasi-bipartite.
We may now state our main enumerative result:

Theorem 1.1. Let a, b and c be integers or half-integers such that a+b+c is an integer.
Then, the generating function Ta,b,c of essentially bipartite planar maps with three labeled
distinct tight boundaries of lengths 2a, 2b, 2c, counted with a weight t per vertex different
from a boundary-vertex and, for all k ≥ 1, a weight g2k per inner face of degree 2k, is
equal to

Ta,b,c = Ra+b+cd lnR

dt
− t−11a=b=c=0 (1.1)

where R is the formal power series in t, g2, g4, . . . determined by

R = t+
∑
k≥1

(
2k − 1

k

)
g2kR

k (1.2)

and where 1P is equal to 1 if P is true, and to 0 otherwise.
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It is not difficult to check that the right-hand side of (1.1) is indeed a well-defined
power series in t, g2, g4, . . .. It is useful to look first at the case where g2, g4, . . . all vanish.
This corresponds to maps without inner faces. In this case, T0,0,0 vanishes while, for
a, b, c not all zero, Ta,b,c is equal to ta+b+c−1: this means that there should exist exactly
one such map, with a+ b+ c−1 vertices different from boundary-vertices. This is indeed
true, as illustrated on Figure 1.3.

Our expression for Ta,b,c is very similar to the aforementioned Eynard-Collet-Fusy
(ECF) formula for maps with three boundaries that are not necessarily tight. In fact,
the ECF formula simply differs by some binomial factors. As we will see in Section 6, the
two formulas are equivalent, by a canonical decomposition which consists in cutting a
map with three arbitrary boundaries along outermost minimal separating loops, resulting
in three annular maps and one tight pair of pants. However, our expression for Ta,b,c being
even simpler than the ECF formula, it is desirable to have a direct bijective proof of it,
and this is the main objective of the present paper.

Our results have interesting consequences for the statistics of large random planar
maps, which are explored in Section 6.3. There, for simplicity, we restrict our attention
to the case of quadrangulations. The aforementioned canonical decomposition of a map
with three boundaries into three annular maps and a tight pair of pants allows one to
define the exterior areas, corresponding to the number of faces in the annular maps, the
interior area, corresponding to the number of faces in the tight pair of pants, and the
minimal separating cycle lengths, corresponding to the lengths of the three boundaries of
the tight pair of pants. In Theorem 6.9, we give a detailed limit theorem for the joint law
of these quantities in large quadrangulations with three boundaries. We also provide an
analogous statement for random annular quadrangulations in Theorem 6.7, which relies
on the results obtained in [BG14].

Our strategy to prove Theorem 1.1 is the following. For a = b = c = 0, the right-hand
side of (1.1) can be rewritten as d ln(R/t)/dt which, by results from [BDFG04], is already
known to be equal to the generating function T0,0,0 of triply pointed bipartite maps (for
completeness, we provide a slice-theoretic rederivation of this fact in Appendix A). Then,
we will exhibit a bijection implying, as Corollary 3.2 below, that we have for any a, b, c

Ta,b,c + t−11a=b=c=0 = Ra+b+cX
3Y 2

t6
(1.3)

where R, X and Y are the generating functions of combinatorial objects called respec-
tively elementary slices, bigeodesic diangles, and bigeodesic triangles (all these series are
equal to t when g2, g4, . . . all vanish). These combinatorial objects will be defined in
Section 2. The notations are chosen to be consistent with those of [BG08, BG09a]: as we
discuss in Appendix B, bigeodesic diangles and triangles are the slice-theoretic equivalents
of objects appearing in the decomposition of well-labeled maps (the slice interpretation of
R being already known). This makes a connection with the bijective approach developed
in [Mie09, AB13, BFG14]. Comparing (1.3) with the known expression for T0,0,0, we get
X3Y 2/t6 = d lnR/dt and Theorem 1.1 follows.
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Outline. Section 2 introduces the basic building blocks of our approach, namely tight
slices, bigeodesic diangles and bigeodesic triangles, and derives some elementary enumer-
ation results for those pieces. Section 3 explains how these pieces can be assembled to
produce a map with three tight boundaries. This allows us to state our main bijective
result, Theorem 3.1. To prove this theorem, the difficult part is to decompose a map
with three tight boundaries back into basic building blocks. This decomposition takes
place on the universal cover of the map, which is a periodic infinite map which we de-
scribe in Section 4. Section 5 then presents the decomposition of a map with three tight
boundaries, by first introducing the important geometric tool of Busemann functions
associated with infinite geodesics, and finishes the proof of Theorem 3.1 by showing that
this decomposition is indeed the inverse of the assembling procedure. Section 6 discusses
how to recover the ECF formula from our results and a decomposition of pairs of pants
into annular maps and tight pairs of pants, and then states and proves our probabilistic
applications on the statistics of minimal separating cycles and areas in large random
quadrangulations with three boundaries. Concluding remarks and discussion on future
directions are gathered in Section 7. Finally, we recall in Appendix A how to obtain
the classical recursion relation (1.2) for slices, as well as the reason why d ln(R/t)/dt is
the generating function of triply pointed maps, and in Appendix B we present another
approach to bigeodesic diangles and triangles in the case of quadrangulations, based on
a bijection with labeled trees.

Acknowledgements. We thank Marie Albenque, Timothy Budd, Vincent Delecroix,
Marco Mazzucchelli and Bram Petri for valuable discussions. We also thank the two
anonymous referees for suggesting useful improvements to the paper. This project results
from an institutional collaboration between CEA and ENS de Lyon, and was initiated
at the occasion of the Séminaire de combinatoire de Lyon à l’ENS which is funded by
the Labex Milyon (ANR-10-LABX-0070). The work of JB is partly supported by the
Agence Nationale de la Recherche via the grants ANR-18-CE40-0033 “Dimers” and ANR-
19-CE48-0011 “Combiné”.

2. Basic building blocks

In this section we introduce the fundamental building blocks of our approach. We start
with some preliminary definitions.

2.1. Preliminaries: geodesics and related concepts

In a map, a geodesic between two vertices v1 and v2 is a path of minimal length connecting
them. This minimal length is by definition the (graph) distance d(v1, v2) between the
vertices v1 and v2. Maps are assumed to be connected, so geodesics between any two
given vertices always exist and d(v1, v2) is a finite integer.

A geodesic vertex between v1 and v2 is a vertex v belonging to a geodesic between
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them. Clearly, v is a geodesic vertex if and only if

d(v, v1) + d(v, v2) = d(v1, v2). (2.1)

Bigeodesics. In general, there may exist many geodesics between v1 and v2. But, using
the (local) planar structure of a map, it is often possible to single out a canonical one.
The previous works on slice decomposition were using the notion of leftmost geodesic
determined by the choice of an initial direction at v1. Here, we will need a related but
slightly different notion, which is that of leftmost bigeodesic determined by the choice of
a geodesic vertex between v1 and v2.

A bigeodesic between two vertices v1 and v2 is a triple made of a geodesic vertex v
between them and of two geodesics, one between v and v1 and one between v and v2.
Clearly the concatenation of these two geodesics is a geodesic between v1 and v2, so that
a bigeodesic between v1 and v2 is entirely specified by the data of a geodesic between v1
and v2 and of a vertex v along this geodesic.

Viewing the bigeodesic as “launched” from the geodesic vertex v towards v1 and v2
respectively, we may introduce the notion of leftmost bigeodesic as follows. Assume that
d(v1, v2) ≥ 2 and that v is distinct from v1 and v2. We may partition the set of edges
incident to v into three types:

(i) those leading to a vertex strictly closer to v1,

(ii) those leading to a vertex strictly closer to v2,

(iii) those leading to a vertex that is neither strictly closer to v1 nor to v2.

Ignoring the edges of type (iii), it is easily seen that, by planarity, there exists an edge
e1 of type (i) and an edge e2 of type (ii) such that, when turning clockwise around v,
all edges of type (i) appear between e1 and e2 and all edges of type (ii) appear between
e2 and e1. We then consider the leftmost geodesic from v to v1 starting with e1, i.e. the
geodesic whose first step goes along e1 from v to its neighbor at distance d(v, v1) − 1
from v1, and at each step, goes along the leftmost edge (as viewed from the previous
edge) among all those going from the currently attained vertex to a vertex closer to
v1, until v1 is eventually reached. We similarly pick the leftmost geodesic from v to v2
starting with e2. Concatenating these two geodesics, we obtain a bigeodesic between v1
and v2 launched from v, which is by definition the leftmost bigeodesic we are looking
for. Observe that the leftmost bigeodesic is not well-defined if v = v1 or v = v2, and in
particular if d(v1, v2) < 2.

Geodesic boundary intervals. Consider a planar map with one boundary-face, which
we denote f0 and which we choose as the external face in the planar representation of the
map. Let c and c′ be two corners incident to f0. These corners split the contour of f0 in
two portions, which we call boundary intervals. When turning counterclockwise around
the map (i.e., when walking along the contour with f0 on the right), the portion that
starts at c and ends at c′ is denoted [c, c′]. It forms a path on the map, which may not be
simple in general. In the particular case where it forms a geodesic between the vertices
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c′

c′′

c

[c′′, c] = strictly geodesic
from c′′ to c

[c, c′] = geodesic
from c to c′

[c′, c] = leftmost bigeodesic

launched from c′′ towards c and c′

[c′, c′′] = geodesic from c′ to c′′

(right boundary)

Figure 2.1: Generic structure of a tight slice (the boundary-face is the outer face). In
this figure and the following, we represent geodesic boundary intervals in blue
and strictly geodesic ones in red. The corner c′′ is shown in blue since it is
an intermediate corner on the geodesic boundary interval [c′, c]. The width
of the slice is the length of [c′, c′′].

incident to c and c′, then we say that the boundary interval [c, c′] is geodesic (the path
is necessarily simple in this case). Furthermore, if there exists no other geodesic in the
map with the same endpoints, then [c, c′] is said strictly geodesic. In the figures, we will
often use the graphical convention of representing geodesic boundary intervals in blue,
and strictly geodesic boundary intervals in red.

2.2. Tight slices

Our first building block is what we call a tight slice, defined as a planar bipartite map with
one boundary-face having three distinguished (not necessarily distinct) incident corners
c, c′ and c′′ appearing counterclockwise around the map such that:

◦ the boundary intervals [c, c′] and [c′, c] are geodesic,

◦ the boundary interval [c′′, c], called the right boundary, is strictly geodesic,

◦ the intervals [c′′, c] and [c, c′] share only a common vertex at c.

See Figure 2.1 for an illustration. Note that the constraints imply that [c′, c′′] is also
geodesic, and the length of this interval is called the width of the slice. The only tight
slice of width zero is equal to the vertex-map, reduced to a single vertex and a single face
both of degree zero. Note that, if c ̸= c′′ (hence c′ ̸= c′′), then [c′, c] is nothing but the
leftmost bigeodesic launched from the vertex incident to c′′ towards those incident to c
and c′ respectively. A tight slice of width 1 is called an elementary slice.

Proposition 2.1. The generating function of tight slices of width ℓ, counted with a weight
t per vertex not incident to the right boundary and a weight g2k per inner face of degree
2k for all k ≥ 1, is equal to Rℓ, with R defined as in Theorem 1.1.
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c2

c12

v2

v1

w12

w21

∼ ∼

e

c1

c21

e

≈ ≈

Figure 2.2: Schematic picture of a bigeodesic diangle of nonnegative exceedance e. The
boundary intervals with the ∼ label have the same length and meet only at v1,
and similarly for the ≈ label. The remaining two other boundary intervals,
of length e, may however share common vertices as soon as e > 0.

Proof. It is known that R counts elementary slices (for completeness, we provide a proof
in Appendix A). Given a tight slice of arbitrary width, let us consider all the vertices
incident to the boundary interval ]c′, c′′[ (with endpoints excluded), and the leftmost bi-
geodesics launched from them towards the vertices incident to c′ and c. These bigeodesics
necessarily follow the boundary towards c′, but may enter inside the map towards c. Cut-
ting also these bigeodesics splits the map into a ℓ-tuple of elementary slices, and it is
straightforward to check that the decomposition is bijective.

2.3. Bigeodesic diangles

Our second building block is what we call a bigeodesic diangle, or a diangle for short,
which is again a planar bipartite map with one boundary-face, with now four distin-
guished (not necessarily distinct) incident corners c1, c12, c2, c21 appearing counterclock-
wise around the map, and having the following properties:

◦ the boundary intervals [c1, c2] and [c2, c1] are geodesic,

◦ the boundary intervals [c12, c2] and [c21, c1] are strictly geodesic,

◦ [c21, c1] and [c1, c2] share only a common vertex at the vertex v1 incident to c1 and
similarly, [c12, c2] and [c2, c1] share only a common vertex at the vertex v2 incident
to c2.

See Figure 2.2 for an illustration. Note that the boundary intervals [c1, c12] and [c2, c21]
are necessarily geodesic. Let us denote by w12 and w21 the vertices incident to c12 and
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t gt2 8g2t3}
Figure 2.3: The first terms in the expansion of X for quadrangulations (g2k = g δk,2).

The unfilled vertices (circles) receive no weight.

c21. If w12 is different from v1 and v2, then [c1, c2] is the leftmost bigeodesic launched
from w12 towards v1 and v2. Similarly, if w21 is different from v1 and v2, then [c2, c1] is
the leftmost bigeodesic launched from w21. The corners c12 and c21 (or the vertices w12

and w21 depending on the context) will be referred to as the attachment points of the
diangle, for reasons which will become clear in the next section.

The exceedance e of the diangle is defined as

e = d(w12, v1)− d(w21, v1) = d(w21, v2)− d(w12, v2). (2.2)

A diangle is said balanced if its exceedance e is 0, that is if w12 and w21 are at the
same distance from v1, say. Note that the vertex-map again satisfies all the required
criteria for a balanced diangle. Apart from this trivial case, any other balanced diangle
has d(v1, v2) ≥ 2, with w12 and w21 different from v1 and v2 and from each other, with
[c1, c2] and [c2, c1] meeting only at v1 and v2. This latter property is not necessarily true
for unbalanced diangles, as indicated in the caption of Figure 2.2.

We denote by X the generating function of balanced bigeodesic diangles, where the
boundary-face and the vertices incident to the strictly geodesic intervals [c12, c2] and
[c21, c1] other than w12 and w21 receive no weight. Note that the vertex-map contributes
a weight t to X.

Even though we shall not need any precise expression for X, let us mention that, by
the results of [BG08], a very explicit formula can be given in the case of quadrangulations
(g2k = g δk,2), see equation (B.3) in Appendix B. It yields the expansion X = t + gt2 +
8g2t3 + 73g3t4 + 711g4t5 + . . ., and the maps corresponding to the first terms of this
expansion are displayed in Figure 2.3.

With the same weighting convention as for balanced diangles, we have the following
property:

12



v2

v1

w12w12

w21w21
w12

∼ ∼

e

v2 = v2
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balanced

v1

w12w12

w21w21
w12

∼ ∼

diangle

tight slice
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e

leftmost

from w12 to v2
v2

Figure 2.4: Decomposition of a bigeodesic diangle of exceedance e into a pair made of a
balanced bigeodesic diangle and a tight slice of width e. Different situations
occur according to which boundary is first hit by the lefmost geodesic from
w12 to v2.

Proposition 2.2. The generating function of bigeodesic diangles with nonnegative ex-
ceedance e is equal to ReX.

Proof. The property is obvious for e = 0, so we may assume e > 0. Let w12 denote the
vertex along [c1, c2] which is at the same distance from v1 as w21. We have d(w12, w12) =
e. Consider the leftmost bigeodesic launched from w12 towards v1 and v2: its part
towards v1 follows the boundary, while its part towards v2 may enter inside the diangle.
We denote by v2 the first vertex common to this part and [c2, c1]. Then, as illustrated
in Figure 2.4, the bigeodesic splits the map into two pieces. One of them is a balanced
diangle with distinguished corners incident to v1, w12, v2 and w21, and the other is a tight
slice of width e > 0. The decomposition is clearly a bijection and implies the wanted
expression, by Proposition 2.1 (note that the weight t for w12 must be transfered to w12

in the tight slice).

When all face weights are set to zero, ReX is equal to te+1, which accounts for the
diangle made of a chain of e + 1 vertices and e edges, with v1 = w21 at one extremity
and v2 = w12 at the other.

It is interesting to note that a tight slice of (positive) width e is nothing but a diangle
of exceedance e for which c12 = c2 (with the correspondance c = c1, c′ = c12 = c2,
c′′ = c21). Note however that the weighting conventions differ slightly (there is an extra
weight t for diangles).

We will not consider diangles with negative exceedance in this paper, since their enu-
meration is more subtle.
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Figure 2.5: Schematic picture of a bigeodesic triangle. The vertices w12, w23 and w31 are
colored in red to indicate that any geodesic from v1 to v2 (respectively from
v2 to v3, from v3 to v1) must pass via w12 (respectively w23, w31).

2.4. Bigeodesic triangles

Our third and final building block is what we call a bigeodesic triangle, or triangle for
short, which is again a planar bipartite map with one boundary-face. It now has six
distinguished incident corners c1, c12, c2, c23, c3, c31 appearing counterclockwise around
the map, and having the following properties:

◦ the boundary intervals [c1, c2], [c2, c3] and [c3, c1] are geodesic, with no common
vertex except at their endpoints v1, v2, and v3 (incident to c1, c2 and c3, respec-
tively),

◦ the boundary intervals [c12, c2], [c23, c3] and [c31, c1] are strictly geodesic,

◦ the boundary intervals [c1, c12] and [c31, c1] (respectively [c2, c23] and [c12, c2], [c3, c31]
and [c23, c3]) have the same length s1 (respectively s2, s3).

◦ any geodesic from v1 to v2 (respectively from v2 to v3, from v3 to v1) passes via
w12 (respectively w23, w31), the vertex incident to c12 (respectively c23, c31).

See Figure 2.5 for an illustration. Note that, if two corners among c1, c12, c2, c23, c3,
c31 are equal, then the above properties imply that the triangle is reduced to the vertex-
map. Note also that the boundary intervals [c1, c12], [c2, c23] and [c3, c31] are necessarily
geodesic and that d(v1, v2) = s1+s2, d(v2, v3) = s2+s3 and d(v3, v1) = s3+s1. As in the
case of diangles, the interval [c1, c2] is the leftmost bigeodesic launched from w12 towards
v1 and v2. Note also that a geodesic from v1 to v2, which has to pass via w12, necessarily
sticks to [c12, c2] between w12 and v2 since [c12, c2] is strictly geodesic. Similar properties
hold under cyclic permutations of the indices 1, 2, 3. The corners c12, c23, c31 (or the
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Figure 2.6: The first terms in the expansion of Y for quadrangulations (g2k = g δk,2).
The unfilled vertices (circles) receive no weight.

vertices w12, w23, w31 depending on the context) will be referred to as the attachment
points of the triangle.

We call Y the generating function of bigeodesic triangles, where the boundary-face and
the vertices incident to the strictly geodesic intervals [c12, c2], [c23, c3] and [c31, c1] other
than w12, w23 and w31 receive no weight. The vertex-map contributes a term t to Y .

As was the case for the generating function X of diangles, we shall not need any precise
expression for Y , even though the results of [BG08] provide an explicit formula in the
case of quadrangulations (g2k = g δk,2), see again equation (B.3) in Appendix B. It yields
the expansion Y = t+ g3t4 + 21g4t5 + 324g5t6 + . . ., and the maps corresponding to the
first terms of this expansion are displayed in Figure 2.6.

3. Assembling the building blocks

We now explain how to assemble a map with three tight boundaries from the basic
building blocks introduced in the previous section. We start from a quintuple consisting
of the following pieces:

◦ three bigeodesic diangles of nonnegative exceedances denoted by e1, e2 and e3,

◦ two bigeodesic triangles.

Recall that the boundaries of bigeodesic diangles and triangles are conventionally colored
in red and blue: a boundary edge is colored red if it belongs to a boundary interval
that is constrained to be strictly geodesic, and is colored blue otherwise (i.e. it belongs
to a geodesic boundary interval which is not necessarily strictly geodesic). Generally
speaking, the assembling procedure consists in gluing the boundaries of the different
pieces together, a red edge being always glued to a blue edge. Some blue edges will
possibly remain unmatched and form the boundaries of the assembled map.

We shall discuss in fact two alternative assembling procedures, hereafter numbered I
and II, which are complementary in the sense that each of them generates only a strict
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subset of the set of maps with three tight boundaries but, taken together, they generate
the full set.

3.1. Description of the assembling procedures I and II

In a nutshell, the assembling procedures consist of two operations, which we call attach-
ment and red-to-blue gluing. We start by describing these operations in detail in the case
of procedure I, referring again to Figure 1.1 for an illustration, then turn to procedure II
which only differs at the level of the attachment operation.

Procedure I. Recall from Sections 2.3 and 2.4 that the attachment points of diangles
and triangles are the vertices from which their bigeodesic boundaries are launched. The
attachment operation consists in identifying the attachment points as shown on Fig-
ure 3.1(a). The resulting object is a planar map which, in addition to the inner faces
of the initial triangles and diangles, has three extra special faces, hereafter denoted FA,
FB and FC . Each special face is incident to four attachment points (after identification)
and its contour is made of alternating blue and red intervals, four of each color, with an
excess of blue edges (e1 + e2 for FA, e2 + e3 for FB, e3 + e1 for FC).

