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ABSTRACT

Random projection is a common technique for designing algorithms in a variety of areas, including
information retrieval, compressive sensing and measuring of outlyingness. In this work, the original
random projection outlyingness measure is modified and associated with a neural network to obtain
an unsupervised anomaly detection method able to handle multimodal normality. Theoretical and
experimental arguments are presented to justify the choices of the anomaly score estimator, the
dimensions of the random projections, and the number of such projections. The contribution of
adapted dropouts is investigated, along with the affine stability of the proposed method. The
performance of the proposed neural network approach is comparable to a state-of-the-art anomaly
detection method. Experiments conducted on the MNIST, Fashion-MNIST and CIFAR-10 datasets
show the relevance of the proposed approach, and suggest a possible extension to a semi-supervised
setup.

Keywords anomaly detection · one-class classification · deep learning · random projection

1 Introduction

When working with high-dimensional data, achieving relevant data analysis can translate into finding the right projections
for the data. Discovering a good projection for a dataset amounts to revealing a helpful perspective for the task at hand.
Defining what a good projection actually is and finding it can then be challenging. Common data processing tools such
as principal component analysis (PCA) and linear discriminant analysis (LDA) are examples of approaches that look
for effective projections to discriminate between samples. The appeal of projecting high-dimensional data to lower
dimensional spaces reside in the fact that such projections constitute a way of avoiding the curse of dimensionality
to a certain extent Huber [1985]. In the specific case of projecting data to a single dimension, the use of common
one-dimensional statistics can also be a motivation. However, finding good projections can be costly and therefore leads
to considering the possible contribution of random projections (RPs), since randomization is cheaper than optimization
Rahimi and Recht [2009]. More specifically, RPs are computationally less expensive than PCA, and can become even
cheaper if one considers sparse random projections Bingham and Mannila [2001].

RPs have been commonly used for dimensionality reduction, typically in the context of compressed-sensing Candes
and Tao [2006]. In Fowler and Du [2011], random projections are used to conduct anomaly detection with the projected
data representations. Using a great number of random projections, a stochastic approximation of the depth function
introduced in Donoho et al. [1992] can be obtained. A projection depth function associates a depth attribute to each
data point available in a dataset, without explicitly estimating the underlying probability density function. Such depth
directly translates into an ordering of the data points, from the most normal to the most outlying one. Theoretical results
indicate a convergence between anomaly detection using a threshold on such a depth and the detection achieved with
a Reed-Xioli (RX) anomaly detector Velasco-Forero and Angulo [2012a], based on the Mahalanobis distance. This
convergence supports the relevance of using an RP-based method for outlier detection. The ordering induced by a
projection depth function has notably been used to construct morphological operators, and applied to hyperspectral
images Velasco-Forero and Angulo [2012b].
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In addition, RP emerged as a way to define a new kind of neural network, extreme learning machines (ELM), where the
parameters of a single hidden layer of neurons are frozen in their random initialization state. Those frozen parameters
can be considered as RPs, and are said to enable fast learning and good generalization properties for the neural network
Huang et al. [2006]. The power of random projections within neural networks is not limited to ELM and single layer
neural networks. In Wójcik and Kurdziel [2019], an initial RP layer is considered for high-dimensional real world
datasets with various initialization schemes coming from the RP literature. Here again, the author’s interest in RP stems
from the possibility of creating relevant embeddings. The expressive power of random features in ResNet He et al.
[2016] architectures has been demonstrated in Frankle et al. [2020], while the authors focused on the performances
obtained when training only the affine transformation included in the Batch Normalization (BN). Intuitively, training
only the affine transformation of the BN is equivalent to training the shifting and rescaling of random features. In
contrast with ELM, this setup uses a repetition of a succession of random features and trainable parameters. Neural
networks built with frozen random weights have already received much attention in the literature, with contributions
like Saxe et al. [2011], Giryes et al. [2016] trying to capture the actual contribution of random weights.

