Stéphane Demri
email: demri@lsv.ens-cachan.fr

Régis Gascon
email: gascon@lsv.ens-cachan.fr

Verification of qualitative Z constraints

We introduce an LTL-like logic with atomic formulae built over a constraint language interpreting variables in Z. The constraint language includes periodicity constraints, comparison constraints of the form x = y and x < y, it is closed under Boolean operations and it admits a restricted form of existential quantification. This is the largest set of qualitative constraints over Z known so far, shown to admit a decidable LTL extension. Such constraints are those used for instance in calendar formalisms or in abstractions of counter automata by using congruences modulo some power of two. Indeed, various programming languages perform arithmetic operators modulo some integer. We show that the satisfiability and model-checking problems (with respect to an appropriate class of constraint automata) for this logic are decidable in polynomial space improving significantly known results about its strict fragments. As a by-product, LTL model-checking over integral relational automata is proved complete for polynomial space which contrasts with the known undecidability of its CTL counterpart.

Introduction

Model-checking infinite-state systems. The verification of systems with an infinite amount of states has benefited from the numerous decidable model-checking problems for infinite-state systems, including timed automata [START_REF] Alur | A theory of timed automata[END_REF], infinite transition graphs [START_REF]On infinite transition graphs having a decidable monadic theory[END_REF], or subclasses of counter systems (see e.g. [START_REF] Comon | Multiple counters automata, safety analysis and Presburger arithmetic[END_REF]). Even though decidability can be obtained via numerous proof techniques (finite partition of the infinite domain, well-structured systems, Presburger definable reachability sets, reduction to the second-order theory of the binary tree), showing undecidability of model-checking for some classes of infinite-state systems is often easy. After all, the halting problem for Minsky machines is already undecidable. Decidability is more difficult to establish and it can be sometimes regained by naturally restricting the class of models (see e.g. the flatness condition in [START_REF] Comon | Multiple counters automata, safety analysis and Presburger arithmetic[END_REF]) or by considering fragments of the specification language (to consider only reachability or repeated reachability for instance).

Systems with variables interpreted in Z. Structures with a finite set of control states augmented with a finite set of variables interpreted either in Z or in N (counters) are operational models of numerous infinite-state systems, including broadcast protocols (see e.g. [START_REF] Esparza | On the verification of broadcast protocols[END_REF][START_REF] Finkel | How to compose Presburger accelerations: Applications to broadcast protocols[END_REF]). The class of counter machines has numerous undecidable model-checking problems such as the reachability problem but many classes of counter systems have been shown to be decidable: reversal-bounded multicounter machines [START_REF] Ibarra | Reversal-bounded multicounter machines and their decision problems[END_REF], flat counter systems with affine update functions forming a finite monoid [START_REF] Boigelot | Symbolic methods for exploring infinite state spaces[END_REF][START_REF] Finkel | How to compose Presburger accelerations: Applications to broadcast protocols[END_REF][START_REF] Bardin | FAST: Fast Acceleration of Symbolic Transition systems[END_REF], flat counter systems [START_REF] Comon | Multiple counters automata, safety analysis and Presburger arithmetic[END_REF] (weaker class of Presburger guards but no condition on the monoid) and constraint automata with qualitative constraints on Z [START_REF] Demri | An automata-theoretic approach to constraint LTL[END_REF].

Our motivation. Constraint automata with qualitative constraints on Z are quite attractive operational models since they can be viewed as abstractions of counter automata where incrementations and decrementations are abstracted by operations modulo some power of two. Common programming languages perform arithmetic operators for integer types modulo 2 k [MOS05], typically k is either 32 or 64. For example, x = y + 1 can be abstracted by x ≡ 2 k y + 1 ∧ y < x. Such an abstraction is well-suited to check safety properties about the original counter system. In the paper, we study a class of constraint automata with a language of qualitative constraints as rich as possible and a companion LTL-like logic to perform model-checking on such operational models. Our framework should be able to deal both with abstractions modulo (see e.g. [START_REF] Clarke | Model checking and abstraction[END_REF][START_REF] Logothetis | Abstraction from counters: an application on real-time systems[END_REF]) and with integer periodicity constraints used in logical formalisms to deal with calendars [START_REF] Lago | Calendars, time granularities, and automata[END_REF], i.e. constraints of the form x ≡ k y + c. By a qualitative constraint, we mean for instance a constraint that is interpreted as a non-deterministic binary relation, like x < y and x ≡ 2 k y + 5 (the relationship between x and y is not sharp).

Our contribution. We introduce a version of constraint LTL over the constraint language IPC , whose expressions are Boolean combinations of IPC ++ constraints from [START_REF] Demri | LTL over integer periodicity constraints[END_REF] and constraints of the form x < y. The language IPC ++ is already closed under Boolean operators and first-order quantification. No constraint of the form x < y occurs in the scope of a quantifier. Otherwise incrementation is definable and it leads to undecidability of the logic. So, as shown in this paper, adding the single type of constraints x < y leads to many technical complications, but not to undecidability. We call CLTL(IPC) the specification language built over IPC constraints. We also introduce the class of IPC -automata defined as finite-state automata with transitions labelled by CLTL(IPC) formula à la Wolper [START_REF] Wolper | Temporal logic can be more expressive[END_REF]. Such structures can be viewed as labelled transition systems obtained by abstraction of counter automata.

