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Broadcasting in wraparound meshes
with parallel monodirectional links

Jean-Claude Bermond ?, Philippe Michallon ® and Denis Trystram P

: I3S-CNRS, bét. 4, 250 rue Albert Einstein, Sophia-Antipolis 06 560 Valbonne, France
LMC-IMAG, 46 avenue Félix Viallet, 38031 Grenoble Cedex, France

In this paper we give an algorithm to broadcast a message in a wraparound mesh distributed-memory parallel
architecture with parallel monodirectional links. This algorithm uses a general strategy based on the diffusion
of the message in edge-disjoint spanning trees. We first present in this setting the results of Saad and Schultz
and the improvements obtained by Simmen. We then give an asymptotically optimal broadcasting algorithm
improving the preceding results. It uses in the wraparound mesh the constructions of two edge-disjoint
spanning trees rooted at a given node and of minimum depth. ;

Keywords. Communication; interconnection networks; distributed memory architectures; wraparound fnesh;
toroidal grid; broadcasting; spanning trees.

1. Introduction
1.1. Description of the reference models

In distributed-memory parallel computers, the communications are a bottleneck and so,
very efficient algorithms have to be designed for global communication schemes. In what
follows, we assume that the communication links between processors are mono-directional
(half-duplex mode [5]). We suppose furthermore that a processor can simultaneously send (or
receive) a message on all its links (parallel communications). We also suppose, according to
the literature, that the transmission time of a message of length L (number of bytes) from a
processor to one of its direct neighbours is of the form: g + Lt (where B corresponds to a
start-up time and 7 is the inverse of the bandwidth). For multiprocessors like transputer-in-
terconnected architectures [8], B is of the same order of magnitude as 7. In other multipro-
cessors; B can be much greater than 7. Let us note that this notation is the most commonly
used and is different from [5,6] where the start-up is denoted rand the bandwidth is denoted
B. -

Finally, we consider the usual store-and-forward model for routing where any byte has to
be stored in any intermediate processor before being transmitted to its final destination. One

* This work is supported by the ‘operation RUMEUR’ of the GDR C>.
Correspondence to: Denis Trystram, LMC-IMAG, 46 avenue Félix Viallet, 38031 Grenoble Cedex, France.



%}”
o
il

Bili
A

L?—
?_
«ff

Binini

REas
Bilin|nining
V

paiaia

iajaimaiaiaia
piaiaiaimiaiaia
jaiLisig

of the basic communication routines (used in many parallel algorithms) is broadcasting.
Broadcasting (often referred as One-To-All) consists of sending a message from a given
processor called the initiator or root to all the other processors. Broadcasting algorithms have
been designed for many regular topologies of interconnection networks (trees, hypercubes,
rings, wraparound meshes etc.) [1-5,7,9].

1.2. Definitions and basic properties of wraparound meshes

Wraparound meshes (also called toroidal grids) are among the most popular interconnec-
tion networks proposed for distributed-memory parallel computers. In the following, we will
consider square wraparound meshes although all our results ¢ ould be extended to rectangu-
lar ones. An n by n wraparound mesh consists of p =n? processors interconnected in a
toroidal grid graph. We can simply label a processor by a couple of indices (i, j) taken modulo
n corresponding to the Cartesian coordinates on the grid. More precisely, processor (i, j) is
joined to 4 neighbours: east (i + 1, j), north (i, j + 1), west (i — 1, j) and.south (i, j — 1). The
distance between two processors is the length of a shortest path between them. The maximum
of the distances between any pair of processors is the diameter. It is easy to show that the
diameter D of an n by n waparound mesh is n — 1 if n is odd and »n if # is even, that is
D =2|n/2|. Figure 1 shows a 7 X 7 wraparound mesh.

1.3. Organization of the paper

The paper is organized as follows: In Section 2 we first recall the general broadcasting
principle proposed in [3] which uses edge-disjoint spanning trees rooted at the initiator, We
present in this context the result of Saad and Schultz [5], which has been corrected and
improved by Simmen [6]. In Section 3 we design optimal algorithms for square wraparound
meshes based on the construction of 2 edge-disjoint spanning trees of minimum depth rooted
_at any given vertex. Before concluding, we give in Section 4 experimental results obtained on
the transputer-based parallel computer (namely, the MegaNode [8]).

