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Centre de Physique Théorique, Ecole Polytechnique, CNRS,

Institut Polytechnique de Paris, 91128 Palaiseau Cedex, France and
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Supplementary Note 1: Details of the sample preparation and characterization

The polycrystalline samples used in this study were prepared by melting high-purity elements in an induction
furnace under a purified argon atmosphere. The resulting ingots were suction-cast (arc melting/suction casting
setup MAM-1 Edmund Bühler GmbH) from melt into bulk rectangular ingots of thickness 0.5mm to ensure fast
solidification/cooling. To carry out the structural analysis, part of the sample was powdered and the resulting powder
was used for room temperature x-ray diffraction (XRD). The XRD measurements were carried out on a Stoe Stadi P
diffractometer with Mo Kα1 radiation, in transmission mode and an angular 2θ range from 5◦ to 40◦. Phase matching
and unit-cell refinements were performed using FullProf software1.

The remaining part of the sample was hand-grind in an agate mortar and sieved below 20 µm in an Ar filled
glovebox (p(O2) and p(H2O) < 0.1 ppm, MBraun) for magnetic characterization and nitrogenation. Nitrogenation
experiments were carried out in a custom-build horizontal quartz tube setup equipped with a furnace. The samples
were transferred to the furnace without contact to air to avoid oxidation. A temperature of 670 K for 10 h in 100
cm3/min N2 flow was used.

The room temperature XRD results indicate an almost phase-pure starting material with 96.6±2.0 wt.% CeFe11Ti
phase (with the unit cell parameters a = 8.542±0.001 Å and c = 4.788±0.001 Å ) obtained with a small fraction
(3.36±0.3 wt.%) of secondary CeFe2-Laves phase. After nitrogenation the unit cell parameters of the CeFe11TiNx

phase are measured as a = 8.695±0.012 Å and c = 4.902±0.012 Å. The obtained unit cell parameters are in good
agreement with results reported in the literature2.

Isothermal magnetization measurements were performed on aligned powder samples using a PPMS-VSM (Quantum
Design) under applied magnetic field up to 10 T. The powder consists of particles, assumed to be monocrystalline, with
size less than 20 µm. The particles were mixed with paraffin wax and encapsulated in a metallic pan. Afterwards, the
pan was heated above the melting point of the wax and an external magnetic field of 1.3 T was applied for texturing.
Isothermal magnetization measurements were carried out in the temperature range of 5K ≤ T ≤ 300K.
M(T)T curves measured perpendicular to the direction of the texture were used for the estimation of the anisotropy

fields by using the method suggested by Durst and Kronmüller3. For cross-checking, room temperature anisotropy
field estimations were done by using the classical Sucksmith-Thompson method4. Both methods coincide for the
estimation of the anisotropy fields.

For the confirmation of the proper nitrogenation process thermomagnetic measurements were carried out and the
Curie temperatures of 487±2 K and 765±4 K are obtained for CeFe11Ti and CeFe11TiNx, respectively, which agrees
well with the previously reported literature.
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Supplementary Note 2: Details of the DFT+DMFT calculations

In our DFT+DMFT calculations—carried out using the implementation in Refs. 5–8—we construct the projective
Wannier functions to represent the subspace of the correlated Ce-4f states using the Kohn-Sham eigenstates enclosed
by the energy window [−1.36 : 2.72] eV around the Fermi level. The on-site screened Coulomb interaction within the
Ce-4f subspace was defined by F 0 = U =6 eV, JH =0.7 eV, these values are in agreement with cRPA calculations9,10

as well as the usual range for these parameters for Ce intermetallics11–13.
In the Ce-4f quantum impurity problem we treat all fourteen Ce-4f orbitals as correlated and employ the density-

density approximation for the corresponding Coulomb vertex. We verified that for the particular case of the Ce-f1

shell the density-density approximation is reliable for calculations of the Kondo scale, which is expected to be very
sensitive to the treatment of the ground-state splitting. First, since the quasi-atomic ground-state occupancy of Ce-
4f is nat = 1, the splitting of the ground-state N = 1 levels is not affected by the Coulomb interaction. Another
important factor is the energy splitting between the ground state and excited states with occupancies N − 1 and
N + 1. With the hybridization effects included in QMC the most important valence fluctuations for Ce are f1 → f0,
resulting in a reduction of the occupancy below 1 (nf = 0.94 and nf = 0.84 in CeFe11Ti and CeFe11TiN, respectively).
The energy cost of those fluctuations is not affected by Hund’s rule coupling. Moreover, as we verified by comparing
the quasiatomic spectra for Ce-4f calculated with the full and density-density vertices, the splitting between the
top of the lower Hubbard band and the bottom of the higher one is very well reproduced by the density-density
approximation. Hence, the f1 → f2 valence fluctuations, which are less important in Ce than f1 → f0, are anyway
quite well accounted for within the density-density approximation.