Constraint LTL over IPC ++ is shown to be in pspace in [START_REF] Demri | LTL over integer periodicity constraints[END_REF] whereas constraint LTL over constraints of the form either x = y or x < y is also shown to be in pspace in [START_REF] Demri | An automata-theoretic approach to constraint LTL[END_REF]. Both proofs use reductions to the emptiness problem for Büchi automata following the approach in [START_REF] Vardi | Reasoning about infinite computations[END_REF]. However, the proofs are of different nature: in [START_REF] Demri | LTL over integer periodicity constraints[END_REF] the complexity upper bound is obtained by a finite model property argument whereas in [START_REF] Demri | An automata-theoretic approach to constraint LTL[END_REF] approximations of classes of symbolic models are considered because some formulae can generate non ω-regular classes of symbolic models. We show that model-checking and satisfiability problems for the logic CLTL(IPC) are decidable (which was open so far) and moreover in pspace (pspace-hardness is easy). The proof substantially generalizes what is done for constraint LTL over the domain Z, <, = by con-sidering both new constraints of the form x ≤ d, d ∈ Z and integer periodicity constraints. The optimal treatment of constants occurring in such constraints is our main technical contribution. As a corollary, we establish that LTL modelchecking over integral relational automata [Čer94] is pspace-complete. Hence, even though IPC is a powerful language of qualitative constraints, the pspace upper bound is preserved in CLTL(IPC). To our opinion, we provide a definite complexity characterization of LTL with qualitative constraints over Z.

Related work.

Reachability problems for subclasses of counter systems have been addressed for instance in [Iba78,CJ98,FL02,BFLP03] (see also richer questions in [START_REF] Bouajjani | Reachability analysis of pushdown automata: application to model-checking[END_REF][START_REF] Jančar | DP lower bounds for equivalence-checking and model-checking of one-counter automata[END_REF]). In our work, we have a full LTL-like language, not restricted to reachability questions, used as a specification language and no restriction on the structure of the models. However, atomic formulae of the specification language are qualitative constraints. If we give up the decidability requirement, LTL over Presburger constraints can be found in [START_REF] Bouajjani | On the verification problem of nonregular properties for nonregular processes[END_REF][START_REF] Comon | Flatness is not a weakness[END_REF].

Constraint LTL over concrete domains (not only restricted to Z) has been considered in [WZ00,BC02,DD03,GKK + 03,Dem04] where often pspace-completeness is shown. The idea of building LTL over a language of constraints, although already present in first-order temporal logics, stems from the use of concrete domains for description logics, see e.g. [START_REF] Lutz | NEXPTIME-complete description logics with concrete domains[END_REF]. The language CLTL(IPC) extends the different LTL-like fragments from [Čer94,LM01,DD03,Dem04] (pasttime operators can be added for free in our formalism thanks to [START_REF] Gastin | Satisfiability and model checking for MSO-definable temporal logics are in PSPACE[END_REF]). The class of IPC -automata introduced in the paper generalizes the class of integral relational automata from [Čer94] (see details in [START_REF] Demri | Verification of qualitative Z-constraints[END_REF]).

Integer periodicity constraints, a special class of Presburger constraints, have found applications in many formalisms such as abstractions with congruences modulo an integer of the form 2 k (see e.g. [START_REF] Clarke | Model checking and abstraction[END_REF][START_REF] Müller-Olm | Analysis of modular arithmetic[END_REF]), logical formalisms dealing with calendars (see e.g. [START_REF] Lago | Calendars, time granularities, and automata[END_REF]), DATALOG with integer periodicity constraints [START_REF] Toman | Datalog with integer periodicity constraints[END_REF] and in real-time logics [START_REF] Alur | A really temporal logic[END_REF].

Omitted proofs can be found in [START_REF] Demri | Verification of qualitative Z-constraints[END_REF].

The logic CLTL(IPC)

Language of constraints

Let V = {x 0 , x 1 , . . .} be a countably infinite set of variables (in some places for ease of presentation, V will denote a particular finite set of variables). The language of constraints p is defined by the following grammar:

p ::= pmod | x < y | p ∧ p | ¬p pmod ::= x ≡ k [c 1 , c 2] | x ≡ k y + [c 1 , c 2] | x = y | x < d | x = d | pmod ∧ pmod | ¬pmod | ∃x pmod where x, y ∈ V , k ∈ N \ {0}, c 1 , c 2 ∈ N and d ∈ Z.
This language is denoted by IPC . We write IPC ++ to denote its restriction to constraints ranged over by pmod, and Z c its restriction to constraints of the form either x ∼ y or x ∼ d. The symbol ∼ is used to mean either = or <. The language Z is the restriction of Z c to constraints of the form x ∼ y. We define a valuation v as a map v : V → Z and the satisfaction relation v |= p is defined as follows in the standard way:

-v |= x ∼ y def ⇔ v(x) ∼ v(y); v |= x ∼ d def ⇔ v(x) ∼ d; -v |= x ≡ k [c 1 , c 2] def ⇔ v(x) is equal to c modulo k for some c 1 ≤ c ≤ c 2 ; -v |= x ≡ k y + [c 1 , c 2] def ⇔ v(x) -v(y) is equal to c modulo k for some c 1 ≤ c ≤ c 2 ; -v |= p ∧ p def ⇔ v |= p and v |= p ; v |= ¬p def ⇔ not v |= p; -v |= ∃x p def ⇔ there is z ∈ Z such that v[x ← z] |= p where v[x ← z](x) = v(x) if x = x and v[x ← z](x) = z. We recall that x is equal to y modulo k if there is z ∈ Z such that x -y = k × z. We write x ≡ k c instead of x ≡ k [c, c], x ≡ k y + c instead of x ≡ k y + [c, c] and v |= X
where X is a set of IPC -constraints, whenever v |= p for every p ∈ X.

