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Are PLLs Dead? A Tutorial on Kalman Filter-Based Techniques for Digital Carrier Synchronization

Carrier synchronization is a fundamental stage in the receiver side of any communication or positioning system. Traditional carrier phase tracking techniques are based on well-known phase-locked loop (PLL) closed-loop architectures, which are still the methods of choice in modern receivers. Those techniques are well understood, easy to tune, and perform well under benign propagation conditions, but their applicability is seriously compromised in harsh propagation environments, where the signal may be affected by high dynamics, shadowing, strong fadings, multipath effects, or ionospheric scintillation. From an optimal filtering standpoint, the Kalman filter (KF) is clearly a powerful alternative, but the synchronization community seems still reluctant to exploit all the potential it has to offer. The purpose of this article is twofold: i) to review the basics and state of the art on both PLL and KF-based tracking techniques and ii) to present and justify the reasoning behind the systematic use of KF-based tracking approaches instead of the well-established PLL-based architectures from both theoretical and practical points of view. To support the discussion, two specific scenarios of interest to the aerospace community are numerically evaluated: robust carrier tracking of global navigation satellite systems' signals and synchronization in a deep space communications system.

INTRODUCTION

The main goal of this article is to provide a tutorial-style discussion on why traditional synchronization loop architectures, inherited from the analog era, may be abandoned in modern digital receivers and to move forward toward the design and actual use of more flexible, robust and powerful Kalman filter (KF)-based synchronization schemes. Carrier synchronization is a key process in most electronic devices involved in aerospace systems, and it is typically carried out following a two-stage approach: acquisition and tracking. The first stage detects the presence of the desired signal and provides a coarse estimate of its synchronization parameters, and the second one refines those estimates, filtering out noise and tracking any possible time variation [START_REF] Meyr | Digital Communication Receivers: Synchronization, Channel Estimation and Signal Processing[END_REF]. In the present work, we are concerned with the analysis of the carrier phase (CP) tracking problem. Hence, acquisition and time delay synchronization are not discussed.

Digital CP tracking techniques implemented in conventional receivers rely on well-known phase-locked loop (PLL) architectures [START_REF] Mengali | Synchronization Techniques for Digital Receivers[END_REF], [START_REF]Understanding GPS: Principles and Applications[END_REF], [START_REF] Best | Phase Locked Loops: Design, Simulation, and Applications[END_REF] that set an output signal's phase relative to an input reference signal's phase. Those circuits are widely used in positioning systems, communications, computers, control, and measurement applications for frequency synthesis, clock and data recovery, clock distribution, and other more specialized functions. The signals of interest may be any periodic waveform but are typically sinusoids or digital clocks.

Digital PLLs can be implemented in hardware (usually with mixed signal or all-digital integrated circuits in complementary metal oxide semiconductor technology [START_REF] Kratyuk | A design procedure for all-digital phase-locked loops based on a chargepump phase-locked-loop analogy[END_REF], [6], [START_REF] Lee | A wide-range PLL using selfhealing prescaler/VCO in 65-nm CMOS[END_REF] and targeting frequencies on the order of gigahertz and above [START_REF] Cheema | 60-GHz CMOS Phase-Locked Loops[END_REF]), but the rapid evolution of programmable devices, such as field-programmable gate arrays, digital signal processors, microcontrollers, and general-purpose processors, enables software-defined implementations targeting frequencies up to hundreds of megahertz, in which the designer trades electronic components for computation resources [START_REF] Barbosa ℜolim | Analysis and software implementation of a robust synchronizing PLL circuit based on the pq theory[END_REF], [START_REF]DS-622 phase locked loop (PLL) module (v2.00a) product specification[END_REF]. This approach provides advantages, such as easy customization of the feedback loop and a drastic reduction in the development cost, when compared with the hardware counterpart. However, the underlying design principles remain the same regardless of the technology of choice for the implementation.

The performance obtained with those techniques is generally good enough in benign propagation conditions, but they have been shown to deliver poor estimates or even fail under harsh propa-gation environments, where the signal may be affected by high dynamics, shadowing, strong fadings, multipath effects, or ionospheric scintillation [START_REF] Lian | Improving tracking performance of PLL in high dynamic applications[END_REF], [12]. On the basis of conventional PLL architectures, some improvements have been proposed in the literature [START_REF] Mao | GPS carrier signal parameters estimation under ionosphere scintillation[END_REF], [START_REF] Skone | Investigating the impact of ionospheric scintillation using a GPS software receiver[END_REF], [START_REF] Mao | Mobile GPS carrier phase tracking using a novel intelligent dual-loop receiver[END_REF], but their performance have been overcome by KF-based techniques [START_REF] Lian | Improving tracking performance of PLL in high dynamic applications[END_REF], [12], [START_REF] Won | Characteristics of Kalman filters for GNSS tracking loops[END_REF], [START_REF] Humphreys | GPS carrier tracking loop performance in the presence of ionospheric scintillations[END_REF], [START_REF] Yu | PLL performance for signals in the presence of thermal noise, phase noise, and ionospheric scintillation[END_REF]. The main drawback of KFs is the need of an exact knowledge of the system model noise statistics' for an optimal behavior, thus being constrained by the accuracy of the dynamic model and the a priori fixed system parameters. In practice, those quantities may need to be somehow adjusted to provide a robust solution [START_REF] Vilà-Valls | On the identifiability of noise statistics and adaptive KF design for robust GNSS carrier tracking[END_REF], a problem that has been solved by the so-called adaptive KFs (AKFs) [START_REF] Vilà-Valls | On the identifiability of noise statistics and adaptive KF design for robust GNSS carrier tracking[END_REF]- [START_REF] Won | A novel adaptive digital phase-lock-loop for modern digital GNSS receivers[END_REF].

Our previous experience on the use of KF synchronization schemes for both communications [START_REF] Vilà-Valls | Oversampled phase tracking in digital communications with large excess bandwidth[END_REF], [START_REF] Vilà-Valls | Joint oversampled carrier and time-delay synchronization in digital communications with large excess bandwidth[END_REF] and positioning systems [START_REF] Vilà-Valls | On the identifiability of noise statistics and adaptive KF design for robust GNSS carrier tracking[END_REF], [START_REF] Vilà-Valls | An interactive multiple model approach for robust GNSS carrier phase tracking under scintillation conditions[END_REF], [START_REF] Vilà-Valls | Advanced KFbased methods for GNSS carrier tracking and ionospheric scintillation mitigation[END_REF], [START_REF] Vilà-Valls | Adaptive GNSS carrier tracking under ionospheric scintillation: estimation vs mitigation[END_REF], the lack of a unified analysis in the literature, and a clear answer to the PLL versus KF dilemma ignited this work. From different analysis carried out in the literature for specific scenarios, it seems clear that KF schemes should, in general, be preferred in front of PLL-based solutions, but the synchronization and aerospace communities seem still reluctant to go further on theoretical analysis of such techniques and to cross the gap between theory and implementation. Moreover, the advent of software-defined radio receivers in real-life applications [START_REF] Fernández-Prades | GNSS-SDℜ: An open source tool for researchers and developers[END_REF], [START_REF] Ifen Gmbh | SX-NSℜ GNSS receiver[END_REF] has confirmed the practical feasibility of this approach. The main goal of this tutorial-style article is to provide a comprehensive overview and unified framework. Therefore, this work is for the practitioner or engineer who needs to solve real hands-on problems and the academic or researcher willing to push forward on new advanced synchronization techniques.

The notation used in this article is as follows: lowercase italics for scalar variables, either deterministic or stochastic, both real or complex; uppercase italics for constants; lowercase bold for vector variables, columnwise defined; uppercase bold for matrix variables; (•)  , (•)*, and (•) H stand for the transpose, conjugate, and conjugate transpose (hermitic) operators, respectively; is an estimate of the true parameter value x at time k, given its value in time k -1;x ∼ 2 ( , )

x x μ σ
 is a random variable x Gaussian-distributed with mean μ x and variance 2 x σ ; and ℜ(x) and I(x) stand for the real and imaginary parts of x, respectively. More notation will be defined throughout the article, as needed.