The second operation is performed independently on each special face, and consists
in gluing all its incident red edges to blue edges so as to form a face of smaller degree
with only blue incident edges (thus the term red-to-blue gluing). More precisely, consider
a special face, say FA, and follow its contour keeping the face on the left (i.e. we turn
counterclockwise around FA, when it is represented as a bounded face in the plane): each
red edge immediately followed by a blue edge is glued to it, and we repeat the process
until no red edge is left. A convenient global description of this operation can be given as
follows: number the edges along the contour of FA by integers, starting at an arbitrary
position and in the same direction as before. We set ϵn = 1 if the edge numbered n is
blue, and ϵn = −1 if it is red. The sequence (ϵn)n is naturally defined for all n ∈ Z by
periodicity, with a period δA equal to the degree of FA. Then, a red edge at position
k will be matched and glued to the blue edge at position ℓ, where ℓ is the smallest
integer larger than k such that

∑ℓ
n=k ϵn = 0. Such ℓ necessarily exists since ϵk = −1

and
∑k+δA−1

n=k ϵn = e1 + e2 ≥ 0. See Figure 3.1 for an illustration. After the gluing step,
a number e1 + e2 of blue edges remain unmatched. If e1 + e2 > 0, these edges form the
contour of a boundary-face. If e1 + e2 = 0, we instead obtain a boundary-vertex, which
corresponds to the vertex preceding any edge k such that

∑ℓ
n=k ϵn ≤ 0 for all ℓ ≥ k.

Indeed, such vertices corresponds to the maxima of the lattice path of Figure 3.1(c)—
which is periodic when e1 + e2 = 0—and all of them are identified by gluing. All in all,
FA becomes a boundary of length e1+e2, and performing the same operation on FB and
FC , these become boundaries of lengths e2 + e3 and e3 + e1 respectively.

The assembling procedure is trivially adapted to the case where a triangle is reduced
to the vertex-map, by equipping its unique vertex with three attachment points (dividing
the surrounding corner in three sectors). Similarly, when one of the exceedances is 0 and
the corresponding (balanced) diangle is reduced to the vertex-map, we equip its unique
vertex with two attachment points. If e1 = e2 = e3 = 0 and all the triangles/diangles

16
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FC

FB
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FA

FB
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FC

FB

FB

FCFC

(a) (b)

(c) (d)(c)

δA δA

e1 + e2

Figure 3.1: The assembling procedure of type I. (a) We first identify the attachment
points of the two triangles and the three diangles as shown so as to create
a planar map with three special faces FA, FB and FC . (b) The red-to-blue
gluing around the special face FA: the arrows indicate the resulting identifica-
tion between vertices (the identified attachment points are shown in purple).
Here, e1+ e2 = 2 blue edges remain unmatched. (c) Alternate representation
of the gluing process: the cyclic sequence of edges counterclockwise around
FA may be coded by the quasi-periodic lattice path with a unit up (respec-
tively down) step for each blue (respectively red) edge (the increments of the
path are denoted ϵn in the text). Each down (red) step is then matched to the
next up (blue) step on its right which returns to the same height. A number
e1 + e2 of blue edges remain unmatched for each period δA = deg(FA). (d)
Result of the gluing of FA: we obtain a boundary of length e1+ e2 (the glued
edges are represented by dashed lines). The red-to-blue gluing of FB and FC

is performed similarly.
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Figure 3.2: The first step of the assembling procedure of type II, creating a planar map
with three special faces FA, FB and FC .

are reduced to the vertex-map, the object resulting from the assembling procedure is the
vertex-map itself. Besides this pathological case, we always obtain a map in which the
three boundaries are distinct elements of the map.

Procedure II. It differs from the previous one only by the identification between at-
tachment points, following now the prescription of Figure 3.2. The resulting object is
still a planar map with three special faces: two of them (FA and FC) are now incident to
two attachment points (after identification) and the third one (FB) to eight attachment
points. They all have a boundary made of alternating blue and red intervals. We then re-
peat the red-to-blue gluing operation described in the case I, creating three boundaries of
respective lengths e2 (from FA), e3 (from FC) and 2e1+e2+e3 (from FB). Again, the as-
sembling procedure is trivially extended to the case where some of the triangles/diangles
are reduced to the vertex-map, and the three boundaries are distinct as soon as at least
one of the building blocks is non trivial.

3.2. Properties of the assembling procedures

Let us first observe that, for both assembling procedures, the resulting map is essentially
bipartite: indeed its inner faces are those of the initial triangles and diangles, with no
modification of the degrees. The boundary lengths are given by:

procedure I:


2a = e1 + e2

2b = e2 + e3

2c = e3 + e1

procedure II:


2a = e2

2b = 2e1 + e2 + e3

2c = e3

(3.1)

Here, a, b and c may either be integers or half-integers. They are all integers (i.e., the
map is bipartite) if e1, e2 and e3 have the same parity in case I, or if e2 and e3 are even
in case II. Otherwise, two of them are half-integers and the third is an integer, and the
map is quasi-bipartite.
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Figure 3.3: When the triangles and diangles have no inner faces, the assembling proce-
dures I and II generate maps corresponding to the generic cases I and II of
Figure 1.3.

We also see that, since e1, e2 and e3 are assumed nonnegative, we have the “triangle
inequality” b ≤ c+ a in case I, while we have b ≥ c+ a in case II (in both cases, we have
a ≤ b + c and c ≤ a + b). Upon permuting a, b and c in case II, it is possible to obtain
any possible triple of boundary lengths in a bipartite or quasi-bipartite map with three
boundaries.

This suggests to introduce the following definition: a map with three boundaries is
said of type I (respectively II) if the largest of the three boundary lengths is smaller than
or equal to (respectively larger than or equal to) the sum of the two other boundary
lengths. Clearly a map with three boundaries is either of type I or type II, and may
be both in the equality case. We may now state the main bijective result of this paper,
illustrated by Figure 1.1 in the case of procedure I.

Theorem 3.1. For e1, e2 and e3 fixed nonnegative integers, the assembling procedure I
(respectively II) is a bijection between the set of quintuples made of two bigeodesic triangles
and three bigeodesic diangles of nonnegative exceedances e1, e2 and e3, where at least one
element differs from the vertex-map, and the set of essentially bipartite planar maps with
three tight boundaries of type I (respectively II), where the lengths of the boundaries are
given by (3.1).

It is instructive to examine the case where the triangles and diangles have no inner
faces: the triangles are then reduced to the vertex-map, while the diangles are segments
of lengths e1, e2 and e3 (see Figure 3.3). When these lengths are all positive, we recover
precisely from the assembling procedures I and II the two generic maps I and II displayed
in Figure 1.3. The degenerate cases correspond to having one or two lengths vanish, and
the case e1 = e2 = e3 = 0 (all diangles reduced to the vertex-map) is pathological when
there are no inner faces.
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To establish Theorem 3.1, two statements remain to be proved. First, we need to
show that the boundaries of the maps resulting from the assembling procedures are
indeed tight: this will be done in Section 4, see Proposition 4.4. Second, we must check
that both procedures are bijections: for this, we will exhibit the inverse bijections in
Section 5, see Propositions 5.14 and 5.16. Both proofs are most conveniently performed
by considering the universal cover of a map with three boundaries, which we introduce in
the next section. Before this, let us explain why Theorem 3.1 implies Theorem 1.1, and
also sketch the inverse of procedure I in the simpler case of maps with three boundary-
vertices (e1 = e2 = e3 = 0).

3.3. Enumerative consequences

Recall that Ta,b,c denotes the generating function of essentially bipartite planar maps
with three tight boundaries of lengths 2a, 2b, 2c, with the weighting convention of The-
orem 1.1. As discussed in Section 1, this theorem is implied by the following corollary of
Theorem 3.1.

Corollary 3.2. We have

Ta,b,c = Ra+b+cX
3Y 2

t6
− t−11a=b=c=0 (3.2)

where X and Y are the generating functions of bigeodesic balanced diangles and triangles,
respectively, as defined in Section 2.

Proof. By Proposition 2.2, the generating function of quintuples made of two bigeodesic
triangles and three bigeodesic diangles of nonnegative exceedances e1, e2 and e3, is equal
to Re1+e2+e3X3Y 2. We exclude the quintuple with all elements reduced to the vertex-
map by subtracting a term t51e1=e2=e3=0.

We then apply Theorem 3.1 and note that, by (3.1), we have e1+e2+e3 = a+b+c and
1e1=e2=e3=0 = 1a=b=c=0 both in procedures I and II. The claim then follows from the fact
that the weight of a quintuple, defined according to the conventions of Section 2, is equal
to t6 times that of the corresponding map, defined as in Theorem 1.1. This is clear for face
weights since the inner faces are not modified by the bijection. For vertex weights, the
corrective factor t6 comes from the identifications between attachment points, see again
Figures 3.1(a) and 3.2: there are generically twelve attachment points in a quintuple, and
they are identified in pairs so lead to six vertices in the assembled map. We still obtain
a difference of six in the situations where some diangles or triangles are reduced to the
vertex-map. Note that the gluing between blue and red edges does not require corrective
factors, since by convention the vertices which are incident to red edges and which are
not attachment points receive no weight. In particular, potential boundary-vertices are
obtained from such unweighted vertices, as wanted.

3.4. Disassembling a triply pointed map

We now sketch the proof of Theorem 3.1 in the case of procedure I with e1 = e2 = e3 = 0,
which generates a triply pointed map (three boundary-vertices). Boundary-vertices are
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vBC

vAB vCA

SAB}
Figure 3.4: Sketch of the decomposition of a triply pointed map, with marked vertices vA,

vB and vC . The set SAB consists of geodesic vertices between vA and vB at
distance rA from vA. We pick its extremal elements vAB and vBA, from which
the two leftmost bigeodesics launched towards vA and vB delimit a maximal
diangle containing all other elements of SAB, but not vC . Similarly, we con-
struct two other disjoint diangles, formed by lefmost bigeodesics launched
from vertices vBC and vCB, vCA and vAC respectively. The complementary
region consists of two geodesics triangles (one inside and one outside).

always considered tight, so we only have to exhibit the inverse bijection. The key point is
to identify the attachment points: once we know them, the decomposition into diangles
and triangles is done by cutting along leftmost bigeodesics.

Consider a planar bipartite map with three marked distinct vertices vA, vB and vC (as
there are no boundary-faces, being essentially bipartite is the same as being bipartite).
Let us denote by dAB, dBC and dCA their mutual distances. By the triangle inequalities
and bipartiteness, there exists three nonnegative integers rA, rB and rC , at most one of
them vanishing, such that

dAB = rA + rB, dBC = rB + rC , dCA = rC + rA. (3.3)

We then consider the set SAB of geodesic vertices between vA and vB which are at distance
rA from vA (hence distance rB from vB). In the generic situation where rA, rB, rC are
all nonzero, we may single out canonically two “extremal” elements vAB and vBA of SAB

as follows. For v and v′ in SAB, consider the two leftmost bigeodesics towards vA and
vB which are launched from v and v′: these bigeodesics delimit two regions, which turn
out to be balanced bigeodesic diangles. Then, vAB and vBA are chosen in such a way
that the diangle not containing vC is the largest possible (and contains in particular all
other elements of SAB), and such that vA, vAB, vB and vBA appears in clockwise order
around it. See Figure 3.4 for an illustration. We similarly define the vertices vBC , vCB,
vCA and vAC . In this way, we obtain three balanced bigeodesic diangles (the specific
choice of rA, rB, rC ensures that these are disjoint), and the complementary region forms
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two bigeodesic triangles, thereby giving the quintuple we are looking for. Note that some
diangles or triangles may be reduced to the vertex-map, for instance it may happen that
vAB = vBA (resp. vAB = vBC = vCA), in which case the corresponding diangle (resp.
triangle) is equal to the vertex-map.

In the situation where, say, rC vanishes, vC is actually an element of SAB: we simply
cut the map along the leftmost bigeodesic launched from vC towards vA and vB, which
transforms the map into a single balanced bigeodesic diangle. This may be seen as a
degeneration of the generic situation, upon taking vC = vAB = vBA = vBC = vCB =
vCA = vAC , all other elements of the quintuple being equal to the vertex-map.

This informal discussion overlooks some important details, such as the fact that, in
general, the leftmost bigeodesics merge before reaching vA, vB or vC . We shall be more
precise below when discussing the general inverse bijection, which applies to both types
of boundaries (vertices or faces). Still, the core idea will be the same: upon defining in
a suitable way the distances dAB, dBC , dCA between the three boundaries, we will define
some parameters rA, rB, rC via the equilibrium conditions (3.3), and we will then con-
struct some equilibrium vertices, analogous to the vertices vAB, vBA, vBC , vCB, vCA, vAC

defined above. Once these equilibrium vertices are constructed, the decomposition is
done by cutting along leftmost bigeodesics. The main change induced by the presence of
boundary-faces is that all this construction must be performed on the universal cover of
the map, which we will define now.

4. The universal cover of a map with three boundaries

In this section we introduce the universal cover of a map with three boundaries, which
will be one of our main topological tools. Its construction and some of its properties
are discussed in Section 4.1. We explain in Section 4.2 how to visualize the assembling
procedures directly on the universal cover, before proving in Section 4.3 that the maps
resulting from the assembling procedures have tight boundaries.

4.1. Construction and properties of the universal cover

Let M be a map with three boundaries ∂A, ∂B, ∂C , that are either boundary-faces or
boundary-vertices. We view M as a graph embedded in a topological sphere S′, and
we let xA, xB, xC be three distinguished points of S′, such that xi belongs to the i-th
boundary component, that is xi = ∂i in the case of a boundary-vertex, or xi ∈ ∂i in the
case of a boundary-face. We let S be the triply punctured sphere S′ \ {xA, xB, xC}.

The universal cover of the triply punctured sphere. The universal cover of the surface
S is the data of a simply connected topological space S̃ and of a mapping p : S̃ → S such
that for every x ∈ S, there is a neighborhood U of x in S such that p−1(U) is a disjoint
union of open sets Ui, with p|Ui : Ui → U a homeomorphism. The pair (S̃, p) is unique
up to the natural notion of isomorphism.

It will be useful to consider the following concrete construction. Let S0 denote the unit
square with its four corners removed, and with its four sides denoted by sa, sa, sc, sc in
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Figure 4.1: A part of the universal cover of the triply punctured sphere. The ideal corners
x̃A, x̃B, x̃C , x̃B′ correspond respectively to the punctures xA, xB, xC and xB
again.

counterclockwise direction. Note that the space obtained by gluing S0 along its sides by
identifying sa with sa and sc with sc (with a head to tail matching of their orientations so
that the resulting surface is orientable) is homeomorphic to the triply punctured sphere
S, and we let p : S0 → S be the resulting projection.

Let F = ⟨a, c⟩ be the free group with two generators a, c, that is the set of reduced
finite words w made of the four letters a, a, c, c, where a = a−1, c = c−1 are the inverses of
a, c (we thus let a = a, c = c). Here, we say that a word is reduced if it does not contain
an occurence of any letter followed immediately by its inverse. The group operation is
defined by letting vw be the reduced word obtained from the concatenation of v and w.
The empty word ∅ is the neutral element of F . We identify F with its Cayley graph
with generators {a, a, c, c}, which is the infinite 4-regular tree with root ∅, and we let
|w| be the length of the word w, which is also its distance in the tree to the root.

For every w ∈ F , we let Sw be a copy of S0, that we can view as {(x, w) : x ∈ S0}, with
its four sides denoted by swa, s

w
a, s

w
c, s

w
c, again oriented counterclockwise around Sw. We

consider the space S̃ obtained by gluing the spaces Sw along their sides, in such a way
that swl is glued with swl

l
for every letter l ∈ {a, a, c, c} (with a head to tail matching

of their orientations). See Figure 4.1. We then extend the projection p to a mapping
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p : S̃ → S by letting p(x, w) = p(x) for every x ∈ S0 and w ∈ F . This is easily seen to be
the universal cover of S.

The universal cover comes with its group of automorphisms Aut(p), that are the home-
omorphisms u : S̃ → S̃ such that p ◦ u = p. This group is isomorphic to the free group
F via the natural action of F on S̃ defined by w · (x, v) = (x, wv). Note that the ele-
ment of Aut(p) corresponding to w sends Sv to Swv, which may be arbitrarily far apart.
We denote by A and C the elements of Aut(p) corresponding to the action of a and c

respectively. It will be also convenient to introduce the automorphisms B := A−1C−1

and B′ := C−1A−1 corresponding the respective actions of the elements b := a c and
b′ := c a of F .

Classically, S̃ is a topological space homeomorphic to the open unit disk. In fact, the
universal cover of the triply punctured sphere can also be constructed via hyperbolic
geometry, see e.g. [Sti12, Section 5.3]. Figure 4.3 (left) displays the connection with our
present construction: the gluing of the squares (Sw)w∈F can be realized as a regular tiling
in the hyperbolic plane made of ideal quadrangles.

For our purposes, it will be convenient to augment S̃ by adding back the corners of the
squares Sw, and we denote the resulting space by S̃′. Note that, after gluing, a corner is
common to infinitely many squares: for instance, the corner denoted x̃A on Figure 4.1 is
common to all the squares San for n ∈ Z, similarly x̃C is common to all the Scn , while x̃B
(resp. x̃B′) is common to all the Sbn and Sbnc (resp. S(b′)n and S(b′)na). The corners form
a subset of the ‘ideal boundary’ of S̃ (which corresponds to the boundary of the disk in
Figure 4.3), and we therefore call them ideal corners. The projection p : S̃ → S extends
to a continuous mapping1 from S̃′ to the sphere S′, and the group of automorphisms
Aut(p) acts naturally on S̃′, each ideal corner being left invariant by an infinite cyclic
subgroup.

Finally, we recall that for any continuous path γ : [0, 1] → S and any γ̃(0) ∈ p−1(γ(0)),
there is a unique continuous path γ̃ : [0, 1] → S̃ starting at γ̃(0) and such that p ◦ γ̃ = γ.
This path is called the lift of γ starting at γ̃(0). The lift remains well-defined if the
endpoint γ(1) is one of the punctures xA, xB, xC , in that case γ̃(1) is an ideal corner.
Lifting a path joining two punctures may be done by splitting the path at an intermediate
point, and choosing a preimage for that point.

Lifting the map M on the universal cover. We now explain how the above consid-
erations interact with the map M . By viewing the (oriented) edges of M as paths in
S′ parametrized by [0, 1], we can consider the lifts of these edges in S̃′, which form an
embedded graph M̃ in S̃′.

The resulting embedded graph M̃ is an infinite map in the non-compact surface S̃′,
with some faces or vertices of infinite degrees (see Figure 4.2 and the right of Figure 4.3
for an example). More precisely, M̃ has two possible types of vertices and faces: regular

1Note however that, if we identify S̃ with the open unit disk as in Figure 4.3, then p does not extend
to a continuous function on the closed unit disk. It only admits non-tangential limits at the ideal
corners, which form a dense countable subset of the unit circle. This is consistent with the topology
of S̃′ resulting from the gluing of squares: in the hyperbolic plane picture, given an ideal corner x̃, a
neighborhood basis for x̃ consists of the interiors of horocycles of center x̃.
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xA = ∂A

xB

∂B

xC

∂C

x̃A = ∂̃A

∂̃C

x̃C

x̃B x̃B′∂̃B ∂̃B′

Figure 4.2: A part of the universal cover of a dumbbell-shaped map, having two
boundary-faces ∂B and ∂C and one boundary-vertex ∂A = xA. We display
in green the distinguished ideal vertex ∂̃A = x̃A, and the contours (oriented
counterclockwise by convention) of the distinguished ideal faces ∂̃B, ∂̃C and
∂̃B′ . The embedding is good, according to the definition given in Section 5.1.

vertices and faces, which are the preimages of the non-boundary vertices and faces of M
(keeping the same finite degree), and ideal vertices and faces, which have infinite degree,
project to the boundaries of M , and are in bijection with the ideal corners of S̃′.

Let us provide some elements of justification to this dichotomy. First, since p : S̃ → S
is a cover, it is immediate that a non-boundary vertex of M , being placed at a point of
S, lifts to vertices of M̃ with the same finite degree. Next, if f is a face of M which is not
a boundary-face, then (at least when f is not incident to a boundary-vertex, otherwise
we have to adapt slightly the argument) its contour ∂f is homotopic in S to a point, so
that its lifts form closed paths in S̃ bounding the preimages of f by p (which therefore
keep the same finite degree). Now, if f is a boundary-face of M , then its contour ∂f is
not homotopic to a point, so that its preimages in S̃ are domains bounded by lifts of ∂f ,
which form infinite paths of edges, resulting in ideal faces with infinite degree. Finally,
a boundary-vertex v of M , being placed at a puncture, lifts to an ideal corner x̃ of S̃′,
and has infinite degree since x̃ is common to infinitely many squares Sw contributing at
least one edge incident to x̃.
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Figure 4.3: Left: the regular tiling of the hyperbolic plane (here represented in the
Poincaré disk model) realizing the gluing of squares of Figure 4.1. Right: the
corresponding representation of the universal cover of the dumbbell-shaped
map of Figure 4.2. The green vertex at the ideal corner x̃A has infinite degree.
The contour of ∂̃C follows a horocycle with center the ideal corner x̃C .