A constraint p is satisfiable iff there is a valuation v such that v |= p. Two constraints are equivalent iff they are satisfied by the same valuations.

Lemma 1. (I) The satisfiability problem for IPC is pspace-complete. (II) Every constraint in IPC admits an equivalent quantifier-free constraint in IPC .

Hence, IPC is a quite well understood fragment of Presburger arithmetic.

Logical language

We consider the linear-time temporal logic CLTL(IPC) whose atomic formulae are defined from constraints in IPC . The atomic formulae are of the form p[x 1 ← X i 1 x j 1 , . . . , x r ← X i r x j r], where p is a constraint of IPC with free variables x 1 . . . x r . We substitute each occurrence of the variable x l with X i l x j l , which corresponds to the variable x j l preceded by i l next symbols. Each expression of the form X β x α is called a term and represents the value of the variable x α at the β th next state. Here are examples of atomic formulae: Xy ≡ 2 32 x + 1 and x < Xy.

The set of CLTL(IPC) formulae φ is defined by

φ ::= p[x 1 ← X i 1 x j 1 , . . . , x r ← X i r x j r] | ¬φ | φ ∧ φ | Xφ | φUφ,
where p belongs to IPC . The operators next (X) and until (U) are the classical operators used in temporal logics. In the language, all the integers are encoded with a binary representation (this is important for complexity considerations). Given a set of constraints X included in IPC , we write CLTL(X) to denote the restriction of CLTL(IPC) in which the atomic constraints are built over elements of X.

A model σ : N × V → Z for CLTL(IPC) is an ω-sequence of valuations. The satisfaction relation is defined as follows (we omit the Boolean cases):

-σ, i |= p[x 1 ← X i 1 x j 1 , . . . , x r ← X i r x j r] iff [x 1 ← σ(i + i 1 , x j 1), . . . , x r ← σ(i + i r , x j r)] |= p; -σ, i |= Xφ iff σ, i + 1 |= φ; -σ, i |= φUφ iff there is j ≥ i s.t. σ, j |= φ and for every i ≤ l < j, σ, l |= φ.
By definition, CLTL(IPC)-models interpret variables but not propositional variables. However, it is easy to encode propositional variables by using atomic formulae of the form x = 0 where x is a new variable introduced for this purpose.

Satisfiability and model-checking problems

We recall below the problems we are interested in.

Satisfiability problem for CLTL(IPC): Given a CLTL(IPC) formula φ, is there a model σ such that σ, 0 |= φ?

If we extend IPC to allow constraints of the form x < y in the scope of ∃, then the satisfiability problem for the corresponding constraint LTL-like logic is undecidable since the successor relation is then definable and the halting problem for Minsky machines can be easily encoded.

The model-checking problem rests on IPC -automata which are constraint automata. An IPC -automaton A is defined as a Büchi automaton over the infinite alphabet composed of CLTL(IPC) formulae. In an IPC -automaton, letters on transitions may induce constraints between the variables of the current state and the variables of the next state as done in [START_REF] Comon | Flatness is not a weakness[END_REF]. Hence, guards and update functions are expressed in the same formalism. We are however a bit more general since we allow formulae on transitions as done in [START_REF] Wolper | Temporal logic can be more expressive[END_REF]. As an illustration, we present an IPC -automaton in Fig. 1 which is an abstraction of the pay-phone controller from [CC00, Example 1] (x is the number of quarters which have been inserted and y measures the total communication time). Incrementation of a variable z is abstracted by Xz ≡ 2 32 z + 1 ∧ Xz > z. The formula φ = denotes Xx = x ∧ Xy = y. Messages are omitted because they are irrelevant here (simplifications are then possible). The satisfiability problem and the model-checking problem are reducible to each other in logspace following techniques from [START_REF] Sistla | The complexity of propositional linear temporal logic[END_REF], by possibly introducing a new variable. In the following sections, we prove results for the satisfiability problem but they also extend to the model-checking problem.

q 1 q 2 q 3 q 4 q 6 q 5 x = 0 ∧ y = 0 φ = x > 0 ∧ φ = y ≤ x ∧ φ = φ = φ = x = y ∧ Xx = 0 ∧ Xy = 0 Xx ≡ 2 32 x + 1 ∧ Xx > x ∧ Xy = y Xx ≡ 2 32 x + 1 ∧ Xx > x ∧ Xy = y y ≤ x ∧ Xy ≡ 2 32 y + 1 ∧ Xy > y ∧ Xx = x Xy ≤ x, Xy ≡ 2 32 y + 1 ∧ Xy > y ∧ Xx = x
The equivalence problem for Extended Single-String automata [START_REF] Lago | Calendars, time granularities, and automata[END_REF] can be encoded as a model-checking problem for CLTL(IPC) [START_REF] Demri | LTL over integer periodicity constraints[END_REF]. Furthermore, the model-checking problem for integral relational automata restricted to the LTL fragment of CCTL * introduced in [Čer94] is a subproblem of the modelchecking problem for CLTL(IPC) (see details in [START_REF] Demri | Verification of qualitative Z-constraints[END_REF]). The model-checking problem for CLTL(IPC ++) (resp. CLTL(Z)) is shown to be pspace-complete in [START_REF] Demri | LTL over integer periodicity constraints[END_REF] (resp. in [START_REF] Demri | An automata-theoretic approach to constraint LTL[END_REF]). However, the proof for IPC ++ uses an ω-regular property of the set of models that does not hold when we introduce constraints of the form x < y. The problem for CLTL(Z c) is shown to be in expspace in [START_REF] Demri | An automata-theoretic approach to constraint LTL[END_REF] by a translation into CLTL(Z) that increases exponentially the size of formulae (with a binary encoding of the natural numbers).