PLL-BASED ARCHITECTURES

CP synchronization techniques implemented during recent decades in mass-market and industrial-grade positioning, communications, and tracking systems receivers rely on well-established PLL-based architectures [START_REF] Best | Phase Locked Loops: Design, Simulation, and Applications[END_REF], [START_REF] Stephens | Phase-Locked Loops for Wireless Communications[END_REF], [START_REF] Gardner | Phaselock Techniques[END_REF]. First analyzed by Appleton in 1922 [START_REF] Appleton | The automatic synchronization of triode oscillators[END_REF], early applications of PLLs were the control of receivers' local oscillators, especially in FM demodulators and automatic volume control circuits. In the early 1950s, they played an important role in the development of color television [START_REF] ℜichman | Color-carrier reference phase synchronization and accuracy in NTSC color television[END_REF], and the availability of PLL integrated circuits in the mid-1960s facilitated their rapid introduction into a wide range of consumer products, becoming a key component of electronic devices for the next three decades [START_REF] Gupta | Phase-locked loops[END_REF], [START_REF] Lindsey | A survey of digital phase-locked loops[END_REF], [START_REF] Hsieh | Phase-locked techniques: a survey[END_REF]. Nowadays, digital PLLs are widely used in modern communication systems [START_REF] Proakis | Contemporary Communication Systems Using MATLAB[END_REF] and are still the method of choice in many applications, such as global navigation satellite systems (GNSS) [START_REF]Understanding GPS: Principles and Applications[END_REF] and space communications [START_REF] Hamkins | Autonomous Software-Defined Radio Receivers for Deep Space Applications[END_REF], mainly because of manufacturer's inertia on legacy solutions and well-proven technologies. Hereafter, the main PLL-based architectures and design rules are summarized.

BASICS

In general, a PLL is built up with three main blocks: the discriminator or phase detector, the loop filter, and a numerically controlled oscillator (NCO), which is nothing but an integrator. The main idea is to obtain first an error signal (i.e., discriminator's output), which is proportional to the CP error; then, this error goes through the loop filter, in charge of filtering out noise and driving the error to zero; and finally, the NCO is used to generate the local replica (i.e., a complex exponential using the predicted or tracked CP). The basic PLL architecture is sketched in Fig. 1.

The role of the phase discriminator is to produce an output that is proportional to the phase estimation error. In the presence of data modulating the phase of the input signal (and thus producing phase jumps), noncoherent discriminators (usually known as Costas-type discriminators) should be adopted. The two quadrant arctangent discriminator atan (I(y k )/ℜ(y k )) is usually the preferred noncoherent choice [START_REF]Understanding GPS: Principles and Applications[END_REF], although other discriminators may result from different optimization criteria and signal-to-noise ratio (SNℜ) regimes [START_REF]Autonomous Software-Defined Radio Receivers for Deep Space Applications[END_REF], [START_REF] Pany | Navigation Signal Processing for GNSS Software Receivers[END_REF]. Otherwise, if phase jumps produced by data have been removed (either because they belong to a training sequence known at the receiver or because they have been estimated) or pilot (dataless) signals are available, coherent discriminators may be used [START_REF] Proakis | Contemporary Communication Systems Using MATLAB[END_REF]. In the absence of data, the optimal maximum likelihood (ML) estimator is the four-quadrant arctangent discriminator atan2 (I(y k )/ℜ(y k )). In addition to the phase discriminators, one may be interested in directly tracking the input signal frequency by using a frequency-locked loop (FLL). ℜefer to [START_REF] Lopez-Salcedo | Survey on robust carrier tracking techniques[END_REF] for detailed analysis and an updated overview on carrier tracking techniques.

The order of the PLL refers to the overall closed loop (used throughout the article to unify the notation) and not only to the filter loop, which may lead to confusion because the latter is always one order lower than the entire loop due to the NCO. The order of the PLL basically determines the input signal dynamics that the filter is able to track. In other words, a second-order PLL is able to track a constant frequency mismatch, whereas a third-order PLLs properly tracks frequency drifts. The loop coefficients are usually optimized to minimize the mean-squared error (MSE) [START_REF]Understanding GPS: Principles and Applications[END_REF], but other approaches may be adopted as well [START_REF] Kazemi | Development of new filter and tracking schemes for weak GPS signal tracking[END_REF].

The dynamics of a PLL are heavily dependent on the type and response of the loop filters. A PLL with nth order filter is of (n + 1)th order. In the general case, a PLL of order n has a closed-loop transfer function that can be expressed as [START_REF] Gardner | Phaselock Techniques[END_REF] 

( ) ( ) ( ), PI H s H s L s = (1) 
where

H PI (s) = K 1 + 2 3 2 ... K K s s +
+ is the transfer function of the proportional plus integrator part, K i is the gain of the loop of order i, and L(s) is the transfer function of the loop filter.

ANALOG VERSUS DIGITAL

To start from scratch and see how digital PLLs are derived from their analog design, some results on analog PLLs are given together with their digital counterpart.

Analog PLLs

The Laplace transform of the continuous time domain transfer functions for the second-and third-order PLL loop filters are, respectively,

2 2 2 3 2 3 2 ( ) ; ( ) , n n n n n a s c s b s L s L s s s ω ω ω ω ω + + + = = (2)
where a, b, and c are the loop filter coefficients, and ω n (radian per second) is the so-called natural frequency of the loop filter.

The PLL loop is closed with a voltage-controlled oscillator (VCO), with transfer function V(s) = 1/s (unity VCO gain). The closedloop transfer functions for these second-and third-order PLLs are 

+ + = + + + (4) 
The single-sided loop noise bandwidth B n in hertz (defined as the bandwidth of a perfect rectangular filter that produces the same integrated noise power as that of the actual filter) is obtained from the frequency response (setting s = j2π f) of the closed-loop system as ( )

2 , 0 2 
,

n i i B H j f df π ∞ =  ( 5 
)
where i is the loop order. This bandwidth can be used to compute the receiver's noise floor (kTB n ) and its sensitivity (the minimum input signal power required to produce a specified SNℜ at the receiver's output). Equation ( 5) can be analytically computed from the loop parameters and the natural frequency [START_REF]Understanding GPS: Principles and Applications[END_REF]. Again, considering the second-and third-order loops, the noise bandwidth can be written as ( )

2 2 2 ,2 , 3 2 1 ; 
. [START_REF] Best | Phase Locked Loops: Design, Simulation, and Applications[END_REF] 4( 1)

n n n n bc b c a B B a bc ω ω   + -   +   = =     -     (6) 
Therefore, the design of the analog PLL is completely specified by the desired noise bandwidth and the filter parameters, which are usually designed to minimize the estimation's MSE. Typical values are [3] a = 2 , b = 1.1, and c = 2.4, which is the setup used in the literature to compute the PLL parameters from a specified noise bandwidth.

Digital PLLs

Digital PLLs are usually derived from their analog counterpart. Using s = (1 -z -1 )/T s , with T s the sampling period, one can obtain the PLL loop transfer function and the overall closed-loop transfer function. In this case, the VCO is replaced by a NCO with transfer function

1 1 ( ) . 1 z N z z - - = - (7) 
Considering the following loop filter transfer functions [15]

2 2 1 1 ( ) , 1 L z z α α - = + - (8) 
( )

2 3 3 1 2 1 1 ( ) , 1 1 L z z z α α α - - = + + - - (9) 
the discrete-time closed-loop transfer function for the second-and third-order PLLs are ( )

1 2 1 2 2 1 2 ( ) , ( 1) 
( 1)

z H z z z z α α α α α + - = -+ -+ ( 10 
)
2 3 3 2 2 1 2 3 ( ) , ( 1) ( 1) ( 1) H z z z z z z α α α α = -+ -+ -+ (11) 
where the loop filter coefficients can be directly computed from the analog loop filter parameters, the desired noise bandwidth and the sampling period as C third order:

α 1 = cω n T s , α 2 = 2 2 n s b T ω and α 3 = 3 3 n s T ω .
For the digital PLL, the equivalent noise bandwidth can be directly computed from H(z) (results given in hertz) [START_REF] Mao | Mobile GPS carrier phase tracking using a novel intelligent dual-loop receiver[END_REF], leading to ( )

2 1 2 1 2 ,2 1 1 2 2 2 , 2 4 2 n s B T α α α α α α α + + = - - (12) 3,1 ,3 3 
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) with γ 3,1 = 2 1 2 4α α -4α 1 α 3 + 2 2 2 2 1 2 1 3 4 2 4 
α αα α α + + + 4α 2 α 3 + 3α 1 α 2 α 3 + 2 2 3 1 3
α α α + , γ 3,2 = α 1 α 2 -α 3 + α 1 α 3 and γ 3,3 = 8 -4α 1 -2α 2 -α 3 . These results verify that digital PLL parameters computed from the analog coefficients are equivalent to the parameters directly derived in the discrete-time domain, because the resulting equivalent noise bandwidths coincide.