Anomaly detection (AD) remains an active research field Chandola et al. [2009], Pimentel et al. [2014], Hendrycks et al.
[2019], Chalapathy and Chawla [2019], Ruff et al. [2021] and is closely related to novelty detection, out-of-distribution
detection and noise removal. Each of those functions can provide a way to detect anomalies, depending on the task at
hand and the nature of the anomalies. Anomalies are defined as unusual or atypical objects and events in Goodfellow
et al. [2016], however it is important to note that various notions of anomalies and AD supervision exist Chandola et al.
[2009]. In this work, the unsupervised learning paradigm of Ruff et al. [2018] is chosen. The latter indicates that the
absence of supervision implies the unavailability of labeled anomalies during training. The training data will therefore
consist of normal samples, supposedly representative of the normality. To consider a more realistic scenario, the AD
methods can be compared on polluted training sets, where anomalous samples will corrupt the hypothetically normal
training data.

The rest of the paper is structured as follows: in section 2, the motivation behind the proposed deep outlyingness and the
state-of-the-art deep AD baseline is described. Section 3 introduces the RP-based unsupervised outlyingness measure
called deep random projection outlyingness (RPO) and develops several implementation modalities. Finally, section 4
presents the results of our experiments which put forward the preference for a specific version of deep RPO.

2 Baseline methods and starting points

2.1 Random projection outlyingness

Let us consider data points with a d-dimensional representation. A random projection can be used to bring the latter on a
single dimension representation space. Multiple random projections can thus be used to obtain multiple representations
of data points on a single dimension, allowing the computation of normalized distances to the dataset center point for
the dataset samples on each projection. These normalized distances lead to the RPO proposed in Donoho et al. [1992]
and defined by (1), where x stands for a single data point, and X is the data matrix gathering all data points.

O(x; p,X) = max
u∈U

|uTx−MED(uTX)|
MAD(uTX)

(1)

This quantity is obtained using a set of p random projections u of dimensionality d, written U. All projection vectors
u have a unit norm, i.e. u ∈ Sd−1 with Sd−1 = {x ∈ Rd : ||x||2 = 1}. The maximum returns the greatest distance
among the random projections to a location estimator normalized by a dispersion estimator, for robustness purposes
here the median and the median absolute deviation (MAD). This can be interpreted as the worst-case distance to a
robust location estimator. The word middle directly relates to the origin of (1) which stems from the definition of a
statistical depth, the random projection depth, defined in (2). The RP depth, as well as the RP outlyingness, establishes
a center-outward ordering in a dataset:

RPD(x;X) =
1

1 +O(x;X)
(2)

with O(x;X) the outlyingness Zuo et al. [2003] defined as

O(x;X) = sup
u∈Sd−1

|uTx−MED(uTX)|
MAD(uTX)

(3)

Originally, the random projection outlyingness is defined using a sup, but in practice it should be estimated with a
maximum on p random projections on the d− 1 dimensional sphere. The quantity O(x; p,X) is therefore a stochastic
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Figure 1: Illustration of the intuition behind the use of random projections. Once a set of 2D samples is projected,
evaluating the normalized distance to the location estimator of each projection easily allows to detect the obvious outlier,
the latter being positioned at greater distance from the location estimator on at least one axis. One axis is enough
to raise the maximum seen in (1). This depicts that multivariate outlyingness can translate into multiple univariate
outlyingnesses.

approximation of O(x;X) based on a finite set of random projections. The intuition of a naive RPO is depicted on
Fig. 1. The fundamental argument behind the interest for random projections to work on high-dimensional data is the
Johnson-Lindenstrauss lemma William and Lindenstrauss [1984], shown in (4), which guarantees the relative stability
of the distance separating two data points between the input data space and the projected latent representations. The
lemma states, for a RP matrix R ∈ Rk×d incorporating k individual RPs, and two d-dimensional data points x1 and x2:

(1− ε)‖x1 − x2‖22≤ ‖Rx1 −Rx2‖22≤ (1 + ε)‖x1 − x2‖22 (4)

The factor ε depends on the number of random projections and the dimensionality of the projected space. Said differently,
the lemma ensures the Euclidean distance stability through random projections. This implies a relative conservation of
the data distribution in the projected and lower-dimensional space. Compared to other usual dimensionality reduction
techniques, RPs are completely linear by the use of matrix R: auto-encoders harness non-linear activation functions,
and principal components analysis discards components after linear transformations.