The employed double-counting scheme is the fully localized double counting, i.e. the formula EDC = U(nat −
0.5)− J(0.5nat − 0.5) with the atomic occupancy (nat = 1 for Ce3+ ), which has been shown appropriate for the self-
consistent DFT+HubI method14. A stochastic maximum-entropy algorithm15 is used for the analytical continuation
of the converged DMFT(QMC) Matsubara self-energy to the real axis.

The intermetallic phases CeFe11Ti and CeFe11TiN crystallize in a tetragonal body-centered lattice structure, space
group I4/mmm. The conventional unit cell (shown in the inset of Fig. 1 in the main text), containing two formula
units, is orthorhombic. It has equivalent Ce sites in the corner and the center at Wyckoff position 2a, N interstitial
sites between two nearest Ce sites at Wyckoff position 2b, and three inequivalent Fe sites at Wyckoff positions 8i, 8j
and 8f , respectively.

The results presented in the main text were calculated using theoretical lattice structures of the Ce-Fe ”1-12”
systems that were obtained as described in the following.

The inner coordinate x of the Fe sites 8i and 8j, which have never, to our awareness, been measured experimentally
in Ce ”1-12” intermetallics, were fixed in our calculations to 0.359 and 0.27, respectively, in accordance with the
results of Ref. 16 on the Nd ”1-12” system. In CeFe11Ti(N), Ti occupies one of the Fe(8i) sites, for which we assumed
the same internal parameter as for Fe(8i). We obtained the lattice parameters of parent CeFe12, which cannot be
stabilized experimentally, by a volume optimization within DFT+U. The resulting values a=8.40 Å, c=4.81 Å were
also used in the calculations of CeFe11Ti. For CeFe11TiN we employed the theoretical lattice parameters a=8.51 Å,
c=4.88 Å. They were evaluated assuming a uniform volume expansion of about 4 % through nitrogenation with respect
to CeFe11Ti; this volume expansion is consistent with the experimental one of 6% in CeFe11TiNx (Supplementary
Note 1) with x in the range from 1.5 to 2, a somewhat smaller expansion of 3.4% was reported by Ref.17 for x =1.5.
We notice that the precise lattice parameters of CeFe11TiN have not been so far established experimentally due to
uncertainty in the nitrogen content.

To verify the sensitivity of our conclusions upon the change of the lattice parameters we also performed calculations
for CeFe11Ti using the experimental lattice constants reported in Supplementary Note 1, above. In this case we have
also performed an optimization of the internal coordinates by minimizing the forces within DFT-GGA (neither fully
localized nor fully itinerant treatment of Ce-4f is expected to be fully quantitatively adequate in the case of CeFe11Ti).
The Ce-Ti distance was found to increase by 5% compared to the one in the unrelaxed structure, while the opposite Ce-
Fe(8i) bond, in contrast, contracted by about 4%; other changes in internal coordinates due to structural relaxation
were found to be small. Using the thus obtained optimized structure at the experimental lattice parameters we
performed the same calculations of the Ce-4f magnetization and magnetic anisotropy. The obtained zero-temperature
quasi-atomic Ce-4f magnetic moment is Mat

z =0.95 µB ; the DMFT(QMC) Ce-4f moment Mz=0.25 µB is nearly
constant at low T . The resulting reduction of this moment by Kondo screening, α2 = Mz(T = 0)/Mat

z (T = 0) =0.26
is very similar to that obtained with the theoretical lattice structure and reported in Fig. 2a of the main text. We
subsequently estimated the K1 anisotropy constant of screened Ce-4f using Eq. (4) of the main text and adopting the
same value of A =770 K as for the theoretical structure. The resulting CeFe11Ti anisotropy field of 5.3 T at T =4.2 K
is again similar to that obtained with the theoretical structure (cf. Table II of the main text).