STANDARD AND ADVANCED PLLS

A key step for the practitioner may be how to interpret [START_REF] Cheema | 60-GHz CMOS Phase-Locked Loops[END_REF] or [START_REF] Barbosa ℜolim | Analysis and software implementation of a robust synchronizing PLL circuit based on the pq theory[END_REF] and the way to turn them into a useful architecture. The block diagram of a third-order PLL loop filter is sketched in Fig. 2. The standard PLL-based architectures are somehow limited because of the noise reduction versus dynamic range trade-off, which may lead the filters to lose lock.

This trade-off is mainly driven by the bandwidth and order of the loop. A small bandwidth is needed to filter out as much noise as possible to be able to operate at low SNℜ, whereas a large one is required for coping with fast variations of the parameters of interest. Moreover, the loop's order also plays an important role in such scenarios. For instance, the second-order PLL is unconditionally stable at all noise bandwidths, but it is not suitable to deal with complex dynamics. The third-order PLL, while being more flexible in front of high dynamics, only remains stable for bandwidths below 18 Hz [START_REF]Understanding GPS: Principles and Applications[END_REF]. Another issue is the PLL constant bandwidth, a priori fixed by the designer. A time-varying band-width would seem to be more suitable in practice. These two key points have led to propose a plethora of advanced PLL-based techniques.

One possible solution to provide robustness and extra flexibility to the stand-alone PLLs is to consider cooperative loops architectures, where several loops interact to counteract its individual limitations. The most basic solution is the so-called switching architecture, where a PLL is used under nominal operation but the system switches to a FLL in harsh conditions to not lose lock [START_REF] Fantinato | The switching carrier tracking loop under severe ionospheric scintillation[END_REF]. The FLL is, in general, more robust than the PLL because the variability of the incoming signal frequency is orders of magnitude lower than the phase variability. However, the solution usually adopted to overcome the problems of standard architectures in dynamic or harsh conditions is the use of a hybrid approach in which the FLL permanently assists the PLL (F-PLL) [START_REF] Mao | GPS carrier signal parameters estimation under ionosphere scintillation[END_REF], [START_REF] Ward | Performance comparison between FLL, PLL and a novel FLL-assisted PLL carrier tracking loop under ℜF interference conditions[END_REF], which is capable to maintain lock in situations in which the PLL diverges. The second concern that typically arises from standard architectures is the constant bandwidth operation, which may limit its applicability to rather constant propagation conditions. A possible solution is to directly use the input working conditions to automatically adjust the loop bandwidth, what is usually known as adaptive bandwidth PLL (A-PLL) [START_REF] Legrand | Spread spectrum signal tracking loop models and raw measurements accuracy improvement method[END_REF]. Several contributions appeared in the literature using the same concept [START_REF] Mao | Mobile GPS carrier phase tracking using a novel intelligent dual-loop receiver[END_REF], [START_REF] Skone | Investigating the impact of ionospheric scintillation using a GPS software receiver[END_REF], [START_REF] Ugazio | Design of real time adaptive DPLLs for generic and variable Doppler frequency[END_REF].

The following section presents a systematic, unified approach to design digital phase tracking filters that is based on the technically sound Bayesian filtering theory.

STANDARD KF-BASED CARRIER TRACKING

OPTIMAL FILTERING BACKGROUND AND KF GENERAL FORMULATION

The optimal filtering problem involves the recursive (i.e., online) estimation of time-varying unknown states of a system by using the incoming flow of information (observations) from the system, along some prior statistical knowledge about the variations of such states. The general dynamic state-space model (assuming additive noises) can be expressed as

( ) 1 1 
,

k k k k - - = + x f x ν (14) ( ) , k k k k = + y h x n ( 15 
) Figure 2.
Block diagram of a third-order digital PLL loop filter.

where

x k R x n ∈ and y k R y n ∈
are the hidden states of the system and measurements at time k, f k-1 (•) and h k (•) are known, possibly nonlinear functions; ν k and n k are referred to as process and measurement noises (assumed mutually independent stochastic processes). The optimal Bayesian filtering solution [START_REF] Anderson | Optimal Filtering[END_REF] is given by the marginal distribution p(x k |y 1:k ), 1 which gathers all the information about the system contained in the available observations. This distribution can be recursively computed in two steps: i) prediction, the predictive distribution p(x k |y 1:k-1 ) is computed using prior information, p(x k | x k-1 ), and the previous distribution, and ii) update, the new measurements y k and the predictive distribution (see Algorithm 1 in [START_REF] Fernández-Prades | Bayesian nonlinear filtering using quadrature and cubature rules applied to sensor data fusion for positioning[END_REF]) are used to obtain the new filtering distribution p(x k |y 1:k ).

The standard KF [START_REF] Anderson | Optimal Filtering[END_REF], sketched in Algorithm 1, 2 provides the closed-form solution to the optimal Bayesian filtering problem in linear and Gaussian systems, assumptions that not always hold. A plethora of alternatives have been proposed in recent decades to solve the nonlinear estimation problem. Among them are the extended KF (EKF) [START_REF] Anderson | Optimal Filtering[END_REF], the family of sigma-point KFs [START_REF] Stano | Parametric Bayesian filters for nonlinear stochastic dynamical systems: a survey[END_REF] within the Gaussian framework and the family of sequential Monte Carlo methods [START_REF] Cappe | An overview of existing methods and recent advances in sequential Monte Carlo[END_REF] for arbitrary noise distributions. The carrier synchronization problem is just a particular application case of this general filtering solution.

The probabilistic assumptions made by the KF are

v k ∼  (0,Q k ) and n k ∼  (0,R k ), with Q k and
R k being the process and measurement covariance matrices, respectively. For linear dynamic systems, the KF always provides the linear MMSE solution, but if the process or measurement noises are not Gaussian distributed, the KF is no longer optimal. The filter uses a Gaussian approximation and only propagates the mean and covariance of the predictive and posterior distributions, so intuitively the further from Gaussianity, the further from optimality.

The filtering equation in Step 7 of Algorithm 1 reveals how the KF estimation works ( )

| 1 1| 1 | 1 state prediction measurement update ˆˆˆ. k k k k k k k k k - -- - = + - x F x K y y     (16) 
Algorithm 1 General KF formulation Require: 0 ,0|0 ˆ, , , , , and

x k k k k k k ∀ x P F H y Q R 1: Set k ⇐ 1 Time update (prediction) 2: Estimate the predicted state: | 1 1 1| 1 ˆk k k k k - - -- = x F x . 3: Estimate the predicted error covariance: , | 1 1 , 1| 1 1 
.

x k k k x k k k k - - -- - = + P F P F Q  Measurement update (estimation) 4: Estimate the predicted measurement: | 1 | 1 k k k k k - - = H x y
. 5: Estimate the innovation covariance matrix:

, | 1 , | 1 . y k k k x k k k k - - = + P H P H R  1
The characterization of the posterior distribution allows us to compute the minimum mean-squared error (MMSE), the maximum a posteriori (MAP), or the median of the posterior (minimax) estimators, addressing optimality in many senses [START_REF] Kay | Fundamentals of Statistical Signal Processing: Estimation Theory[END_REF]. 2 The standard filtering notation is used, where the subscript k|k-1 stands for prediction at time k using measurements up to time k-1 and k|k refers to the estimation at time k, including the complete measurements set y 1:k .

6: Estimate the Kalman gain:

1 , | 1 , | 1 k x k k k y k k - - - = K P H P  . 7: Estimate the updated state: ( ) | | 1 | 1 ˆˆk k k k k k k k - - = + - x
x K y y . 8: Estimate the corresponding error covariance:

, | , | 1 , | 1 . x k k x k k k k x k k - - = - P P K H P 9: Set k ⇐ k + 1 and go to step 2.
The first term takes into account the state evolution model to predict the state at the following time step, while the second one corrects this prediction by incorporating the information provided by the new measurement y k . The term y k -| 1 ˆk k-y is called innovation, which can be seen as an error signal and a key part of the KF theory. If the filter is optimal, the innovations' sequence is a white Gaussian process, which is a useful theoretical result to build consistency tests [START_REF] Bar-Shalom | Estimation and Tracking: Principles, Techniques, and Software[END_REF], [START_REF] Matisko | Estimation of the stochastic properties of controlled systems[END_REF].