2.2 Deep support vector data description

Deep support vector data description Ruff et al. [2018] is an unsupervised deep anomaly detection method. It is close
to the original support vector data description (SVDD) Tax and Duin [2004] and uses a neural network to project the
supposedly normal training samples in a latent space so that all samples are within a normality hypersphere. The
hypersphere is made as small as possible thanks to a suitable training loss, corresponding to

min
W

[
1

n

n∑
i=1

||Φ(xi;W )− c||2 +
λ

2

L∑
l=1

||W l||2F

]
. (5)
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In this equation, c is the normality hypersphere center, determined by the mean latent coordinates of an initial forward
pass of the training data. Φ represents the encoding neural network, W its weights, xi the sample being projected, l a
layer index. A common regularization is performed on the network weights using the Frobenius norm, and is balanced
through λ with the main training objective. As put forward in Ruff et al. [2018], which brought deep SVDD to the
state of the art, several conditions need to be fulfilled in order to avoid the collapse of the normality hypersphere during
training. A trivial example of such collapse consists in a neural network resulting in a constant latent representation,
which is indeed resulting in a minimal training loss solution where the mean distance to the center is necessarily zero.

3 From RPO to deep RPO

3.1 Deep RPO

Whereas deep SVDD uses an Euclidean distance to the normality hypersphere center in the latent space, our proposition
is to evaluate the distance to various location estimators provided by a diversity of non-trainable random projections.
The outlyingness of (1) replaces the distance to a single hypersphere center to quantify abnormality in the latent space.
The deep SVDD training objective of (5) becomes:

min
W

[
1

n

n∑
i=1

(
mean
u∈U

|uT Φ(xi;W )−MED(uT Φ(X;W ))|
MAD(uT Φ(X;W ))

)

+
λ

2

L∑
l=1

||W l||2F

] (6)

where both integrator operators max from the original RPO and mean in our proposition are studied in the conducted
experiments. The estimator modification from maximum to mean can be interpreted as follows: the worst-case
outlyingness over all the random projections considered, provided by the max, does not translate into an optimal
learning objective, as it will be observed in the experiments. On the other hand, the mean estimator can be seen as a
way to take into account the abnormality indication of each random projection for every sample. In such a case, every
perspective of the data points counts in the training loss, for every data point.

Semi-supervised anomaly detection goes beyond the scope of this work, but it is trivial to adapt deep RPO to SAD
just like deep SVDD was transformed into deep SAD Ruff et al. [2020a]. Like deep SAD, one only needs to take
into account the rare labeled anomalies responsible for the semi-supervision during training by inverting the distance
to the normality location estimators in the training loss. In such a SAD context, the normalized distance dist to the
normality locations estimators will be counted as 1

dist if the sample considered is a labeled anomaly of the training
set. Intuitively, this compels the neural network to project anomalies far from the locations estimators, while at the
same time gathering normal samples around them. This reveals a danger for both unsupervised and semi-supervised
anomaly detection in realistic settings: the contamination of the normal samples within the training set with unidentified
and representative anomalies can make the neural network project anomalies close to locations estimators, rendering
them hardly detectable. Besides, the ability of the network to generalize and efficiently reject anomalies far from
normality reference points while concentrating normal samples around them implies a good representativity of both
normal samples and anomalies in the training set. This hypothesis remains necessarily unmet since in most AD settings,
anomalies are infinitely diverse. Results supporting the potential of deep RPO for SAD are presented in section 4.

3.2 Multidimensional random projections

In the case of random projections leading to a single output dimension, we have the following setting: if d is the data
samples dimensionality, and m the random projection output dimensionality, a random projection u with m = 1 will
lead to a projected coordinate uTx for any individual sample x with d dimensions. This projected coordinate can then be
compared to a location estimator computed with the application of u on all the available samples, uTx−MED(uTX)
forms an example where the location estimator chosen is the median.