A restricted IPC -automaton is defined as an IPC -automaton such that the labels on transitions are Boolean combinations of atomic formulae with terms of the form x and Xx (see Fig. 1). The logic CCTL * (IPC) (constraint CTL * over IPC constraints) is defined as the extension of CLTL(IPC) with the path quantifiers ∃ and ∀ but restricted to atomic formulae with no variables in V preceded by X. The models of CCTL * (IPC) are the configuration graphs of restricted IPC -automata. The satisfaction relation A, q, x |= φ is defined in the usual way. The model-checking problem for CCTL * (IPC) takes as inputs a restricted IPC -automaton A, an initial configuration q, 0 (q is a control state and 0 is the initial valuation with null values for the variables) and a CCTL * (IPC) formula φ and checks whether A, q, 0 |= φ. Full CCTL * (IPC) model-checking can be shown to be undecidable by using developments in [START_REF] Demri | Verification of qualitative Z-constraints[END_REF] and [Čer94] (even its CTL-like fragment) and one can show that its LTL fragment is decidable in polynomial space, a new result not captured by [Čer94].

Properties of the constraint language

In this section, we establish results about the constraint language underlying the logic CLTL(IPC). In order to define automata that recognize symbolic representations of CLTL(IPC)-models, the valuations v of the form V → Z are represented by symbolic valuations. Given a finite set X of IPC constraints, typically the set of constraints occurring in a given CLTL(IPC) formula, we introduce the following notations:

-K is the lcm of k 1 , . . . , k n where periodicity constraints with relations -V is the finite set of variables occurring in X.

≡ k 1 , . . . , ≡ k n occur in X. Observe that |K| is in O(|k 1 | + • • • + |k n |). -C
In the remaining, we assume that the above objects are always defined (possibly by adding dummy valid constraints in order to make the sets non-empty).

A maximally consistent set Y of Z c constraints with respect to V and C is a set of Z c constraints using only the variables from V and the constants from C such that there is a valuation v : V → Z verifying v |= Y and for any proper extension Z of Y , there is no valuation v : V → Z verifying v |= Z. A valuation is abstracted by three disjoint finite sets of IPC constraints like regions for timed automata.

Definition 1. Given a finite set X of IPC constraints, a symbolic valuation

sv is a triple Y 1 , Y 2 , Y 3 such that -Y 1 is a maximally consistent set of Z c constraints wrt V and C. -Y 2 is a set of constraints of the form x = d with x ∈ V and d ∈ C \ C. Each x ∈ V occurs at most in one constraint of the form x = d in Y 2 . Moreover, for every x ∈ V , (x = d) ∈ Y 2 for some unique d ∈ C \ C iff for every d ∈ C, (x = d) ∈ Y 1 and {m < x, x < M } ⊆ Y 1 . -Y 3 is a set of constraints of the form x ≡ K c with x ∈ V and 0 ≤ c ≤ K -1. Each x ∈ V occurs exactly in one constraint of the form x ≡ K c in Y 3 .
A consequence of Definition 1 is that in a symbolic valuation sv = Y 1 , Y 2 , Y 3 , no constraint occurs in more than one set. That is why, given an IPC constraint p, we write p

∈ sv instead of p ∈ Y 1 ∪ Y 2 ∪ Y 3 . A symbolic valuation is satisfiable iff there is a valuation v : V → Z such that v |= Y 1 ∪ Y 2 ∪ Y 3 . Lemma 2. Let X be a finite set of IPC constraints and sv = Y 1 , Y 2 , Y 3 be a triple composed of IPC constraints such that Y 1 is a set of Z c constraints built over V and C, Y 2 is a set of Z c constraints of cardinality at most |V | built over V and C \ C, Y 3 is a set of constraints of the form x ≡ K c of cardinality |V |.
Checking whether sv is a satisfiable symbolic valuation can be done in polynomialtime in the sum of the respective size of X and sv.