We call the infinite map M̃ the universal cover of the map M . We endow the set
of its vertices V (M̃) with the graph distance d̃, as for finite maps. The automorphism
group of M̃ is the same as that of S̃, Aut(p). It acts freely on the regular vertices
and faces, but each ideal vertex or face is left invariant by an infinite cyclic subgroup,
precisely the same as that fixing the corresponding ideal corner of S̃′. We point out that,
in the concrete construction of S̃ done above, it comes endowed with a distinguished
fundamental domain S∅, which in turn distinguishes four ideal corners x̃A, x̃B, x̃C and
x̃B′ (see again Figure 4.1), and therefore four ideal vertices or faces ∂̃A, ∂̃B, ∂̃C and ∂̃B′ of
M̃ (see again Figure 4.2). We emphasize that this “rooting” results from our construction
of S̃ and not from any extra data on M other than its distinguished boundaries.

Note that there is an important flexibility in our construction. Indeed, we can choose in
an arbitrary way the embedding of M in S or the projection p : S0 → S: the resulting S̃,
M̃ and extension of p to S̃ will always be the same, up to isomorphisms. This observation
will be useful in Section 5.

Finally, we record the important observation that, if M is essentially bipartite, then
its universal cover M̃ is bipartite. Indeed, every simple cycle in M̃ is contractible and
encloses a finite number of faces of finite even degree, thus has even length.

4.2. Visualizing the assembling procedures on the universal cover

We now explain how the assembling procedures I and II can be visualized on the universal
cover of the triply punctured sphere. Let us start again from three (bigeodesic) diangles
and two triangles, as at the beginning of Section 3. In the description given in Section 3.1,
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M

Figure 4.4: The partially assembled map M obtained from three bigeodesic diangles and
two bigeodesic triangles. See again Figure 1.1 for a concrete example.

the assembling was done in two successive operations, attachment then red-to-blue gluing.
Here, it is convenient to give an alternative (but equivalent) description in which the
assembling is done even more progressively, by doing first a partial attachment and a
partial red-to-blue gluing, thereby giving a partially assembled map, and then completing
the assembling by another round of attachment and red-to-blue gluing.

Precisely, the partially assembled map, which we denote by M, is constructed as dis-
played on Figure 4.4. Namely, we identify some of the attachment points of the diangles
and triangles together, but some of them, denoted u1, u2, u3 and u4, remain unattached
for now. Note that the attachments that we perform are exactly those which are common
to procedures I and II, see again Figures 3.1(a) and 3.2. This results in a map with one
unique special face. We then perform red-to-blue gluing counterclockwise around the
special face (i.e. with this face on the left), with the important prescription that we do
not perform gluings which would require passing over the attachment points u1, . . . , u4.
For instance, a red edge preceding the attachment point u1 on the right triangle remains
unglued, since it would be glued with a blue edge beyond u1. The partially assembled
map M is a planar bipartite map with one boundary-face and eight distinguished inci-
dent corners: the attachment points u1, u2, u3, u4, at which we switch from blue to red
when turning counterclockwise around M, and the corners u12, u23, u34, u41 at which we
switch back from red to blue. In the situation displayed on Figure 4.4, u12 corresponds
to a corner of the right triangle, but it could also be, say, a corner of the middle diangle,
if the latter were longer. It is straightforward to check that [u1, u12] (resp. [u41, u12]) is a
strictly geodesic (resp. geodesic) boundary interval of M, as defined in Section 2.1, and
similarly for the other intervals around M. Furthermore, by the definition of exceedances,
we see that

d(u1, u12) + e1 + e2 = d(u12, u2),

d(u2, u23) + e2 = d(u23, u3),

d(u3, u34) + e1 + e3 = d(u34, u4),

d(u4, u41) + e3 = d(u41, u1),

(4.1)
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where d denotes the graph distance in M and where, by a slight abuse, we identify corners
with their incident vertices. Note that the boundary-face of M is not necessarily simple,
as there may be contacts between the different blue intervals (as said in the caption of
Figure 2.2, such contacts may exist in a diangle of positive exceedance, and may subsist
in the partial gluing, for instance if all the remaining pieces are equal to the vertex-map).

In order to complete the assembling procedures, we have to identify the remaining
attachment points u1, . . . , u4 together: let MI (resp. MII) be the map obtained from
M by identifying u1 with u2 and u3 with u4 (resp. u1 with u4 and u2 with u3). Note
that these identifications are exactly those which are specific to Figure 3.1(a) (resp.
Figure 3.2). In the terminology of Section 3.1, the maps MI and MII have three “special”
faces, and we complete the assembling procedures by performing red-to-blue gluing in
each special face. It is straightforward to check that, for both procedure I and procedure
II, we obtain the same final result as with the previous construction.

The interest of our alternative description is that it is now easier to visualize the
universal cover of the resulting assembled maps. Precisely, we consider the square tiling
(Sw)w∈F of Section 4.1, and inside each square Sw we place a copy Mw of the partially
assembled map M. We then identify the attachment points of these copies together as
follows. In the case of procedure I displayed on Figure 4.5, the attachment point uw1 of
Mw is identified with the attachment point uwa2 of Mwa, and uw3 is identified with uwc4 ,
for all w ∈ F . Similarly, in the case of procedure II, looking again at Figure 3.2, we
see that the attachment point uw2 of Mw is identified with the attachment point uwa3 of
Mwa, and uw4 is identified with uwc1 . Of course, these identifications require to deform the
copies, and we can place the identified attachment vertices on the sides of the squares if
we want. At this stage, we obtain infinite maps denoted by M̃I and M̃II, which are the
respective universal covers of MI and MII, upon seeing their three special faces as the
three boundaries.

To complete the assembling procedure in the universal cover, we have to perform a final
round of red-to-blue gluing in each special (ideal) face. To better understand how this
works, it is useful to set up some notations. We first introduce the shorthand notations

I1 := [u41, u12], I2 := [u12, u23], I3 := [u23, u34], I4 := [u34, u41] (4.2)

for the sides of M (so that Ij is a bigeodesic launched from the assembling point uj).
We also introduce the unified notations

procedure I:


Ia := I1

Ia := I2

Ic := I3

Ic := I4

procedure II:


Ia := I2

Ia := I3

Ic := I4

Ic := I1

(4.3)

and, for w ∈ F and l ∈ {a, a, c, c}, we let Iwl be the corresponding side of the copy Mw.
The interest of the unified notations is that the attachment point of Iwl is identified with
that of Iwl

l
, regardless of whether we apply procedure I or II. As is apparent on (4.3),

switching from procedure I to procedure II amounts on the universal cover to rotating
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x̃A

x̃C

x̃B x̃B′M∅

Ma
Ma

McMc

G
x̃

Ax̃
x̃

Ax̃

A2x̃

ỹ
Bỹ

ỹ

Figure 4.5: A visualization of the assembling procedure I in the universal cover of the
triply punctured sphere. Inside each square Sw of the tiling of Figure 4.1, we
place a copy Mw of the partial gluing M of Figure 4.4. By attaching these
maps together via their attachment points as displayed with the arrows, and
deforming appropriately to perform the identification of vertices, we obtain
the universal cover of the map MI. To complete the assembling, we have
to match and glue the red and blue edges of the ideal faces together (some
identification between vertices are shown with dotted lines), thereby leaving
only blue unmatched edges incident to ideal faces. Procedure II works just
the same, except that we have to rotate each map Mw by a quarter-turn
clockwise. We display in purple the path G and its vertices x̃, Ax̃, A2x̃, ỹ, Bỹ,
as defined in Section 4.3 (in the displayed situation we have ∆a,∆c > 0 but
∆a = 0). By Lemma 4.1, G is a geodesic in M̃ .
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each Mw by a quarter-turn clockwise. Furthermore, the red part of Iwl and the blue part
of Iwl

l
are incident to the same special face, and appear successively counterclockwise

around it. Thus, in the red-to-blue gluing operation, the red edges in Iwl will first look
for blue matches in Iwl

l
. Observe that, in all this discussion, we can return from the

universal cover to the sphere by dropping the copy superscript.
Let us first consider the case l = a: by (4.1), we see that the red part of Ia has ∆a

fewer edges than the blue part of Ia, with

procedure I: ∆a := e1 + e2, procedure II: ∆a := e2. (4.4)

Since ∆a is always nonnegative, when we complete the assembling of M, the red part
of Ia is thus completely glued to the beginning of the blue part of Ia (starting at the
attachment point). If ∆a > 0, there remains an unmatched blue part of length ∆a which
forms the contour of the boundary face ∂A; if ∆a = 0, ∂A is instead a boundary-vertex
as explained in Section 3.1. Translated in the universal cover, the red part of Iwa is
completely glued to the beginning of the blue part of Iwaa (starting at the attachment
point). If ∆a > 0, the remaining unmatched blue part of Iwaa forms a lift of the contour
of the boundary face ∂A; if ∆a = 0, we only get an “exposed” blue vertex which we can
place at an ideal corner of S̃′ in order to form an ideal vertex of the map.

The case l = c is entirely similar, the red part of Ic having ∆c fewer edges than the
blue part of Ic, with

procedure I: ∆c := e1 + e3, procedure II: ∆c := e3. (4.5)

The cases l = a and l = c are slightly more involved since they must be considered
altogether to construct the boundary ∂B. Let ∆a (resp. ∆c) be the difference between
the length of the blue part of Ia (resp. Ic) and that of the red part of Ia (resp. Ic). The
relations (4.1) imply that ∆b := ∆a +∆c is given by

procedure I: ∆b := e2 + e3, procedure II: ∆b := 2e1 + e2 + e3 (4.6)

and is therefore always nonnegative, but the signs of ∆a and ∆c themselves are not fixed
since they depend on the sizes of different diangles and triangles. We therefore have three
generic situations:

(i) ∆a and ∆c are both nonnegative,

(ii) ∆a is negative (hence ∆c is positive),

(iii) ∆c is negative (hence ∆a is positive).

Let us discuss these three situations, illustrated on Figure 4.6. In the situation (i), all
the red edges of Ia (resp. Ic) are matched to blue edges of Ia (resp. Ic). This implies
two things about the universal cover, one good and one bad. The good thing is that we
only have “nearest neighbor” gluings, as in the cases l = a, c discussed before: all the
red edges of Iwa (resp. Iwc ) are matched to blue edges of Iwaa (resp. Iwcc ). The bad thing
is that, since there are some unmatched blue edges in both Ia and Ic (unless we are in
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Figure 4.6: The three generic situations corresponding to the possible signs of ∆a and
∆c: (i) ∆a,∆c ≥ 0, (ii) ∆a < 0 and ∆c ≥ 0, (iii) ∆a ≥ 0 and ∆c < 0. In
case (ii), some of the red edges of Iaa are matched to blue edges of Iabc = Icc ,
and similarly for case (iii) mutatis mutandis.

the degenerate situation where ∆a or ∆c vanishes), the lifts of the contour of ∂B do not
remain in a single copy Mw, but we have to consider two neighboring copies, say Mw

and Mwa, to obtain such a lift as the concatenation of the unmatched blue parts of Iwa
and Iwac .

In the situation (ii), some red edges of Ia do not find blue matches in Ia, and therefore
find them in Ic. This implies two things about the universal cover, one bad and one good.
The bad thing is that there are now “next nearest neighbor” gluings in the universal cover,
namely some red edges of Iwa are matched to blue edges of Iwbc , where we recall that b = a c

is an element of length 2 in F . The good thing is, since all unmatched blue edges are
found on Ic, the corresponding unmatched blue part of Iwc forms a complete lift of the
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contour of ∂B that remains in the single copy Mw.
The situation (iii) is entirely similar to the situation (ii), upon interchanging the roles

of a and c, and therefore changing b into b′ = c a.

4.3. Tightness of the boundaries resulting from the assembling procedures

We are now in position to prove that the maps resulting from the assembling procedures
have tight boundaries. Starting from three diangles and two triangles, we denote by
M the partially assembled map as defined in the previous subsection, and by M the
completely assembled map (done according to procedure I or II). As we have seen, the
universal cover M̃ of M can be constructed directly by gluing infinitely many copies of
M along their boundaries.

A key ingredient in our proof is the path G displayed on Figure 4.5 and defined as
follows. It consists of two parts which are both “launched” from the attachment point
between the copies M∅ and Ma, and which go “towards” the ideal corners x̃A and x̃B,
respectively, by following the blue boundaries. More precisely, the part towards x̃A starts
with the blue part of I∅a , then continues with the unmatched blue part of Iaa , then that
of Ia2a , Ia3a , etc. Let us denote by x̃ the last vertex on the blue part of I∅a which is glued
to the red part of Iaa . Then, our path passes through the vertices Anx̃ for all n ≥ 0
(the unmatched blue part of Iana going from Anx̃ to An+1x̃). In the case ∆a = 0, all the
vertices Anx̃ are identified and placed at the ideal corner x̃A. In this case, x̃A is reached
in a finite number of steps by our path. As soon as ∆a is positive, our path is infinite
but, as visible on Figure 4.5, it still “tends” to x̃A in a sense, as it meets at x̃ the contour
of the ideal face containing x̃A, and follows it counterclockwise onwards. The description
of the part towards x̃B is similar and just a bit more involved, for the reasons discussed
at the end of Section 4.2: assume for instance that we are in case (i) with ∆a,∆c ≥ 0,
then the path with the blue part of Iaa , continues with the unmatched blue part of Ibc ,
then that of Ibaa , Ib2c , Ib2aa , etc. If ∆b > 0, the path meets at a vertex denoted ỹ the
contour of the ideal face containing x̃B, and follows it counterclockwise onwards, passing
in particular through Bnỹ for all n ≥ 0. If ∆b = 0, the path reaches x̃B in a finite
number of steps, and we set ỹ := x̃B. Then, the key property of G is the following:

Lemma 4.1. The path G is a geodesic in M̃ .

Proof. Intuitively, the reason is that, in Figure 4.5, we glue the copies along (bi)geodesics.
More formally, consider a path γ in M̃ whose two endpoints are on G: we need to show
that the length of γ is at least that of the portion of G having the same endpoints. Our
proof is by induction on the number of copies visited by γ.

Precisely, we say that γ enters into k copies if it can be written as a concatenation
of paths γ0γ1 . . . γkγk+1, where γ0 and γk+1 are portions of G (which we do not include
into the copy count) and, for all i = 1, . . . , k, γi is a path in the copy Mwi . Without loss
of generality, we may assume that the sequence (wi)

k
i=1 is consistent with the structure

of gluings discussed at the end of Section 4.2, that is to say in the situation (i) we have
wi+1w

−1
i ∈ {a, a, c, c} for all i = 1, . . . , k − 1 and, in the situations (ii) and (iii), we

must also allow the values b, b and b′, b
′, respectively. Note that ideal vertices lead to
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identifications between vertices belonging to distant copies, but we can always assume
that the wi satisfy the above constraint by considering that a long-range identification
corresponds to a concatenation of several paths γi of length zero. We may also assume
that w1 and wk are both of the form an, bn or bna for some n ≥ 0, as these correspond
to the copies “carrying” G.

If γ enters into 0 copies, it is contained in G and we are done. If it enters into k ≥ 1
copies, we will show that we can modify it, without increasing its length, so that it
enters into at most k − 1 copies. For this, we pick an i such that |wi| is maximal. Let
l ∈ {a, a, c, c} be the last letter of wi, with the convention that l = a if wi = ∅. Then,
from the structure of gluings discussed above, from the definition of G, and from the
maximality of |wi|, we see that γi has its two endpoints on the boundary interval Iwi

l
which is geodesic in Mwi . Let γ′i be the portion of Iwi

l
with the same endpoints as γi: γi

cannot be shorter than γ′i, so γ is not shorter than the path γ′ := γ0 . . . γi−1γ
′
iγi+1 . . . γk+1.

We claim that γ′ enters into (at most) k−1 copies. Indeed, for 1 < i < k, γ′i can be viewed
as a path on the boundaries of the copies Mwi−1 and Mwi+1—which are necessarily the
same in the situation (i), but could differ in the situations (ii) and (iii)—so that we may
rewrite γi−1γ

′
iγi+1 as the concatenation of (at most) two paths, each of them staying in

one of these copies. The argument is the same for i = 1 or i = k, upon understanding
that Mw0 and Mwk+1

refer to the path G.

Remark 4.2. The projection of G on the finite map M consists of a path connecting
the projection x of x̃ to the projection y of ỹ—this path is not a geodesic in general—
prolonged with infinitely many turns around ∂A and ∂B when these are boundary-faces.

We will need another technical lemma about G and its two distinguished vertices x̃
and ỹ:

Lemma 4.3. Suppose that ∂A (resp. ∂B) is a boundary-face of M , and let c be a cycle
of M freely homotopic in S to, i.e. which can be continuously deformed into, the contour
of ∂A (resp. ∂B), oriented counterclockwise. Then, c can be lifted to a path c̃ in M̃ going
from a vertex z̃ to the vertex Az̃ (resp. Bz̃), with z̃ belonging to G and situated between
x̃ and ỹ.

Proof. If ∂A is a boundary-face, we denote its contour by ∂̂A, which we orient counter-
clockwise and view as a loop rooted at the projection x of x̃ on M . If c is freely homotopic
to ∂̂A, there exists a path γ going from x to a point z0 on c such that γcγ−1 and ∂̂A are
homotopic as loops rooted at x. Lifting these loops to M̃ , we get paths with the same
endpoints. Choosing the starting point to be x̃, the final point must be Ax̃ (since it is
the final point for the lift of ∂̂A), and we deduce that γcγ−1 lifts to γ̃c̃0(Aγ̃)−1, where γ̃
is the lift of γ going from x̃ to a vertex z̃0, and c̃0 is a lift of c going from z̃0 to Az̃0.

If z̃0 lies on G we are done, otherwise we can tweak it as follows. Note that the paths
Anc̃0, n ∈ Z are all lifts of c, with the property that the endpoint of Anc̃0 is the starting
point of An+1c̃0. The concatenation of these paths is a doubly infinite path c̃∞ in M̃
(whose projection to M circles around c indefinitely) which, by planarity, necessarily
crosses G at a vertex z̃ situated between x̃ and ỹ. Indeed, as visible on Figure 4.5, the
portion of G between x̃ and ỹ separates the copies Mw with a reduced word w starting
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with the letter a, from the others. And, for n ≥ 0 large enough, A−nz̃0 will be in the
former set of copies, and Anz̃0 in the latter. The portion c̃ of c̃∞ between z̃ and Az̃ is
the wanted lift of c.

The reasoning in the case where ∂B is a boundary-face and c is a cycle freely homotopic
to its contour is entirely similar.

Proposition 4.4. The map M , assembled according to procedure I or II, has tight bound-
aries.

Proof. Let us first prove that the boundary ∂A is tight. If it is a boundary-vertex this
is a tautology, otherwise it is a boundary-face of length ∆a > 0, and we need to show
that any cycle c freely homotopic to its contour has length at least ∆a. Let us lift c to a
path c̃ as in Lemma 4.3. Then, the length of c is at least d̃(z̃, Az̃) which, by the triangle
inequality, satisfies

d̃(z̃, Az̃) ≥ d̃(z̃, Ax̃)− d̃(Ax̃,Az̃). (4.7)

As G is a geodesic by Lemma 4.1, and as x̃ lies between z̃ and Ax̃ on G, we have

d̃(z̃, Ax̃) = d̃(z̃, x̃) + d̃(x̃, Ax̃) = d̃(z̃, x̃) + ∆a. (4.8)

But we have d̃(z̃, x̃) = d̃(Ax̃,Az̃) since A is an automorphism of M̃ , hence

d̃(z̃, Az̃) ≥ ∆a (4.9)

as wanted. The proof for ∂B is entirely similar, using again Lemma 4.3, and replacing
in the above argument ∆a by ∆b, A by B, and x̃ by ỹ. Finally, for ∂C , we notice that
throughout this section it plays a symmetric role to ∂A, viewing all the figures upside
down (i.e. rotated by 180 degrees).

To conclude this section, let us note that, symmetrically to the definition of G, we
may define another geodesic G′ that consists of two parts launched from the attachment
point between the copies M∅ and Mc and going towards the ideal corners x̃C and x̃B′ ,
respectively. Then, the copy M∅ is delimited by the four geodesics G, AG, G′ and
CG′, upon removing their pairwise common parts. Furthermore, AG (resp. CG′) may be
viewed as a geodesic launched from the attachment point between M∅ and Ma (resp.
Mc).

5. Decomposing a map with three tight boundaries

In this section we complete the proof of Theorem 3.1: starting from an essentially
bipartite planar map M with three tight boundaries ∂A, ∂B, ∂C of respective lengths
2a, 2b, 2c ≥ 0 on the triply punctured sphere S, we want to disassemble M into two bi-
geodesic triangles and three bigeodesic diangles with nonnegative exceedances, in a way
that inverts the assembling procedure.