On the other hand, for multidimensional random projections, i.e. m > 1, a covariance matrix C can be harnessed to
obtain a more subtle distance to location estimators. Each sample x can then be associated with a robust Mahalanobis
distance

√
(uTx−MED)TC−1(uTx−MED). In this configuration, each sample has an outlyingness based on m

projected coordinates per RP. Each of the projected coordinates is compared to a location estimator determined on each
random projection dimension. One projected location estimator is thus computed over all data samples, for a single
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output dimension of the random projections in use. This transforms the training objective (6), the distance to the median
in the numerator becoming:

√
(uT Φ(xi)−MED)T C−1 (uT Φ(xi)−MED) (7)

The training loss now has the possibility to incorporate multidimensional projected representations for data samples,
enabling additional latent representation flexibility. One should note that whereas deep SVDD is built on top of a latent
normality hypersphere, deep RPO harnesses a latent normality ellipsoid Van Aelst and Rousseeuw [2009], each of the
latent dimensions being subject to specific localization and spread parameters. An SVDD adaptation where the latent
distances are computed using a Mahalanobis distance has been proposed in Tran et al. [2017], but the latter does not
encode data with a neural network. Combining the deep version of SVDD with a Mahalanobis score would be another
way to achieve a trainable latent normality representation based on an ellipsoid.

3.3 Projections and components dropouts

Picking up the previously introduced notation regarding random projections, d is the data samples dimensionality, m
the random projections output dimensionality, and p the number of random projections. Two types of dropouts can
be introduced on the random projections leading to the encoding network training loss: a dropout on the projections
themselves, and a dropout on the components of the projections. In the first case, the dropout removes entire projections,
implying a selection, in accordance with the dropout rate, over the p-dimensional channel of the projecting random
tensor. Components dropout implies a selection, with its own dropout rate, along the d-dimensional channel. The
indexes selected for this dropout will then cancel the corresponding dimensions in the random projections, thus ignoring
as many components among the inputs. The RPs are normalized again after the components dropout, when m = 1, in
accordance with (3).

To respect the notation introduced, applications on images flatten the input pixels array into a d-dimensional vector
before their projection. As an intuitive example, in the specific case m = 1 which coincides with the original RPO,
the random projections define a matrix d × p: the projections dropout here would remove columns over the second
dimension, whereas the components dropout would discard rows over the first dimension.

4 Experimental setup and results

Experiments were conducted on three common datasets in the machine learning community: MNIST, Fashion-MNIST
and CIFAR-10. All experiments were conducted using PyTorch, on either of the following hardware configurations:
AMD Ryzen 7 2700X with Nvidia RTX 2080, or Intel Xeon E5-2640 with Nvidia GTX Titan X. Table 1 reports the
main results of this work. RPO stands for the original RPO, described in (1) with its location estimator and spread
measure, respectively the median and MAD, defined on the training dataset completely made of normal samples. This
means RPO is adapted to a machine learning data paradigm, whereas the original RPO was meant to directly be applied
to a test set in which there would not be a significant proportion of anomalies. The direct application of RPO to our test
sets without determining the medians and MADs on the training data leads to performances next to randomness. Such
unsupervised and untrained RPOs are therefore not represented in the results tables. This poor performance is due both
to the inadequate balance between samples considered as anomalies and the normal ones, and the potentially insufficient
number of RPs with respect to the input space. Indeed, the more the input space to which RPs are applied to is of high
dimensionality, the more RPs you need to obtain an informative projected estimator Gueguen et al. [2014]. Most of the
failure can however be attributed to the data balance in this case. Apart from the results dedicated to the study of the
influence of the number of RPs used in the latent RPO for deep RPO in table 3 and table 4, RPO is implemented using
1000 RPs.

In table 1, RPO-max is the closest AD to the original RPO but as previously stated it is beforehand adapted to take
into account training data. RPO-mean is the shallow equivalent of the proposed method, deep RPO-mean, which adds
an encoding neural network in front of RPO in the AD process. The same goes for RPO-max and deep RPO-max,
which constitutes a more direct descendant of the original RPO. The random projections tensor is initialized by a
random realization of a standard normal distribution. Random projections leading to a single projected dimension are
normalized, so that they belong to the unit sphere in accordance with (3). Multidimensional RPs, however, are not
normalized as it is not required to keep the relative stability provided by the Johnson-Lindenstrauss lemma.