2. General setting and existing broadcasting algorithms

2.1. General algorithm i

The following general algorithm is described in [1,3]. It consists of sending a message on
edge-disjoint spanning trees by using pipelining. The analysis of this algorithm shows that



Fig. 2. Principle of the basic pipelined broadcast for the wraparound mesh.

there exists an optimal size of the packets in which the message of length L should be
divided.

Proposition. The time to broadcast a message of length L using pipelining on d edge-disjoint
spanning trees of depth h rooted at the initiator is:

b(L, k, d) = ({(h"'—lW+ \/?) ,

2.2. A first solution

The first idea to broadcast a message on a wraparound mesh is to first send it on a
pipelined ring on the vertical dimension of the wraparound mesh, then to send it on the ring
along the horizontal dimension. This can be interpreted as a pipeline on a spanning tree as
depicted in Fig. 2. The depth of this tree is minimum or equal to the diameter D. Using the
previous proposition, the broadcast time is: .

b(L, D,1) = ({(D-1)B + VL) .

However, in.this solution only one tree is used because of link conflicts and so half of the links
are not used. :

2.3. Saad and Schultz’s algorithm

Saad and Schultz propose in [5] a better pipelined broadcasting algorithm. The initial
message is split into 2 sub-messages of size L /2 which are each pipelined on two ‘almost
spanning trees’ depicted in Fig. 3. (Note that the union of these trees covers most links and
that they are edge-disjoint which allows two simultaneous pipelined broadcasts of L /2 data.)

The two almost spanning trees are obtained by rotation of 7/2 from each other. The
depth of these trees is as before equal to D but now we can use two trees. All the nodes are
covered except the ones belonging to the vertical line (which have received only half of the
initial message) and similarly for the second tree the nodes of the horizontal line (which have
received the complementary half). However, Saad and Schultz propose to overlap the empty
phase of the pipeline to fill-in the incomplete horizontal and vertical lines. As soon as the last
packet has been sent, the missing data (of size L /2) are sent using a pipeline mode with the
same number of packets as before. Unfortunately and contrary to what is claimed in [5] it can
be shown (see [6]) that for large L this time is greater than the time needed to empty the



Fig. 3. The 2 almost spanning trees of the wraparound mesh.

pipeline! More precisely, a detailled calculus leads to the following result:
For L <L, (where Ly=/27[D?*/(D — 1)]), the fill-in can be done during the empty phase.
The time of this algorithm is: : '

b(L, D,2) = ({(D~1)B +rL/2 V.

For L = L, the fill-in can not be done during the empty phase. The time becomes:
| ¢l | BFI{D~1) D BrL
BL, D, 2+ —+Y ——— =B+ =/
( ) ) 2 2 & 2D —1)

2.4. Simmen’s algorithm

In his paper, Simmen [6] proposed a new broadcasting algorithm which can be considered
in our general setting as using two edge-disjoint spanning trees of depth 2D + 1. The first tree
is depicted in Fig. 4, the other one being obtained by a rotation of v /2. The broadcast time is
now:

b(L,2D+1,2) = (1/293 i \/?] .

Note that for large L this algorithm is better than the first one.

lFig. 4. One of the two spanning trees of Simmen.
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Fig. 5. One of the form arc disjoint spanning trees of depth D +1 for the bidirectional case.
3. New broadcasting algorithms
3.1. Improvement using alternatively bidirectional arc disjoint spanning trees

In [4], Michallon et al. constructed four arc-disjoint spanning trees of depth D + 1 under
the hypothesis of bidirectional communication links (see Fig. 5 for one of these trees, the
others are obtained by sucessive rotations of 7 /2). The orientations of the arcs are omitted.
So we have to use two steps to transmit a packet from one processor to a neighbour. Thus, we
get a result similar to the proposition by replacing 4 by 24 (in this case 2D + 2). We obtain
the following time:

D
I — 7L
b(L,2(D+1),4)= (ﬁpﬂ)g +\/T ) ,

which is better than Simmen’s algorithm.