We already sketched in Section 3.4 the decomposition in the case of triply pointed
maps (a = b = c = 0). In order to generalize it to the case a, b, c ≥ 0, we have to find

34



an analog of the equilibrium conditions (3.3), which involve the distances dAB, dBC , dCA

between the boundary-vertices. When some boundaries are faces, we need appropriate
analogs of these distances: it turns out that such analogs may be constructed using so-
called Busemann functions defined on the universal cover M̃ of the map M . From this,
we will obtain the equilibrium vertices, from which we will launch leftmost bigeodesics
giving the decomposition we are looking for.

Our presentation is done in several steps. First, we discuss in Section 5.1 some graph-
theoretical properties of the infinite map M̃ , via the notion of good embedding. Buse-
mann functions, associated with infinite geodesics, are then introduced in Section 5.2. We
then explain in Section 5.3 how tight boundaries give rise to specific Busemann functions
on M̃ . In Section 5.4, we adapt the notion of leftmost bigeodesic to M̃ , and use it to
state the crucial diangle lemma. We construct equilibrium vertices in Section 5.5, and use
them to state the no less crucial triangle lemma. We apply all these tools in Sections 5.6
and 5.7 to exhibit the inverses of the assembling procedures I and II, respectively.

5.1. Graph-theoretical properties of the universal cover

Let us start by discussing some properties of the underlying graph of M̃ , which is infinite.
For this, it is useful to introduce the notion of “good embedding”.

Recall from Section 4.1 that the map M̃ is obtained by lifting the map M in the
universal cover S̃ of the triply punctured sphere S, and that we constructed S̃ as a
square tiling (Sw)w∈F dual to the infinite 4-regular tree F . Let us denote by Σ the
projection of the boundaries of the square S∅ (hence of any square Sw) on the sphere S′:
it is a path connecting xA to xC via xB, see again Figure 4.1.

In general, the edges of M̃ may connect vertices belonging to squares arbitrarily far
from each other in F , since the edges of M may cross Σ in an arbitrarily complicated
manner. We can simplify the situation by an appropriate deformation of the embedding
of M in S (hence, of the embedding of M̃ in S̃). More precisely, we say that we have
a good embedding if every edge of M , with its endpoints excluded, is either entirely
contained in Σ, or intersects it in at most one point. Note that, in the latter case, the
endpoints may also belong to Σ. See again Figure 4.2 for an example.

Lemma 5.1. Every map M with three boundaries admits a good embedding.

Proof. Consider the first derived map M ′ of M , which is defined [Tut63] as the trian-
gulation obtained by superimposing M with its dual—which creates a quadrangulation
called the derived map [Sch15] of M—and splitting each quadrangle into two triangles by
connecting each vertex of M to all neighboring dual vertices. The vertex set of M ′ can
be partitioned into {W,W ∗,W †}, where W , W ∗ and W † correspond respectively to the
vertices, faces and edges of M , and the edges of M ′ correspond to the incidence relations
in M . Note that the vertices of M ′ have even degree, and those in W † have degree four.

The boundaries ∂A, ∂B, ∂C of M become vertices in M ′, which we can place at the
punctures xA, xB, xC of S. Let P be a simple path on M ′ connecting xA to xC via xB,
and going “straight” at every vertex in W †. Such a path always exists and, by deforming
M ′ in such a way that P coincides with Σ, we get a good embedding of M .
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When the embedding of M is good, which we will assume from now on, the lifted
edges of M̃ remains “local” with respect to the tiling (Sw)w∈F , i.e. they may only connect
vertices lying in the same square or in neighboring squares (i.e. squares Sw, Sw′ with
w−1w′ ∈ {a, a, c, c}). In particular, when we remove the finitely many vertices belonging
to the square S∅ (including those possibly placed on its boundaries and at its ideal
corners) and their incident edges, then M̃ is disconnected in four infinite pieces. It
follows that M̃ has infinitely many ends in the graph-theoretical sense. These ends are
in natural bijection with those of the infinite 4-regular tree F .

Recall that M̃ has two possible types of vertices, namely regular vertices with finite
degree, and ideal vertices (placed at ideal corners of S̃′) with infinite degree. In the
absence of ideal vertices (i.e. when M has only boundary-faces), the underlying graph
of M̃ is locally finite. In the presence of ideal vertices, we have the following weaker
property:

Lemma 5.2. Let v and v′ be two vertices of M̃ , and r a nonnegative integer. Then, the
number of simple paths from v to v′ having length at most r is finite.

Proof. Since we have a good embedding, we may keep track of the squares visited by a
path on M̃ :

• when following an edge between regular vertices, we may either remain in the same
square Sw, or move to a neighboring square Swl, l ∈ {a, a, c, c},

• when passing through an ideal vertex projecting to xA (if there are any), we may
jump from the square Sw to any square of the form Swan , with n ∈ Z arbitrary,

• similarly, when passing through an ideal vertex projecting to xC (if there are any),
we may jump from Sw to any square Swcn , n ∈ Z,

• finally, when passing through an ideal vertex projecting to xB (if there are any), we
may jump from Sw to squares of the form Swbn , Swabn , Swbnc or Swabnc, with n ∈ Z
and b = a c (see again Figure 4.1).

Without loss of generality, we may assume that the initial vertex v belongs to the
square S∅. Then, we may reach after r steps only squares of the form Sw1l

n1
1 ···wslns

s
,

where w1, . . . , ws are elements of F such that |w1|+ · · ·+ |ws|+s ≤ 2r, l1, . . . , ls are equal
to a, b or c, and n1, . . . , ns are arbitrary integers. Hence, generally speaking, infinitely
many squares may be reached.

However, here we fix the endpoint v′, hence the final square Sw1l
n1
1 ···wslns

s
. We claim

that, on any simple path from v to v′ with length at most r, we may only visit squares of
the form Sv1l

m1
1 ···vslms

s
, where v1, . . . , vs are elements of F at bounded distance from the

neutral element ∅, and m1, . . . ,ms are integers such that either |mi| ≤ r, or |mi−ni| ≤ r.
The reason is that, if we perform a “big jump” (larger than r) at an ideal vertex, then
we cannot “undo” the jump in less than r steps since we cannot revisit the same ideal
vertex again—here we use the fact that F is a free group, whose Cayley graph is a tree.
Therefore, the number of squares that may be visited is finite, and since each square
contains finitely many vertices, the claim follows.
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Note that Lemma 5.2 becomes false if, instead of simple paths, we consider general
paths, or even nonbacktracking paths. Indeed, without the simplicity assumption, it is
possible to do arbitrarily big jumps, then undo them.

Note also that we have not used the fact that the boundaries of M are tight, in fact
all the discussion in this subsection remains valid without this assumption.

5.2. Infinite geodesics and Busemann functions

Next, we introduce the main tool that will allow us to decompose maps with tight
boundary-faces. This tool is the notion of Busemann function, a classical object of
metric geometry, see for instance Chapter 5 in [BBI01]. In the infinite map M̃ , we define
an infinite geodesic (also called a geodesic ray in metric geometry) as an infinite sequence
(γ(t))t∈N of vertices such that

d̃(γ(t), γ(t′)) = |t− t′| (5.1)

for all t, t′ (recall that d̃ denotes the graph distance in M̃). A biinfinite geodesic is
defined in exactly the same way, except that the sequence is indexed by Z instead of N.
To simplify our discussion, we overlook the fact that the map may be non simple, which
would in all rigor require to specify which edges are visited by the geodesic.

With an infinite geodesic γ, we may associate its Busemann function Bγ which assigns
to a vertex v the quantity

Bγ(v) = lim
t→+∞

d̃(v, γ(t))− t. (5.2)

This quantity is well-defined since the function t 7→ d̃(v, γ(t)) − t is nonincreasing, by
virtue of the triangle inequality, and bounded from below by −d̃(v, γ(0)). In fact, since
we are in a discrete metric space, we have Bγ(v) = d̃(v, γ(t))− t for t large enough. We
also have Bγ(γ(t)) = −t for all t.

It is not difficult to check that Bγ is a 1-Lipschitz function, changes parity along each
edge since the map M̃ is bipartite, and admits no local minimum: every vertex v has an
adjacent vertex v′ such that Bγ(v

′) = Bγ(v)− 1.
For a biinfinite geodesic γ, we define its Busemann function Bγ in the same way. Note

that a change of parametrization t 7→ t+t0 of γ changes Bγ by a constant, so a Busemann
function should really be viewed as “defined modulo a constant”. Note however that the
change of parametrization t 7→ −t gives rise to a different Busemann function.

Lemma 5.3. Let γ, γ′ be two infinite geodesics, and suppose that there exists a finite set
V0 of vertices whose removal splits M̃ in several connected components, such that γ and γ′

eventually belong to different connected components (i.e. γ(t) remains in one connected
component and γ′(t) in another for large enough t). Then, the function Bγ +Bγ′ admits
a global minimum, which is reached at some v0 ∈ V0. Furthermore, there exists at least
one biinfinite geodesic along which Bγ is strictly increasing and Bγ′ is strictly decreasing,
and a vertex v, not necessarily in V0, belongs to such a geodesic if and only if it is a
global minimum of Bγ +Bγ′ .
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Proof. Let v0 be a vertex at which Bγ + Bγ′ attains its minimum in the finite set V0.
For a given v, take t large enough so that Bγ(v) = d̃(v, γ(t))− t, Bγ′(v) = d̃(v, γ′(t))− t,
and so that γ(t) and γ′(t) are in different connected components after removing V0.
By the triangle inequality, we have Bγ(v) + Bγ′(v) ≥ d̃(γ(t), γ′(t)) − 2t, and we have
d̃(γ(t), γ′(t)) = d̃(γ(t), v1) + d̃(v1, γ

′(t)) for some v1 ∈ V0 since a geodesic path from γ(t)
to γ′(t) necessarily meets V0 at some vertex v1. We get

Bγ(v) +Bγ′(v) ≥ (d̃(v1, γ(t))− t) + (d̃(v1, γ
′(t))− t) ≥ Bγ(v1) +Bγ′(v1), (5.3)

which is at least Bγ(v0) +Bγ′(v0). This proves the first claim.
Consider now an arbitrary minimizer v of Bγ +Bγ′ . Since Bγ has no local minimum,

we can construct an infinite path starting at v along which Bγ is strictly decreasing, and
similarly we can construct another infinite path starting at v along which Bγ′ is strictly
decreasing. It is straightforward to check that, reversing the direction of the second path
and concatenating it with the first one, we get a biinfinite geodesic with the wanted
property, and that conversely any such geodesic can only pass through minimizers of
Bγ +Bγ′ .

Note that, in this subsection, we have not used the fact that M̃ is planar. In fact, our
discussion (including Lemma 5.3) holds for an arbitrary infinite graph.

5.3. Busemann functions associated with tight boundaries

We will now exploit the assumption that M has tight boundaries. Consider a boundary
of M , say ∂A of length 2a. As discussed in Section 4.1, ∂A has a distinguished lift ∂̃A
which is an ideal vertex if a = 0, and an ideal face if a > 0. In this latter case, we let γA be
the biinfinite path on M̃ obtained by following the contour of ∂̃A in the counterclockwise
direction. Choosing a reference point γA(0) arbitrarily, γA is parametrized by Z.

Lemma 5.4. If ∂A is a tight boundary-face in M , then γA is a biinfinite geodesic in M̃ .

Proof. If we view the contour of ∂A as a biinfinite sequence of vertices (λA(t), t ∈ Z)
obtained by cycling infinitely many times around ∂A, then [CdVE10, Proposition 2.5]—
which is closely related to the wrapping lemma of [BG14]—implies that any path of the
form (λA(t + l), 0 ≤ t ≤ m) for l ∈ Z and m ∈ N is shortest in its homotopy class
with fixed endpoints (such a path is called ‘tight’ in [CdVE10], so that our terminology
agrees). Then, as noted in [CdVE10, Section 2.1], this property is preserved by taking
lifts in the universal cover (and in fact, even in arbitrary covers). Since γA is one of these
lifts, and since S̃ is simply connected, any two paths between the same vertices in M̃ are
homotopic, and we conclude that γA is a geodesic between any pair of points it visits,
which is the definition of a biinfinite geodesic.

We may therefore define the function d̃A : V (M̃) → Z as follows:

• if a = 0, then we let d̃A be the distance in M̃ to the vertex x̃A,

• if a > 0, then we let d̃A = BγA be the Busemann function associated with γA.
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Let us record the relation
d̃A(Av) = d̃A(v)− 2a (5.4)

valid for any vertex v of M̃ , where A ∈ Aut(p) is the automorphism defined in Section 4.1.
This relation is immediate in the case a = 0; for a > 0 it follows from the definition of
the Busemann function BγA and the fact that A(γA(t)) = γA(t+ 2a) for any t.

In a completely similar manner, we define the functions d̃B, d̃C and d̃B′ , which obey
relations similar to (5.4) mutatis mutandis. For later use, we record the following:

Lemma 5.5. There exists a constant k ∈ Z such that, for any vertex v of M̃ , we have

d̃B′(Av) = d̃B(v) + k (5.5)

and
d̃B(Cv) = d̃B′(v)− k + 2b. (5.6)

Proof. The first relation is a straightforward consequence of the fact that ∂̃B′ = A∂̃B. The
constant k is equal to 0 in the case b = 0 while, for b > 0, it satisfies AγB(k) = γB′(0) (we
could thus set it to 0 too by choosing the reference points on ∂̃B and ∂̃B′ appropriately).

For the second relation, we note that ∂̃B = C∂̃B′ hence there exists a constant k′ such
that d̃B(Cv) = d̃B′(v) + k′. But, by the relation B = A−1C−1, we have

d̃B(v) = d̃B(CABv) = d̃B′(ABv) + k′ = d̃B(Bv) + k′ + k = d̃B(v) + k′ + k − 2b. (5.7)

hence k′ = −k + 2b.

Remark 5.6. In this paper, we only consider the Busemann functions obtained by fol-
lowing the contours of ideal faces counterclockwise. We surmise that considering the
clockwise orientation might be useful to study “strictly tight” boundaries, i.e. boundaries
whose contours are the unique paths of minimal length in their homotopy class.

5.4. Leftmost bigeodesics and the diangle lemma

Throughout this section, we consider specifically the pair of ideal vertices/faces (∂̃A, ∂̃B),
but all the discussion can be adapted to any other pair, e.g. (∂̃A, ∂̃C), (∂̃B, ∂̃B′), etc. We
start by adapting the concepts of Section 2.1 to the context of the infinite map M̃ and
of Busemann functions.

Geodesics and bigeodesics. A geodesic towards ∂̃A is a path on M̃ along which d̃A is
strictly decreasing, which stops at ∂̃A if a = 0, and which continues forever if a > 0 (so
that d̃A tends to −∞ along the path). Such a path γ is indeed a geodesic, i.e. satisfies
d̃(γ(t), γ(t′)) = |t − t′| for all t, t′ in its interval of definition. A geodesic towards ∂̃B is
defined similarly.

A bigeodesic between ∂̃A and ∂̃B is a path which is both a geodesic towards ∂̃A in one
direction, and a geodesic towards ∂̃B in the other direction. Such bigeodesics always
exist: this is clear when b = 0 (start at the vertex ∂̃B and follow a path along which d̃A
decreases) or similarly when a = 0; when ab > 0, we may invoke Lemma 5.3, with V0 the
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set of vertices lying in the square S∅ (given a good embedding). We define the distance
d̃AB between ∂̃A and ∂̃B as

d̃AB := min
v

(
d̃A(v) + d̃B(v)

)
. (5.8)

This denomination is consistent with the fact that, for a = b = 0, d̃AB is precisely the
graph distance in M̃ between x̃A and x̃B. For ab > 0, it is nothing but the minimal value
of the function BγA +BγB as considered in Lemma 5.3.

In the Poincaré disk representation of S̃, a geodesic towards ∂̃A forms a simple path
which “ends” at the ideal point x̃A, see again Figure 4.3. A bigeodesic between, say, ∂̃A
and ∂̃B, forms a simple path connecting the ideal points x̃A and x̃B. By planarity, this
path splits the disk (hence M̃) in two regions, which we may distinguish as left and right,
given an orientation of the bigeodesic (say, from ∂̃B to ∂̃A). Note that the interiors of
these regions may be disconnected, if the bigeodesic passes through an ideal vertex on
its way.

Geodesic vertices. A geodesic vertex between ∂̃A and ∂̃B is a vertex belonging to a
bigeodesic between ∂̃A and ∂̃B. It is straightforward to check (see again Lemma 5.3 in
the case ab > 0) that v is such a vertex if and only if

d̃A(v) + d̃B(v) = d̃AB. (5.9)

The quantity d̃A(v) is called the d̃A-latitude of the geodesic vertex v between ∂̃A and ∂̃B.

Lemma 5.7. For any r ∈ Z, the set IAB(r) of geodesic vertices between ∂̃A and ∂̃B
having d̃A-latitude r is finite.

Proof. If a = b = 0 then this is a corollary of Lemma 5.2. Suppose now that a > 0.
Given a good embedding, any bigeodesic between ∂̃A and ∂̃B must visit a vertex in the
square San , for any n ≥ 0. Let us denote by rn the maximal d̃A-latitude of a geodesic
vertex belonging to San , then rn+1 = rn − 2a < rn by (5.4). Hence there exists an m
such that rm < r. If b = 0, we see that any geodesic vertex of d̃A-latitude r belongs
to a geodesic (hence simple) path between ∂̃B and a vertex of Sam , so there are finitely
many of them by Lemma 5.2. If b > 0, adapting the previous reasoning shows that there
exists an ℓ such that the minimal d̃A-latitude of a geodesic vertex in Sbℓ is larger than
r. Therefore, any geodesic vertex of d̃A-latitude r belongs to a geodesic (hence simple)
path between a vertex of Sam and a vertex of Sbℓ , and again there are finitely many of
them by Lemma 5.2.

Leftmost bigeodesic via a geodesic vertex. Given a geodesic vertex v between ∂̃A and
∂̃B, we may, as in Section 2, “launch” from v the leftmost geodesics towards ∂̃A and ∂̃B
(the planarity of M̃ is used to identify the first edges of these leftmost geodesics, as in
the finite case). The only potential difficulty is that these geodesics may encounter ideal
vertices of infinite degree. However, by Lemma 5.7, only finitely many edges through a
given ideal boundary point make d̃A and d̃B decrease, therefore, when there are any, there

40



∂̃A

∂̃B

v

v′

GAB(v) GAB(v
′)

w

w′

DAB(v, v
′)

Figure 5.1: Illustration of the diangle lemma: we consider two geodesic vertices v and v′

between ∂̃A and ∂̃B, such that v′ lies on the right of the leftmost bigeodesic
GAB(v) (shown in orange), and such that d̃A(v) ≥ d̃A(v

′). Then, GAB(v) and
GAB(v

′) (shown in purple) delimit a region DAB(v, v
′) (shown in white) which

is a bigeodesic diangle of nonnegative exceedance d̃A(v)− d̃A(v
′).

is always a leftmost one to be picked. Since v is a geodesic vertex, the concatenation of
these two geodesics, oriented all the way from ∂̃B to ∂̃A, forms a bigeodesic between ∂̃A
and ∂̃B which we call the leftmost bigeodesic via v and denote GAB(v). Note that the
leftmost geodesic towards ∂̃A eventually merges with it: this is obvious for a = 0 since
the ideal vertex x̃A = ∂̃A is reached in finitely many steps; for a > 0, setting γA as in
Section 5.3, then the leftmost geodesic from v merges with γA at the vertex γA(t) for the
smallest value of t such that d̃A(v) = d̃(v, γA(t))− t. Of course, a similar property holds
for the leftmost geodesic towards ∂̃B.

The diangle lemma. Consider two geodesic vertices v and v′ between ∂̃A and ∂̃B, such
that v′ lies on the right of the leftmost bigeodesic GAB(v) (oriented from ∂̃B to ∂̃A) or
on it, and such that d̃A(v) ≥ d̃A(v

′). This situation is illustrated on Figure 5.1.
We claim that the leftmost bigeodesic GAB(v

′) remains on the right of GAB(v). Indeed,
as we start from v′ and follow a geodesic towards ∂̃A, it is not possible to pass to the left
of GAB(v), since the latter consists of a leftmost geodesic towards ∂̃A and we started on
its right. Furthermore, when we actually follow the leftmost geodesic from v′ towards ∂̃A,
then we will eventually meet GAB(v) at a vertex w (since all leftmost geodesics towards ∂̃A
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eventually merge with it), and follow it onwards. Similarly, as we start from v′ and follow
the leftmost geodesic towards ∂̃B, it is again not possible to pass to the left of GAB(v),
hence GAB(v

′) stays to the right of GAB(v). In particular, v lies on the left of GAB(v
′),

hence on the right of GBA(v
′) (oriented from ∂̃A to ∂̃B). As we have d̃B(v

′) ≥ d̃B(v), we
see that v and v′ play a completely symmetric role, upon exchanging the roles of A and
B and viewing Figure 5.1 upside-down. We denote by w′ the vertex at which GAB(v)
and GAB(v

′) merge when going towards ∂̃B. Note that it is possible that GAB(v) and
GAB(v

′) have intermediate contacts at vertices of d̃A-latitude strictly included between
d̃A(v

′) and d̃A(v).
We now consider the closed region DAB(v, v

′) delimited by GAB(v) and GAB(v
′) (pre-

cisely, the region which is on the right of GAB(v) and on the left of GAB(v
′), when orienting

them from ∂̃B to ∂̃A), which we prune at w and w′ to remove their (possibly infinite)
common parts towards ∂̃A and ∂̃B. Note that DAB(v, v

′) is connected but its interior may
be disconnected when there are intermediate contacts between GAB(v) and GAB(v

′). As
a degenerate case, it is possible to have GAB(v) = GAB(v

′), and then DAB(v, v
′) consists

of a segment joining v = w′ to v′ = w.

