
HAL Id: hal-03203686
https://hal.science/hal-03203686v2

Preprint submitted on 26 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deep Random Projection Outlyingness for Unsupervised
Anomaly Detection

Martin Bauw, Santiago Velasco-Forero, Jesus Angulo, Claude Adnet, Olivier
Airiau

To cite this version:
Martin Bauw, Santiago Velasco-Forero, Jesus Angulo, Claude Adnet, Olivier Airiau. Deep Random
Projection Outlyingness for Unsupervised Anomaly Detection. 2021. �hal-03203686v2�

https://hal.science/hal-03203686v2
https://hal.archives-ouvertes.fr


Deep Random Projection Outlyingness for Unsupervised Anomaly Detection

Martin Bauw 1 2 Santiago Velasco-Forero 1 Jesus Angulo 1 Claude Adnet 2 Olivier Airiau 2

Abstract

Random projection is a common technique for de-
signing algorithms in a variety of areas, including
information retrieval, compressive sensing and
measuring of outlyingness. In this work, the orig-
inal random projection outlyingness measure is
modified and associated with a neural network to
obtain an unsupervised anomaly detection method
able to handle multimodal normality. Theoret-
ical and experimental arguments are presented
to justify the choice of the anomaly score esti-
mator. The performance of the proposed neu-
ral network approach is comparable to a state-of-
the-art anomaly detection method. Experiments
conducted on the MNIST, Fashion-MNIST and
CIFAR-10 datasets show the relevance of the pro-
posed approach.

1. Introduction
When working with high-dimensional data, achieving rel-
evant data analysis can translate into finding the right pro-
jections for the data. Discovering a good projection for a
dataset amounts to revealing a helpful perspective for the
task at hand. Defining what a good projection actually is and
finding it can then be challenging. Common data processing
tools such as principal component analysis (PCA) and linear
discriminant analysis (LDA) are examples of approaches
that look for effective projections to discriminate between
samples. The appeal of projecting high-dimensional data
to lower dimensional spaces reside in the fact that such
projections constitute a way of avoiding the curse of dimen-
sionality to a certain extent (Huber, 1985). In the specific
case of projecting data to a single dimension, the use of
common one-dimensional statistics can also be a motiva-
tion. However, finding good projections can be costly and
therefore leads to considering the possible contribution of
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random projections (RPs), since randomization is cheaper
than optimization (Rahimi & Recht, 2009).

RPs have been commonly used for dimensionality reduction,
typically in the context of compressed-sensing (Candes &
Tao, 2006). In (Fowler & Du, 2011), random projections
are used to conduct anomaly detection with the projected
data representations. Using a great number of random pro-
jections, a stochastic approximation of the depth function
introduced in (Donoho et al., 1992) can be obtained. A pro-
jection depth function associates a depth attribute to each
data point available in a dataset, without explicitly estimat-
ing the underlying probability density function. Such depth
directly translates into an ordering of the data points, from
the most normal to the most outlying one. Theoretical re-
sults indicate a convergence between anomaly detection
using a threshold on such a depth and the detection achieved
with a Reed-Xioli (RX) anomaly detector (Velasco-Forero
& Angulo, 2012), based on the Mahalanobis distance. This
convergence supports the relevance of using an RP-based
method for outlier detection.

In addition, RP emerged as a way to define a new kind of
neural network, extreme learning machines (ELM), where
the parameters of a single hidden layer of neurons are frozen
in their random initialization state. Those frozen parameters
can be considered as RPs, and are said to enable fast learning
and good generalization properties for the neural network
(Huang et al., 2006). The power of random projections
within neural networks is not limited to ELM and single
layer neural networks. In (Wójcik & Kurdziel, 2019), an ini-
tial RP layer is considered for high-dimensional real world
datasets with various initialization schemes coming from the
RP literature. Here again, the author’s interest in RP stems
from the possibility of creating relevant embeddings. The
expressive power of random features in ResNet (He et al.,
2016) architectures has been demonstrated in (Frankle et al.,
2020), while the authors focused on the performances ob-
tained when training only the affine transformation included
in the Batch Normalization (BN). Intuitively, training only
the affine transformation of the BN is equivalent to train-
ing the shifting and rescaling of random features. Neural
networks built with frozen random weights have already
received much attention in the literature, with contributions
like (Saxe et al., 2011; Giryes et al., 2016) trying to capture
the actual contribution of random weights.
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Anomaly detection (AD) remains an active research field
(Chandola et al., 2009; Pimentel et al., 2014; Hendrycks
et al., 2019; Chalapathy & Chawla, 2019; Ruff et al.,
2021) and is closely related to novelty detection, out-of-
distribution detection and noise removal. Each of those
functions can provide a way to detect anomalies, depending
on the task at hand and the nature of the anomalies. Anoma-
lies are defined as unusual or atypical objects and events in
(Goodfellow et al., 2016), however it is important to note
that various notions of anomalies and AD supervision ex-
ist (Chandola et al., 2009). In this work, the unsupervised
learning paradigm of (Ruff et al., 2018) is chosen. The latter
indicates that the absence of supervision implies the unavail-
ability of labeled anomalies during training. The training
data will therefore consist of normal samples, supposedly
representative of the normality. To consider a more realistic
scenario, the AD methods can be compared on polluted
training sets, where anomalous samples will corrupt the
hypothetically normal training data.