Maximal consistency of Y 1 can be checked in polynomial-time by using developments from [Čer94, Lemma 5.5]. Indeed, given a set Y of Z c constraints built over V and C, a graph G Y can be built such that Y is maximally consistent wrt

V and C iff G Y satisfies the conditions below. G Y is a structure V ∪ C, = -→, < -→ such that n ∼ -→ n def ⇔ n ∼ n belongs to Y . Following [Čer94, Lemma 5.5], Y is maximally consistent iff G Y satisfies the conditions below: (MC1) For all n, n , either n ∼ -→ n or n ∼ -→ n for some ∼∈ {<, =}. (MC2) = -→ is a congruence relation compatible with < -→. (MC3) There is no path n 0 ∼ 0 -→ n 1 ∼ 1 -→ . . . ∼ α-1 --→ n α with n 0 = n α and < occurs in {∼ 0 , ∼ 1 , . . . , ∼ α-1 }. (MC4) For all d 1 , d 2 ∈ C, d 1 ∼ d 2 implies d 1 ∼ -→ d 2 . (MC5) For all d 1 , d 2 with d 1 ≤ d 2 , there is no path n 0 ∼ 0 -→ n 1 ∼ 1 -→ . . . ∼ α-1 --→ n α with n 0 = d 1 and n α = d 2 such that the cardinality of {i :∼ i equals <, 1 ≤ i ≤ α -1} is strictly more than d 2 -d 1 .
The symbolic representations of valuations contain the relevant information to evaluate constraints. Lemma 3. Let X be a finite set of IPC constraints. (I) For every valuation v : V → Z there is a unique symbolic valuation sv

(v) = Y 1 , Y 2 , Y 3 such that v |= Y 1 ∪ Y 2 ∪ Y 3 . (II) For all valuations v, v such that sv(v) = sv(v) and for every p ∈ X, v |= p iff v |= p.
The proof of (I) is by an easy verification whereas (II) is shown by structural induction on p similarly to the proof of [Dem04, Lemma 1]. By Lemma 3, a symbolic valuation is an equivalence class of valuations.

Given a symbolic valuation sv and p a constraint, we write sv |= symb p def ⇔ for every valuation v such that sv(v) = sv, v |= p.

Lemma 4. The problem of checking whether sv |= symb p is pspace-complete (given that the syntactic resources used in p are included in those used for the symbolic valuation sv).

Satisfiable ω-sequences of symbolic valuations

Given a CLTL(IPC) formula φ, we write IPC (φ) to denote the set of IPC constraints p such that some atomic formula of the form p[x 1 ← X i x j 1 , . . . , x r ← X i r x j r] occurs in φ. To IPC (φ) we associate the objects relative to any finite set of IPC constraints. The set V denotes the set of variables occurring in φ. We write |φ| X to denote the maximal natural number i such that X i x occurs in φ for some variable x. |φ| X is called the X-length of φ. Without any loss of generality, we can assume that |φ| X ≥ 1. In the following, we assume that V = {x 1 , . . . , x s } and |φ| X = l. We write Terms(φ) to denote the set of terms of the form X β x α with β ∈ {0, . . . , l} and α ∈ {1, . . . , s}.

Let V be a set of variables of cardinality |Terms(φ)| and f : Terms(φ) → V be an unspecified bijection such that f and f -1 can be computed in polynomial time. By extension, for every atomic subformula p of φ, f (p) is obtained from p by replacing each occurrence of X β x α by f (X β x α). The map f -1 is used in a similar fashion. A symbolic valuation wrt φ is a symbolic valuation built over the set of variables V , C and K.

We say that a pair

Y 1 , Y 2 , Y 3 , Y 1 , Y 2 , Y 3 of symbolic valuations wrt φ is one-step consistent def ⇔ 1. f (X j x i) ∼ f (X j x i) ∈ Y 1 and j, j ≥ 1 imply f (X j-1 x i) ∼ f (X j -1 x i) ∈ Y 1 , 2. f (X j x i) ∼ d ∈ Y 1 ∪ Y 2 and j ≥ 1 imply f (X j-1 x i) ∼ d ∈ Y 1 ∪ Y 2 , 3. f (X j x i) ≡ K c ∈ Y 3 and j ≥ 1 imply f (X j-1 x i) ≡ K c ∈ Y 3 .
An ω-sequence ρ of satisfiable symbolic valuations wrt φ is one-step consistent def ⇔ for every j ∈ N, ρ(j), ρ(j+1) is one-step consistent. A model for ρ is defined as a CLTL(IPC)-model σ such that for all j ∈ N and p ∈ ρ(j), σ, j |= f -1 (p). In order to simplify the future developments, we write ρ f to denote the ω-sequence obtained from ρ by substituting each occurrence of some variable x by f -1 (x).

One-step consistent ω-sequences of symbolic valuations wrt φ define abstractions of models for φ. We represent a one-step consistent sequence ρ as an infinite labeled structure

G ρ = (V ∪ C) × N, = -→, < -→, mod where mod : (V ∪ C) × N → {0, . . . , K -1}: x, i ∼ → y, j iff either i ≤ j and x ∼ X j-i y ∈ ρ f (i) or i > j and X i-j x ∼ y ∈ ρ f (j), x, i = → d, j iff x = d ∈ ρ f (i), d, i = → x, j iff x = d ∈ ρ f (j), x, i < → d, j iff there is d ∼ d such that x ∼ d ∈ ρ f (i) and <∈ {∼, ∼ }, d, i < → x, j iff there is d ∼ d such that d ∼ x ∈ ρ f (j) and <∈ {∼, ∼ }, d 1 , i ∼ → d 2 , j iff d 1 ∼ d 2 , mod(x, i) = c iff x ≡ K c ∈ ρ f (i) and mod(d, i) = c iff d ≡ K c.
for all x, y ∈ V , d 1 , d 2 ∈ C and i, j ∈ N such that |i -j| ≤ l. By construction of G ρ , the variables and constants are treated in a similar fashion. It is worth observing that G ρ is well-defined because ρ is one-step consistent. The construction ensures that the "local" representation of every ρ(i) verifies the conditions (MC1) to (MC5) of Sect. 3.

