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Abstract. Myocardial shape and deformation are two relevant descri-
ptors for the study of cardiac function and can undergo strong interactions
depending on diseases. Manifold learning provides low dimensional repre-
sentations of these high-dimensional descriptors, but the choice of norma-
lization can strongly affect the analysis. Besides, whether the shape
normalization should include a scale factor is still an open question.
In this paper, we investigate the influence of normalization choices on the
study of the interactions between cardiac shape and deformation using
Multiple Manifold Learning, a dimensionality reduction method that
considers inter- and intra-descriptors link between samples. By studying
the main variations of two different shape normalizations (one including
scaling, the other one not) we observed that the scaled normalization
concentrates variations of a given physiological characteristic on only one
mode. The influence of the associated choice of the deformation norma-
lization was evaluated by quantifying differences between the estimated
low-dimensional spaces (one for each choice against a combination of
both), revealing potential analysis biases that may arise depending on
such choices.

Keywords: Cardiac imaging · manifold learning · myocardial strain ·
heart shape.

1 Introduction

Medical imaging can provide high-dimensional descriptors of an organ’s shape
and function that are very complementary to the measurements used in clinical
routine. However, identifying the appropriate descriptor for a particular diagnostic
situation and finding an understandable representation of it is not an easy task
due to the complexity of the anomalies that can co-exist.

Myocardial shape, considered at End-Diastole (ED), and deformation are two
relevant descriptors to assess the cardiac function, but these are often reduced
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to scalars in clinical routine (such as volumes or ejection fraction, respectively).
However, these descriptors can undergo strong structural [1] or disease-related
interactions [2, 3].

Representation learning techniques can offer statistically-relevant and simpli-
fied views of a population or disease, but do not explicitly account for the
interaction between descriptors. Within the field of manifold learning, Multiple
Manifold Learning (MML) [4], generalized in [5] not only attempts to find a
suitable latent space associated to a given descriptor, but also conditions the
link between the representations associated to different descriptors.

Nonetheless, these methods still depend on the choice of descriptors and how
these are normalized across a population. When analyzing shape features in
a population, whether shape normalization should include scaling or volume
invariance is still an open question. Besides, in computational anatomy, the
transport of data from an individual’s mesh to a reference template should
be handled carefully [6], and the effect of scaling or volume differences on the
transported data are still debated [7, 8].

In this paper, we explore the influence of different normalization choices
on the representation of myocardial shape and deformation while considering
their interactions with non-linear manifold learning. We specifically examined
a population of meshes representing the Right Ventricle (RV) from controls
and patients with volume-overload, two conditions that affect differently shape
and deformation depending on the pathology. We compared two different shape
features and three strain normalization strategies, which correspond respectively
to a rigid shape matching and no rescaling of the strain values, or finer shape
changes with potential effect on the strain patterns.

2 Methods

2.1 Data and descriptors

Data: We processed a database of 110 meshes of RV extracted from 3D echo-
cardiography using the commercial software 4D-RV Function 2.0 (TomTec Imaging
Systems GmbH, Germany). Point-to-point correspondences are ensured between
the meshes, each containing 1587 cells and 822 points (valves excluded). The
database consists of patients suffering congenital diseases with RV volume overload
(Atrial Septal Defect (ASD) and Tetralogy of Fallot (ToF)), and 55 age- and
sex-matched controls. In the following, we represent the myocardial shape and
deformation using high-dimensional descriptors at each point of the RV mesh.

Shape descriptors: In order to align the meshes spatially, a Procrustes analysis
is applied with a rigid transformation (with no scale factor) and a similarity
transformation (with a scale factor). This difference in normalization on the
population will affect the shape and our analysis. Indeed, we characterize shape
differences through a 3D vector between each point of a given individual mesh
and its corresponding point on the reference. This reference was obtained by
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(a) Shape features (b) Deformation features

Fig. 1: (a) Distance vector field (mm) colored by magnitude between a sample
and the reference mesh (in red) for similarity and rigid transformations. (b)
Average area strain (%) for the original, scaling and gradient deformation
features.

a Procrustes alignment only of the controls to encode shape normality. In the
following, we denote this shape descriptor (of dimensions 822x3) either rigid or
similarity depending in the type of Procrustes alignment used (Fig.1a).