Lemma 5.8 (Diangle lemma). DAB(v, v
′) is a bigeodesic diangle of nonnegative ex-

ceedance d̃A(v)− d̃A(v
′).

Proof. We have to check that DAB(v, v
′) satisfies the axioms of Section 2.3. First we

observe that it is by construction a finite map with one boundary-face (the interior of a
closed cycle on M̃ always contains finitely many vertices, edges and faces).

Then, to make the correspondence with the notations of Section 2.3, we take w12 = v,
w21 = v′, v1 = w and v2 = w′ (see again Figure 2.2) and the corners c1, c12, c2, c21 are
selected in a natural manner. The boundary intervals [c1, c2] and [c2, c1] are geodesic
since they correspond to parts of the bigeodesics GAB(v) and GAB(v

′). The boundary
intervals [c12, c2] and [c21, c1] are strictly geodesic since GAB(v) and GAB(v

′) are actually
leftmost bigeodesics: no geodesic between v and w′ can enter into DAB(v, v

′), and simi-
larly between v′ and w. Finally, w (resp. w′) is by definition the only vertex common to
[c21, c1] and [c1, c2] (resp. [c12, c2] and [c2, c1]).

So far, our construction depends on the choice of geodesic vertices v and v′ satisfying
the aforementioned properties that v′ is on the right of GAB(v) and that d̃A(v) ≥ d̃A(v

′).
However, given two latitudes r ≥ r′ such that the sets IAB(r) and IAB(r

′), as defined in
Lemma 5.7, are both nonempty, there exists a canonical choice of such vertices. Indeed,
we may consider the leftmost element v of IAB(r), defined as the only vertex v ∈ IAB(r)
such that the region on the left of GAB(v) (again oriented from ∂̃B to ∂̃A) contains no
other element of IAB(r). Similarly, we choose v′ to be the rightmost element of IAB(r

′).
Clearly v′ is on the right of GAB(v), which actually passes through the leftmost element
of IAB(r

′). This choice of v and v′ makes DAB(v, v
′) the largest possible, as in the case of

triply pointed maps discussed in Section 3.4, and we will always encounter such maximal
diangles in the following.
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5.5. Equilibrium vertices and the triangle lemma

In the previous subsection, we have only considered the pair (∂̃A, ∂̃B). Let us now add ∂̃C
in the game: our purpose is to construct a bigeodesic triangle TABC which, interestingly,
is canonical in the sense that it is entirely determined by the triplet of distinguished ideal
corners (x̃A, x̃B, x̃C) of S̃′. Indeed, as discussed in Section 4.1, this triplet distinguishes
the triplet (∂̃A, ∂̃B, ∂̃C) of ideal vertices/faces of M̃ .

Recall the definition (5.8) of the distance d̃AB between ∂̃A and ∂̃B, and define d̃BC and
d̃CA similarly. Inspired by the equilibrium conditions (3.3), we define rA, rB and rC by

d̃AB = rA + rB, d̃BC = rB + rC , d̃CA = rC + rA. (5.10)

Note that rA, rB and rC may now be negative, since the “renormalized” distances d̃AB,
d̃BC and d̃CA may be negative in the presence of ideal faces. From the very definition of
Busemann functions and from the bipartiteness of M̃ , we get that the quantity d̃A(v) +
d̃B(v) has the same parity for all v, which is also necessarily the parity of d̃AB. We
immediately deduce that d̃AB + d̃BC + d̃CA is even, hence rA, rB and rC are integers.

We claim that the sets IAB(rA) (as defined in Lemma 5.7), IBC(rB) and ICA(rC) are
always nonempty: this is true when ∂̃A, ∂̃B, ∂̃C are all ideal faces, since the bigeodesics
between them are infinite and therefore pass through geodesic vertices of any latitude;
this is also true when ∂̃A, ∂̃B, ∂̃C are all ideal vertices, as IAB(rA) projects to the set SAB

considered in Figure 3.4 and similarly for the other sets; the other cases are left to the
reader.

Furthermore, even though we had to choose a reference point along ∂̃A to define the
Busemann function d̃A when a > 0, and similarly for ∂̃B and ∂̃C , the sets IAB(rA),
IBC(rB) and ICA(rC) do not depend on these choices. Indeed, as we change the reference
point along ∂̃A, say, d̃A is changed by a constant, but rA gets changed by the same
constant. We also have the identification IAB(rA) = IBA(rB).

We now define vAB to be the rightmost element of IAB(rA) (again orienting from ∂̃B
to ∂̃A), and define vBC and vCA similarly by permuting A,B,C cyclically. We call vAB,
vBC and vCA equilibrium vertices, as they satisfy

d̃A(vAB) = d̃A(vCA) = rA,

d̃B(vAB) = d̃B(vBC) = rB,

d̃C(vBC) = d̃C(vCA) = rC .

(5.11)

By the previous paragraph, the equilibrium vertices are intrinsic to M̃ .
Consider now the leftmost bigeodesics GAB(vAB), GBC(vBC) and GCA(vCA). We will

show that they delimit a region TABC which is a bigeodesic triangle. For this, we first
state some technical lemmas.

Lemma 5.9. Let v be a vertex strictly to the left of the leftmost bigeodesic GAB(vAB).
Then, we have d̃C(v) > rC .

Proof. Since x̃C is on the right of GAB(vAB), any geodesic from v towards ∂̃C must cross
GAB(vAB), at a vertex denoted w such that d̃C(v) > d̃C(w). As w is a geodesic vertex
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between ∂̃A and ∂̃B, we have d̃A(w) + d̃B(w) = d̃AB = rA + rB, and therefore we have
either d̃A(w) ≤ rA or d̃B(w) ≤ rB. In the former case, the definition of d̃CA implies that
d̃C(w) + d̃A(w) ≥ d̃CA = rC + rA hence d̃C(w) ≥ rC . The same conclusion holds in the
latter case, using rather d̃BC .

Corollary 5.10. Unless we have vAB = vBC = vCA, the vertices vBC and vCA are both
strictly to the right of GAB(vAB).

Proof. Since vBC and vCA are both at d̃C-latitude rC , they cannot be strictly on the
left of GAB(vAB) by the previous lemma. If one of them, say vBC , is on GAB(vAB), then
it is equal to vAB since these two vertices are at the same d̃B-latitude rB. But then,
vAB = vBC belongs to ICA(rC), and is clearly the rightmost element vCA of that set.

Reasoning as in the discussion of the diangle lemma, we deduce from Corollary 5.10
that GBC(vBC) and GCA(vCA) remain on the right of GAB(vAB). Furthermore, the two
bigeodesics GAB(vAB) and GCA(vCA) merge at a vertex vA when following them towards
∂̃A, but are disjoint before. Similarly, we introduce the merging vertices vB and vC of
the bigeodesics going towards ∂̃B and ∂̃C , respectively.

We now consider the cycle on M̃ obtained by following GAB(vAB) from vA to vB,
then GBC(vBC) until vC , and finally GCA(vCA) until we return to vA. It is a simple
counterclockwise cycle which delimits a region denoted TABC . See the left of Figure 5.2
for an illustration (ignoring the right of this figure for now). Note that TABC is reduced
to a single vertex if and only if vAB = vBC = vCA. This situation happens when there
exists a vertex which is a geodesic vertex between ∂̃A and ∂̃B, between ∂̃B and ∂̃C , and
between ∂̃C and ∂̃A, all at the same time. Such a vertex, if it exists, is necessarily unique
by planarity2.

Lemma 5.11 (Triangle lemma). TABC is a bigeodesic triangle.

Proof. To make the correspondence with the notations of Section 2.4, we take v1 = vA,
v12 = vAB, etc. (see again Figure 2.5), and the corners c1, c12, . . . are selected in a natural
manner. It is then straightforward to check that TABC satisfies all the axioms defining
bigeodesic triangles, since it is delimited by leftmost bigeodesics, and every geodesic from
vA to vB inside TABC must pass through vAB as we chose it to be the rightmost element
of IAB(rA), and similarly for vBC and vCA.

We have constructed the bigeodesic triangle TABC associated with the triplet of ideal
corners (x̃A, x̃B, x̃C) of S̃′, but we can adapt the construction to any other triplet. Note
however that our construction depends at several places (e.g. in Lemma 5.9) on the fact
that x̃A, x̃B and x̃C appear in counterclockwise order along the ideal boundary of S̃′, and
we shall therefore assume the same order for other triplets. Specifically, we will consider
later on the triangles TACB′ , TABB′ and TBCB′ corresponding to such triplets.
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∂̃C

∂̃B′

A−1∂̃C

C−1∂̃A

vB′C

vC

∂̃A
vA

vAC

TACB′

vB′A

vCB′

vCAvBC

vAB

TABC

vB

∂̃B

vBA

Figure 5.2: Illustration of the decomposition of a map of type I. Cutting along the left-
most bigeodesics launched from the equilibrium vertices (shown in black),
we delimit the two geodesic triangles TABC and TACB′ (shown in green),
and three geodesic diangles of nonnegative exceedances (shown in light blue).
Altogether, these five regions form the domain MABCB′ of Lemma 5.13, con-
taining exactly one preimage of each inner face of M .

5.6. Decomposing a map of type I

Let us consider the bigeodesic triangles TABC and TACB′ , as constructed in the previous
subsection. From the fact that x̃A, x̃B, x̃C and x̃B′ are the four ideal corners of a
fundamental domain of S̃, it is tempting to identify TABC and TACB′ with the two
triangles appearing in the assembling procedure. For this, we need to make sure that
they do not overlap. Recall the notations from Section 5.5, which we complete with
notations pertaining to the triangle TACB′ : we let r′A, r′C and r′B be the integers such
that

d̃AC = r′A + r′C , d̃CB′ = r′C + r′B, d̃B′A = r′B + r′A, (5.12)

and we let vAC , vCB′ and vB′A be the corresponding equilibrium vertices, see Figure 5.2.
Then, the triangles TABC and TACB′ do not overlap if the leftmost bigeodesic GAC(vAC)

2Two such vertices may exist on the sphere (consider the situation vAB = vBC = vCA and vBA =
vCB = vAC on Figure 3.4), but here we are in the disk with ∂̃A, ∂̃B and ∂̃C on the (ideal) boundary.
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remains on the right of GAC(vCA) (oriented from ∂̃C to ∂̃A). We may ensure this by
invoking the diangle lemma (Lemma 5.8), and more precisely by identifying the region
delimited by these two bigeodesics with the diangle DAC(vCA, vAC) as defined (mutatis
mutandis) in Section 5.4. But, for this, the assumption of the diangle lemma must be
satisfied, namely we must have d̃A(vCA) ≥ d̃A(vAC), i.e. rA ≥ r′A.

Lemma 5.12. The difference rA − r′A of d̃A-latitude between vCA and vAC is equal to
a+ c− b.

Proof. By the equilibrium conditions (5.10) and (5.12), we have

rA − r′A =
(d̃AB − d̃B′A)− (d̃BC − d̃CB′)

2
. (5.13)

Therefore, we must compare d̃AB to d̃B′A, and d̃BC to d̃CB′ . For this, we will use the
symmetries of M̃ . Consider first the action of A on the Busemann functions. By (5.4)
and (5.5), we have

d̃B′A = min
v

(
d̃B′(v) + d̃A(v)

)
= min

v

(
d̃B′(Av) + d̃A(Av)

)
= min

v

(
d̃B(v) + k + d̃A(v)− 2a

)
= d̃AB + k − 2a. (5.14)

Similarly, considering now the action of C, the analog of (5.4) for C and (5.6) imply

d̃BC = min
v

(
d̃B(v) + d̃C(v)

)
= min

v

(
d̃B(Cv) + d̃C(Cv)

)
= d̃CB′ − k + 2b− 2c. (5.15)

Plugging these relations into (5.13) gives the wanted difference a+ c− b.

We conclude that TABC and TACB′ do not overlap when a+ c− b ≥ 0. However, as we
are trying to find a decomposition of M (and not just M̃), we actually want the stronger
property that the projections of TABC and TACB′ on M do not overlap. This property is
ensured by the following:

Lemma 5.13. Let vBA := A−1vB′A and vB′C := C−1vBC , and let MABCB′ be the
domain delimited by the bigeodesics GAB(vBA), GBC(vBC), GCB′(vB′C) and GB′A(vB′A),
pruned from their common parts (see again Figure 5.2). Then, MABCB′ contains exactly
one preimage of each inner face of M .

Furthermore, when M is of type I, then both triangles TABC and TACB′ are contained
in MABCB′ , and their complement consists of the three geodesic diangles DAC(vCA, vAC),
DAB(vBA, vAB) and DB′C(vCB′ , vB′C), with nonnegative exceedances equal to a + c − b,
b+ a− c and c+ b− a, respectively.

Proof. The first claim means that MABCB′ is essentially a fundamental domain for the
action of Aut(p). Indeed, the bigeodesics delimiting MABCB′ can be viewed as paths
connecting the ideal points x̃A, x̃B, x̃C and x̃B′ : the bigeodesic GAB(vBA) connects x̃A
and x̃B and the bigeodesic GB′A(vB′A) is (upon reversing its orientation) its image by
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A, connecting x̃A and x̃B′ . Similarly, GCB′(vB′C) connects x̃C and x̃B′ and GBC(vBC)
is (upon reversing its orientation) its image by C connecting x̃C and x̃B. This pattern
mimics precisely that of the four sides of the square S∅ in Figure 4.1, even though
the topology of the quadrangle MABCB′ is not necessarily that of a square as it may
have pinch points if two of its boundaries come into contact. The similitude with S∅
(whose sides do reach the ideal points) may be further improved by adding to MABCB′

the common parts of its boundary geodesics so as to eventually reach x̃A, x̃B, x̃C and
x̃B′ (possibly after infinitely many steps). We are still left with a final (but somewhat
irrelevant) slight difference with the situation of Section 4.1: when, say, ∂A is a boundary-
face, the projection on the sphere p(GAB(vBA)) = p(GB′A(vB′A)) actually never reaches
the puncture xA, but rather wraps eventually around ∂A forever. This issue can be fixed
by stopping the path at the first time it hits ∂A, replacing the final part with a segment
entering inside ∂A to reach xA (and doing similar fixes at ∂B and ∂C if needed). All
in all, the above differences do not concern the inner faces of M , which therefore lift to
unique preimages in MABCB′ .

We now turn to the second claim. We have seen that TACB′ is on the right of TABC

when a + c − b ≥ 0, and each of these triangles has one side in common with MABCB′

(namely along GBC(vBC) for TABC and along GB′A(vB′A) for TACB′). Checking that
both triangles are contained in MABCB′ therefore boils down to checking that their
other sides are well placed, namely that the boundary GAB(vAB) of TABC is on the
right of boundary GAB(vBA) of MABCB′ and that the boundary GCB′(vB′C) of MABCB′

is on the right of the boundary GCB′(vCB′) of TACB′ . But this can be done exactly
in the same way as for proving that GAC(vAC) is on the right of GAC(vCA), via the
diangle lemma. Indeed, the reasoning done at the beginning of this subsection—including
Lemma 5.12—pertains to the quadruplet of ideal corners (x̃A, x̃B, x̃C , x̃B′), and relies
on the key relations x̃B′ = Ax̃B = C−1x̃B. But, at a fundamental level, A, B and
C play a completely symmetric role, and redoing our reasoning with the quadruplets
(x̃B, x̃C , x̃A, x̃C′) and (x̃B′ , x̃A, x̃C , x̃A′), with x̃C′ := Bx̃C = A−1x̃C and x̃A′ := B′x̃A =
C−1x̃A, we find that the remaining pieces of the puzzle of Figure 5.2 are the bigeodesic
diangles DAB(vBA, vAB) and DB′C(vCB′ , vB′C) of respective exceedances b + a − c and
c+ b− a, which are indeed nonnegative since M is assumed of type I.

Proposition 5.14. The procedure which, to the map M of type I, associates the two
bigeodesic triangles TABC and TACB′ , and the three bigeodesic diangles DAC(vCA, vAC),
DAB(vBA, vAB) and DB′C(vCB′ , vB′C), is the inverse of the assembling procedure I.

Proof. By comparing Figures 4.5 and 5.2, it is plain that disassembling a map M of
type I by cutting its universal cover M̃ along leftmost bigeodesics as in Figure 5.2, then
reassembling the pieces following procedure I as in Figures 4.4 and 4.5, restores M after
projecting M̃ on S by p.

It remains to check that, conversely, if we assemble two triangles and three diangles
together, then disassemble the result, we recover the original pieces. We thus start
with two triangles and three diangles, and perform a partial gluing, as described in the
Figure 4.4 of Section 4.1. We note that the obtained “bigeodesic quadrangle” M is of the

47



same form as that, MABCB′ , displayed on Figure 5.2. Working directly on the universal
cover, we then have to glue copies Mw of M along the scheme of Figure 4.5.

Let us for now forget the decomposition interpretation of Figure 5.2 described in its
caption and reinterpret it instead as the result of the procedure described in Figure 4.5,
once completed by a gluing of all the red and blue intervals facing each other. We may
then view the light blue and green domains in this figure as representing the copy M∅
of M, together with its diangle/triangle components. We may also view the vertices
vAB, . . . as the associated attachment points of M∅ and of its internal components.

With this new interpretation of the figure, we already know from Lemma 4.1 that
the four sides of the quadrangle M∅ lie along four geodesic paths in M̃ : the bigeodesic
denoted G in Section 4.3, its image by A, and a symmetric bigeodesic G′ (launched
from the attachment point between the copies M∅ and Mc and going towards the ideal
corners x̃C and x̃B′) and its image by C. Clearly, G is a bigeodesic between ∂̃A and ∂̃B
and it is in fact the leftmost bigeodesic GAB(vBA) launched from vBA (which is de facto
a geodesic vertex). This is a straightforward consequence of the fact that, from vBA to
∂̃A (respectively to ∂̃B), G is glued to only red segments on its left. Similarly, G′ is the
leftmost bigeodesic GCB′(vB′C). Since vB′A = AvAB and vBC = CvB′C , the two other
sides of M∅ are the leftmost bigeodesics GB′A(vB′A) and GBC(vBC). From the definition
of bigeodesic diangles and triangles, the paths passing via vAB, vCA, vAC and vCB′ are
clearly leftmost bigeodesics within M∅ and coalesce with either G or G′ outside of M∅,
hence they are leftmost bigeodesics in M̃ which we thus identify as GAB(vAB), GCA(vCA),
GAC(vAC) and GCB′(vCB′).

To recover the original interpretation of Figure 5.2, it remains to show that vAB, vBC

and vCA are actually the equilibrium vertices for ∂̃A, ∂̃B and ∂̃C , while vAC , vCB′ and vB′A

are the equilibrium vertices for ∂̃A, ∂̃C and ∂̃B′ . Since TABC is a bigeodesic triangle, we
deduce that vAB and vCA have the same d̃A-latitude, vAB and vBC the same d̃B-latitude
and vBC and vCA the same d̃C-latitude. Since these vertices are all geodesic vertices (so
that, e.g. d̃A(vAB) + d̃B(vAB) = d̃AB = rA + rB), we deduce that they obey the relation
(5.11) imposed on equilibrium vertices. Otherwise stated, the vertices vAB, vBC and vCA

belong to the respective sets IAB(rA), IBC(rB) and ICA(rC), as defined in Section 5.5.
Furthermore, since these vertices are the three attachment points of a bigeodesic triangle,
they are necessarily the rightmost elements of their respective sets, hence they are indeed
the equilibrium vertices associated with (∂̃A, ∂̃B, ∂̃C), and TABC indeed coincides with
the triangle constructed in Section 5.5. Performing the same reasoning on the triangle
denoted TACB′ , we eventually recover precisely the original decomposition interpretation
of Figure 5.2, as described in its caption. Proposition 5.14 follows.

We conclude this section with two remarks. First, when M has no inner face, M̃ has
only ideal faces and is actually a tree. We find that the triangles TABC and TACB′ are
reduced to single vertices, while the diangles are reduced to segments, thereby inverting
the assembling of Figure 3.3 for type I. Second, in the case a = b = c = 0, the current
disassembling procedure coincides with that of Section 3.4. Indeed, we only have ideal
vertices in this case, so that d̃AB is just the graph distance between ∂̃A and ∂̃B in M̃
and coincides with the graph distance dAB between ∂A and ∂B in M , and similarly for
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the other pairs of ideal vertices. The decomposition of M̃ which we perform here just
projects to the decomposition of M performed in Section 3.4 (note that, in that section,
the vertices denoted vAB, vBC and vCA are the projections of those which we consider
here, while vBA, vCB and vAC are the projections of vB′A, vCB′ and vAC respectively).