The input dimensionality for the shallow methods RPO-max and RPO-mean in table 1 is the dimensionality of the
flattened input images, i.e. 784 for MNIST and Fashion-MNIST, and 3072 for CIFAR10. Deep SVDD and deep
RPO encode the input images into latent representations of 32 and 128 dimensions, for MNIST, Fashion-MNIST and
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CIFAR10 respectively, before projecting using RPs. Hyperparameters were directly inspired by the ones used by deep
SVDD authors since their method constitutes the baseline to which the proposed method is compared. In particular, the
encoding networks architectures are the ones used for MNIST, Fashion-MNIST and CIFAR10 for the original deep
SVDD Ruff et al. [2018] and deep SAD Ruff et al. [2020a]. The weight decay hyperparameter was kept at 10−6, even
though for deep RPO it did not have a great impact in our experiments when compared with trials where the decay
had been removed. Again, this choice was made with the motivation of keeping deep RPO as close to the baseline as
possible to allow a fair comparison.

The metric used to evaluate the AD methods is the average AUC over several seeds, associated with a standard deviation,
as can be found in the AD literature. One should keep in mind that when the number of classes defining normality
increases, the datasets classes balance change. Before training, a validation set, made of 10% of the original training
set, is created using scikit-learn common split function. For all deep experiments, the retained test AUC is the one
associated with the best epoch observed for the validation AUC as was done in Chong et al. [2020]. AUCs reach either
a convergence plateau or a maximum before dropping in 50 epochs, this number of epochs was thus chosen for all the
experiments. This represents a substantial difference with the experimental setup proposed in Ruff et al. [2018], where
models were trained with many more epochs, benefited from pre-training accomplished using an auto-encoder, and a
tailored preprocessing. The comparison between deep SVDD and deep RPO remains fair in this work since the network
architecture is shared, along with the training hyperparameters. The batch size was set to 128 for the three datasets
considered.

For each experiment, a new seed is set and a random pick of normal classes is performed. This means that, unlike many
other papers in the literature, the nature of normality can change every time a new seed is adopted. This additional
diversity behind the average AUCs presented explains the high standard deviations observed in the results. Auxiliary
experiments, i.e. those not included in table 1, mostly rely on two Fashion-MNIST setups, where the normality is
defined by either one or three classes. This is done due to space constraints, although the choice remains an informed
one: CIFAR-10 was not selected because the multimodal AD remains an excessively complex task for the methods
considered as table 1 points out, while MNIST does not carry multiscale structure, making it a less interesting example
Ruff et al. [2020b]. While the multimodal normality improves the realism of the cases examined, the complexity of the
datasets remain low, which adds to the unrealistic perfect purity of the training datasets, here completely made of normal
samples. More complex data and labelling errors being unavoidable in real-world applications, further experiments
should be considered on more realistic data and on polluted unsupervised AD training sets. Such experiments with
shallow RPO can already be found in Bauw et al. [2020] on high resolution range profiles generated by a coastal
surveillance radar.

4.1 The integrator estimator choice: mean versus maximum

Table 1: RPO, deep RPO and deep SVDD test AUCs on MNIST, Fashion-MNIST and CIFAR10 for 30 seeds (truncated
mean AUC ± std).

# MODES RPO-MAX (1) RPO-MEAN DEEP SVDD DEEP RPO-MAX DEEP RPO-MEAN (2) (2)-(1)

MNIST - 1 84.64 ±6.73 84.12 ±6.74 88.60 ±4.62 87.96 ±5.31 90.10 ±4.10 5.46
2 75.27 ±8.68 72.83 ±9.42 84.35 ±6.57 83.79 ±6.97 85.36 ±6.48 10.09
3 69.67 ±9.65 66.92 ±10.25 81.23 ±6.76 80.16 ±7.12 81.60 ±7.00 11.93
4 66.54 ±9.20 63.60 ±10.31 78.89 ±6.56 77.35 ±6.92 78.65 ±7.05 12.11

F-MNIST - 1 89.19 ±5.81 89.73 ±5.79 90.45 ±5.76 90.17 ±6.09 91.13 ±5.20 1.94
2 78.52 ±8.39 76.47 ±8.38 85.24 ±6.45 84.57 ±7.01 85.81 ±6.36 7.29
3 71.06 ±7.38 69.37 ±7.64 80.30 ±6.99 80.64 ±6.69 81.28 ±6.40 10.22
4 67.58 ±5.89 65.79 ±6.55 77.30 ±4.99 77.53 ±5.07 77.82 ±5.34 10.24