The rest of the paper is structured as follows: in section 2,
the inspiration behind the proposed deep outlyingness and
the state-of-the-art deep AD baseline are described. Sec-
tion 3 introduces the RP-based unsupervised outlyingness
measure called deep random projection outlyingness (RPO).
Finally, section 4 presents the results of our experiments
which put forward the preference for a specific version of
deep RPO.

2. RPO and deep SVDD: baselines and
inspirations

Let us consider data points with a d-dimensional representa-
tion. A random projection can be used to bring the latter on
a single dimension representation space. Multiple random
projections can thus be used to obtain multiple represen-
tations of data points on a single dimension, allowing the
computation of normalized distances to the dataset center
point for the dataset samples on each projection. These
normalized distances lead to the RPO proposed in (Donoho
et al., 1992) and defined by (1), where x stands for a single
data point, andX is the data matrix gathering all data points.

O(x; p,X) = max
u∈U

|uTx−MED(uTX)|
MAD(uTX)

(1)

This quantity is obtained using a set of p random pro-
jections u of dimensionality d, written U. All projec-
tion vectors u have a unit norm, i.e. u ∈ Sd−1 with
Sd−1 = {x ∈ Rd : ||x||2 = 1}. The maximum returns
the greatest distance among the random projections to a
location estimator normalized by a dispersion estimator,
for robustness purposes here the median and the median
absolute deviation (MAD). This can be interpreted as the

Figure 1. Illustration of the intuition behind the use of random
projections. Once a set of 2D samples is projected, evaluating
the normalized distance to the location estimator of each projec-
tion easily allows to detect the obvious outlier, the latter being
positioned at greater distance from the location estimator on at
least one random projection. One random projection is enough
to raise the maximum seen in (1). This depicts that multivariate
outlyingness can translate into multiple univariate outlyingnesses.

worst-case distance to a robust location estimator. The word
middle directly relates to the origin of (1) which stems from
the definition of a statistical depth, the random projection
depth, defined in (2). The RP depth, as well as the RP outly-
ingness, establishes a center-outward ordering in a dataset:

RPD(x;X) =
1

1 +O(x;X)
(2)

with O(x;X) the outlyingness (Zuo et al., 2003) defined as

O(x;X) = sup
u∈Sd−1

|uTx−MED(uTX)|
MAD(uTX)

(3)

Originally, the random projection outlyingness is defined
using a sup, but in practice it should be estimated with a
maximum on p random projections on the d−1 dimensional
sphere. The quantity O(x; p,X) is therefore a stochastic
approximation of O(x;X) based on a finite set of random
projections. The intuition of a naive RPO is depicted on
Fig. 1. The fundamental argument behind the interest for
random projections to work on high-dimensional data is the
Johnson-Lindenstrauss lemma (William & Lindenstrauss,
1984), which guarantees the relative stability of the distance
separating two data points between the input data space and
the projected latent representations.

Deep support vector data description (Ruff et al., 2018) is
an unsupervised deep anomaly detection method. It is close
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to the original support vector data description (SVDD) (Tax
& Duin, 2004) and uses a neural network to project the
supposedly normal training samples in a latent space so
that all samples are within a normality hypersphere. The
hypersphere is made as small as possible thanks to a suitable
training loss, corresponding to

min
W

[
1

n

n∑
i=1

||Φ(xi;W )− c||2 +
λ

2

L∑
l=1

||W l||2F

]
. (4)

In this equation, c is the normality hypersphere center, deter-
mined by the mean latent coordinates of an initial forward
pass of the training data. Φ represents the encoding neural
network, W its weights, xi the sample being projected, l a
layer index. A common regularization is performed on the
network weights using the Frobenius norm, and is balanced
through λ with the main training objective. As put forward
in (Ruff et al., 2018), which brought deep SVDD to the state
of the art, several conditions need to be fulfilled in order
to avoid the collapse of the normality hypersphere during
training.