3.2. Improvement using edge-disjoint spanning trees

We show in this section how to construct in a wraparound mesh two edge-disjoint spanning
trees of depth better than those obtained by Simmen.

Fig. 6. One of the two edge disjoint spanning tree of depth 3D /2.
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Fig. 7. One of the two edge disjoint spanning trees of depth 3D /2 (modification of Simmen’s trees).

A first easy improvement is obtained by modifying the trees of Saad and Schultz and
Simmen (see Figs 6 and 7). We obtain two -edge- dIS]OlIlt spanning trees of depth 3D /2
instead of 2D + 1 which leads to the time:

223

The first tree is depicted in Fig. 6. The second one (Fig. 7) is obtained by rotation of /2.
Let us remark that these two constructions yield the same trees (symmetric with respect to the
origin).

This can be improved as we have been able to find two edge-disjoint spanning trees of
minimum depth as described in the following theorem.

Theorem. There exist in an n by n wraparound mesh two edge-disjoint trees of minimum depth n.

Proof. first note that the trees have a depth of at least D, so the result is optimal in the case n
even, as D = n. In the case of n odd, the diameter is n — 1 but it is impossible to build two
edge-disjoint spanning trees of depth D. There are four vertices, namely (+(n—1)/2,
+(n — 1)/2), which are at distance D from the origin and furthermore there are four edges
between these four vertices. These edges cannot be used in a spanning tree of depth D. So we
can use at most 2n%4 edges for the two spanning trees. But n*—1 edges are needed in a
spanning tree, so we get a contradiction.

To obtain the trees of optimum depth we use the following technique. lee in the
preceding example we construct only one tree, the second one being obtained by a rotation of
/2. Furthermore we impose. that this tree is symmetric with respect to the origin. Then we
split the mesh into four parts which are as equal as possible. The first tree will contain all the
vertices of the O-row (vertices (i, 0)) and the second tree will contain the vertices of the
0-column (vertices (0, j)). For the first tree we take one column over two in the first domain
and the other column in domain 2. Then we attain the other vertices by subpaths of the form |
or | except around the origin and on the borders of the figure where it depends on the
congruence of n modulo 4. Figure-8 shows the general technique and Figs. 9-12 give the
construction for n =10, 11, 12, 13. This fills roughly one edge over two in the column not
already used. All together the first tree uses around 3 of the vertical and % of the horizontal
edges, and by rotation the second tree uses % of the horizontal and % of the vertical edges.
These constructions can be easily extended to any value of n by inserting four intermediate
rows and four intermediate columns (two in each domain) of the following form:
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Fig. 8. Construction of the first tree.

The construction of these spanning trees can be extended to non-square wraparound meshes
using the same principle.

The broadcast time is calculated using the basic formula:

b(L, n,2)= (1/(11 -1)B + \/?) . O

4. Experimental results

We report in this section some experiments on the broadcasting algorithm based on the use
of our new family of edge-disjoint spanning trees. Figure 13 gives the time related to the
message length for various sizes of square wraparound meshes. The experiments have been
" done on a MegaNode which is a distributed-memory parallel machine with 128 transputers
[8]. For such a machine, § is equal to 628 psec and 7= 2,2 usec/byte [4].
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Fig. 13. Experimental results.

These experiments emphasize that there is a very good concordance between practical and
theoretical results.

We can note that for large messages, on the theoretical point of view, the symmetric
version of the Michallon—Trystram—Villard’s algorithm is better than the proposed solution.
However, from the practical point of view, it is not possible to implement this version because
of synchronization reasons.

5. Conclusion

We have presented in this paper a general framework for the design and analysis of
broadcasting algorithms on wraparound meshes of processors. All algorithm are based on
pipelined sendings on edge-disjoint spanning trees. This analysis has first shown the link
between the previous works of Saad and Schultz and Simmen and has allowed us to improve
their results. The main result is the design of a new family of edge-disjoint spanning trees of
optimal depth (equal to »n for an n X n square wraparound mesh).
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