In the following, we say that a vertex represents the constant d if it is of the form d, i for some i. The level of a node n = a, t in G ρ is t, and is denoted by lev(n). There is some redundancy in G ρ for the nodes of the form d, i . However, this is useful to establish strict relationships between ρ and G ρ . A path in G ρ is a sequence (possible infinite) of the form n 0

Example 1. Assuming that C = {2, 4}, K = 2, V = {x, x } (f (x) = x and f (Xx) = x) and l = 1, let us define the sequence ρ = sv 0 • (sv 1 • sv 2) ω where sv 0 = Y 0 1 , Y 0 2 , Y 0 3 such that Y 0 1 = {x = x, x = x , x < x , 2 < x, x < 4, x = 4, x > 2}, Y 0 2 = {x = 3} and Y 0 3 = {x ≡ 2 1, x ≡ 2 0}. The symbolic valuation sv 1 = Y 1 1 , Y 1 2 , Y 1 3 satisfies: Y 1 1 = (Y 0 1 \ {2 < x, x < 4, x = 4, x > 2}) ∪ {4 < x, 4 < x }, Y 1 2 = ∅ and Y 1 3 = {x ≡ 2 0, x ≡ 2 1}. The symbolic valuation sv 2 = Y 2 1 , Y 2 2 , Y 2 3 verifies Y 2 1 = Y 1 1 , Y 2 2 = Y 2 1 and Y 2 3 = Y 0 3 . The graph G ρ is presented in Fig.
∼ 0 -→ n 1 ∼ 1 -→ n 2 ∼ 2 -→ For any finite path w = n 0 ∼ 0 -→ n 1 ∼ 1 -→ n 2 ∼ 2 -→ . . . ∼ α-1
--→ n α , its strict length slen(w) is the cardinality of {i : 0 ≤ i ≤ α-1, ∼ i equals <}. When w has a strict length greater than 1, we say that w is strict. A finite path w such that n 0 = n α is called a cycle. The strict length between two nodes n 1 and n 2 , written slen(n 1 , n 2), is the least upper bound of the strict lengths of finite paths between n 1 and n 2 . By convention, if there is no path between n 1 and n 2 , slen(n 1 , n 2) takes the value -∞. In Fig. 2, slen(2, 2 , x, 3) = 4.

In Lemma 5 below, the one-step consistency of ρ implies global constraints on its graph representation that already hold true locally. By a global constraint, we mean a constraint on the whole graph and not only on the local representation of a single symbolic valuation or on two successive satisfiable symbolic valuations.

2, 0 3, 0 4, 0 x, 0 ≡ 2 1 2, 1 3, 1 4, 1 x, 1 ≡ 2 0 2, 2 3, 2 4, 2 x, 2 ≡ 2 1 2, 3 3, 3 4, 3 x, 3 ≡ 2 0 . . . < < < < < < = < = < = < = = < < < < = < = < = < < < < < = < = < = < < Fig. 2. A graph G ρ Lemma 5.
Let ρ be a one-step consistent sequence.

(I) G ρ has no strict cycle. (II) If there is a finite path w starting at d, i and ending at the node n of level j, then: if w is strict then d, j

< -→ n, otherwise d, j = -→ n. (III)
If there is a finite path w starting at the node n of level j and ending at d, i , then: if w is strict then n

< -→ d, j , otherwise n = -→ d, j .
Corollary 1. Let ρ be a one-step consistent sequence and G ρ its graph representation. Then, for all nodes d 1 , i and

d 2 , j in G ρ representing constants such that d 1 ≤ d 2 , slen(d 1 , i , d 2 , j) = d 2 -d 1 .
So far, we have stated properties about the graph G ρ . Below, we establish simple conditions on G ρ equivalent to the existence of a model for ρ. An edgerespecting labeling for G ρ is a map lab : (V ∪ C) × N → Z such that for all nodes n 1 , n 2 , n 1 ∼ -→ n 2 implies lab(n 1) ∼ lab(n 2) and for every node n, lab(n) ≡ K mod(n). Additionally, lab is said to be strict if for every d, i in G ρ , lab(d, i) = d. Lemma 6. A one-step consistent sequence ρ has a model iff G ρ has a strict edge-respecting labeling.

The proof is quite direct by unfolding the definitions. A refinement is possible.

Lemma 7. A one-step consistent sequence ρ has a model iff G ρ has an edgerespecting labeling (not necessarily strict).

Lemmas 6 and 7 state correspondences between ρ and its graphical representation G ρ . However, we need a more abstract characterization of the one-step consistent sequences admitting a model (see Lemma 8 below).

Lemma 8. Let ρ be a one-step consistent sequence. The graph G ρ has an edgerespecting labeling iff for all nodes n 1 , n 2 in G ρ , slen(n 1 , n 2) < ω.

By construction of G ρ , for all nodes d 1 , i and d 2 , j representing constants such that d 1 ≤ d 2 , slen(d 1 , i , d 2 , j) = d 2d 1 (see Corollary 1). That is why, in Lemma 8, there is no additional constraint for nodes of the graph representing constants.