3. From RPO to deep RPO
Whereas deep SVDD uses an Euclidean distance to the nor-
mality hypersphere center in the latent space, our proposi-
tion is to evaluate the distance to various location estimators
provided by a diversity of non-trainable random projections.
The outlyingness of (1) replaces the distance to a single hy-
persphere center to quantify abnormality in the latent space.
The deep SVDD training objective of (4) becomes:

min
W

[
1

n

n∑
i=1

(
mean
u∈U

|uT Φ(xi;W )−MED(uT Φ(X;W ))|
MAD(uT Φ(X;W ))

)

+
λ

2

L∑
l=1

||W l||2F

]
(5)

where both integrator operators max from the original RPO
and mean in our proposition are studied in the conducted ex-
periments. The estimator modification from maximum to
mean can be interpreted as follows: the worst-case outlying-
ness over all the random projections considered, provided
by the max, does not translate into an optimal learning ob-
jective, as it will be observed in the experiments. On the
other hand, the mean estimator can be seen as a way to take
into account the abnormality indication of each random pro-
jection for every sample. In such a case, every perspective
of the data points counts in the training loss, for every data
point.

4. Experimental setup and results
Experiments were conducted on three common datasets in
the machine learning community: MNIST, Fashion-MNIST
and CIFAR-10. All experiments were conducted using Py-
Torch, on either of the following hardware configurations:
AMD Ryzen 7 2700X with Nvidia RTX 2080, or Intel Xeon
E5-2640 with Nvidia GTX Titan X. Table 1 reports the
main results of this work. RPO stands for the original RPO,
described in (1) with its location estimator and spread mea-
sure, respectively the median and MAD, defined on the
training dataset completely made of normal samples. This
means RPO is adapted to a machine learning data paradigm,
whereas the original RPO was meant to directly be applied
to a test set in which there would not be a significant pro-
portion of anomalies. The direct application of RPO to our
test sets without determining the medians and MADs on
the training data leads to performances next to randomness.
Such unsupervised and untrained RPOs are therefore not
represented in the results tables. This poor performance is
due both to the inadequate balance between samples consid-
ered as anomalies and the normal ones, and the potentially
insufficient number of RPs with respect to the input space.
Indeed, the more the input space to which RPs are applied to
is of high dimensionality, the more RPs you need to obtain
an informative projected estimator (Gueguen et al., 2014).
Most of the failure can however be attributed to the data
balance of the test sets in this case. RPO is implemented
using 1000 RPs.

In table 1, RPO-max is the closest AD to the original RPO
but as previously stated it is beforehand adapted to take into
account training data. RPO-mean is the shallow equivalent
of the proposed method, deep RPO-mean, which adds an
encoding neural network in front of RPO in the AD pro-
cess. The same goes for RPO-max and deep RPO-max,
which constitutes a more direct descendant of the original
RPO. The random projections tensor is initialized by a ran-
dom realization of a standard normal distribution. Random
projections leading to a single projected dimension are nor-
malized, so that they belong to the unit sphere in accordance
with (3).

The input dimensionality for the shallow methods RPO-
max and RPO-mean in table 1 is the dimensionality of the
flattened input images, i.e. 784 for MNIST and Fashion-
MNIST, and 3072 for CIFAR10. Deep SVDD and deep
RPO encode the input images into latent representations of
32 and 128 dimensions, for MNIST, Fashion-MNIST and
CIFAR10 respectively, before projecting using RPs when
RPs are used. Hyperparameters were directly inspired by
the ones used by deep SVDD authors since their method
constitutes the baseline to which the proposed method is
compared. In particular, the encoding networks architec-
tures are the ones used for MNIST, Fashion-MNIST and
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Table 1. The integrator estimator choice: mean versus maximum. RPO, deep RPO and deep SVDD test AUCs on MNIST, Fashion-MNIST
and CIFAR10 for 1 to 4 modes considered as normal, for 30 seeds (truncated mean AUC ± std).