The innovations are weighted by the time-varying Kalman gain K k , which is computed by using the uncertainty of the state-space model (i.e., noise statistics) and the covariance of the estimation error (i.e., how good the state estimation is)

( ) 1 , | 1 , | 1 . k x k k k k x k k k k - - - = + K P H H P H R   (17) 
Observing the terms involved in the gain computation, and with a slight abuse of language, the following effects can be deduced: i) increasing the measurement noise R k , or equivalently the uncertainty on the observation, reduces K k ; thus, the filter is less confident on the information provided by the observations; ii) on the other side, increasing the system model uncertainty, Q k , increases P x,k|k-1 and, in turn, K k . In this situation, more weight is given to the observations and less to the state prediction. If the system is observable (i.e., the system states can be altered by changing the system input) and controllable (i.e., the value of the initial state can be determined from the system output), the filter tends to an asymptotic regime [START_REF] Åström | Feedback Systems[END_REF], that is, both K k and the estimation error covariance matrix tend to steady-state fixed values,

, | lim ; lim . k k k x k k →∞ ∞ →∞ ∞ → → K K P P (18) 
These values only depend on the transition matrices and both process and measurement noise statistics and thus can be computed off-line. The steady-state error covariance is obtained by solving a discrete algebraic ℜiccati equation, and the steadystate gain is straightforwardly derived from this covariance matrix (Fig. 3). The use of such constant gain may be really useful in applications, where computational complexity is a very critical point, because a steady-state convergence ensures that the gain in Equation ( 16) does not need to be recomputed at each time instant (that is, K k = K ∞ ). In this case, note that during the transient time, the filter is no longer optimal, and the ℜicatti equation may not converge [START_REF] Simon | Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches[END_REF].

The KF formulation is only valid for linear systems, but in many real-life applications, the measurement function, the state evolution, or both may be nonlinear. A classical solution is to use the so-called EKF, which uses a linearization of such nonlinear functions and directly applies the KF equations. The key point is to use linearized transition matrices (Jacobian matrices), such as 3  ( )  ( )

1 | 1 | 1 ˆ1 1 1 ; , k k k k k k k k k k -- - - - - = ∇ = ∇ x x F f x H h x
and plug them into Steps 3, 5, and 7 of Algorithm 1. Notice that in Steps 2 and 4, we can use nonlinear functions. It is beyond the scope of this article to provide a detailed discussion on KF theory; for further details on the topic, refer to [START_REF] Anderson | Optimal Filtering[END_REF], [START_REF] Jazwinski | Stochastic Processes and Filtering Theory[END_REF].

CARRIER TRACKING STATE-SPACE FORMULATION

It is usually assumed that the phase variations of the signal of interest are due either to the relative movement between the transmitter and the receiver or to synchronization mismatches, and on top of it, there is a random behavior due to the noises affecting the system. The state-space formulation of this problem is defined via both process and measurement equations, as shown hereafter.

Carrier Tracking Process Equation

1 1 , k k k k - - = + x F x ν ( 19 
)
where the additive noise includes any possible modeling mismatch. The state to be tracked includes the CP and the Doppler frequency terms (i.e., using a Taylor series expansion of the CP and truncating at the order of interest), and the so-called transition matrix F k-1 defines the phase evolution due to receiver dynamics. For instance, assuming that tracking phase θ k (radian), Doppler shift f k (hertz), and Doppler frequency rate k f  (hertz per second) are enough for a given application (i.e., assuming a third-order Taylor approximation of the phase), the phase is

2 2 0 1 2 , 2 k k s k s f kT f k T θ θ π   = + +      ( 20 
)
where k refers to the discrete-time instants and T s is the sampling period. In this scenario, the state to be tracked is

x k k k k f f θ        ,
and the transition matrix is given by 3 The vector differential operator is defined as

∇ = [∂/∂x 1 ,...,∂/∂x n ]. 2 1 1 / 2 0 1 , 0 0 1 s s k s T T T -     =       F (21)
where the phase is expressed in cycles (radian/2π). It is straightforward to extend this state formulation to higher-order frequency terms if needed.

Carrier Tracking Observation Equation

Two cases may be considered: i) the measurements are noisy CP observables (linear equivalent model); and ii) the observations are directly the received signal baseband complex samples.

C Linear observation equation: the inputs to the carrier tracking block are linearly related to carrier observables,

lin lin , , , k k k k k k k y n θ θ θ = + → = + y H x n (22) 
with H k the measurement transition matrix and n k the measurement noise, including thermal and phase noise contributions, as well as other propagation disturbances.

C Nonlinear observation equation: the inputs to the carrier tracking block are the complex baseband signal samples, which are nonlinearly related to the carrier observables, ( )

, k j k k k k k k k y e n θ γ = + → = + y h x n ( 23 
)
with h k (•) the nonlinear measurement function, and γ k refers to the time-varying envelope of the received signal, which may be affected by different propagation disturbances such as fading, multipath, or scintillation.

Early approaches to this problem, such as the α-β and the α-β-γ filters [START_REF] Hall | Mathematical Techniques in Multisensor Data Fusion[END_REF], do not require a detailed system model, trading computational load by a degradation in performance with respect to the KF [START_REF] Painter | ℜeconciling steady-state Kalman and Alpha-Beta filter design[END_REF] due to their static, heuristically chosen gains.

KF-BASED CARRIER SYNCHRONIZATION ARCHITECTURES

In this section, different architectures to implement the KF-based carrier tracking solution are provided, coupling the general formulation given in Section III.A with the specific state-space model of Section III.B [START_REF] Won | Characteristics of Kalman filters for GNSS tracking loops[END_REF], [START_REF] Vilà-Valls | Oversampled phase tracking in digital communications with large excess bandwidth[END_REF].

Linear Observation Architectures

The inputs to the tracking block are directly phase observables and thus use the state-space model defined by [START_REF] Vilà-Valls | On the identifiability of noise statistics and adaptive KF design for robust GNSS carrier tracking[END_REF] and [START_REF] Zhang | A variable gain adaptive Kalman filter-based GPS carrier tracking algorithms for ionosphere scintillation signals[END_REF]. Note that this architecture is called standard linear KF throughout the article, but in the literature, it is also referred to as direct-state KF [START_REF] Won | Characteristics of Kalman filters for GNSS tracking loops[END_REF]. The closed-loop block diagram is sketched in Fig. 3. An alternative linear architecture named error-state KF or rate-only feedback loop, typically used in GNSS [START_REF] Psiaki | Extended Kalman filter methods for tracking weak GPS signals[END_REF], [START_REF] Jee | GNSS receiver tracking loop optimization for combined phase, frequency and delay locked loops[END_REF], is presented and analyzed in [START_REF] Won | Characteristics of Kalman filters for GNSS tracking loops[END_REF], with respect to the standard (direct-state) KF. The idea consists of using a state-space model, where the filter does not track directly the CP but the phase error. As it does not provide any advantage over the standard KF, the latter is preferred for practical applications.

Nonlinear Observation Architectures

The previous linear architecture is of limited applicability in reallife implementations. At least, some extra information should be added to explain how the phase observables are obtained. The standard solution is to use a discriminator, as done in traditional PLL architectures (Case 1), but the complex samples of the received baseband signal can be directly treated using a nonlinear filter (Case 2).

C Case 1, discriminator-based traditional approach:

Using a discriminator allows the use of a traditional KF, avoids the derivation of suboptimal solutions, and is considered the reference KF-based architecture [START_REF] Lopez-Salcedo | Survey on robust carrier tracking techniques[END_REF]. The main differences with the linear standard KF are i) the carrier generator block, which uses the nonlinear observation equation h k (•) and ii) the discriminator as phase detector. The block diagram is shown in Fig. 4 (top).

C Case 2, EKF solution: Using a discriminator might break the Gaussianity assumption within the KF, making the filter not optimal anymore, which may lead to poor filter performances or even divergence. Moreover, the discriminators may need to operate under saturation in low SNℜ scenarios. A solution is to directly deal with the nonlinear Gaussian observation model [START_REF] Vilà-Valls | Oversampled phase tracking in digital communications with large excess bandwidth[END_REF], [START_REF] Vilà-Valls | Joint oversampled carrier and time-delay synchronization in digital communications with large excess bandwidth[END_REF]. The simplest solution is to use a linearization procedure (EKF-like solution) and then reuse the previous linear standard KF approach, sketched in the bottom diagram of Fig. 4.