5.7. Decomposing a map of type II

∂̃B

∂̃C

∂̃B′

∂̃A

wAB

wBB′
wB′A

wAB′

wCB

TABB′

wB′B

wCB′

wBC

TBCB′

Figure 5.3: Illustration of the decomposition of a map of type II. The two geodesic tri-
angles TABB′ and TBCB′ (shown in green) and the three bigeodesic diangles
(shown in light blue) form the domain M′

ABCB′ of Lemma 5.15.

Suppose now that we have a map M of type II. Without loss of generality, we may
assume that ∂B is the longest boundary, i.e. we have b ≥ a+c. Then, the decomposition of
the previous subsection might fail, since now d̃A(vCA)−d̃A(vAC) = rA−r′A = a+c−b ≤ 0,
hence it is not possible in general to apply the diangle lemma (it could happen that the
bigeodesics GAC(vCA) and GAC(vAC) cross each other).

Then, the trick is to “perform a flip” and, instead of the triangles TABC and TACB′ , to
consider rather the triangles TABB′ and TBCB′ , see Figure 5.3. The equilibrium vertices
of TABB′ (resp. TBCB′) are denoted wAB, wBB′ and wB′A (resp. wBC , wCB′ and wB′B).
We now have the following counterpart of Lemma 5.13:
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Lemma 5.15. Let wAB′ := AwAB and wCB := CwCB′ , and let M′
ABCB′ be the domain

delimited by the bigeodesics GAB(wAB), GBC(wCB), GCB′(wCB′) and GB′A(wAB′), pruned
from their common parts (see again Figure 5.3). Then, M′

ABCB′ contains exactly one
preimage of each inner face of M .

Furthermore, when M is of type II, then both triangles TABB′ and TBCB′ are contained
in M′

ABCB′ , and their complement consists of the three geodesic diangles DBB′(wB′B, wBB′),
DAB′(wB′A, wAB′) and DBC(wCB, wBC), with nonnegative exceedances equal to b−a− c,
2a and 2c, respectively.

Proof. The first claim is similar to that of Lemma 5.13, and is proved in the same way.
For the second claim, we apply again the diangle lemma, and all boils down to proving

that

d̃B(wB′B)− d̃B(wBB′) = b− a− c,

d̃A(wB′A)− d̃A(wAB′) = 2a,

d̃C(wBC)− d̃C(wCB) = 2c.

(5.16)

For the first relation, by considering the equilibrium conditions in TABB′ and TBCB′ we
find that

d̃B(wB′B)− d̃B(wBB′) =
(d̃BC − d̃AB)− (d̃CB′ − d̃B′A)

2
(5.17)

and we observe that the right-hand side is nothing but the opposite of that of (5.13).
Thus, by Lemma 5.12, it is equal to b−a−c as wanted. For the second relation of (5.16),
we simply note that d̃A(wAB) = d̃A(wB′A) by the definition of equilibrium vertices, and
that d̃A(wAB′) = d̃A(wAB)− 2a by (5.4). For the third relation, we proceed in the same
way, with C instead of A.

Proposition 5.16. The procedure which, to the map M of type II, associates the two bi-
geodesic triangles TABB′ and TBCB′ , and the three bigeodesic diangles DBB′(wB′B, wBB′),
DAB′(wB′A, wAB′) and DBC(wCB, wBC), is the inverse of the assembling procedure II.

The proof is entirely similar to that of Proposition 5.14. Note that, when M has no
inner face, M̃ has only ideal faces and is actually a tree. We find that the triangles TABB′

and TBCB′ are reduced to single vertices, while the diangles are reduced to segments,
thereby inverting the assembling of Figure 3.3 for type II. The proof of Theorem 3.1 is
now complete.

6. Equivalence with the Eynard-Collet-Fusy formula, and
limiting statistics in random maps with boundaries

In this section, we discuss the relation of our work with the Eynard-Collet-Fusy (ECF)
formula for (quasi-)bipartite maps with three boundaries—see [Eyn16, Proposition 3.3.1]
and [CF12]—and we show that it entails interesting properties of the statistics of distances
and areas in random maps and their scaling limits.
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Let L1, L2, L3 be positive integers or half-integers whose sum is an integer. Let
GL1,L2,L3 be the generating function of essentially bipartite planar maps with three (non
necessarily tight) rooted boundary-faces of degrees 2L1, 2L2, 2L3, counted with a weight
t per vertex and a weight g2k per inner face of degree 2k. Here, a boundary-face is said
rooted if one its incident corners is distinguished. We also let R be the generating series
defined at (1.2), and we introduce the notation

α(2L) :=
(2L)!

⌊L⌋!⌊L− 1
2⌋!

, L ∈ 1

2
Z. (6.1)

The ECF formula states that

GL1,L2,L3 = α(2L1)α(2L2)α(2L3) ·RL1+L2+L3
d ln(R)

dt
. (6.2)

We will show in Section 6.2 how one can recover this formula from Theorem 1.1. To
this end, we first establish in Section 6.1 some facts about the structure of minimal cycles
homotopic to the boundaries in general pairs of pants. For the record, and since this will
be useful for the probabilistic considerations of Section 6.3, we also recall the formula
for the generating function GL1,L2 of essentially bipartite annular maps, namely maps
with two rooted boundary-faces of lengths 2L1 and 2L2, with L1, L2 positive integers or
half-integers whose sum is an integer:

GL1,L2 =
α(2L1)α(2L2)

L1 + L2
·RL1+L2 . (6.3)

This formula appears in various places in the literature, for instance it is the case r = 2
of [CF12, Theorem 1.1], see also [Bud17, Proposition 4] or [Cur19, Theorem 3.12], and
[Bou19, Equation (2.1)] for a derivation based on the slice decomposition.

6.1. The structure of outermost minimal separating cycles

Let M be a planar map with three boundary-faces ∂1, ∂2, ∂3, that are not supposed to be
tight. We consider the problem of finding cycles homotopic to the boundaries ∂i of M ,
with minimal length. The optimization problems of finding shortest paths with certain
topological constraints on surfaces have been investigated in the literature on effective
geometry and computer science. In particular, some of the ideas used in this section are
similar to [CdVL07, CdVE10]. We mention that the discussion below generalizes easily
to maps with more than three boundaries.

As in Section 4, we may and will assume that M is a map on the triply punctured
sphere S, and we denote the punctures by x1, x2, x3. For i ∈ {1, 2, 3}, let C(i)

min(M) be
the set of cycles in M that are freely homotopic to the contour of ∂i in the punctured
sphere S, and that have minimal possible length. This minimal length will be denoted
by 2ℓi(M), where ℓi(M) is a positive integer or half-integer. Note that, when M is
essentially bipartite, 2ℓi(M) has the same parity as the degree of ∂i. Our goal is to
collect a number of facts about the structure of C(i)

min(M). In particular, we will see that
it carries a natural order relation which makes it a lattice.
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As in the preceding sections, it will be useful to work on the universal cover M̃ of
M introduced in Section 4, which is a map on the universal cover p : S̃ → S. We
will however use a slightly different index notation, replacing ∂A, ∂B, ∂C with ∂1, ∂2, ∂3,
xA, xB, xC with x1, x2, x3. The automorphisms A,B,C are renamed A1, A2, A3, and the
distinguished ideal corners x̃A, x̃B, x̃C are renamed x̃1, x̃2, x̃3, see for instance Figure 4.1
for a reminder of the former notation (we will not use x̃B′ here).

The boundary-faces of M are lifted in M̃ to faces of infinite degrees, similarly to Figure
4.2, but whose contours are now not necessarily geodesic, and not even necessarily simple
curves, since the boundaries of M are not assumed to be tight. From the “concrete”
construction of M̃ in Section 4, for i ∈ {1, 2, 3}, we can naturally distinguish a particular
lift of ∂i by choosing ∂̃i to be the infinite face of M̃ that is incident to the ideal boundary
point x̃i. Note that ∂̃i is invariant under the automorphism Ai. If ci is a cycle that is
homotopic to the contour ∂̂i of ∂i, then we can reason exactly as in the beginning of the
proof of Lemma 4.3, which did not make use of the fact that the boundaries are tight.
Namely, we let γ be a path from some arbitrary point x on ∂̂i to some point z on ci such
that γciγ−1 and ∂̂i are homotopic as loops rooted at x, and then lift those two paths to
obtain a path c̃i0 from a vertex z̃ in M̃ to Aiz̃ that is a lift of ci. The concatenation of
the paths An

i c̃
i
0, n ∈ Z, seen up to increasing reparametrization, is then a biinfinite path

c̃i whose projection via p is a path that circles indefinitely around ci, and which we call
a biinfinite lift of ci. Moreover, c̃i is invariant under Ai. Let U0 be the finite set of words
w such that c̃i0 visits the domains Sw, in the former notation of Section 4.1. Then by
invariance under Ai, c̃i visits An

i Sw, n ∈ Z, w ∈ U0. Now, from the way in which domains
are connected together, we see that all domains of the form An

i S∅, n ∈ Z must be visited,
so that c̃i remains at bounded “distance” from ∂̃i (where distance is measured in terms of
number of domains Sw to cross). In this sense, c̃i converges to the ideal boundary point
x̃i, that is incident to the infinite face ∂̃i. Consequently, if j ̸= i and ci, cj are two cycles
that are respectively freely homotopic to the contours of ∂i and ∂j , their biinfinite lifts
c̃i, c̃j defined as above converge to two different ideal boundary points.

Now, if ĉi is another biinfinite lift of ci, there is an automorphism W such that ĉi = Wc̃i.
If W ∈ {An

i , n ∈ Z}, we have ĉi = c̃i, and otherwise, ĉi is a distinct infinite path that
is invariant under the automorphisms WAn

i W
−1, n ∈ Z. In the latter case, this infinite

path visits domains of the form WAn
i Sw where n ∈ Z and w belongs to a finite set of

words, which implies that ĉi converges to the ideal corner Wx̃i, distinct from x̃i. For this
reason, we can single out the biinfinite lift c̃i constructed above, which converges to the
distinguished ideal boundary vertex x̃i, and call it the canonical biinfinite lift of ci.

Now fix i ∈ {1, 2, 3}, let ci ∈ C(i)
min(M), and let ĉi be any biinfinite lift of ci in M̃ ,

passing through an arbitrary point ẑ projecting to a point of ci. Similarly to Lemma
5.4 above, the minimality of the length of ci, and Proposition 2.5 and Lemma 2.1 in
[CdVE10], imply the following result.

Lemma 6.1. The path ĉi is a biinfinite geodesic in M̃ , separating S̃ into two connected
components.

Note that we can view the two components of M̃\ĉi as the “left” and “right” component,
since M̃ is oriented, and we can assume that ci circles counterclockwise around the
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puncture xi. Given the fact that the latter (which we view as a point “outside” the
surface) belongs to the region of the complement of ci located to its left, we call the left
region of M̃ \ ĉi the outer domain of ĉi, and the right region the inner domain. Note that
both domains of ĉi determine ĉi as their boundaries, by Jordan’s theorem.

We now define a partial order relation on C(i)
min(M). Let ci1, ci2 ∈ C(i)

min(M), and c̃i1, c̃
i
2 be

their canonical biinfinite lifts. We write ci1 ⪯(i) ci2 if the outer domain of c̃i1 is included
in the outer domain of c̃i2. The fact that this indeed defines a partial order is easy and
left to the reader.

Lemma 6.2. If ci1, c
i
2 are elements of C(i)

min(M), and if c̃i1, c̃
i
2 are their canonical lifts, then

the intersection and union of their outer domains are simply connected and bounded by
two paths which we denote by c̃i1 ∧ c̃i2 and c̃i1 ∨ c̃i2 . In turn, these two paths project via p
to two cycles ci1 ∧ ci2 and ci1 ∨ ci2 on M , which are the infimum and supremum of {ci1, ci2}
for the order ⪯(i). In particular, (C(i)

min(M),⪯(i)) is a lattice.

Again, the proof of this statement is easy and relies on the observation that two
consecutive intersections of the paths c̃i1 and c̃i2 must arise in increasing order for the
parametrization of both paths, and be linked by arcs of same lengths, by the geodesic
property.

As a consequence, since (C(i)
min(M),⪯(i)) is clearly a finite lattice, it admits a smallest

element c(i), called the outermost minimal cycle homotopic to the contour of ∂i. It also
admits a maximal element, although we are not going to use this one in the sequel. As
a final observation, we state the following.

Lemma 6.3. For every i, j ∈ {1, 2, 3}, the cycles c(i), c(j) do not cross each other, but
may however have edges in common. For i = j this means that the cycle c(i) cannot be
self-crossing, but may possibly visit some edges more than once.

Remark 6.4. Though intuitively clear, this lemma has some subtelty to it. In particular,
the fact that c(i) may visit some edges twice does happen, see for instance the contour of
∂B on the example displayed in Figure 4.2. The proof of the lemma consists in showing
that the outer domains of two distinct biinfinite lifts of c(i) and c(j) cannot overlap. For
i = j, this entails that the self-contacts of c(i), if there are any, can occur only “from the
inner side”. More precisely, the outer region of c(i), which is comprised of the edges of
M̃ that can be attained from ∂i without crossing c(i), can be seen as a map with two
boundaries, one of which is the contour of ∂i, and the other being a simple boundary
that results from cutting along c(i). This remark will be useful in the next section.

Proof. In this proof, we let A = Ai to simplify the notation. If c(i) and c(j) cross each
other, then we can lift them into biinfinite geodesics c̃(i), ĉ(j) in the universal cover that
also cross each other, where we choose the first lift to be the canonical lift of c(i), which
is invariant under A. Note that ĉ(j) is not necessarily the canonical lift of c(j), as it is
determined by the choice of a lift of an intersection point of c(i) and c(j). Necessarily,
these two geodesic biinfinite lifts must converge to two distinct ideal boundary points.
Therefore, whenever ĉ(j) enters the outer region of c̃(i), it has to eventually leave it. This
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Figure 6.1: Illustration of the proof of Lemma 6.3. The bottom black line is the biinfi-
nite geodesic c̃(i), whose outer domain, represented as the upper-half of the
picture, is visited by the blue path ĉ(j). The proof consists in showing that
the portion of the blue arc between ỹ and Aỹ projects via p to a cycle of
C(i)
min(M) which is strictly smaller than its minimal element, a contradiction.

reasoning holds also when i = j and c(i) has a self-crossing, upon noting that c̃(i) and ĉ(i)
denote two lifts of c(i) which are necessarily different, since they are simple paths that
cross each other.

So there is then a subpath of ĉ(j) within the outer region of c̃(i), say between the
two points x̃ and z̃, meaning that ĉ(j) is entirely contained in the open outer region of
c̃(i) between these points. Now assume without loss of generality that z̃ belongs to the
portion of c̃(i) between Anx̃ and An+1x̃ for some n ≥ 0, and distinct from Anx̃. If n = 0
we arrive at a contradiction, because we can follow the arc of ĉ(j) between points x̃ and
z̃, then the arc of c̃(i) between z̃ and Ax̃ to form a new geodesic arc c̃ between x̃ and Ax̃
that is contained in the (closed) outer domain of c̃(i), and therefore projects via p to a
cycle that is strictly smaller than c(i) in C(i)

min(M).
Next, let us assume that n ≥ 1. Let 2ℓ = 2ℓi(M) be the length of the cycle c(i), that

is in particular the length of the arc of c̃(i) between Amx̃ and Am+1x̃ for every m ∈ Z.
In particular, the length of the arc of c̃(i) between x̃ and z̃ equals 2nℓ + ℓ′ for some
ℓ′ ∈ (0, 2ℓ], and this is also the distance between its extremities since c̃(i) is a geodesic
path.

Then the arc of ĉ(j) between x̃ and z̃ enters the Jordan domain (see the yellow domain
in Figure 6.1) formed by the arcs of c̃(i) and A−1ĉ(j) between the points A−1x̃ and A−1z̃,
and has to leave it through some point ỹ since z̃ is not in this domain. Since we assumed
that the arc of ĉ(j) between x̃ and z̃ is entirely contained in the outer domain of c̃(i), it
must be that ỹ belongs to the arc of A−1ĉ(j) between A−1x̃ and A−1z̃. Now by applying
the automorphism A, Aỹ has to be the intersection point of the arc of ĉ(j) between x̃ and
z̃ with the arc of Aĉ(j) between Ax̃ and Az̃. In particular, ĉ(j) contains an arc (between ỹ
and Aỹ) that is strictly contained in the outer domain of c̃(i). Since one of its extremity
is the image of the other by A, this arc projects to a cycle c of M that is homotopic to
the boundary ∂i. So if we can show that its length is 2ℓ (in fact, we will show that this
length can be at most 2ℓ, which is even better!), we will obtain that c is in C(i)

min(M) but
c ≺(i) c(i), a contradiction.
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So let t be the length of the arc of ĉ(j) between ỹ and Aỹ, and let s, u be the lengths of
the arcs between x̃ and ỹ, and between Aỹ and z̃ respectively. Then u is also the length
of the arc of A−1ĉ(j) between ỹ and A−1z̃.

Now the length of the concatenation of the arc of ĉ(j) between x̃ and ỹ, the arc of
A−1ĉ(j) between ỹ and A−1z̃, and the arc of c̃(i) between A−1z̃ and z̃ equals s+ u+ 2ℓ,
and has to be greater than or equal to the distance between its extremities x̃ and z̃,
which is 2nℓ+ℓ′ as mentioned above. Therefore, we obtain s+u ≥ 2(n−1)ℓ+ℓ′. On the
other hand, since ĉ(j) is a geodesic path, this distance 2nℓ+ ℓ′ is also equal to s+ t+ u,
which is at least t+ 2(n− 1)ℓ+ ℓ′. So we obtain that t ≤ 2ℓ, as wanted.

6.2. A re-derivation of the ECF formula for pairs of pants

We now use the above discussion to introduce a bijective decomposition of planar maps
with three boundary-faces which are not necessarily tight. Let M be such a map, with
boundaries denoted ∂1, ∂2, ∂3 as before. For every i = 1, 2, 3, we let c(i) be the minimal
element of (C(i)

min(M),⪯(i)), as defined in the previous subsection. By Lemma 6.3, these
cycles cannot cross, so they split the map M into four parts M (0),M (1),M (2),M (3)

where, for i = 1, 2, 3, M (i) is the part of M delimited by the (non self-crossing) cycle
c(i) and containing the face ∂i, while M (0) is the remainder of the map delimited by the
three cycles c(1), c(2), c(3). By Remark 6.4, for i ∈ {1, 2, 3}, we may view M (i) as a map
with two boundaries, one being given by the contour of ∂i, and the other being a simple
boundary resulting from cutting along c(i).

In order to be consistent with the ECF formula, the boundary-faces of M are assumed
to be rooted. This induces a canonical rooting of the boundary-faces of M (0) by, say,
considering the leftmost shortest path starting at the root of ∂i and ending on c(i).

To characterize the resulting maps, we need an extra definition: a boundary-face is
said strictly tight if its contour is the unique cycle of minimal length in its homotopy
class. A strictly tight boundary-face is to a tight boundary-face what a (red) strictly
geodesic boundary interval is to a (blue) geodesic boundary interval, as we defined in
Section 2.1.

Proposition 6.5. Let L1, L2, L3, l1, l2, l3 be positive integers or half-integers. Then, the
mapping M 7→ (M (0),M (1),M (2),M (3)) is a bijection between:

• the set of planar maps M which have three rooted boundary-faces of lengths 2L1,
2L2, 2L3 and whose minimal separating cycles have lengths 2ℓi(M) = 2li,

• and the set of quadruplets (M (0),M (1),M (2),M (3)) made of a planar map M (0)

with three rooted tight boundary-faces of lengths 2l1, 2l2, 2l3, and of three annular
maps M (1),M (2),M (3) where, for i = 1, 2, 3, the map M (i) has a rooted boundary
of length 2Li and a strictly tight unrooted boundary of length 2li.

The map M is essentially bipartite if and only if M (0),M (1),M (2),M (3) are essentially
bipartite. (In this case, M exists if and only if L1+L2+L3, L1− l1, L2− l2 and L3− l3
are all nonnegative integers.)

55



Proof. The tightness properties of the boundaries of M (0),M (1),M (2),M (3) result from
the fact that c(i) is the minimal element of C(i)

min(M) for i = 1, 2, 3.
The mapping is a bijection since we may conversely (re)assemble a map M from

a quadruplet. Note that there are a priori (2l1) · (2l2) · (2l3) ways to perform the
(re)assembling, but only one of them is consistent with the rootings. Indeed, in M (i)

we consider the leftmost shortest path starting with the root and ending on the unrooted
boundary, and this singles out the position at which we must align the root on the i-th
boundary of M (0).