Lemma 8 characterizes the set of sequences having a model but what we really need is to recognize them with automata. The main difficulty rests on the fact that the set of satisfiable one-step consistent ω-sequences of satisfiable symbolic valuations is not ω-regular, a consequence of [START_REF] Demri | An automata-theoretic approach to constraint LTL[END_REF] for the fragment CLTL(Z). In order to approximate this class of sequences, we define below a condition (C) shown to be ω-regular such that for every one-step consistent ωsequence ρ of satisfiable symbolic valuations that is ultimately periodic, ρ has a model iff G ρ satisfies (C).

An infinite forward (resp. backward) path in G ρ is defined as a sequence w : N → (V ∪ C) × N such that: for every i ∈ N, there is an edge w(i) ∼ -→ w(i + 1) (resp. w(i + 1) ∼ -→ w(i)) in G ρ and if lev(w(i)) = j, then lev(w(i + 1)) ≥ j + 1. The path w is infinitely often strict def ⇔ for every i ≥ 0, there is j ≥ i such that w(j) < -→ w(j + 1) (resp. w(j + 1) < -→ w(j)). The condition (C) on the graph G ρ is: there do not exist vertices n 1 and n 2 in G ρ with |lev(n 1)lev(n 2)| ≤ l satisfying (AP1) there is an infinite forward path w for from n 1 , (AP2) there is an infinite backward path w back from n 2 , (AP3) either w for or w back is infinitely often strict, and (AP4) for all i, j ∈ N, whenever |lev(w for (i))lev(w back (j))| ≤ l, w for (i)

< -→ w back (j) in G ρ .
We say an infinite word is ultimately periodic if it is of the form τ • δ ω for some finite words τ and δ.

Lemma 9. Let ρ be one-step consistent ω-sequence of satisfiable symbolic valuations that is ultimately periodic. Then ρ admits a model iff G ρ satisfies (C).

Thanks to the way G ρ is built from ρ, (C) does not explicitly mention the constants in C and the constraints of the form x ≡ K c. Hence, Lemma 9 can be proved as [DD03, Lemma 6.2]: the map mod in G ρ is ignored and a uniform treatment for all nodes in (V ∪ C) × N is provided. In [DD03, Lemma 6.2], there are no nodes of the form C × N but we take into account their specificity in our construction of G ρ . If ρ admits a model then by Lemma 8 it satisfies the condition (C). Conversely, let ρ = τ • δ ω be an ultimately periodic one-step consistent ω-sequence. We can show that if ρ has no model then it does not satisfy (C). By Lemma 8, if ρ has no model, then there exist two vertices n 1 and n 2 such that slen(n 1 , n 2) = ω. One can construct a finite path w between n 1 and n 2 long enough so that paths w for and w back satisfying the conditions (AP1)-(AP4) can be constructed, witnessing that G ρ does not satisfy (C). The construction of w for and w back from w uses the fact that ρ is ultimately periodic by repeating infinitely finite subpaths. The construction of such infinite paths can be done smoothly by using the properties established in this section (see e.g. Lemma 5). As the proof is not essentially different from [DD03, Lemma 6.2] modulo slight changes mentioned above, we omit it here.

Based on the previous results and following the approach in [START_REF] Vardi | Reasoning about infinite computations[END_REF], we show that given a CLTL(IPC) formula φ, one can build a standard Büchi automaton A φ such that φ is CLTL(IPC) satisfiable iff L(A φ) is non-empty. Moreover, we establish that emptiness of L(A φ) can be checked in polynomial space in |φ|. From the technical viewpoint, the construction of A φ as the intersection of three Büchi automata can be done quite smoothly thanks to the previous results. In the following, V , V , C and C are the sets of variables and constants associated to φ as defined in Sect. 4. Moreover, K, m and M are constants with their usual meaning and we use the map f : Terms(φ) → V as previously.

Unlike LTL, the language recognized by the Büchi automaton A φ is not a set of models but rather a set of symbolic models. We write Σ to denote the set of satisfiable symbolic valuations wrt φ. A symbolic model for φ is an ω-sequence ρ : N → Σ. We write ρ |= φ where the symbolic satisfaction relation |= is defined as |= except at the atomic level: ρ, i |= p def ⇔ ρ(i) |= symb f (p) where |= symb is the satisfaction relation between symbolic valuations and constraints.

By Lemma 4 and by using standard techniques for LTL [START_REF] Vardi | Reasoning about infinite computations[END_REF], checking whether there is a symbolic model ρ satisfying ρ |= φ can be done in pspace (see more details below). Since every model for φ generates a unique symbolic model for φ, we obtain the result below.

Lemma 10. A CLTL(IPC) formula φ is satisfiable iff there is a one-step consistent symbolic valuation ρ such that ρ |= φ and ρ has a model.

All the following automata are built over the alphabet Σ which is of exponential size in |φ|. The automaton A φ is formally defined as the intersection A LTL ∩ A 1cons ∩ A C of Büchi automata where L(A LTL) is the set of symbolic models satisfying φ, L(A 1cons) is the set of one-step consistent sequences of satisfiable symbolic valuations, L(A C) is the set of sequences of symbolic valuations verifying (C). We briefly explain below how these automata are built. The automaton A LTL is obtained from [START_REF] Vardi | Reasoning about infinite computations[END_REF] with a difference for atomic formulae. We define cl (φ) the closure of φ as usual, and an atom of φ is a maximally consistent subset of cl (φ). We define A LTL = (Q, Q 0 , →, F) as the generalized Büchi automaton below:

-Q is the set of atoms of φ and Q 0 = {X ∈ Q : φ ∈ X}, -X sv → Y iff (atomic
constraints) for every atomic formula p in X, sv |= symb f (p), (one step) for every Xψ ∈ cl (φ), Xψ ∈ X iff ψ ∈ Y , -let {ψ 1 Uϕ 1 , . . . , ψ r Uϕ r } be the set of until formulas in cl (φ). We pose F equal to {F 1 , . . . , F r } with for every i ∈ {1, . . . , r},

F i = {X ∈ Q : ψ i Uϕ i ∈ Xor ϕ i ∈ X}.
By Lemma 4, the condition about atomic formulae can be checked in pspace.