In practice, there are some issues that are of capital importance for the actual implementation, detailed hereafter.

ON THE IMPLEMENTATION ISSUES Noise Statistics

It is common for the system model not to be perfectly known; thus, the noise covariance matrices are set to some expected value. A rule of thumb typically considered in the KF design is that noise covariances must be equal or greater than the true ones to ensure the filter convergence. Therefore, it is convenient to be rather conservative and not underestimate the noise impact into the system. 4 the steady-state filter performance may be worse, but the filter tends to be more reactive and robust to model changes so more suitable to rapidly time-varying scenarios. ℜegarding the measurement noise, ˆk R > R k implies that K k < K optimal ; thus, the filter relies more on the process transition model [START_REF] Vilà-Valls | On the identifiability of noise statistics and adaptive KF design for robust GNSS carrier tracking[END_REF].

If ˆk k Q > Q k ,
4 A > B means that A -B is non-negative definite [START_REF] Jazwinski | Stochastic Processes and Filtering Theory[END_REF].

An expression for the approximated variance of the phase noise, expressed in squared radians, at the output of the Costastype two quadrant arctangent discriminator is [START_REF] Gernot | Development of combined GPS L1/L2C acquisition and tracking methods for weak signals environments[END_REF] 

2 0 0 1 1 1 . 2C/N 2C/N n s s T T θ σ   = +       (24) 
where C/N 0 is the carrier-to-noise density ratio (independent of the receiver bandwidth B w ), which is related to the SNℜ as ( )

0 10 (dB-Hz) SNR (dB) 10log H C . /N ( z) w B = + (25) 
The process noise covariance matrix is fixed according to the expected dynamic working conditions. Considering the third-order illustrative example, this covariance is related to the frequency rate error variance (i.e., possible frequency rate modeling error or higher-order expected dynamics).

Filter Initialization

How to set the initial values is something completely application dependent. In practice, the best option is to set these parameters according to some a priori information or physical meaning. Taking into account the example at hand, where the state to be tracked is

x k ; ; k k k f f θ      
T , the initial values can be set to 0 x = [0; 0; 0] T . The initial error covariance is defined as ( ) The initial frequency and frequency rate error variances depend on the acquisition stage. The maximum expected acquisition error or acquisition resolution determines the maximum expected initial tracking frequency error.

0 0 0 2 2 2 ,0|0 diag , , , x f f θ σ σ σ = P 

PLL VERSUS KF ARCHITECTURE COMPARISON

In the previous sections, the basics of both PLL and KF-based carrier tracking architectures have been introduced in a separate manner. ℜegarding the problem at hand, some comparisons between PLLs and KFs are found in the literature, but only taking into account basic architectures. This section provides a comparison of those two approaches not only for conventional architectures but also for most advanced PLL-based solutions.

CONVENTIONAL PLL VERSUS STANDARD KF

The fact that a second-order PLL is equivalent to a second-order KF in steady-state conditions (i.e., for a time-invariant system with an a priori fixed Kalman gain) is well-known [START_REF] Patapoutian | On phase-locked loops and Kalman filters[END_REF].

ℜecently, the equivalence between both techniques in steady-state conditions has been shown for the third-order case [START_REF] Shu | Third-order Kalman filter: tuning and steady-state performance[END_REF]. A block diagram comparison is sketched in Fig. 5, reusing the previously introduced standard architectures, where it is easy to identify the block-by-block equivalence. In the KF approach, the innovations' sequence goes through the discriminator to obtain the residual phase error to be used in the linear KF implementation, as in the PLL. Then, the estimated phase is constructed from the weighted residual error plus the predicted value, being directly the implementation of the KF equations. Notice that in both cases, the input to the carrier generator block is the predicted phase; therefore, the equivalence is made more evident if the KF formulation is expressed in the predictor form, ( )

1| | 1 | 1 ˆˆˆ. k k k k k k k k k k + - - = + - x F x F K y y (26) 
Considering the phase contribution (i.e., the first element of x k ) and the linear second-order loop form, this equation can be rewritten as

2, 1| | 1 | 1 1, Output of the loop Equivalent to NCO ˆ, k k k k k s k k k k s T f T α θ θ α + - -   = + + +            (27) with K k = 1, 2, k k α α     
and ε k representing the KF discriminator output, and where the main architectural contributions have been identified to construct the parallelism with the standard PLL architecture.

The predicted phase in a standard second-order PLL is ( )

1 PLL PLL 1 1 2 2 1 ˆˆ. k k k k i i θ θ α α α - + = = + + +    (28) 
It is straightforward from this expression (see Fig. 5) and the NCO expression in [START_REF] Lee | A wide-range PLL using selfhealing prescaler/VCO in 65-nm CMOS[END_REF] to see that the second-order joint PLL loop filter plus NCO operation can be written by a state-space formulation as [START_REF] Won | Characteristics of Kalman filters for GNSS tracking loops[END_REF]:

1 PLL PLL 1 2 1 1 ˆˆ, 0 1 0 1 s s k k k s T T T α α +         = +              x x  (29) 
with ε k the PLL discriminator output in cycles and PLL [ ] ,

k k k f θ = x 
which is strictly equivalent to the KF considering constant gains (i.e., notice the effect of the state prediction matrix F k , which implies a modification of the original gain α 2 ). By considering frequency estimates at the output of the loop filter and a first-order NCO, the standard loop filter and NCO block structure is recovered from ( 29), as shown in [START_REF] Vilà-Valls | An interactive multiple model approach for robust GNSS carrier phase tracking under scintillation conditions[END_REF]. The equivalence for the third-order PLL is straightforward considering the carrier tracking state-space formulation example in Section III.B. Again, a difference between both gains must be commented: if the standard PLL implementation has a set of three coefficients equal to {α 1 , α 2 , α 3 }, the strictly equivalent KF must consider the following constant gains due to the effect of the transition matrix (i.e., phase expressed in cycles), K = 

= α 1 + α 2 /T s + 2α 3 2 / s T ): 2 | 1 1| | 1 | 1 ˆ, 2 ˆs k k k k k k s k k k T f T f             
where the different gains in the Doppler frequency and Doppler frequency rate terms

T s | 1 ˆk k f -and 2 | 1 ŝ k k T f -  /2,
naturally appear in the standard PLL predicted phase expression when considering the corresponding loop gains K and the PLL state-space formulation as in [START_REF] Vilà-Valls | Adaptive GNSS carrier tracking under ionospheric scintillation: estimation vs mitigation[END_REF].

From an architectural point of view, there is a clear parallelism between the well-known PLL and the standard KF formulation. The main difference is that the loop filter gain is somehow heuristically adjusted in the PLL but optimally computed in the KF. If the system is time invariant and the PLL bandwidth is set according to the expected actual working conditions, this heuristic adjustment may not be an inconvenience. In this case, the Kalman gain tends rapidly to its steady-state value K ∞ . However, the flexibility of the KF optimal gain plays an important role in real-life time-varying scenarios, in which the optimal gain does not tend to a steady-state value but evolves with time. Therefore, the PLL is a simplified particular case of the general KF.

The following one-sigma equation is typically used to determine the desired ("optimal") static PLL loop bandwidth, ( ) ( )

noise opt measurement noise dynamics threshold , 3 e w w B B B θ σ + ≤ →       ( 30 
)
where the predefined threshold is usually known as loss-of-lock threshold. This threshold is typically set to 1/12 of the pull-in range of the discriminator, that is, 30° (coherent) and 15° (noncoherent).

Considering an arctangent Costas discriminator, the thermal noise jitter contribution is

noise 0 0 1 1 (rad), C/N 2C/N w s B T σ   = +       (31) 
and the dynamic stress θ e is related to the maximum line-of-sight (LOS) expected phase dynamics [START_REF]Understanding GPS: Principles and Applications[END_REF]. For instance, in a second-order PLL the phase model considers a constant Doppler shift; thus, the dynamic stress is the maximum LOS acceleration. In a thirdorder PLL, the filter tracks a Doppler shift and Doppler frequency rate, then the dynamic stress is the maximum LOS jerk.