We also calculated CeFe11TiN assuming the experimental lattice parameters of CeFe11TiNx reported in the Supple-
mentary Sec. I and using the same approach, i. e. charge self-consistent DFT+HubI followed by DMFT(QMC). The
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resulting low-T moment on Ce of about 0.06 µB indicates a robustly strong Kondo screening and, correspondingly, a
robust suppression of the Ce-4f single-ion anisotropy in CeFe11TiN.

Supplementary Note 3: Zero-temperature anisotropy of the Kondo-screened moment under an applied
exchange field

We consider the following multiband Kondo-like (Coqblin-Schriffer) model for a local moment with the total angular
momentum Jf coupled to conduction-electron bands:

H = Hc +HK +HB +HCF =
∑
kµb

εkbµc
†
kµbckµb +

∑
µµ′

kk′bb′

Jkbk′b′

µµ′′ X̂µ′µc
†
kµbck′µ′b′ +

∑
a

BaexŜ
f
a +B0

2Ĉ
0
2 , (1)

where c†kµb(ckµb) creates (annihilates) the conduction-electron state with the angular momentum µ at the Brillouin
zone point k and band b, HK is the antiferromagnetic coupling of the local impurity and conduction-electron, which we
write in a general form using the k, band and µ-dependent Kondo coupling Jkbk′b

µµ′′ between conduction electrons and

the Hubbard operators X̂µ′µ ≡ |µ′〉〈µ|. The exchange field Baex, a = x, y, z, acts on the corresponding projection of

the local spin Ŝfa . The last term is the crystal field (CF), which we define for simplicity as the lowest-rank term of the
tetragonal CF inducing the anisotropy of the local moment, where B0

2 = 2αJA
0
2〈r2〉 is the CF parameter for the angular

momentum quantum number l =2 and its projection m =0; Ĉ0
2 is the corresponding spherical tensor in the Stevens

normalization, αJ = −2/35 is the Stevens factor for J = 5/2. Restricting the consideration to the Ce-4f ground-state

multiplet Jf =5/2 one may rewrite the tensor in the operator-equivalent form Ĉ0
2 = 3

2

(
[Ĵfz ]2 − Jf (Jf + 1)/3

)
=

3
2 [Ĵfz ]2 − 35/8.

We assume the ground state (GS) of the Hamiltonian (1) to be given by the following variational many-electron
wave function:

Ψ =
√

1− α2ΨS + αΨJ , (2)

ΨS in the first term is a singlet state of the local moment and conduction electron:

ΨS =
∑
µ

γµ
(
|Jf , µ〉|cµ̄〉 − |Jf ,−µ〉|cµ〉

)
, (3)

where µ̄ = −µ, |cµ〉 is a state of the perturbed Fermi sea with a conduction electron angular moment excitation µ,

|Jf , µ〉 is the eigenstate of Ĵfz of local moment with the angular-moment projection µ, Ĵfz |Jf , µ〉 = µ|Jf , µ〉. The

unpertubed Fermi sea reads ΨFS =
∑

kµb
εkbµ<EF

c†kµbckµb|0〉; it is the ground state of the first term Hc in (1).

The second contribution into Ψ reads

ΨJ =

[∑
µ

βµ|Jf , µ〉

]
ΨFS , (4)

where the prefactors βµ are chosen so that ΨJ is the normalized GS of the terms Hc +HB +HCF in the Hamiltonian
(1). In the present case of a Kramers ion Ce3+ in a strong exchange field Bex this GS is expected to be non-degenerate.

Finally, α is the variational parameter chosen to minimize the total energy of Ψ,

∂〈Ψ|H|Ψ〉
∂α

= 0. (5)

Several comments are in order regarding the variational wavefunction Ψ:

• the singlet part ΨS is written in a general variational form, similarly to various ansatz for the Kondo-problem
ground state used previously for Kondo and generalized Anderson impurity Hamiltonians18–20 and consists of a
superposition of the angular momentum projections µ(µ̄) coupled to a conduction-electron excitation |cµ̄〉(|cµ〉)
of the opposite momentum direction, thus forming a singlet. Notice that the states |cµ̄〉 are not restricted to
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single conduction-electron excitations of ΨFS . These states can comprise an arbitrary number of elementary of
those excitations, e. g.:

|cµ̄〉 =
∑

bb1b2b3...
kk1k2k...
µµ̄µ1...