CIFAR10 - 1 57.62 ±10.96 58.62 ±9.43 64.15 ±7.38 60.22 ±7.00 63.14 ±7.30 5.52
2 53.85 ±9.49 53.81 ±7.61 56.37 ±9.25 55.66 ±8.54 56.46 ±8.89 2.61
3 52.20 ±6.95 52.53 ±5.08 54.16 ±6.94 53.87 ±6.20 54.30 ±6.80 2.10
4 51.88 ±5.91 52.32 ±4.97 53.64 ±5.97 53.71 ±5.78 53.88 ±5.89 2.00

The results of experiments over the three datasets considered, with 30 seeds per experimental setup, are gathered in
table 1. The latter demonstrates the superiority of the mean over the max as an estimator for RPO when working
with the deep RPO setup. The shallow RPO setup, on the other hand, suggests better performances can be obtained
using a max. The neural network thus favours a loss balanced over all the single projected outlyingnesses. Moreover,
the increasing AUC gap between deep RPO and shallow RPO ADs for MNIST and Fashion-MNIST supports the
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hypothesis that the encoding neural network allows RPO to face multimodal normality in AD. The growing gap is not
observed for CIFAR10, however this failure is likely to stem from the excessive difficulty of the AD task rather than
from an inability of deep RPO. Additional results are proposed in 4 to show that the poor performances obtained for
CIFAR10 are not related to a lack of RPs for the latent RPO, even though a higher latent dimensionality is adopted for
CIFAR10 without increasing the number of RPs. The better performance of deep RPO-mean compared to deep SVDD
places the proposed method at the state-of-the-art level.

4.2 Random projections output dimensionality and quantity

Table 2: Deep RPO test AUCs with varying RP latent dimensionality for the two estimators studied on Fashion-MNIST
for 30 seeds (truncated mean AUC ± std).

# MODES 1 3

MAX - 1D RPS 90.17 ±6.09 80.63 ±6.68
MAX - 2D RPS 89.40 ±6.43 79.63 ±7.08
MAX - 4D RPS 89.47 ±6.45 79.60 ±7.06

MEAN - 1D RPS 91.13 ±5.20 81.28 ±6.40
MEAN - 2D RPS 90.36 ±5.79 80.44 ±6.65
MEAN - 4D RPS 90.24 ±5.86 80.44 ±6.60

Table 2 reminds the point of switching from a supremum to an average for the AD score estimator, while revealing that
RPs with muldimensional projected representations do not yield test AUC increases. No interest was paid to random
projections with a latent dimensionality higher than four in order to avoid considerations pertaining to the quality of the
covariance matrix of (7).

Table 3: Deep RPO-mean test AUCs with varying number of RPs for the latent space RPO on Fashion-MNIST for 20
seeds (truncated mean AUC ± std).

# MODES 1 3

100 RPS 90.25 ±5.18 81.70 ±6.73
500 RPS 90.46 ±5.21 81.96 ±6.67
1000 RPS 90.30 ±5.25 81.67 ±6.87
2000 RPS 90.42 ±5.19 81.83 ±6.83

Results in table 3 indicate an adequate number of RPs was chosen to implement the RP outlyingness for the encoded
data. A slight AUC increase has been achieved by decreasing the number of random projections shared by the rest
of the experiments, i.e. 1000, possibly indicating the approximate minimum number of RPs necessary to handle the
dimensionality of the neural network encoded latent space. One can think that using the minimum number of RPs to
handle the RPO score input dimensionality in a deep setup constitutes a sensible strategy since it avoids superfluous
parameters without hurting the outlyingness measure.

Table 4: Deep RPO-mean on CIFAR10 for 30 seeds, with either 1000 or 3000 RPs for RPO (truncated mean AUC ±
std). The data being more complex, more RPs were used to verify whether a simple increase in the number of RPs
could lead to better performances, without success.