# MODES RPO-MAX (1) RPO-MEAN DEEP SVDD DEEP RPO-MAX DEEP RPO-MEAN (2) (2)-(1)

MNIST - 1 84.64 ±6.73 84.12 ±6.74 88.60 ±4.62 87.96 ±5.31 90.10 ±4.10 5.46
2 75.27 ±8.68 72.83 ±9.42 84.35 ±6.57 83.79 ±6.97 85.36 ±6.48 10.09
3 69.67 ±9.65 66.92 ±10.25 81.23 ±6.76 80.16 ±7.12 81.60 ±7.00 11.93
4 66.54 ±9.20 63.60 ±10.31 78.89 ±6.56 77.35 ±6.92 78.65 ±7.05 12.11

F-MNIST - 1 89.19 ±5.81 89.73 ±5.79 90.45 ±5.76 90.17 ±6.09 91.13 ±5.20 1.94
2 78.52 ±8.39 76.47 ±8.38 85.24 ±6.45 84.57 ±7.01 85.81 ±6.36 7.29
3 71.06 ±7.38 69.37 ±7.64 80.30 ±6.99 80.64 ±6.69 81.28 ±6.40 10.22
4 67.58 ±5.89 65.79 ±6.55 77.30 ±4.99 77.53 ±5.07 77.82 ±5.34 10.24

CIFAR10 - 1 57.62 ±10.96 58.62 ±9.43 64.15 ±7.38 60.22 ±7.00 63.14 ±7.30 5.52
2 53.85 ±9.49 53.81 ±7.61 56.37 ±9.25 55.66 ±8.54 56.46 ±8.89 2.61
3 52.20 ±6.95 52.53 ±5.08 54.16 ±6.94 53.87 ±6.20 54.30 ±6.80 2.10
4 51.88 ±5.91 52.32 ±4.97 53.64 ±5.97 53.71 ±5.78 53.88 ±5.89 2.00

CIFAR10 for the original deep SVDD (Ruff et al., 2018) and
deep SAD (Ruff et al., 2020b). The weight decay hyperpa-
rameter was kept at 10−6, even though for deep RPO it did
not have a great impact in our experiments when compared
with trials where the decay had been removed.

The metric used to evaluate the AD methods is the average
AUC over several seeds, associated with a standard devia-
tion, as can be found in the AD literature. One should keep
in mind that when the number of classes defining normality
increases, the datasets classes balance change. Before train-
ing, a validation set, made of 10% of the original training
set, is created using scikit-learn common split function. For
all deep experiments, the retained test AUC is the one asso-
ciated with the best epoch observed for the validation AUC
as was done in (Chong et al., 2020). AUCs reach either
a convergence plateau or a maximum before dropping in
50 epochs, this number of epochs was thus chosen for all
the experiments. This represents a substantial difference
with the experimental setup proposed in (Ruff et al., 2018),
where models were trained with many more epochs, bene-
fited from pre-training accomplished using an auto-encoder,
and a tailored preprocessing. The comparison between deep
SVDD and deep RPO remains fair in this work since the
network architecture is shared, along with the training hy-
perparameters. For each experiment, a new seed is set and
a random pick of normal classes is performed. This means
that, unlike many other papers in the literature, the nature
of normality can change every time a new seed is adopted.
This additional diversity behind the average AUCs presented
explains the high standard deviations observed in the results.

The results of experiments over the three datasets consid-
ered, with 30 seeds per experimental setup, are gathered in
table 1. The latter demonstrates the superiority of the mean
over the max as an estimator for RPO when working with
the deep RPO setup. The shallow RPO setup, on the other

hand, suggests better performances can be obtained using
a max. The neural network thus favours a loss balanced
over all the single projected outlyingnesses. Moreover, the
increasing AUC gap between deep RPO and shallow RPO
ADs for MNIST and Fashion-MNIST supports the hypoth-
esis that the encoding neural network allows RPO to face
multimodal normality in AD. The growing gap in the last
column is not observed for CIFAR10, however this failure
is likely to stem from the excessive difficulty of the AD
task rather than from an inability of deep RPO. The better
performance of deep RPO-mean compared to deep SVDD
places the proposed method at the state-of-the-art level.