Hence, the transition relation can be computed in pspace.

We define A 1cons = Q, Q 0 , →, F as a Büchi automaton such that Q = Q 0 = F = Q = Σ and the transition relation satisfies: sv sv -→ sv def ⇔ sv , sv is onestep consistent and sv = sv . Since checking whether a symbolic valuation is satisfiable can be done in P (Lemma 2) and checking whether a pair of symbolic valuations is one-step consistent can be also done in P, the transition relation of A 1cons can be computed in P.

It remains to define A C that recognizes ω-sequences of symbolic valuations satisfying (C). As done in [START_REF] Demri | An automata-theoretic approach to constraint LTL[END_REF], instead of building A C , it is easier to construct the Büchi automaton A ¬ C that recognizes the complement language of L(A C). The automaton A ¬ C is essentially the automaton B defined in [DD03, page 20] except that we work with a different type of alphabet. We need to consider vertices in the graph that represent in C and equality between constants does not need to be explicitly present in the symbolic valuations (see details in [START_REF] Demri | Verification of qualitative Z-constraints[END_REF]).

Lemma 11. A CLTL(IPC) formula φ is satisfiable iff L(A φ) is non-empty.

The proof of this lemma is similar to [DD03, Lemma 6.3]. The main trick is to observe that if L(A φ) is non-empty then A φ accepts an ultimately periodic ω-sequence so that Lemma 9 can be applied. Since given a formula φ we can effectively construct A φ and check whether L(A φ) is empty, the model-checking and satisfiability problems for CLTL(IPC) are decidable. We also have all the arguments to establish the pspace upper bound by using subtle arguments from complexity theory and [START_REF] Safra | Complexity of Automata on Infinite Objects[END_REF].

Theorem 1. The satisfiability problem for CLTL(IPC) is pspace-complete.

All the temporal operators in CLTL(IPC) are definable in monadic second order logic (MSO) and by using [START_REF] Gastin | Satisfiability and model checking for MSO-definable temporal logics are in PSPACE[END_REF], it is immediate that any extension of CLTL(IPC) obtained by adding a finite amount of MSO-definable temporal operators remains in pspace. Only the automaton A LTL needs to be updated.

Corollary 2. The model-checking problem for integral relational automata restricted to the LTL fragment of CCTL * introduced in [Čer94] is in pspace.

Conclusion

In the paper, we have introduced the logic CLTL(IPC) extending formalisms in [Čer94,LM01,DD03,Dem04] and we have shown that both model-checking over IPC -automata and satisfiability are decidable in polynomial space. The proof heavily relies on a translation into the emptiness problem for standard Büchi automata and on the approximation of non ω-regular sets of symbolic models. As a by-product, the model checking problem over the integral relational automata defined in [Čer94] is also pspace-complete when restricted to its LTL fragment. The logic CLTL(IPC) supports a rich class of constraints including those of the form x < y unlike periodicity constraints from [START_REF] Demri | LTL over integer periodicity constraints[END_REF] (which are quite useful to compare absolute dates) and comparison with constants unlike logics shown in pspace in [START_REF] Demri | An automata-theoretic approach to constraint LTL[END_REF]. Abstraction of counter automata by performing reasoning modulo can be encoded in CLTL(IPC) thanks to the presence of integer periodicity constraints.

To conclude, we mention a few open problems that are worth investigating.

-CTL* for integral relational automata is undecidable [Čer94]

Fig. 1 .

 1 Fig. 1. An IPC -automatonModel-checking problem for CLTL(IPC): Given an IPC -automaton A and a CLTL(IPC) formula φ, are there a symbolic ω-word v = φ 0 • φ 1 • . . . accepted by A and a model σ (a realization of v) such that σ, 0 |= φ and for every i ≥ 0, σ, i |= φ i ?

 is the set of constants d occurring in constraints of the form x ∼ d. m is the minimal element of C and M is its maximal element. -C denotes the set of constants {m, m -1, . . . , M }. The cardinality of C is in O(2 |m|+|M |) and each element of C can be binary encoded in binary representation with O(|m| + |M |) bits.

 2. In order to simplify the representation, closure by transitivity for < -→ and the fact that = -→ is a congruence are omitted. The function mod is directly encoded in the node label.

 whereas we have shown that its LTL fragment is pspace-complete. It is interesting to design other fragments of CTL* strictly more expressive than Boolean combinations of LTL formulae. -The decidability status of constraint LTL over the domain {0, 1} * , ⊆ is open either with the subword relation or with the prefix relation. Constraint LTL over the domain {0} * , ⊆ is already equivalent to constraint LTL over N, <, = that is a strict fragment of CLTL(IPC). -The decidability status of CLTL(IPC) extended with constraints of the form 3x + 2Xy ≡ 5 3 is open. They are considered in [MOS05] but not integrated in any LTL-like language.