γ(b, b1, b2...,k,k1,k2..., µ, µ̄, µ1...)c
†
kµ̄bck1µb1c

†
k2µ1b2

ck3µ1b3 ...ΨFS , (6)

where the amplitudes γ can be treated as variational parameters. In result of its complicated structure with a
lot of variational freedom, ΨS can be expected to provide a good estimated for the true ground state of quantum
impurity in the absence of exchange field (for the Hamiltonian Hc + HK) as obtained by exact techniques like
the QMC. The precise form of ΨS is not important for the present derivation, which is based only on some
its orthogonality properties specified below. We, however, assume ΨS to be rotationally invariant, which is a
reasonable approximation in the present case of TK > ∆CF , where ∆CF is the total CF splitting. Indeed, as
shown in Suppementary Fig. 3, the low-energy behavior of the QMC self-energy is almost the same for all six
j = 5/2 orbitals implying very similar renormalization due to the Kondo interaction.

• The second term, ΨJ , is the solution of Hamiltonian (1) in the absence of Kondo coupling. Hence, the variational
wavefunction (2) is the superposition of solutions in two limits HK = 0 and HB = 0.

• The unperturbed Fermi sea ΨFS in (2) can be spin-polarized. A spin-polarized conduction sea does not prevent
the Kondo effect to occur as far as this spin polarization is not complete; hence, the conduction-electron bands
of both spins contribute to the Fermi surface. That spin polarization is not important for the derivation, since
the only property we use is ΨFS being the same in the both terms of (2).

From the general form of the variational wavefunction Ψ one may easily derive the following properites:

• 〈ΨS |Ĵfa |ΨS〉 = 0 for a = x, y, z, hence,

〈Ψ|Ĵfa |Ψ〉 = α2〈ΨJ |Ĵfa |ΨJ〉 and (7)

〈ΨS |HB |ΨS〉 = 0, (8)

which follows from the singlet form of ΨS and the orthogonality between the Fermi-sea excitations, 〈cµ̄|cµ〉 = 0.
Moreover, under the rotationally-invariant approximation for ΨS discussed above one also has

〈ΨS |HCF |ΨS〉 = 0. (9)

• The terms HB and HCF do not couple ΨS and ΨJ :

〈ΨS |HB |ΨJ〉 = 0, (10)

〈ΨS |HCF |ΨJ〉 = 0, (11)

as follows from the orthogonality properties 〈cµ̄|cµ〉 = 0, 〈cµ|ΨFS〉 = 0 and 〈cµ̄|ΨFS〉 = 0 .

When ~Bex||z the exchange-field term becomes HB = BexŜ
f
z = ∆exĴ

f
z , where ∆ex = 2(gJ − 1)Bex = −2Bex/7, with

the value gJ = 6/7 for the gyromagnetic ratio for the J = 5/2 multiplet substituted into the RHS. The contribution
of the last two terms in (1) to the GS energy then reads

〈Ψ|HB +HCF |Ψ〉 = α2〈Jf , Jf |HB +HCF |Jf , Jf 〉 = α2
[
∆exJ

f +B0
2J

f (Jf − 1/2)
]
, (12)

where the properties (7)-(11) were used in the first line. In the second one we used the fact that the wavefunction
|Jf , Jf 〉 is the 4f ground state of HB +HCF in the case of ∆ex < 0 and B0

2 < 0 (as in CeFe11Ti and CeFe11TiN).
Let us now consider the change of energy ∆E(α) upon the rotation of Bex. We specify the direction of the exchange

field Bex(θ) by its angle θ with respect to the z axis (parallel to the c lattice parameter of the tetragonal unit cell)
and confine this rotation to the xz plane. We thus neglect the polar-angle dependence of the magnetic anisotropy,
which is insignificant in the CeFe11MX materials’ family.

First we consider ∆E at the value of α = α0, where α0 was fixed by the minimization, Eq. 5, at θ = 0, giving the
variational ground-state energy Eα0

and wave function Ψ0. Then we evaluate

∆E(α0, θ) = MIN [〈Ψ|H(θ)|Ψ〉]α0
− Eα0

,
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where the minimization is assumed to be over all variational parameters in Ψ, i. e., βµ,
γµ,γ(b, b1, b2...,k,k1,k2..., µ, µ̄, µ1...), see eqs. 3, 4 and 6, apart from α fixed at α0.