COOPERATIVE LOOPS VERSUS KF JOINT ESTIMATION

The noise reduction versus dynamic range trade-off introduced in Section II, which is the main problematic of standard constantbandwidth stand-alone PLLs, is clear from [START_REF] Fernández-Prades | GNSS-SDℜ: An open source tool for researchers and developers[END_REF]: if the noise affecting the system (σ noise (B w )) increases, to maintain the jitter below the threshold, one must lower the loop bandwidth for an optimal behavior. But if the system dynamics (θ e (B w )) increase, one must raise the loop bandwidth, which is inversely related to the dynamic stress.

In practice, the loop bandwidth is set to the minimum value that is able to cope with the maximum expected dynamics, which is suboptimal most of the times. A well-established solution to cope with this trade-off under non-nominal propagation conditions is the use of cooperative loops. A popular approach is the F-PLL [START_REF] Ward | Performance comparison between FLL, PLL and a novel FLL-assisted PLL carrier tracking loop under ℜF interference conditions[END_REF], which uses a FLL to permanently assist a PLL, thus providing a frequency aiding. The key idea directly arises from the bandwidth determination using [START_REF] Fernández-Prades | GNSS-SDℜ: An open source tool for researchers and developers[END_REF]. If one is capable to reduce as much as possible the dynamic stress of the loop, then a much lower loop bandwidth may be used to cope with low SNℜ scenarios. Under these circumstances, the main filter only copes with the residual frequency errors and focuses on noise reduction. The classic second-order FLL-assisted third-order PLL architectures are sketched in Fig. 6 [START_REF] Ward | Performance comparison between FLL, PLL and a novel FLL-assisted PLL carrier tracking loop under ℜF interference conditions[END_REF], where the FLL loop structure is preserved to give a clear picture of the corresponding frequency aiding interaction with the PLL. Note that both the FLL and PLL bandwidths are heuristically adjusted, relying on the correct operation of the frequency aiding provided by the FLL.

In the literature, a comparison between the F-PLL and the KF at a theoretical level or looking for the architectural equivalence, as done for the standard PLL, does not exist as far as authors' knowledge. Using the state-space formulation for the PLL introduced in (29), and considering that the FLL tracks [ ] k k f f  , the interaction between both filters is expressed as

( ) FLL FLL | 1 1 2 , ˆ, k k k f k f e ρ β β - = + +  ( 32 
)
with β 1 and β 2 the FLL gains and e f,k the frequency discriminator output. Using an equivalent third-order PLL state-space model and the frequency aiding, the output of the PLL loop filter is

PLL FLL | 1 | 1 1 2 3 , Frequency aiding ˆ( ) , k k k k k k k f f e θ ρ ρ α α α - - = + + + + +   ( 33 
)
where the frequency aiding of the FLL is done via the estimate of the frequency rate. Optimally,

FLL | 1 k k k f f -→  
; thus, the frequency rate that the PLL has to track | 1

k k f -→  0.
This frequency aiding is made explicit by considering the architecture in Fig. 6 but is hidden in the overall expression if considering the conventional compact implementation,

PLL | 1 | 1 , , , k k k k k k f k f f e e θ ρ α β - - = + + +  ( 34 
)
with α = α 1 + α 2 + α 3 and

β = β 1 + β 2 .
Using the knowledge on the equivalence between loops, the most obvious and direct application of KFs to emulate the F-PLL makes use of the same architecture by replacing both PLL and FLL with two cooperative KFs. The first KF would be in charge of [START_REF] Meyr | Digital Communication Receivers: Synchronization, Channel Estimation and Signal Processing[END_REF] [ ]

k k k k f f θ = x  
and the second one of

[ ]

k k k f f = x  
, with an interaction between both using the output of the second-filter as a frequency input to the first KF.

But from an optimal filtering point of view, this in not necessary because a single filter can optimally solve the estimation problem, that is, the sequential estimation of

x k = [ ] k k k f f θ  
using the available observations up to time k. To obtain a fair comparison, the KF should use both phase and frequency discriminators; therefore, the observation equation should be modified to account for both measurements. The resulting KF predictor form is

(1) 1| | 1 (2) ˆˆ, k k k k k k k k k r r + -   = +     x F x F K (35) 
where (1) k r and (2) k r are the outputs of the KF phase and frequency discriminators, respectively, and the Kalman gain

k k k k k k α α β α β     =       K 1, 2, 1, 3, 2, 0 . 
The corresponding predicted phase is given by

2 | 1 (1) (2) 1| | 1 | 1 2 , s k k k k k k s k k k k k k T f T f r r θ θ α β - + - - = + + + +  (37) 
with

α k = α 1,k + T s α 2,k + 2 α α β α β     =       K ( 38 
)
which leads to the following final phase prediction:

| 1 (1) (2) 1| | 1 | 1 ˆ, 2 k k k k k k k k k k f f r r θ θ α β - + - - = + + + +  (39) 
again with α = α 1 + α 2 + α 3 and β = β 1 + β 2 . This result confirms the expression for the time-invariant equivalent Kalman gain previously introduced, and it is equivalent to the compact F-PLL expression in [START_REF] Appleton | The automatic synchronization of triode oscillators[END_REF]. Notice that the gains in the F-PLL are adjusted heuristically, while the KF sequentially computes the optimal gain and provides the optimal solution to the problem. Therefore, the proposed KF is equivalent to the F-PLL formulation, except for the values of the time-variant coefficients, which, in fact, are optimally computed and not set to constant values. One can conclude that this KF-based approach provides an optimal solution to the suboptimal F-PLL implementation.

ADAPTIVE PLLS VERSUS KF OPTIMAL APPROACH

As already stated in Section II, one of the main limitations of standard PLLs is their constant bandwidth, which is a priori fixed by the designer according to the expected working conditions [i.e., typically set using [START_REF] Fernández-Prades | GNSS-SDℜ: An open source tool for researchers and developers[END_REF]] and of limited applicability in time-varying scenarios. An alternative to counteract this lack of adaptability or flexibility is to incorporate the capability to estimate the actual working conditions (i.e., system noise and dynamic stress), which leads to the A-PLL [START_REF] Legrand | Spread spectrum signal tracking loop models and raw measurements accuracy improvement method[END_REF], [START_REF] Skone | Investigating the impact of ionospheric scintillation using a GPS software receiver[END_REF]. The parameters used to set the loop bandwidth, σ noise and θ e , can be sequentially estimated from the input samples and the discriminator output.

The standard KF carrier tracking implementation is usually said to inherently have an adaptive bandwidth, because the Kalman gain is optimally computed, taking into account both Q k and R k . However, this is only true if the noise statistics are completely specified (i.e., known ∀ k). In practice, the measurement noise covariance is set according to the expected SNℜ and usually does not take into account possible variations, and the process noise covariance is determined according to a single application-dependent scenario. Considering that constant noise covariances lead to a constant steady-state Kalman gain; therefore, the optimal adaptive behavior of the KF is lost in the implementation for time-variant systems. Analyzing [START_REF] Fernández-Prades | GNSS-SDℜ: An open source tool for researchers and developers[END_REF], it is easy to see the analogy between the first left-hand term σ noise and R k and the relation between the dynamic stress and Q k . In the KF, the relation between those quantities and the filter bandwidth is computed in an optimal manner, while in the A-PLL is suboptimally computed using predefined thresholds. If the noise statistics are not fully determined a priori, the solution is to estimate and sequentially adjust them into the filter, which is usually known as AKF [START_REF] Vilà-Valls | On the identifiability of noise statistics and adaptive KF design for robust GNSS carrier tracking[END_REF], [START_REF] Won | A novel adaptive digital phase-lock-loop for modern digital GNSS receivers[END_REF] (see Section V.A for details). From a practical architecture point of view, consider the following:

C Adaptive PLL versus optimal KF: the KF does not need any additional processing to estimate the actual working conditions and to optimally adjust the loop bandwidth, which can be seen as an implementation of an optimized A-PLL.

C Adaptive PLL versus AKF: if the system is partially known, an AKF solution is equivalent to the A-PLL. Both architectures make use of an estimate of the system noise ( ˆk R and noise σ ) and the dynamic stress ( ˆk Q and ˆe θ ), but the AKF op- timally adjusts the loop bandwidth according to these estimates, while the A-PLL uses a somehow heuristic thresholddependent approach.