# MODES 1000 RPS 3000 RPS

1 63.14 ±7.30 63.18 ±7.49
2 56.46 ±8.89 56.44 ±8.92
3 54.30 ±6.80 54.32 ±6.74
4 53.88 ±5.89 54.00 ±5.98

As announced, table 4 suggests that the poor performances observed on CIFAR10 do not stem from an insufficient
number of random projections, eventhough the greater latent dimensionality used for this dataset encoding could be
expected to call for additional model complexity. These results emphasize the difficulty of the learning task considered
when it comes to more realistic multimodal data.
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Table 6: Deep RPO-mean test AUCs with varying affine transformation coefficient α on Fashion-MNIST for 10 seeds
(truncated mean AUC ± std). The AUC gap is the mean AUC error, computed over all seeds, with respect to the AUC
obtained when α = 0.00, i.e. the baseline case. In the first part of the table, α denotes the constant value along the
affine transformation diagonal matrix. In the second part, the diagonal elements are randomly generated according to
either a uniform or a gaussian standard distribution. No AUC gap is computed since the seed by seed comparison with
the baseline AUC would be unfair, a mean AUC test being computed over 20 random picks of the diagonal matrix for
each seed.

AD METHOD α 1 AUC GAP 3 AUC GAP

DEEP SVDD 0.80 87.02 ±5.56 -0.70 ±1.05 76.49 ±5.67 -1.81 ±0.86
DEEP SVDD 0.90 87.77 ±5.24 +0.03 ±0.29 78.02 ±5.15 -0.29 ±0.29
DEEP SVDD 0.95 87.83 ±5.22 +0.09 ±0.14 78.31 ±5.02 -0.00 ±0.16
DEEP SVDD 1.00 87.73 ±5.24 ±0.00 ±0.00 78.31 ±5.02 ±0.00 ±0.00
DEEP SVDD 1.05 87.48 ±5.30 -0.25 ±0.20 78.05 ±5.18 -0.25 ±0.28
DEEP SVDD 1.10 87.09 ±5.40 -0.63 ±0.50 77.55 ±5.52 -0.76 ±0.75
DEEP SVDD 1.20 86.01 ±5.71 -1.71 ±1.32 75.98 ±6.65 -2.32 ±2.13

DEEP RPO 0.80 88.53 ±4.15 -0.72 ±1.48 76.85 ±5.28 -1.77 ±1.22
DEEP RPO 0.90 89.25 ±3.65 -0.00 ±0.59 78.33 ±4.85 -0.29 ±0.57
DEEP RPO 0.95 89.33 ±3.56 +0.07 ±0.31 78.61 ±4.79 -0.01 ±0.29
DEEP RPO 1.00 89.26 ±3.54 ±0.00 ±0.00 78.63 ±4.85 ±0.00 ±0.00
DEEP RPO 1.05 89.01 ±3.60 -0.24 ±0.38 78.38 ±5.05 -0.24 ±0.34
DEEP RPO 1.10 88.62 ±3.76 -0.63 ±0.84 77.91 ±5.36 -0.71 ±0.74
DEEP RPO 1.20 87.48 ±4.39 -1.77 ±1.95 76.49 ±6.25 -2.13 ±1.74

DEEP SVDD U[0.9;1.1] 87.47 ±5.10 78.15 ±4.76
DEEP SVDD U[0.8;1.2] 86.70 ±5.52 77.52 ±5.01
DEEP SVDD U[0.6;1.4] 83.86 ±7.21 75.67 ±5.94
DEEP SVDD U[0.5;1.5] 81.28 ±8.74 73.64 ±7.10
DEEP SVDD N(0, 1) 52.20 ±16.01 50.56 ±12.37

DEEP RPO U[0.9;1.1] 88.76 ±3.61 78.54 ±4.70
DEEP RPO U[0.8;1.2] 87.99 ±3.99 77.97 ±5.03
DEEP RPO U[0.6;1.4] 85.12 ±5.73 76.32 ±6.05
DEEP RPO U[0.5;1.5] 82.49 ±7.35 74.59 ±7.19
DEEP RPO N(0, 1) 52.02 ±16.16 50.05 ±10.77

4.3 Components and projections dropouts

Table 5: Deep RPO-mean test AUCs with and without components and projections dropouts on Fashion-MNIST for 10
seeds (truncated mean AUC ± std). C. is components dropout rate, P. is projections dropout rate.