In order to evaluate MIN [〈Ψ|H(θ)|Ψ〉]α0
one may employ, e.g., first order perturbation theory with respect to HCF

that is treated as a smaller term compared to HB . Namely, we rotate the local coordinate frame by the angle θ so
that the resulting axis z̃||Bex(θ), hence, the form of HB in the new frame is the same, ∆exĴ

f
z . Correspondingly, ΨJ

takes te same form |Jf , Jf 〉 in the new frame, and ΨS is rotationally invariant. The perturbation term in HCF due

to the substitution Ĵz → Ĵz̃ cos θ − Ĵx̃ sin θ reads

∆HCF (θ) = −3B0
2

2
[Ĵ2
z̃ sin2 θ − Ĵ2

x̃ sin2 θ + (Ĵz̃Ĵx̃ + Ĵx̃Ĵz̃) sin 2θ]. (13)

Using (9) and (11) one thus obtains

MIN [〈Ψ|H(θ)|Ψ〉]α0
− Eα0

= 〈Ψ0|∆HCF (θ)|Ψ0〉 = α2
0〈Jf , J |∆HCF (θ)|Jf , J〉

with only the first two terms in (13) contributing to the first-order correction 〈Jf , J |∆HCF (θ)|Jf , J〉. A straightfor-
ward calculation gives

〈Jf , Jf |∆HCF (θ)|Jf , Jf 〉 = −3/2B0
2J

f (Jf − 1/2) sin2 θ ≡ Kat
1 sin2 θ, (14)

where

Kat
1 = −3/2B0

2J
f (Jf − 1/2) = −3αfJA

0
2〈r2〉Jf (Jf − 1/2) (15)

coincides, as expected, with the standard expression for the exchange-dominated limit at zero temperature21. There-
fore, for the full K1 anisotropy constant of the screened local moment (1) we obtain

K1(α0) = α2
0K

at
1 . (16)

At the same time, according to Eq. 7, α0 scales also the local moment

〈Ĵz〉 = 〈Ψ|Ĵfz |Ψ〉 = α2
0〈ΨJ |Ĵfz |ΨJ〉 = α2

0〈Ĵatz 〉. (17)

Thus, we extract the value of α0 from the ratio of Ce moments calculated at ~Bex||c with the full solution in
DMFT(QMC) and within the atomic approximation (DFT+HubI). Explicitly,

α2
0 =

〈Ĵz〉
〈Ĵatz 〉

=
〈M̂z〉
〈M̂at

z 〉
, (18)

where the ratio 〈Mz〉
〈Mat

z 〉
can be extracted by extrapolating the curves Mz(T ) (Fig. 2a of the main text) to zero temper-

ature.
Let us now consider the effect of θ-dependence of the variational parameter α on the anisotropy constant. We thus

assume the expectation value of the Hamiltonian (1) for the variational wave function (2) to be in the following form:

E(α, θ) = A(α− α0)2 +Kat
1 α

2 sin2 θ +O(αn≥4), (19)

where the first term is due to the condition (5) at Bex(θ = 0), the second one is the anisotropy energy (21) at a given
value of α. As we are primary interested in describing the anisotropy for large θ (easy vs. hard direction) we fix
θ = π/2 and minimize E(α, π/2) with respect to α obtaining α = Aα0

A+Kat
1

. Inserting this into (19) we find the energy

correction to be

E(α, π/2)− E(α0, π/2) = −α2
0K

at
1

δ

1 + δ
, (20)

with δ = Kat
1 /A. Thus, the final formula for the anisotropy constant that we use reads

K1 = α2
0K

at
1

(
1− δ

1 + δ

)
= α2

0K
at
1

1

1 + δ
(21)

where Kat
1 is given by Eq. 15 and α2

0 by Eq. 7.
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The parameter A, giving the curvature of E(α, θ = 0) in Eq. 19), we evaluate by explicitly varying the magnitude
of the exchange field Bex while keeping its direction aligned to c; this calculation can easily be done within our
DMFT(QMC) framework. Then, by minimizing the corresponding expression for the variational total energy

E(α) = A(α− α0)2 −BexŜfz = A(α− α0)2 −∆exα
2 (22)

with respect to α, we finally obtain

A = − ∆exα

α− α0
, (23)

where α0 corresponds to the ratio of moments in Eq. 18 with Bex||c, whereas α represents the same ratio with
increased exchange field, i.e. additional ∆ex applied. The corresponding values for A are 770, 475 K for CeFe11Ti and
CeFe11TiN, respectively.