To conclude, with respect to the A-PLL, both KF-based adaptive approaches will always be superior in terms of performance, optimality, and flexibility [START_REF] Lian | Improving tracking performance of PLL in high dynamic applications[END_REF].

ADVANCED KF-BASED APPROACHES

In the previous section, the KF-based formulation of standard and advanced PLL architectures has been detailed from theoretical, architectural, and conceptual points of view. The main idea was to show that a standard PLL is a particular suboptimal implementation of the KF, that the cooperative loops can also be formulated using KFs, and that the adaptive bandwidth loops are actually improved when using a KF approach. The goals of this section are first to give a deeper insight on the AKF schemes and then to show that the flexibility of the KF goes far beyond the implementation of existing PLL-based architectures. The much more complex problems, which cannot be treated from a PLL point of view, can actually be solved by using powerful KF-based solutions.

AKF TRACKING SCHEMES

In standard KF-based tracking architectures, both the measurement noise variance 2 , n k σ and the process noise covariance matrix Q k are assumed to be perfectly known, which is not realistic in practical implementations and may lead to poor performances in time-varying scenarios. The concept behind the AKF has already been introduced in the previous section when compared with the adaptive PLL approach. The main goal of the AKF is to sequentially adjust the noise statistics according to the actual working conditions to obtain a robust and reliable tracking solution and to provide the answer to the problem of interest here: variability. This is equivalent to obtain a sequential optimal time-varying Kalman gain adaptation (i.e., adaptive equivalent noise bandwidth). The suboptimality introduced by the lack of precise knowledge of the noise statistics within the KF framework may introduce several estimation errors [START_REF] Arias | Adaptive Kalman-filter based phase tracking in GNSS[END_REF]. Therefore, a real-life robust system must counteract the fact that accurate noise characteristics and dynamic models are hardly available in practice. Two different approaches based on the residuals (state estimate minus prediction) were presented in [START_REF] Hu | Adaptive Kalman filtering for vehicle navigation[END_REF] for vehicle navigation; an adaptive two-stage KF relying on the innovations' covariance is proposed in [START_REF] Kim | Carrier tracking loop using the adaptive two-stage kalman filter for high dynamic situations[END_REF] for high dynamics scenarios, and an ad hoc implementation, called variable gain AKF, was introduced in [START_REF] Zhang | A variable gain adaptive Kalman filter-based GPS carrier tracking algorithms for ionosphere scintillation signals[END_REF]. An interesting alternative approach has been recently presented in [START_REF] Won | A tuning method based on signal-tonoise power ratio for adaptive PLL and its relationship with equivalent noise bandwidth[END_REF], [START_REF] Won | A novel adaptive digital phase-lock-loop for modern digital GNSS receivers[END_REF], where a C/N 0 estimate (usually available at the receiver) is used to adjust the CP error variance, which, in turn, is used to optimally compute the Kalman gain in a time-varying manner.

From an optimal estimation point of view, the problem reduces to the estimation of the covariance matrices of two Gaussian distributions. The carrier tracking problem using standard noise statistics estimation methods [START_REF] Mehra | Approaches to adaptive filtering[END_REF], [START_REF] Šimandl | Multi-step prediction and its application for estimation of state and measurement noise covariance matrices[END_REF] was studied in [START_REF] Arias | Adaptive Kalman-filter based phase tracking in GNSS[END_REF], but the problem is not yet solved in a unified manner. In the literature, we find a plethora of methods and different approaches to face the noise statistics estimation problem. In the early 1970s, Mehra [START_REF] Mehra | Approaches to adaptive filtering[END_REF] published a survey paper and classified the existing methods into four categories: Bayesian, ML, covariance matching, and correlation methods. The most popular are the correlation methods [START_REF] Mehra | Approaches to adaptive filtering[END_REF], and the more recent autocovariance least square [START_REF] Odelson | A new autocovariance least-squares method for estimating noise covariances[END_REF] seems to provide the best solution. A good analysis on the design of such AKFs for carrier tracking is given in [START_REF] Vilà-Valls | On the identifiability of noise statistics and adaptive KF design for robust GNSS carrier tracking[END_REF].

AUGMENTED STATE AND MULTIPLE MODEL FORMULATIONS

One of the most important features of the KF-based solution, apart from its optimal approach, is the flexibility it provides to deal with different problems, while strictly considering the same architecture, which from a practical point of view may be of capital importance in some applications. For instance, in the carrier tracking problem, to extend a second-order loop to a third-order, one only needs to add the frequency rate into the state evolution formulation and to extend the corresponding covariance matrices to take it into account. This can be used to include any prior knowledge of the system into the state-space formulation. In some cases, this can be the only way to solve the problem and provide a robust carrier tracking solution. For instance, if some specific propagation conditions are a priori known and effectively modeled using a dynamic state-space model, they can be merged together with the CP of interest into a single state-space formulation. In this case, the KF is aware of those specific propagation conditions and may be able to mitigate undesired effects. An illustrative example [START_REF] Vilà-Valls | Advanced KFbased methods for GNSS carrier tracking and ionospheric scintillation mitigation[END_REF], [START_REF] Vilà-Valls | Adaptive GNSS carrier tracking under ionospheric scintillation: estimation vs mitigation[END_REF] of a real application of these ideas is presented in Section VI.

All the methods introduced in this article, from the standard architectures to the most advanced adaptive and augmented state KF-based approaches, rely on a specific dynamic model, which defines the evolution of the parameters of interest (e.g., the CP in this case). The is optimal when the state-space formulation perfectly matches the real system. If a mild modeling mismatch or slightly time-varying scenario is considered (i.e., a weak uncertainty about the state evolution Q k or the measurement noise R k ) the natural solution is given by the AKF, but this approach does not provide a robust solution to strongly time-varying scenarios. High variability in the sense that the system uncertainty is not only on the system noise but on the state-space formulation itself. To overcome this model-based uncertainty, the best solution is to consider model matching or selection strategies. Among the different solutions available in the literature, the most promising is the so-called interactive multiple model (IMM) approach, which has been thoroughly used in target tracking, navigation, and high dynamics applications [START_REF] Bar-Shalom | Estimation and Tracking: Principles, Techniques, and Software[END_REF], [START_REF] Li | Survey of maneuvering target tracking. Part V. Multiple-model methods[END_REF]. The main idea behind the IMM is to overcome the main problem of stand-alone KFs following a divide and conquer strategy, dealing with changing scenarios by using several more easily fixed operation KFs. In other words, it is a bank of interacting KFs running in parallel. Each KF is designed for a specific scenario, and the filter is in charge to construct a final estimate using models' likelihood. Notice that a key point to obtain a good estimate is the interconnection among individual filters. This concept has already been successfully applied to carrier synchronization [START_REF] Vilà-Valls | An interactive multiple model approach for robust GNSS carrier phase tracking under scintillation conditions[END_REF].

COMPUTER SIMULATIONS

To support the discussion on the PLL versus KF dilemma, two illustrative examples of interest to the aerospace community are given in the sequel. The first case deals with the GNSS carrier tracking under harsh propagation conditions, namely considering ionospheric scintillation disturbances, which is a popular topic in the community. The second case proposes a KF-based architecture in a deep space communications system, being an extremely challenging synchronization scenario.

CASE 1: ROBUST GNSS CP TRACKING

Ionospheric scintillation is the name given to the disturbance caused by electron density irregularities along the propagation path through the ionosphere. These irregularities affect the GNSS signals with amplitude fades and phase variations. An important feature is the existing correlation between deep amplitude fades and phase variations in a simultaneous random manner, the socalled canonical fades [START_REF] Kintner | GNSS and ionospheric scintillation. How to survive the next solar maximum[END_REF]. This is certainly the most challenging scenario in GNSS carrier tracking problems. This particular example is used to support the fact that prior knowledge on the propagation conditions can be introduced into the system by state augmentation, providing an extra capability to the filter, a fact that is impossible to take into account using PLL-based architectures (see Section V.B).

The scintillation can be modeled as a multiplicative channel [START_REF] Humphreys | A data-driven testbed for evaluating GPS carrier tracking loops in ionospheric scintillation[END_REF] ξ s (t) = ρ s (t) ( ) s j t e θ and synthesized by using the Cornell scintillation model (CSM)5 [START_REF] Humphreys | Simulating ionosphere-induced scintillation for testing GPS receiver phase tracking loops[END_REF], where ρ s (t) and θ s (t) are the corresponding envelope and phase components.