# MODES 1 3

NO DROPOUT 89.00 ±3.71 78.71 ±4.80
C = 0.1 89.19 ±3.57 78.64 ±4.85
C = 0.3 89.18 ±3.58 78.64 ±4.85
C = 0.5 89.19 ±3.57 78.64 ±4.85
P = 0.1 89.05 ±3.68 78.51 ±4.93
P = 0.3 88.88 ±3.80 78.36 ±4.97
P = 0.5 88.67 ±3.97 78.43 ±4.76

Table 5 indicates there is no actual AUC increase when harnessing either of the dropouts put forward for the random
projections leading to the outlyingness measure. Since no substantial performances improvement was reached using the
dropouts individually, their combined effects were not studied.

4.4 Stability against affine transformation

An affine transformation, defined as a constant multiplication of every component of the input representation of the
samples, is applied to challenge the affine stability of the AD methods performances once the training is over. This
affine transformation, defined by the constant α shown in the upper part of Table 6, breaks the normalization of the
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inputs features before their presentation to the neural network first layer. The experiments results suggest that deep RPO
and deep SVDD are comparably stable with respect to the input transformation considered, and that such transformation
does not trigger a drop in AUC. In addition, one can notice that the average test AUC slightly increases in some cases
with the affine data disturbance. The lower part of Table 6 reports the results where instead of a constant diagonal matrix
applying α to each input component, another diagonal matrix is used for which the diagonal coefficients are generated
using either a random uniform or a standard gaussian distribution. Again, deep RPO and deep SVDD show comparable
stability when confronted with the more distorting affine transformations. Looking at the standard deviations overall,
deep RPO seems slightly more stable.

4.5 Potential for an extension to a semi-supervised setting

Table 7: Semi-supervised anomaly detection with distance inversion as in deep SAD for deep RPO to take into account
rare labeled anomalies during training. The SAD ratio denotes the percentage of the training set composed of labeled
anomalies. Two anomalous classes are randomly picked for each seed to provide the labeled anomalies. Experiments
conducted with either 1 or 3 modes in the normality on Fashion-MNIST for 10 seeds (truncated mean AUC ± std).

SAD METHOD SAD RATIO 1 3

DEEP SAD 0.00 87.70 ±5.30 78.30 ±5.02
DEEP SAD 0.01 88.08 ±5.03 83.49 ±4.71
DEEP SAD 0.10 90.37 ±4.00 84.54 ±4.87

DEEP RP-SAD 0.00 89.00 ±3.71 78.71 ±4.80
DEEP RP-SAD 0.01 89.19 ±3.60 78.76 ±4.90
DEEP RP-SAD 0.10 89.40 ±3.46 79.93 ±5.30

Deep SVDD, transformed into deep SAD, appears to more significantly benefit from the additional information provided
by a small minority of labeled anomalies during the training. Nevertheless deep RPO also takes advantage of the latter
to improve detection performances, confirming the generality of the distance inversion method to allow a location
estimator based unsupervised AD to achieve SAD.

5 Conclusion

An adaptation of the classic outlyingness score based on random projections is proposed. In order to adapt the
outlyingness score and obtain anomaly detection performances similar to the state of the art, the estimator is modified
and a neural network is trained to encode the data in a latent space of lower dimensionality where the random projections
outlyingness is redefined. This work emphasizes the possibility of adapting simple abnormality measures to complex
and realistic anomaly detection tasks in which normality is multimodal. The experiments conducted on MNIST, Fashion-
MNIST and CIFAR10 show a light improvement in performance with respect to Deep SVDD and suggest that the task
of anomaly detection in a fully unsupervised framework, in the case of multimodal normality, remains a challenge.
The relative success of the proposed approach highlights the relevance of random projections and more generally
of untrained transformations in neural networks, when they are associated with a well chosen trainable architecture.
The semi-supervision considered confirmed the generality of latent distance inversion to take into account rare but
informative labeled anomalies during training, when normality is defined by a minimized hypervolume characterized by
a centroid.
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