Supplementary Note 4: Crystal-field parameters and anisotropy constants in CeFe11M(N)

The quasi-atomic Hamiltonian for the Ce-4f shell reads:

Ĥat = Ĥ1el + ĤU =
∑

mm′σσ′

εσσ
′

mm′f†mσfm′σ′ + ĤU , (24)

where ĤU is the on-site Coulomb repulsion, and the one-electron 4f level positions read

ε̂ = Ê0 + λ
∑
i

sili + Ĥcf + Ĥex (25)

where the terms on the right hand side are the uniform shift as well as the spin-orbit, crystal field (CF), and exchange

field. The exchange field is Ĥex = 2µBBexnŜf , where the exchange field Bex along the direction n is due to the

magnetic transition-metal sublattice coupled to the Ce-4f spin Ŝf . The CF Hamiltonian is defined by crystal field
parameters (CFPs) in the standard Aml 〈rl〉 notation, in the case of a tetragonal point-group symmetry only the CFPs
for the following lm combinations can be non-zero: 20, 40, 44, 60, and 64. Although in the case of CeFe11Ti and
CeFe11TiN the point group of the Ce site is orthorhombic, the effect of the corresponding non-tetragonal CFPs is
cancelled by a random distribution of Ti substitutions restoring the original tetragonal symmetry.

In Supplementary Table I we list the CFPs and exchange field in the three intermetallics calculated by DFT+HubI.
One sees that the low-rank ”20” parameter is largest in CeFe11TiN; in all three compounds the high-rank CFPs are
large thus substantially affecting the anisotropy at low temperatures.

In order to evaluate the anisotropy constants we employ a numerical diagonalization of the Hamiltonian (24) to
calculate its free energy F (n) as a function of the direction of the exchange field n. We parametrize n by the angle θ
with respect to the tetragonal c axis in the ac plane. The resulting dependence of the Ce single-ion anisotropy energy
Eata = F (θ) − F (θ = 0) for CeFe11Ti is shown in Supplementary Fig. 2 for several temperatures. One sees that the
resulting dependence is very well described by only one anisotropy constant Eata ≈ Kat

1 sin2 θ. For CeFe11TiN the fit
with only Kat

1 is worse, however, we keep this basic fit in view of simplifying the subsequent treatment of the Kondo
screening, which will, as shown in the main text, almost completely suppress the Ce single-ion contribution in the
case of CeFe11TiN.

Supplementary Table I: Calculated crystal-field parameters (in K) and exchange field (in Tesla)

A0
2〈r2〉 A0

4〈r4〉 A4
4〈r4〉 A0

6〈r6〉 A4
6〈r6〉 Bex

CeFe12 -58 0 -123 105 94 306
CeFe11Ti 137 -34 -424 130 177 320
CeFe11TiN 424 -91 -358 -86 242 220
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Supplementary Figure 1: Crystal-field splitting and eigenstates in CeFe11M(N) intermetallics. The figure shows the
crystal field splitting of the J = 5/2 multiplet and the resulting eigenstates obtained for CeFe12, CeFe11Ti and

CeFe11TiN using the DFT+HubI approach.

Supplementary Figure 2: Anisotropy energy in CeFe11Ti calculated by numerical diagonalization of the Hamiltonian
(24) (solid lines) compared to its fit to the form ≈ Kat

1 sin2 θ (dashed lines).
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Supplementary Figure 3: Orbital-resolved DMFT(QMC) self-energies. (a) In CeFe11Ti, the main visible difference
at low energies is between the orbitals belonging to the excited atomic multiplet J = 7/2 (in blue) and the J = 5/2
orbitals belonging to the atomic ground state multiplet (in red). Note that the J = 7/2 orbitals are almost empty,
while the J = 5/2 orbitals carry n5/2 = 0.82 of a total Ce-4f filling of nf = 0.94. (b) In CeFe11TiN, the difference

between the J = 5/2 and the J = 7/2 manifold is still clearly visible, but the occupancy of the J = 7/2 orbitals has
increased. The J = 5/2 orbitals carry now n5/2 = 0.60 of a total nf = 0.84.

Supplementary Figure 4: DMFT(QMC) spectral function of CeFe12. The Fe spectral weight has been rescaled by a
factor 1/3. The Ce-4f occupancy is nf = 0.93.
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