5. Conclusion
An adaptation of the classic outlyingness score based on
random projections is proposed. In order to adapt the outly-
ingness score and obtain anomaly detection performances
similar to the state of the art, the estimator is modified and
a neural network is trained to encode the data in a latent
space of lower dimensionality where the random projec-
tions outlyingness is redefined. This work emphasizes the
possibility of adapting simple abnormality measures to com-
plex and realistic anomaly detection tasks in which normal-
ity is multimodal. The experiments conducted on MNIST,
Fashion-MNIST and CIFAR10 show a light improvement
in performance with respect to Deep SVDD and suggest
that the task of anomaly detection in a fully unsupervised
framework, in the case of multimodal normality, remains a
challenge. The relative success of the proposed approach
highlights the relevance of random projections and more
generally of untrained transformations in neural networks,
when they are associated with a well chosen trainable archi-
tecture.
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Wójcik, P. I. and Kurdziel, M. Training neural networks on
high-dimensional data using random projection. Pattern
Analysis and Applications, 22(3):1221–1231, 2019.

Zuo, Y. et al. Projection-based depth functions and associ-
ated medians. The Annals of Statistics, 31(5):1460–1490,
2003.



Appendix

Auxiliary experiments, i.e. those not included in table 1,
mostly rely on two Fashion-MNIST setups, where the nor-
mality is defined by either one or three classes. CIFAR-10
was not selected because the multimodal AD remains an
excessively complex task for the methods considered as
table 1 points out, while MNIST does not carry multiscale
structure, making it a less interesting example (Ruff et al.,
2020a). In this appendix, apart from the results dedicated
to the study of the influence of the number of RPs used in
the latent RPO for deep RPO in table 3 and table 4, RPO is
implemented using 1000 RPs.

A. Random projections output dimensionality
and quantity

A.1. Multidimensional random projections description

In the case of random projections leading to a single output
dimension, we have the following setting: if d is the data
samples dimensionality, and m the random projection out-
put dimensionality, a random projection u with m = 1 will
lead to a projected coordinate uTx for any individual sample
x with d dimensions. This projected coordinate can then be
compared to a location estimator computed with the applica-
tion of u on all the available samples, uTx−MED(uTX)
forms an example where the location estimator chosen is
the median.

On the other hand, for multidimensional random projec-
tions, i.e. m > 1, a covariance matrix C can be harnessed
to obtain a more subtle distance to location estimators. Each
sample x can then be associated with a robust Mahalanobis
distance

√
(uTx−MED)TC−1(uTx−MED). In this

configuration, each sample has an outlyingness based on
m projected coordinates per RP. Each of the projected co-
ordinates is compared to a location estimator determined
on each random projection dimension. One projected loca-
tion estimator is thus computed over all data samples, for
a single output dimension of the random projections in use.
This transforms the training objective (5), the distance to
the median in the numerator becoming:

√
(uT Φ(xi)−MED)T C−1 (uT Φ(xi)−MED) (6)

The training loss now has the possibility to incorporate mul-
tidimensional projected representations for data samples,
enabling additional latent representation flexibility. One

should note that whereas deep SVDD is built on top of a
latent normality hypersphere, deep RPO harnesses a latent
normality ellipsoid (Van Aelst & Rousseeuw, 2009), each
of the latent dimensions being subject to specific localiza-
tion and spread parameters. An SVDD adaptation where
the latent distances are computed using a Mahalanobis dis-
tance has been proposed in (Tran et al., 2017), but the latter
does not encode data with a neural network. Combining the
deep version of SVDD with a Mahalanobis score would be
another way to achieve a trainable latent normality represen-
tation based on an ellipsoid.

A.2. Experiments

Table 2. Deep RPO test AUCs with varying RP latent dimensional-
ity for the two estimators studied on Fashion-MNIST for 30 seeds
(truncated mean AUC ± std).

# MODES 1 3

MAX - 1D RPS 90.17 ±6.09 80.63 ±6.68
MAX - 2D RPS 89.40 ±6.43 79.63 ±7.08
MAX - 4D RPS 89.47 ±6.45 79.60 ±7.06

MEAN - 1D RPS 91.13 ±5.20 81.28 ±6.40
MEAN - 2D RPS 90.36 ±5.79 80.44 ±6.65
MEAN - 4D RPS 90.24 ±5.86 80.44 ±6.60

Table 2 reminds the point of switching from a supremum to
an average for the AD score estimator, while revealing that
RPs with muldimensional projected representations do not
yield test AUC increases. No interest was paid to random
projections with a latent dimensionality higher than four in
order to avoid considerations pertaining to the quality of the
covariance matrix of (6).