The scintillation phase is a correlated stochastic process, which, in turn, can be fairly modeled as an AR(1) process:

θ s,k = βθ s,k-1 + η k , with η k ∼ 2 (0, ) η σ 
, which can be included in the KF state-space formulation to jointly track the desired phase θ d,k Doppler frequency f d,k frequency rate , d k f  and possible scintillation effect θ s,k . This idea was first introduced in [START_REF] Vilà-Valls | An interactive multiple model approach for robust GNSS carrier phase tracking under scintillation conditions[END_REF] within a multiple model approach and further extended in [START_REF] Vilà-Valls | Advanced KFbased methods for GNSS carrier tracking and ionospheric scintillation mitigation[END_REF], [START_REF] Vilà-Valls | Adaptive GNSS carrier tracking under ionospheric scintillation: estimation vs mitigation[END_REF]. The simplified model for the samples at the input of the carrier tracking stage is ( )

2 , ; ~0, k j k k k k n k y e n n θ α σ = +  (40a) , , , ; , k k s k k d k s k A α ρ θ θ θ = = + (40b) 
where ρ s,k refers to the scintillation amplitude effects. The state evolution [START_REF] Vilà-Valls | An interactive multiple model approach for robust GNSS carrier phase tracking under scintillation conditions[END_REF] is given by

2 1 1 / 2 0 0 1 0 , 0 0 1 0 0 0 0 s s s k k k T T T β -       = +         x x v (41) 
where the process noise, v k ∼  (0,Q), stands for possible uncertainties or errors on the state transition model. In this example, the signal of interest is corrupted by moderate and severe scintillation, and the following parameters are used: 

k d k d k d k f f θ x   
) and a KF, including the scintillation into the state-space formulation (termed KF-Aℜ).

The root mean square error (ℜMSE) obtained with the four methods is plotted in Fig. 7a, where it is easy to identify the two regions in which the signal is corrupted by scintillation (indicated in the figure). ℜegarding the performance of the PLL-based techniques and the standard KF, there are two key points that must be stated: i) the standard techniques are unable to identify which phase variations are due to dynamics (desired) and which ones come from the ionospheric scintillation (undesired); ii) if these techniques are well tuned to track fast phase variations (i.e., moderate to high dynamics) or time-varying scenarios, a desirable quality of a reliable and robust architecture, they will also track the fast scintillation phase variations. The KF-Aℜ provides an increased robustness and better performance. These two statements are more evident in Figs. 7b,7c, where the Doppler frequency and scintillation phase estimation are plotted for a single realization (only available for the KF-based techniques). In the Doppler frequency estimation, one can see that the standard KF understands the scintillation as frequency variations, while the KF-Aℜ correctly decouples both contributions, giving always better performances and being much more robust and powerful.

CASE 2: SIGNAL TRACKING IN DEEP SPACE COMMUNICATIONS

Another example of challenging synchronization is found in deep space communications for planetary exploration, an application with extreme requirements in terms of received low signal power. Synchronization in deep space involves an initial acquisition stage in which the PLL is allowed to operate at a larger loop bandwidth to acquire the carrier frequency in the presence of significant Doppler dynamics. Once the carrier frequency is acquired, the receiver enters the tracking stage, where the loop bandwidth is typically decreased to reduce the noise in the loop and cope with very low received signal power [START_REF] Hamkins | Autonomous Software-Defined Radio Receivers for Deep Space Applications[END_REF]. Hence, the PLL must be configured to different operating bandwidths that are adapted to the SNℜ and as well as must cope with loop transitions. Under this scenario the inherent AKF bandwidth and filter flexibility may offer an advantage on loop adaptation or configuration.

This study case considers the following telecommand transmitted (space-to-Earth) signal model known as remnant carrier modulation with sinusoidal subcarrier: 

    + +           = + (43) 
where x k is the received digital baseband signal and T k the sample period. The Doppler shift and Doppler rate are denoted by F s and F r , respectively. The phase noise ϕ noise is introduced at the simulation by applying a mask similar to the one defined in [START_REF]Consultative Committee for Space Data Systems (CCSDS) ℜadio frequency and modulation systems. Part 1: Earth station and spacecraft[END_REF], and AWGN is added according to n k ∼  (0, N 0 ). To illustrate the potential application of KFs to this case study, the challenging carrier tracking scenario is evaluated by means of Monte Carlo simulations implementing the telecommand link specified in Table 1. Fig. 8a depicts the CP steady-state ℜMSE for both second-and third-order PLLs compared with a standard AKF-based tracking loop. The reference lock refers to the σ = 30° loss-of-lock rule-of-thumb [START_REF]Understanding GPS: Principles and Applications[END_REF]. The performance obtained with both PLLs is similar when considering the same loop bandwidth and slightly worse with the second-PLL with a higher bandwidth, as typically considered in the carrier acquisition stage. The performance gain obtained with the AKF is clear from the results, where for this specific case study the performance improvement is higher at lower E s /N 0 .

Fig. 8b illustrates the automatic adaptive bandwidth given by the AKF approach versus the constant standard PLL bandwidth (i.e., acquisition mode Bw = 20 Hz, tracking mode Bw = 10 Hz). When using the latter, the transition between acquisition and tracking modes is performed heuristically, while the adaptive bandwidth provided by the AKF is based on the optimal filtering solution. Notice that the AKF bandwidth starts at 45 Hz for a fast acquisition and then converges to 7.5 Hz in the steadystate regime.

Although KF approaches can offer advantages over PLL configurations in terms of adaptability, further investigation with a more exhaustive analysis on its robustness and complexity requirements for the very low SNℜ regime is needed. C Easily embedded into a multiple model method Even if this article claims and shows that KF-based architectures are always equivalent or superior in terms of performance with respect to their PLL counterpart and, in general, are more flexible and robust, it is worth saying that the latter is still useful in many applications in which non-nominal channel propagation conditions do not apply, the increased computational complexity may not be accepted, or the final fine tuning is not possible.
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  T s = 10 ms, C/N 0 = 35 dB-Hz, f d,0 = 2 Hz, and ,0 0.1 d f = Hz/s. The tested methods were second-order PLL (B PLL = 10 Hz), secondorder FLL-assisted third-order PLL (B FLL = 5 Hz, B PLL = 5 Hz), a standard KF only tracking the dynamics (i.e.,
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  (a) ℜMSE obtained from 200 Monte Carlo runs for different carrier tracking techniques. Signal of interest corrupted by moderate and severe scintillation. Doppler frequency (b) and scintillation phase (c) estimation for one single realization, using a standard KF and the improved KF-Aℜ. channel in the presence of Doppler and phase noise. The received signal is then given by
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 8 Figure 8.

  (a) CP ℜMSE versus different E s /N 0 values at the input of the demodulator for the 125 sps case. (b) Adaptive (KF) versus constant (PLL) bandwidth example.

Table 1 . Parameters of the Deep Space Telecommand Communication Link Used in the Simulations Radio Frequency Modulation Remnant Carrier, as in (42)

 1 CONCLUSIONThis article presented a detailed comparison of PLL and KF-based carrier synchronization techniques, together with some promising advanced architectures, the main goal being to shed some light on the PLL versus KF dilemma and to provide the practitioner with design guidelines. To summarize, in the following, there is a list of the main reasons why KF-based architectures should be preferred in modern receivers operating under non-nominal propagation conditions over PLL legacy schemes: Joint CP and frequency optimal estimation C Nonlinear implementation operating with the received signal, avoiding possible discriminator disadvantages C State-space augmentation to account for prior knowledge on non-nominal propagation conditions

	Pulse code modulation	Nonreturn-to-zero level
	Carrier frequency	X band
	Subcarrier frequency	f sc = 16 kHz
	Modulation index	m c = 1.2
	Subcarrier waveform	Sinusoid
	Symbol rate	125 symbols per second (sps)
	Doppler shift	F s = 2 kHz
	Doppler rate	F r = 30 Hz/s

C Formulated from an optimal filtering approach C Inherent adaptive bandwidth architecture C C Adaptive tracking architectures to cope with challenging time-varying propagation scenarios.

The CSM has been embedded in the so-called Cornell scintillation simulation MATLAB toolkit, which is available at http:// gps.ece.cornell.edu/tools.php. This software will be used in the computer simulations to generate the desired scintillation effect.
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