We refer to the areas (number of faces) of the annular maps M (1),M (2),M (3) as the
exterior areas of M , denoted by A1(M), A2(M), A3(M) respectively, and to the area of
the map M (0) as the interior area of M , denoted by A0(M). In this way, the exterior
area Ai(M) (i = 1, 2, 3) is the minimal area bounded by the contour of ∂i and by a cycle
homotopic to it of minimal possible length3.

For the purposes of the next section, we also consider the case where M is an annular
map whose two boundary-faces ∂1, ∂2 are rooted and not necessarily tight. The contours
of the two boundaries are now homotopic, hence there is now a single set Cmin(M) of
separating cycles of minimal length (this length is denoted 2ℓ(M)). In this set we may
find two “extremal cycles”, closest to ∂1 and to ∂2 respectively. By splitting M along
these two cycles, we obtain three pieces M (0),M (1),M (2), where M (0) is a map with two
rooted tight boundary-faces both of length 2ℓ(M), while M (1) and M (2) have one rooted
boundary-face and another strictly tight unrooted boundary-face of length 2ℓ(M). This
decomposition yields a bijection analogous to that of Proposition 6.5. We define the
interior and exterior areas of M accordingly: for i = 0, 1, 2, we let Ai(M) be the area of
M (i).

We now recall known enumerative results about the annular maps with (strictly) tight
boundaries considered above. We mention that these results may be obtained by special-
izing [BF12, Theorem 34] or [BG14, Equations (9.18) and (9.19)], which deal with the
more general setting of maps with girth/irreducibility constraints, but we refer to [Bou19,
Section 2.2] for a more elementary presentation in the current setting. It uses a slice de-
composition expressed in the universal covers of the annular maps, similarly to the present
paper.

Proposition 6.6 (see e.g. [Bou19, Theorem 2.1]). Let L, l be positive integers or half-
integers such that L− l is a nonnegative integer. Then, the generating function of essen-
tially bipartite annular maps with a rooted boundary-face of degree 2L and a strictly tight
unrooted boundary-face of degree 2l, counted with a weight g2k per inner face of degree 2k
and a weight t per vertex not incident to the unrooted boundary, is given by

(
2L
L−l

)
RL−l,

where R is as usual defined by (1.2).
The generating function of essentially bipartite annular maps with two tight rooted

boundary-faces of degree 2l, counted with a weight g2k per inner face of degree 2k and a
weight t per vertex is equal to 2lR2l.

3As was pointed to one of the authors by Marco Mazzucchelli, this area is related to the notion of flat
topology (here “flat” stands for the musical symbol ♭) on homology classes introduced by Whitney
and Federer in geometric measure theory, see for instance the Introduction in [MN16].
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We now re-derive the ECF formula (6.2). Indeed, the last two propositions imply that
the generating function GL1,L2,L3 of essentially bipartite planar maps with three rooted
boundary-faces of lengths 2L1, 2L2, 2L3 is equal to∑

2l1,2l2,2l3>0
Li−li∈Z

(
2L1

L1 − l1

)
RL1−l1

(
2L2

L2 − l2

)
RL2−l2

(
2L3

L3 − l3

)
RL3−l3(2l1)(2l2)(2l3)Tl1,l2,l3

where the factors 2li account for the extra rooting of the faces in the tight maps counted
by Tl1,l2,l3 . Using Theorem 1.1 and the hypergeometric identity

∑
2l>0(2l)

(
2L
L−l

)
= α(2L),

we recover precisely (6.2).
Similarly, the generating function of essentially bipartite annular maps with two rooted

boundary-faces of lengths 2L1, 2L2 is equal to

GL1,L2 =
∑
2l>0

L1−l∈Z

(
2L1

L1 − l

)
RL1−l

(
2L2

L2 − l

)
RL2−l(2l)R2l (6.4)

and we recover (6.3) by another hypergeometric identity.

6.3. Scaling limits of separating loop statistics

In this section we show how our results can be used to deduce statistical properties of
random annular maps and pairs of pants with a large area. This will be done by deriving
a scaling limit result for the minimum cycle lengths, as well as for the exterior and
interior areas of the associated decomposition. For simplicity, we focus on the simplest
case of bipartite quadrangulations, for which g2k = gδk,2, although our results should
have extensions to much more general models of random maps.

Let us recall some classical probability densities:

pa(x) =
1√
2πa

e−x2/2a , x ∈ R (6.5)

the Gaussian density (of variance a > 0),

qx(a) =
x

a
pa(x) =

x√
2πa3

e−x2/2a , a > 0 (6.6)

the stable-1/2 density (with parameter x > 0), and

ra(x) = x

√
2π

a
pa(x) =

x

a
e−x2/2a , x ≥ 0 (6.7)

the size-biased Gaussian absolute value density, also known as Rayleigh density (with
parameter a > 0). All the random variables considered below will be defined on some
common probability space (Ω,F ,P).
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Theorem 6.7. Let Mn be a uniformly random quadrangulation with two rooted bound-
aries of lengths 2Ln

1 and 2Ln
2 and n inner faces, where the integers Ln

i , i ∈ {1, 2} satisfy
Ln
i ∼ Li

√
2n as n → ∞ for some L1,L2 ∈ (0,∞). Then we have the following conver-

gence in distribution for the rescaled minimal half-length of a separating cycle and for the
rescaled exterior/interior areas of Mn:(( 2

n

)1/4
ℓ(Mn),

A1(M
n)

n
,
A0(M

n)√
2n

)
−→ (R,A,B). (6.8)

Here R and A are independent random variables, R follows a Rayleigh law of parameter
Leff = (L−1

1 + L−1
2 )−1 and A has density qL1(a)qL2(1 − a)/qL1+L2(1) for a ∈ (0, 1).

Finally, the random variable B has conditional density qR given (R,A), and in particular
it is independent of A.

Remark 6.8. Note that this theorem implies in particular that A0(M
n)/n → 0 in proba-

bility, and so (A1(M
n) + A2(M

n))/n → 1 in probability. One can also be more explicit
by computing the Laplace transform of the Rayleigh random variable, which yields

E[e−uB] =
√
2π(2uLeff)

1/4euLeffΠ(
√
2uLeff) , (6.9)

where Π(x) =
´∞
x p1(y)dy is the Gaussian tail distribution function.

Theorem 6.9. Let Mn be a uniformly random quadrangulation with three rooted bound-
aries of lengths 2Ln

1 , 2L
n
2 and 2Ln

3 and n inner faces, where the integers Ln
i , i ∈ {1, 2, 3}

satisfy Ln
i ∼ Li

√
2n as n → ∞ for some L1,L2,L3 ∈ (0,∞). Then we have the following

convergence in distribution for the rescaled minimal half-lengths of separating cycles in
each homotopy class and for the rescaled exterior/interior areas of Mn:(( 2

n

)1/4
ℓi(M

n),
Ai(M

n)

n

)
i∈{1,2,3}

−→ (Ri,Ai)i∈{1,2,3} . (6.10)

Here R1,R2,R3 are independent random variables, respectively with Rayleigh distribu-
tion of parameter L1, L2 and L3, and (A1,A2,A3) is a random vector, independent of
(R1,R2,R3), with density(ˆ 1

0

qL1+L2+L3(x)

2
√
1− x

dx

)−1
qL1(a1)qL2(a2)qL3(a3)

2
√
1− a1 − a2 − a3

(6.11)

on the simplex {(a1, a2, a3) ∈ (0,∞)3 : a1 + a2 + a3 < 1}.

Remark 6.10. That (6.11) is indeed a probability density is an easy exercise using the
semigroup property of the stable densities. The reason why we put a constant 2 in the
denominator is that it allows to view it as the conditional probability density function of
four independent random variables (ξ0, ξ1, ξ2, ξ3) where ξi follows a stable(1/2) law with
parameter Li for i ∈ {1, 2, 3}, and ξ0 follows a Beta(1,1/2) random variable, given the
singular event that

∑3
i=0 ξi = 1. Note also that the integral of the normalizing constant

can be computed from the explicit form of qx(a), which after a change of variables
y = (1− x)/x yields

´ 1
0 qL(x)dx/

√
1− x = exp(−L2/2).
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Remark 6.11. Note that in both statements, we have the remarkable property that the
areas of the regions cut by the minimal length curves homotopic to the boundaries are
independent of these respective lengths. We also note that in the setting of Theorem
6.9, the quantity min(ℓ1(M), ℓ2(M), ℓ3(M)) is also the length ℓmin(M) of the shortest
non contractible cycle in M . An immediate consequence of this observation is that
(2/n)1/4ℓmin(M

n) converges in distribution to a random variable with Rayleigh distribu-
tion of parameter Leff = (L−1

1 + L−1
2 + L−1

3 )−1. Remarkably, this extends word by word
the conclusion of Theorem 6.7, and asks the question whether this further generalizes to
maps with four boundaries or more.

Remark 6.12. It is tempting to believe that these two theorems have consequences for
Brownian surfaces, that are the scaling limits in the Gromov-Hausdorff sense of (say)
random quadrangulations with a fixed topology [Bet16, BM22]. In particular, we expect
that for the Brownian annulus (k = 2), which is known [Bet16] to be homeomorphic
to a two-punctured sphere, there is a unique cycle of minimal length separating the two
boundaries, and that this cycle has a Rayleigh distribution with parameter (L−1

1 +L−1
2 )−1.

By letting the size of the second boundary L2 go to infinity, we naturally expect to find
the infinite Brownian disk with boundary length L1 introduced in [BMR19], a random
metric space homeomorphic to the complement of the open unit disk in the plane. We
conjecture that the shortest non-contractible loop in this space has length distributed as
a Rayleigh law of parameter L1. This would be relevant in work by Riera [Rie22] on the
isoperimetric profile of the Brownian plane, but will be investigated elsewhere.

Let us prove these results. Since we are focusing on the case of quadrangulations, from
now on we will restrict the generating function R = R(t, (g2k, k ≥ 1)) to the special case
g2k = gδk,2, yielding explicitly

R =
1−

√
1− 12 gt

6g
. (6.12)

This implies the following well-known asymptotic enumeration formulas:

[gn]R|t=1 ∼
12n√
πn3

, [gn]
d ln(R/t)

dt

∣∣∣
t=1

∼ 12n

2
√
πn

. (6.13)

From now on we will always implicitly assume that the vertex parameter t is set to 1.
The coefficients of R and its powers admit some convenient probabilistic representations
that we recall quickly here. Let Pn(k) = 2−n

(
n

(n+k)/2

)
be the probability that a simple

random walk starting from 0 equals k at time n. It satisfies a local limit theorem (the
summation index being due to parity reasons)∑

k∈2Z+n

|
√
nPn(k)− 2p1(k/

√
n)| −→

n→∞
0 . (6.14)

Let also Qk(n) = (k/n)Pn(k) be the probability that the simple random walk first hits
−k at time n. Then ∑

n∈2N+k

|k2Qk(n)− 2q1(n/k
2)| −→

k→∞
0 . (6.15)
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Then (6.12) and Lagrange’s inversion formula imply that for every n, k ≥ 0,

[gn]Rk = 12n2kQk(2n+ k) . (6.16)

Proof of Theorem 6.7. The number of annular quadrangulations Q(n;Ln
1 , L

n
2 ) with bound-

aries of lengths 2Ln
1 , 2L

n
2 and with n inner quadrangles is given by (6.3): letting Ln =

Ln
1 + Ln

2 and L = L1 + L2, this is

#Q(n;Ln
1 , L

n
2 ) =

α(2Ln
1 )α(2L

n
2 )

Ln [gn]RLn

∼
n→∞

12n 8L
n

n
·
√
L1L2

πL
qL(1) , (6.17)

where the asymptotic formula is obtained from (6.16) and by applying (6.15) as well as
the easy asymptotics α(2l) ∼ 4l

√
l/π, also a consequence of (6.14). Now, by the same

discussion as that leading to (6.4), the number of quadrangulations M ∈ Q(n;Ln
1 , L

n
2 )

that have ℓ(M) = l, A0(M) = n0, A1(M) = n1, hence A2(M) = n2 := n − n0 − n1, is
given by

[gn1 ]

(
2Ln

1

Ln
1 − l

)
RLn

1−l[gn2 ]

(
2Ln

2

Ln
2 − l

)
RLn

2−l[gn0 ]2lR2l. (6.18)

We rewrite this in “probabilistic” form as

12n 8L
n

2lP2Ln
1
(−2l)P2Ln

2
(−2l)QLn

1−l(2n1 + Ln
1 − l)QLn

2−l(2n2 + Ln
2 − l)Q2l(2n0 + 2l).

(6.19)
Letting now n1 = ⌊na⌋ for some a ∈ (0, 1), l = ⌊(n/2)1/4λ⌋ and n0 = ⌊b

√
2n⌋, for some

λ, b > 0, we can use the local limit theorems to get the following asymptotics:

2lP2Ln
1
(−2l)P2Ln

2
(−2l) ∼

n→∞

√
L1L2

πL

( 2

n

)1/4
rLeff

(λ) , (6.20)

QLn
1−l(2n1 + Ln

1 − l)QLn
2−l(2n2 + Ln

2 − l) ∼
n→∞

1

n2
qL1(a)qL2(1− a) , (6.21)

Q2l(2n0 + 2l) ∼
n→∞

1√
2n

qλ(b) . (6.22)

Taking a quotient with (6.17), this implies that for l, n1, n0 as above,

P(ℓ(Mn) = l, A1(M
n) = n1, A0(M

n) = n0) ∼
n→∞( 2

n

)1/4
rLeff

(λ)
1

n

qL1(a)qL2(1− a)

qL(1)

1√
2n

qλ(b) . (6.23)

Since the function of λ, a, b appearing in the right hand side (after removing the factors
involving n) is a probability density function on R+ × (0, 1)× (0,∞), we easily conclude
by Scheffé’s lemma.

Proof of Theorem 6.9. The number of quadrangulations Q(n;Ln
1 , L

n
2 , L

n
3 ) with three bound-

aries of perimeters 2Ln
1 , 2L

n
2 , 2L

n
3 and with n inner quadrangles is given by the ECF
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formula: letting Ln = Ln
1 + Ln

2 + Ln
3 and L = L1 + L2 + L3, this is

#Q(n;Ln
1 , L

n
2 , L

n
3 ) = α(2Ln

1 )α(2L
n
2 )α(2L

n
3 )[g

n]RLn d lnR

dt

∼
n→∞

4L
n

√
Ln
1L

n
2L

n
3

π3/2
[gn]RLn d lnR

dt

(6.24)

The coefficient to extract in the right-hand side is given by a convolution of the form

[gn]Rk d lnR

dt
=

n∑
m=0

[gm]Rk[gn−m]
d lnR

dt

= 12n 2k
n∑

m=0

QLn(2m+ k)[gn−m]
1

12n−m

d lnR

dt
,

(6.25)

where we have used again the probabilistic representation for the coefficients of Rk. For
our present purposes we should take k = Ln ∼ L

√
2n, but later we will also need the

asymptotic behaviour of the same quantity, where k is of smaller order n1/4. So let us
start with this simpler case, assuming that k = k(n) is bounded by Kn1/4 for some
K > 0.

Note that, by the asymptotics (6.13), the coefficients cm = [gm]12−md lnR
dt involving the

logarithmic derivative of R are uniformly bounded by some constant C, and equivalent
to 1/2

√
πm as m → ∞. So if we fix β ∈ (1/2, 1), we can rewrite using (6.13) the sum

arising in (6.25) as
nβ∑

m=0

Qk(2m+ k)
(1 + ϵn)

2
√
πn

+ rn (6.26)

where ϵn is a sequence depending only on n and converging to 0, and rn ≥ 0 is a
remainder term which is bounded by C

∑
m>nβ Qk(2m + k). Our choice of β and the

fact that k ≤ Kn1/4 then implies that rn → 0. So in this case,

[gn]Rk d lnR

dt
∼ 12n 2k

2
√
πn

. (6.27)

Now, for the slightly more delicate case where k = Ln, we rewrite the sum in (6.25) as

1

(Ln)2

[
n∑

m=0

cn−m

(
(Ln)2QLn(2m+ Ln)− 2q1

(2m+ Ln

(Ln)2

))
+ 2

n∑
m=0

cn−mq1

(2m+ Ln

(Ln)2

)]

and note that by boundedness of (cm) and the local limit theorem (6.15), the first sum
converges to 0 in absolute value. It remains to deal with the second sum. We introduce
some β ∈ (1/2, 1) and split the sum according to whether m ≤ n−nβ or n−nβ < m ≤ n.
In the first case we can use the asymptotics (6.13) and a comparison with an integral to
obtain

n−nβ∑
m=0

cn−mq1

(2m+ Ln

(Ln)2

)
∼

√
n

ˆ 1

0

q1(a/L2)

2
√

π(1− a)
da , (6.28)
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while the sum over n− nβ < m ≤ n is clearly O(n−β) by bounding the coefficients cn−m

by C and using the fact that q1 is bounded near 1/L2. Putting things together, we obtain

#Q(n;Ln
1 , L

n
2 , L

n
3 ) ∼

n→∞
(8n)1/4

12n 8L
n

π2

√
L1L2L3

ˆ 1

0

qL(t)

2
√
1− t

dt . (6.29)

By Propositions 6.5 and 6.6 and Theorem 1.1, the number of quadrangulations M ∈
Q(n;Ln

1 , L
n
2 , L

n
3 ) such that ℓi(M) = li and Ai(M) = ni for i ∈ {1, 2, 3} is equal to (letting

n0 = n− n1 − n2 − n3)

3∏
i=1

[gni ](2li)

(
2Ln

i

Ln
i − li

)
RLn

i −li × [gn0 ]Rl d lnR

dt
=

12n 8L
n

3∏
i=1

(2li)P2Ln
i
(−2li)QLn

i −li(2ni + Ln
i − li)×

1

12n02l
[gn0 ]Rl d lnR

dt
(6.30)

where l = l1+ l2+ l3 and where we have used once again the probabilistic representation
of the coefficients. Here the first two extracted coefficients count the number of annular
quadrangulations with a rooted boundary of perimeter 2Ln

i , and a strictly tight boundary
of length 2li, and the last one counts the number of (quadrangulated) pairs of pants with
tight boundaries of perimeters 2li, i ∈ {1, 2, 3}. Proposition 6.5 states that the boundaries
of these pairs of pants should be marked, and we have absorbed the corresponding factors
2li in the product before. We let li = ⌊(n/2)1/4λi⌋ and ni = ⌊nai⌋ for some λi > 0 and
ai > 0, i ∈ {1, 2, 3}, such that a0 = 1− (a1+a2+a3) > 0. Then, the local limit theorems
give the asymptotics

2liP2Ln
i
(−2li) −→

n→∞

√
2Li

π
rLi(λi) , (6.31)

QLn
i −li(2ni + Ln

i − li) ∼
n→∞

1

n
qLi(ai) . (6.32)

Together with (6.27), this implies by taking a quotient with (6.17) that for li, ni as above,

P(ℓi(Mn) = li, Ai(M
n) = ni, i ∈ {1, 2, 3}) ∼

n→∞
3∏

i=1

( 2

n

)1/4
rLi(λi)×

1

n3

( ˆ 1

0

qL(a)

2
√
1− a

da
)−1 qL1(a1)qL2(a2)qL3(a3)

2
√
1− a1 − a2 − a3

. (6.33)

Since the function of λi, ai appearing in the right hand side (after removing the factors
involving n) is a probability density function on (R+)

3 × {(a1, a2, a3) ∈ (0,∞)3 : a1 +
a2 + a3 < 1}, we conclude by Scheffé’s lemma.

7. Conclusion

In this work, we have enumerated bijectively essentially bipartite planar maps with three
tight boundaries, relying on a geometric decomposition of these objects in terms of ele-
mentary pieces with certain geodesic boundaries.
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Let us mention a number of natural extensions of the present work that we plan on
studying in the future. The most natural extension consists in considering maps with
more than three boundaries and/or higher genus. We first remark that the discussion
of Section 6.1, hence Proposition 6.5, extend easily to arbitrary topologies: a map M
of genus g having n boundary-faces which are not necessarily tight can be decomposed
bijectively into a tuple (M (0),M (1), . . . ,M (n)), where M (0) is a map of genus g with
n tight boundary-faces, and where M (1), . . . ,M (n) are “funnels”, namely annular maps
with one strictly tight boundary-face, as defined in Section 6.2. This decomposition is
closely related to the Joukowsky transform considered in [Eyn16, Section 3.1.3.1]. Using
enumerative results coming from topological recursion, we can show that the generating
function of essentially bipartite maps of genus g with n tight boundary-faces of prescribed
lengths 2ℓ1, . . . , 2ℓn is a quasi-polynomial generalizing the lattice count polynomial of
[Nor10] (which we recover when setting the weights for inner faces to zero). This will be
discussed in a forthcoming paper.

Furthermore, it would be interesting to address the problem of the enumeration of
maps of genus g with n tight boundaries by a bijective approach. One might think
at first that our decomposition into bigeodesic triangles and diangles could easily be
extended without fundamental changes beyond the case (g, n) = (0, 3) considered in the
present paper. A closer look however shows that a number of new technical questions
arise in the general case: for instance, controlling the exceedances of the diangles is not
as simple as for pairs of pants where these exceedances are entirely fixed by the boundary
lengths. More important, making sure that the bigeodesics used in the decomposition
do not cross, and therefore lead to independent building blocks, is more challenging for
more boundaries or higher genus.