Table 3. Deep RPO-mean test AUCs with varying number of RPs
for the latent space RPO on Fashion-MNIST for 20 seeds (trun-
cated mean AUC ± std).

# MODES 1 3

100 RPS 90.25 ±5.18 81.70 ±6.73
500 RPS 90.46 ±5.21 81.96 ±6.67
1000 RPS 90.30 ±5.25 81.67 ±6.87
2000 RPS 90.42 ±5.19 81.83 ±6.83

Results in table 3 indicate an adequate number of RPs was
chosen to implement the RP outlyingness for the encoded
data. A slight AUC increase has been achieved by decreas-
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ing the number of random projections shared by the rest
of the experiments, i.e. 1000, possibly indicating the ap-
proximate minimum number of RPs necessary to handle the
dimensionality of the neural network encoded latent space.
One can think that using the minimum number of RPs to
handle the RPO score input dimensionality in a deep setup
constitutes a sensible strategy since it avoids superfluous
parameters without hurting the outlyingness measure.

Table 4. Deep RPO-mean on CIFAR10 for 30 seeds, with either
1000 or 3000 RPs for RPO (truncated mean AUC ± std). The
data being more complex, more RPs were used to verify whether a
simple increase in the number of RPs could lead to better perfor-
mances, without success.

# MODES 1000 RPS 3000 RPS

1 63.14 ±7.30 63.18 ±7.49
2 56.46 ±8.89 56.44 ±8.92
3 54.30 ±6.80 54.32 ±6.74
4 53.88 ±5.89 54.00 ±5.98

As announced, table 4 suggests that the poor performances
observed on CIFAR10 do not stem from an insufficient
number of random projections, eventhough the greater la-
tent dimensionality used for this dataset encoding could be
expected to call for additional model complexity. These re-
sults emphasize the difficulty of the learning task considered
when it comes to more realistic multimodal data.

B. Projections and components dropouts
B.1. Dropouts description

Picking up the previously introduced notation regarding ran-
dom projections, d is the data samples dimensionality,m the
random projections output dimensionality, and p the number
of random projections. Two types of dropouts can be intro-
duced on the random projections leading to the encoding
network training loss: a dropout on the projections them-
selves, and a dropout on the components of the projections.
In the first case, the dropout removes entire projections, im-
plying a selection, in accordance with the dropout rate, over
the p-dimensional channel of the projecting random ten-
sor. Components dropout implies a selection, with its own
dropout rate, along the d-dimensional channel. The indexes
selected for this dropout will then cancel the correspond-
ing dimensions in the random projections, thus ignoring as
many components among the inputs. The RPs are normal-
ized again after the components dropout, when m = 1, in
accordance with (3).

To respect the notation introduced, applications on images
flatten the input pixels array into a d-dimensional vector
before their projection. As an intuitive example, in the
specific case m = 1 which coincides with the original

RPO, the random projections define a matrix d × p: the
projections dropout here would remove columns over the
second dimension, whereas the components dropout would
discard rows over the first dimension.

B.2. Experiments

Table 5. Deep RPO-mean test AUCs with and without components
and projections dropouts on Fashion-MNIST for 10 seeds (trun-
cated mean AUC ± std). C. is components dropout rate, P. is
projections dropout rate.

# MODES 1 3

NO DROPOUT 89.00 ±3.71 78.71 ±4.80
C = 0.1 89.19 ±3.57 78.64 ±4.85
C = 0.3 89.18 ±3.58 78.64 ±4.85
C = 0.5 89.19 ±3.57 78.64 ±4.85
P = 0.1 89.05 ±3.68 78.51 ±4.93
P = 0.3 88.88 ±3.80 78.36 ±4.97
P = 0.5 88.67 ±3.97 78.43 ±4.76

Table 5 indicates there is no actual AUC increase when
harnessing either of the dropouts put forward for the random
projections leading to the outlyingness measure. Since no
substantial performances improvement was reached using
the dropouts individually, their combined effects were not
studied.

C. Potential for an extension to a
semi-supervised setting

C.1. Extension description

Semi-supervised anomaly detection goes beyond the scope
of this work, but it is trivial to adapt deep RPO to SAD
just like deep SVDD was transformed into deep SAD (Ruff
et al., 2020b). Like deep SAD, one only needs to take
into account the rare labeled anomalies responsible for the
semi-supervision during training by inverting the distance
to the normality location estimators in the training loss. In
such a SAD context, the normalized distance dist to the
normality locations estimators will be counted as 1

dist if
the sample considered is a labeled anomaly of the training
set. Intuitively, this compels the neural network to project
anomalies far from the locations estimators, while at the
same time gathering normal samples around them. This
reveals a danger for both unsupervised and semi-supervised
anomaly detection in realistic settings: the contamination of
the normal samples within the training set with unidentified
and representative anomalies can make the neural network
project anomalies close to locations estimators, rendering
them hardly detectable. Besides, the ability of the network
to generalize and efficiently reject anomalies far from nor-
mality reference points while concentrating normal samples
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around them implies a good representativity of both normal
samples and anomalies in the training set. This hypothe-
sis remains necessarily unmet since in most AD settings,
anomalies are infinitely diverse.

C.2. Experiments

Table 6. Semi-supervised anomaly detection with distance inver-
sion as in deep SAD for deep RPO to take into account rare labeled
anomalies during training. The SAD ratio denotes the percentage
of the training set composed of labeled anomalies. Two anomalous
classes are randomly picked for each seed to provide the labeled
anomalies. Experiments conducted with either one or three modes
in the normality on Fashion-MNIST for 10 seeds (truncated mean
AUC ± std).

SAD METHOD SAD RATIO 1 3

DEEP SAD 0.00 87.70 ±5.30 78.30 ±5.02
DEEP SAD 0.01 88.08 ±5.03 83.49 ±4.71
DEEP SAD 0.10 90.37 ±4.00 84.54 ±4.87

DEEP RP-SAD 0.00 89.00 ±3.71 78.71 ±4.80
DEEP RP-SAD 0.01 89.19 ±3.60 78.76 ±4.90
DEEP RP-SAD 0.10 89.40 ±3.46 79.93 ±5.30

Deep SVDD, transformed into deep SAD, appears to more
significantly benefit from the additional information pro-
vided by a small minority of labeled anomalies during the
training. Nevertheless deep RPO also takes advantage of
the latter to improve detection performances, confirming
the generality of the distance inversion method to allow a
location estimator based unsupervised AD to achieve SAD.

D. Stability against affine transformation
An affine transformation, defined as a constant multiplica-
tion of every component of the input representation of the
samples, is applied to challenge the affine stability of the
AD methods performances once the training is over. This
affine transformation, defined by the constant α shown in
the upper part of Table 7, breaks the normalization of the
inputs features before their presentation to the neural net-
work first layer. The experiments results suggest that deep
RPO and deep SVDD are comparably stable with respect
to the input transformation considered, and that such trans-
formation does not trigger a drop in AUC. In addition, one
can notice that the average test AUC slightly increases in
some cases with the affine data disturbance. The lower part
of Table 7 reports the results where instead of a constant di-
agonal matrix applying α to each input component, another
diagonal matrix is used for which the diagonal coefficients
are generated using either a random uniform or a standard
gaussian distribution. Again, deep RPO and deep SVDD
show comparable stability when confronted with the more

distorting affine transformations. Looking at the standard
deviations overall, deep RPO seems slightly more stable.

E. Additional experiments on tabular data

Table 8. Deep RPO-Mean, RPO-Max and the baseline deep SVDD
on the satellite dataset for 20 seeds (truncated mean AUC ± std).

METHOD MEAN TEST AUC ± STD

DEEP SVDD 68.23 ±5.53
RPO-MAX 64.89 ±2.67
DEEP RPO-MEAN 73.01 ±5.93

Since AD on MNIST, Fashion MNIST and CIFAR10 is very
common and excellent performances have already been ob-
tained on these datasets using self-supervised learning, we
compare the highlighted shallow and deep methods of our
main results in Table 1 on less common tabular data. As can
be seen in Table 8, Deep SVDD remains our baseline. A
satellite dataset is chosen 1. The data stems from the orig-
inal Statlog (Landsat Satellite) dataset from UCI machine
learning repository 2, where the smallest three classes are
combined to form the outlier class, while the other classes
define the inlier class. As for the previous experiments, deep
SVDD and deep RPO-Mean share the same neural network
architecture and training hyperparameters, to produce a fair
comparison. The improvement provided by Deep RPO-
Mean is confirmed. The number of RPs used in the latent
RPO was set to 500, since the output dimensionality of 8 of
the neural network is significantly lower. This in turn is due
to the low input data dimensionality for the neural network,
the input samples being 1D vectors defined by 36 values.
The neural networks were always trained for 80 epochs, and
the test AUC retained as the model performance for each
seed is the one associated with the best epoch with respect
to the validation set AUC. The results also put forward the
contribution of the trainable neural network projecting data
samples, deep SVDD performing better then the shallow
method RPO-Max. Finally, the standard deviation of the
performances appears to be higher for deep methods.