Still, we hope that the tight pairs of pants introduced in this work, or small variations
thereof, will serve as new elementary pieces intervening in the decomposition of such maps
with higher topological complexity. Indeed, pants decompositions are the canonical way
to describe all Riemann surfaces, by cutting them along separating cycles. In the context
of maps, in order to get a canonical decomposition, one needs to specify along which cycles
we cut. In this respect, minimal separating cycles are the natural candidates, but we must
specify which of these minimal cycles we choose among certain ordered sets C of such
cycles. In Section 6.1, we explained why the choice of “outermost” elements in the ordered
set C was crucial to avoid possible crossings of the various cutting cycles. If we now wish to
split a map into two components, the ordering of the set C of separating cycles is reversed
when viewed from both components and choosing its outermost element from both sides
therefore produces some overlap between the components, hence a decomposition into
non independent elements. To avoid such overlap, we must instead choose innermost
elements from both sides (so that the overlapping region now becomes an independent
building block), or at least from one side. We then face again the problem that, if we
choose only innermost elements, different cycles around a pair of pants may cross each
other. A probable solution is to consider a mixed prescription, with both outermost and
innermost elements, which would involve as building blocks pairs of pants with, say, one
strictly tight boundary and two tight ones. The question of their enumeration is therefore
an issue that we hope to better understand in the future.
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As we noticed above, Theorems 6.7 and 6.9 imply that minimal separating cycles in
random maps with the topology of the annulus or of the pair of pants admit Rayleigh
statistics in the scaling limit, with a parameter that depends in a similar and simple
way on the boundary lengths. One can naturally wonder whether these statistics also
arise for more boundaries or in higher genera. However, for four boundaries or more, the
minimal separating cycles are not necessarily separating only one boundary from all the
others, and it is likely that more complicated statistics would arise.

Another direction of study would be to control distances between the boundaries.
This program was achieved in the case of three boundary-vertices in [BG08] for planar
quadrangulations and in [FG14] for general planar maps. As discussed in Appendix B,
the results of [BG08] provide an explicit expression for the generating function Xs,t

(respectively Ys,t,u) of balanced bigeodesic diangles (respectively bigeodesic triangles)
with all inner faces of degree 4 and with, say red intervals of lengths s′ ≤ s and t′ ≤ t
(respectively of lengths s′ ≤ s, t′ ≤ t and u′ ≤ u). Together with the generating function
Rs for elementary slices with (red) right boundary of length s′ < s − 1 (s ≥ 1), known
since the very introduction of slices in [BG12], it seems that we have all the ingredients
(at least for quadrangulations) for a proper refined enumeration of pairs of pants with
a control on the (properly defined) geodesic distances between their boundary-faces or
boundary-vertices. Indeed, the lengths s, t, u above, characterizing the various building
blocks, eventually fix the desired distances.

A final framework where our method is likely to apply is that of planar irreducible
maps or maps with girth constraints, for which an interesting connection with Weil-
Petersson volumes was recently pointed out by Budd [Bud22a, Bud22b]. Recall that the
girth is the length of the shortest cycle in the map and that a map is d-irreducible if its
girth is at least d and any cycle of length d is the contour of an inner face. In [BG14],
a slice decomposition was devised to enumerate such families of maps with one or two
boundaries. We expect that this decomposition may be extended to three boundaries
along lines similar to those of the present paper.

A. A slice-theoretic enumeration of triply pointed maps

Recursion relation for R. Call R the generating function of elementary slices (i.e.
tight slices of width 1). Let us show that R satisfies the recursion relation (1.2), which
determines it uniquely as a formal power series in t and in the g2k’s. We use the notations
of Figure 2.1 for tight slices, specialized to the case where the interval [c′, c′′] reduces to a
single oriented “base edge” e. Assuming that the slice is not reduced to e, we may consider
its base face f incident to e on its left, and look at the (clockwise) contour path of f from
v′ (incident to c′) to v′′ (incident to c′′): this path has length 2k − 1 if f has degree 2k.
Calling v the apex of the slice (vertex incident to c), we may record the relative distances
ℓi = d(v′, v)− d(vi, v) for the successively visited vertices vi, i = 0, . . . , 2k − 1, along the
contour path from v0 = v′ to v2k−1 = v′′. The sequence ((i, ℓi))0≤i≤2k−1 defines a directed
path P of length 2k− 1 in Z2 from (0, ℓ0) = (0, 0) to (2k− 1, ℓ2k−1) = (2k− 1, 1), with k
ascending steps with ℓi − ℓi−1 = +1 and k− 1 descending steps with ℓi − ℓi−1 = −1. Let
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us now, for each visited vertex vi, cut the slice along the leftmost geodesic Gi from vi to
v. This results into a decomposition of the slice into k components which are elementary
slices, in correspondence with the k ascending steps of P. More precisely, to each step
with ℓi−ℓi−1 = +1 is associated an elementary slice delimited by Gi−1 and Gi, whose base
edge connects vi−1 (at distance d(v, v′)− ℓi−1 from v) to vi (at distance d(v, v′)− ℓi−1−1
from v) and whose apex is the first meeting point of Gi−1 and Gi towards v. As for a step
with ℓi− ℓi−1 = −1, it does not give rise to any component in the decomposition since Gi

starts by following (counterclockwise) the contour of f from vi (at distance d(v, v′)− ℓi
from v) to vi−1 (at distance d(v, v′)− ℓi − 1 from v) and then merges with Gi−1, so that
no faces lie in-between Gi−1 and Gi.

Starting conversely from the directed path P above, viewed as a sequence of edges all
colored in red, and from the k elementary slice components S1, . . . , Sk, we may recover
the original slice by: (i) gluing the (blue) base edge of Sj to (and above) the (red) edge
associated with the j-th ascending step of P, then (ii) gluing each blue boundary edge
of a slice Sj to the the first available red edge, if any, facing it on its left (this edge
may belong to the red boundary of a preceding slice component or be associated with a
descending step of P) and finally (iii) closing P by adding an extra base edge e so as to
form the base face f of degree 2k.

Once translated in the language of generating functions, the above bijective decompo-
sition yields the relation (1.2), where the first term t accounts for the elementary slice
reduced to a single edge and the k-th term in the sum accounts for elementary slices with
a base face of degree 2k, with g2k the weight of this face, the factor

(
2k−1
k

)
the number

of possible oriented paths P of length 2k − 1 with k ascending steps, and the factor Rk

the generating function for the k elementary slice components.

Proof of the relation T0,0,0 = d ln(R/t)/dt. Take an elementary slice not reduced
to a single edge. Upon gluing its two intervals [c, c′] and [c′, c] (see again Figure 2.1
for the notations), we get a bipartite planar map with both a marked oriented edge e
(corresponding to the interval [c′, c′′] of length 1 oriented from c′ to c′′) and a marked
vertex v (corresponding to the vertex incident to c) which is closer to the endpoint than
to the origin of e. Conversely, starting from a bipartite planar map with a marked
oriented edge e and a marked vertex v closer to the endpoint than to the origin of e, the
elementary slice leading to this marked map by the above gluing is easily recovered by
cutting the map along the leftmost geodesic towards v starting with e. In the generating
function R− t of elementary slices not reduced to a single edge, the vertex incident to c′

receives a weight t while that incident to c receives no weight. We immediately deduce
that (R− t)/t is the generating function of planar bipartite maps with a marked oriented
edge e and a marked vertex v closer to the endpoint than to the origin of e, where neither
v nor the origin v′ of e (necessarily distinct from v) receive the weight t. Alternatively,
by first choosing v′ then e, (R− t)/t is the generating function of planar bipartite maps
with two distinct marked vertices v and v′ (which receive no weight t) and a marked edge
e incident to v′ and whose other extremity is at distance d(v′, v) − 1 from v. If we now
wish to compute instead the generating function B of doubly pointed maps, without the
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marked edge e, we may proceed as follows: consider, for a map with two marked distinct
vertices v and v′ the (non-empty) counterclockwise sequence of edges from v′ to a vertex
at distance d(v′, v) − 1 from v, and cut the map along the leftmost geodesics towards
v starting with these successive edges. This results in a non-empty cyclic sequence of
a particular type of elementary slices, all not reduced to a single edge, which are such
that all the non-boundary edges incident to the vertex v′ incident to the corner c′ lead
to vertices at a distance larger than d(v′, v) from v, the vertex incident to c. Call N
the generating function of these particular elementary slices (with the same weighting
convention as for regular tight slices). We deduce the relation B = − ln(1−N/t) (note
that in B, maps are counted with symmetry factors: a planar map with two marked
distinct vertices may have a k-fold symmetry by “rotating” around the axis of the two
marked vertices. It then receives the weight 1/k). As for the maps counted by (R− t)/t,
the additional marked edge e provides an origin for the cyclic sequence so that the above
cutting now results in a non-empty linear sequence of the same particular tight slices.
We now deduce the relation (R − t)/t = N/t/(1 − N/t), from which we eventually get
B = ln(R/t). Since in B the two marked vertices have no weight, taking a derivative with
respect to t in B amounts to the marking of a third vertex on the map, distinct from the
already marked ones. We deduce that T0,0,0 = dB/dt = d ln(R/t)/dt = d lnR/dt− t−1.

B. Connection with well-labeled maps

We discuss here the connection between our decomposition into bigeodesic diangles and
triangles and another decomposition introduced in [BG08] to characterize the three-point
function of planar maps. We restrict our discussion to the case of quadrangulations, i.e.
maps whose all inner faces have degree 4, and to the case where the three boundaries are
boundary-vertices. As first noted in [Mie09], such triply pointed planar quadrangulations
may be bijectively encoded by so-called planar well-labeled maps, which are maps whose
vertices carry integer labels with the constraint that

• the difference of labels between any two neighboring vertices is 0 or ±1.

For convenience, the corners of a well-labeled map receive the label of their incident
vertex.

More precisely, as shown in [Mie09], and in [BG08] in the specific case that we consider
here, one may establish a one-to-one correspondence between planar quadrangulations
with three distinct vertices vA, vB and vC and planar well-labeled maps with (generically)
three faces fA, fB and fC satisfying the additional constraint that

• C1. the frontier between any two faces of the map (i.e. the set of vertices and edges
incident to both faces) is non-empty and the minimum label on this frontier is 0.

In the non-generic case where one of the three boundary-vertices is a geodesic vertex
between the other two, one of the faces in the well-labeled map degenerates into a single
vertex, and some of the arguments presented below must be adapted.
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Figure B.1: Left: The construction of a quadrangulation with three boundary-vertices
vA, vB and vC from a well-labeled map with three faces fA, fB and fC ,
as obtained by connecting each corner to its successor. Here rB = 2 and
rA = rC = 1. Right: Schematic picture of a 3-face well-labeled map satisfying
C1. Its skeleton is indicated by thick edges. Each frontier between two given
faces carries minimal label 0.

Given a planar well-labeled map with three faces satisfying C1, the associated triply
pointed quadrangulation is easily recovered as follows: calling 1− ri the minimum label
among vertices incident to the face fi (i ∈ {A,B,C}), we add a new vertex vi with
label −ri in this face. Within each face, we then connect each corner with label ℓ to its
successor, which is the first encountered corner with label ℓ−1 when going counterclock-
wise around the face (i.e. with the face on the left). See the left of Figure B.1 for an
example. We finally remove the labels as well as the original edges of the well-labeled
map. In particular, the vertices of the quadrangulation are identified with those of the
well-labeled map, plus the three added vertices vA, vB and vC .

An important property relating the well-labeled map to its associated quadrangulation
is the following:

• Any vertex v incident to fi (i ∈ {A,B,C} ) with label ℓ(v) is at a distance ri+ℓ(v)
from vi in the quadrangulation (the property extends trivially to vi itself since
ℓ(vi) = −ri).

From this property, it is then easily shown that those vertices of the frontier between fi
and fj which carry the (minimal) label 0 are precisely the geodesic vertices between vi
and vj (for i ̸= j ∈ {A,B,C}) at distance ri from vi and rj from vj .

The generic topology of a planar well-labeled map with three faces satisfying C1 is
shown on the right of Figure B.1. Its skeleton, obtained by iteratively removing all the
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Figure B.2: Schematic picture of the decomposition of a well-labeled map with three faces
satisfying C1 into five well-labeled components, two Y-diagrams and three
chains, by cutting each branch of the skeleton at their extremal vertices
labeled 0 as shown by dashed red lines. The ⊥ signs indicate attached well-
labeled subtrees. The cutting singles out two corners ĉA and ĉB on the chain
C(AB). Similarly, three corners c̃A, c̃B, c̃C are singled out on the Y-diagram
Y(ABC).

leaves of the map so that all remaining vertices have degree at most 2, has exactly two
3-valent vertices y(ABC) and y(BAC) and three linear branches between them made of
2-valent vertices, each branch corresponding to a frontier between two faces. From C1,
each of the three branches carries a minimal label 0. The full well-labeled map is made
of this skeleton and a number of attached well-labeled subtrees.

We may now perform a canonical decomposition of the map as in [BG08, Section 4.3].
Namely, consider the branch at the frontier between, say fA and fB and call vAB (respec-
tively vBA) the vertex with label 0 closest to y(ABC) (respectively closest to y(ACB)). We
define vBC , vCB and vCA, vAC by cyclic permutation. Clearly, from the above discussion,
vAB and vBA are the extremal elements of SAB in the sense of Figure 3.4. We may then
cut the map at all the vij vertices, resulting in five well-labeled tree components: the
first two components, containing one of the vertices y(ABC) or y(BAC), will be referred to
as Y-diagrams and called Y(ABC) and Y(BAC) accordingly. The last three components,
lying in-between vij and vji for some i ̸= j ∈ {A,B,C}, will be called chains and de-
noted C(ij). In the cutting process, we must specify to which component we attach the
subtrees incident to the cutting vertices vij . We use the convention shown on the left of
Figure B.2. This is dictated by the fact that we wish to retain in, say the chain C(AB)
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Figure B.3: Schematic picture of the balanced bigeodesic diangle encoded by the well-
labeled chain C(AB) (see text). Its attachment points are the big blue dots.

the subtree incident to vBA which follows clockwise the leftmost corner incident to vBA

in the face fA of the original well-labeled map, as this subtree may carry the successor of
this corner. This choice of cutting singles out de facto two corners at the extremities of
the chain C(AB): a corner ĉA at vBA and a corner ĉB at vAB, see the right of Figure B.2.
Note that we may identify those vertices of the chain originally in fA (respectively fB) as
the vertices lying in-between ĉA and ĉB (respectively in-between ĉB and ĉA) when going
clockwise around the chain. Similarly, the cutting process marks three corners c̃A, c̃B, c̃C
preceding the retained subtrees at the end of the branches of Y-diagram Y(ABC), see the
right of Figure B.2. By construction, the well-labeled chains have nonnegative labels
on the unique path linking their extremal corners, the latter having label zero, while
for Y-diagrams, all labels along the paths linking the three extremal corners are strictly
positive, except for the corners themselves, which have label zero.

We now claim that the two Y-diagrams and the three chains resulting from the de-
composition of the well-labeled map precisely encode the two bigeodesic triangles and
the three bigeodesic diangles resulting from our decomposition of the associated triply
pointed quadrangulation. To see this, consider for instance the well-labeled chain C(AB).
We may associate to this chain a balanced bigeodesic diangle with attachment points vAB

and vBA as follows: calling 1 − r′A (respectively 1 − r′B) the minimal label of the chain
between ĉA and ĉB (respectively between ĉB and ĉA) when going clockwise around the
chain (with r′A ≤ rA and r′B ≤ rB), we attach to ĉB a new branch, called the A-branch,
made of r′A vertices with labels decreasing from −1 to −r′A and to ĉA a new branch, the
B-branch, made of r′B vertices with labels decreasing from −1 to −r′B. These branches
are represented as red lines in Figure B.3. Each corner of the chain, except those incident
to the new vertices of the two added red branches, is then connected to its successor,
possibly lying on the newly added red branch (note that going counterclockwise around
the external face corresponds to going clockwise around the chain). The resulting object
is a map with one boundary-face and four boundary intervals, alternating between blue
(geodesic) intervals, corresponding to the sequence of successors of ĉA and that of ĉB,
and red (strictly geodesic) intervals, corresponding to the A- and the B-branch. This is
nothing but a bigeodesic diangle with attachment points vAB and vBA, which is more-
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Figure B.4: Schematic picture of the bigeodesic triangle encoded by the well-labeled Y-
diagram Y(ABC) (see text). Its attachment points are the big red dots.

over balanced, with a blue and a red interval of the same length r′A and the other two
of the same length r′B. We can repeat the process to build balanced bigeodesic diangles
from the chains C(BC) and C(CA). As for the well-labeled Y-diagrams, say for instance
Y(ABC): calling 1 − r′′A the minimal label between c̃A and c̃C , we attach a new red A-
branch of length r′′A to the corner c̃C . We do the same by cyclic permutations of the
letters A,B,C. This gives rise to the red lines in Figure B.4. Finally, we connect as
before each corner not along the added red branches to its successor (possibly lying on
the newly added red branches). This clearly creates a bigeodesic triangle: the fact that
the attachment points of this triangles are “red” points in our terminology is due to the
fact that we chose the extremal 0 labels on each frontier so that any geodesic between
vi and vj (i ̸= j ∈ {A,B,C}) within the triangle, which must cross a vertex with label
0, has to pass via the appropriate attachment vertex. The other triangle is obtained
similarly from Y(ACB).

We now claim that gluing the three bigeodesic diangles and two bigeodesic triangles as-
sociated to the three well-labeled chains and the two well-labeled Y-diagrams according to
our procedure I clearly reproduces the quadrangulation associated with the well-labeled
map at hand before its decomposition. This simply results from the fact that the se-
quences of successors within the full well-labeled map after gluing match precisely with
the sequences of successors within each of its five well-labeled components after identi-
fication of the glued blue and red intervals, see Figure B.5. The paths along which the
bigeodesic diangles and triangles are glued induce paths in the resulting quadrangula-
tion, that correspond precisely to leftmost geodesics launched from the cutting points vij
(i ̸= j ∈ {A,B,C}) towards the vertices vi at the extremity of the added red i-branches
of the various well-labeled components which have the smallest label, necessarily equal
to −ri.
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ĉB
c̃A

c̃C
c̃B

vA vB

Figure B.5: The gluing of the bigeodesic triangle encoded by the Y-diagram YABC and
the bigeodesic diangle encoded by the chain C(AB) occurs along leftmost
geodesics launched from vAB in the original quadrangulation and correspond
to sequences of successors both in the well-labeled components (left) and in
the well-labeled map (right).

To conclude, we have a bijective correspondence between (i) balanced bigeodesic dian-
gles and well-labeled chains, and (ii) bigeodesic triangles and well-labeled Y-diagrams.
With this correspondence, our decomposition of planar quadrangulations with three
boundary-vertices matches precisely that of [BG08] for the associated well-labeled maps
with three faces.

As a direct enumerative consequence, we identify X and Y as the generating functions
of properly weighted well-labeled chains and Y-diagrams. More precisely, if we let t and
g = g4 be the inner vertex and face weights in the triply pointed quadrangulation, each
vertex of a well-labeled chain or Y-diagram receives the weight t and each edge the weight
g. To include the possible degenerate cases (for instance the case of well-labeled maps
with two faces obtained whenever one of the boundary-vertices is geodesic between the
other two), the vertex map, with label 0, must be considered as a well-labeled Y-diagram
as well as a well-labeled chain. Viewed as well-labeled object generating functions, X
and Y are easily obtained as the power series in t solutions (see [BG08] for a detailed
derivation) of

R = t+ 3g R2 , X = t+
1

t
g R2X

(
1 +

1

t2
g R2X

)
Y = t+

1

t6
g3R6X3 Y , (B.1)

where R is the generating function of well-labeled planted trees with root label 0. Note
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Figure B.6: The elementary slice encoded by a well-labeled planted tree with root label
0 (see text).

that R matches our definition (1.2) for g2k = g δk,2, i.e. is also the generating function of
elementary slices with 4-valent inner faces only. That well-labeled planted trees encode
elementary slices is obtained along the same lines as before: calling 1 − r the smallest
label in the tree, we attach to the root-corner a branch of length r with vertices having
decreasing labels −1, · · · ,−r as in Figure B.6. Connecting each corner not incident to
one of the new added vertices to its successor creates a map with a single boundary
face, with 4-valent inner faces, having a blue (geodesic) interval from the extremity v of
the added branch to the root vertex counterclockwise around the map, and a geodesic
interval from the root vertex to v, whose portion which goes from the new added vertex
with label −1 to v is strictly geodesic (hence represented in red). This is precisely an
elementary slice.

A simple parametrization of X and Y is obtained by introducing the power series x
solution of

x =
g R2

t
(1 + x+ x2) (B.2)

as it allows to write

X = t
1− x3

1− x
, Y =

t

1− x3
. (B.3)
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