1http://odds.cs.stonybrook.edu/
satellite-dataset/

2https://archive.ics.uci.edu/ml/datasets/
Statlog+%28Landsat+Satellite%29

http://odds.cs.stonybrook.edu/satellite-dataset/
http://odds.cs.stonybrook.edu/satellite-dataset/
https://archive.ics.uci.edu/ml/datasets/Statlog+%28Landsat+Satellite%29
https://archive.ics.uci.edu/ml/datasets/Statlog+%28Landsat+Satellite%29
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Table 7. Deep RPO-mean test AUCs with varying affine transformation coefficient α on Fashion-MNIST for 10 seeds (truncated mean
AUC ± std). The AUC gap is the mean AUC error, computed over all seeds, with respect to the AUC obtained when α = 0, i.e. the
baseline case. In the first part of the table, α denotes the constant value along the affine transformation diagonal matrix. In the second part,
the diagonal elements are randomly generated according to either a uniform or a gaussian standard distribution. No AUC gap is computed
since the seed by seed comparison with the baseline AUC would be unfair, a mean AUC test being computed over 20 random picks of the
diagonal matrix for each seed.

AD METHOD α 1 AUC GAP 3 AUC GAP

DEEP SVDD 0.80 87.02 ±5.56 -0.70 ±1.05 76.49 ±5.67 -1.81 ±0.86
DEEP SVDD 0.90 87.77 ±5.24 +0.03 ±0.29 78.02 ±5.15 -0.29 ±0.29
DEEP SVDD 0.95 87.83 ±5.22 +0.09 ±0.14 78.31 ±5.02 -0.00 ±0.16
DEEP SVDD 1.00 87.73 ±5.24 ±0.00 ±0.00 78.31 ±5.02 ±0.00 ±0.00
DEEP SVDD 1.05 87.48 ±5.30 -0.25 ±0.20 78.05 ±5.18 -0.25 ±0.28
DEEP SVDD 1.10 87.09 ±5.40 -0.63 ±0.50 77.55 ±5.52 -0.76 ±0.75
DEEP SVDD 1.20 86.01 ±5.71 -1.71 ±1.32 75.98 ±6.65 -2.32 ±2.13

DEEP RPO 0.80 88.53 ±4.15 -0.72 ±1.48 76.85 ±5.28 -1.77 ±1.22
DEEP RPO 0.90 89.25 ±3.65 -0.00 ±0.59 78.33 ±4.85 -0.29 ±0.57
DEEP RPO 0.95 89.33 ±3.56 +0.07 ±0.31 78.61 ±4.79 -0.01 ±0.29
DEEP RPO 1.00 89.26 ±3.54 ±0.00 ±0.00 78.63 ±4.85 ±0.00 ±0.00
DEEP RPO 1.05 89.01 ±3.60 -0.24 ±0.38 78.38 ±5.05 -0.24 ±0.34
DEEP RPO 1.10 88.62 ±3.76 -0.63 ±0.84 77.91 ±5.36 -0.71 ±0.74
DEEP RPO 1.20 87.48 ±4.39 -1.77 ±1.95 76.49 ±6.25 -2.13 ±1.74

DEEP SVDD U[0.9;1.1] 87.47 ±5.10 78.15 ±4.76
DEEP SVDD U[0.8;1.2] 86.70 ±5.52 77.52 ±5.01
DEEP SVDD U[0.6;1.4] 83.86 ±7.21 75.67 ±5.94
DEEP SVDD U[0.5;1.5] 81.28 ±8.74 73.64 ±7.10
DEEP SVDD N(0, 1) 52.20 ±16.01 50.56 ±12.37

DEEP RPO U[0.9;1.1] 88.76 ±3.61 78.54 ±4.70
DEEP RPO U[0.8;1.2] 87.99 ±3.99 77.97 ±5.03
DEEP RPO U[0.6;1.4] 85.12 ±5.73 76.32 ±6.05
DEEP RPO U[0.5;1.5] 82.49 ±7.35 74.59 ±7.19
DEEP RPO N(0, 1) 52.02 ±16.16 50.05 ±10.77