Deformation descriptors: The deformation descriptor is the area strain cor-
responding to the relative area change of each mesh cell (in %) between ED
and End-Systole (ES). It quantifies the local deformation of the RV surface
with a high-dimensional descriptor of dimensions 822x1. We first computed this
descriptor on the original population, it is denoted original.

We also applied a normalization procedure in order to disentangle this descriptor
from the organ’s shape. The normalization procedure relies on the parallel transport
of deformations in the diffeomorphic registration setting, with a geometric repre-
sentation of deformations as elements of the group of diffeomorphisms endowed
with a right-invariant Riemannian metric [6, 9]. In order to define a volume-
invariant normalization, we used the metric proposed in [7]. It involves normalizing
each shape so that its volume matches that of the reference shape. Two projection
strategies were used, one by scaling around the barycentre of each shape, and the
other one by following the flow of the gradient of the volume function. They are
denoted respectively scaling and gradient (Fig.1b). The former may be biased if
the center of mass of the shapes is unnatural, while the latter depends on the
choice of the embedding metric, in our case the Large Deformation Diffeometric
Metric Mapping (LDDMM) metric, to define the gradient.

2.2 Manifold learning

GivenK subjects and one high-dimensional descriptor for shapeXS =
�
xS
1 , · · · ,xS

K

�T

∈ RK×MS and another one for deformation XD =
�
xD
1 , · · · ,xD

K

�T ∈ RK×MD

(MD and MS are the number of input dimensions, here 822 and 2466=822x3),
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we jointly represented each descriptor and the interactions between their latent
space using the MML algorithm. We first estimated the following affinity matrix:

W =

�
WS µM
µMT WD

�
(1)

W is composed of the sub-matricesWS andWD obtained by spectral embed-
ding on the shape and deformation descriptors independently, which represent
the intra-descriptor correspondences, and the matrix M (weighted by a scalar
value µ> 0) which encodes the inter-descriptor correspondences:

WS
ij = exp

�
−�xi

S − xj
S�2/σ2

�
Mij =

<wS
i ,wD

j >

�wS
i ��wD

j �
WD

ij = exp
�
−�xi

D − xj
D�2/σ2

�

where σ is the width of the kernel used for spectral embedding, determined as
the average distance between a sample and its kσ nearest neighbors, and wS

i

(resp. wD
i ) is the i-th row of the affinity matrix WS (resp. WD). The matrix M

is sparsified afterwards by setting to zero each element that does not belong to
the kM closest neighbors of each sample (determined as the kM highest values
in each row of the affinity matrix).

MML aims at minimizing:

Φ(Y) =

K�

i,j=1

�yS
i −yS

j �2WS
ij+

K�

i,j=1

�yD
i −yD

j �2WD
ij +µ

K�

i,j=1

�yS
i −yD

j �2Mij , (2)

where YS =
�
yS
1 , · · · ,yS

K

�T ∈ RK×N and YD =
�
yD
1 , · · · ,yD

K

�T ∈ RK×N

respectively stand for the latent spaces coordinates of the shape and defor-
mation descriptors, N being the number of latent dimensions retained. They are
obtained by computing the normalized graph Laplacian and then using Diffusion
Maps as described in [10]. The first half of the eigenvectors of W encodes the
data from the first descriptor (shape, K first eigenvectors), while the second half
corresponds to the second descriptor (deformation, K last eigenvectors). Thus,
MML provides one latent space for each descriptor, meaning that we have two
low-dimensional latent spaces, one representing the shape and the other one the
deformation.

3 Experiments and results

The following section describes the application of MML to the entire population
(except one control due to obvious mesh defects), with the hyperparameters:
kσ = 10, kM = 10 and µ = 1. These parameters have been determined empirically
from the energy defined in Eq.2.

Figure 2 shows the obtained deformation latent spaces for the different combi-
nations of shape and deformation descriptors. Note that for the rigid-gradient
latent space, the second and third dimensions are displayed. Indeed, with spectral
embedding several eigenvectors may encode the same spatial direction and make
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Fig. 2: Latent spaces encoding deformation, provided by MML for the 6 different
normalization strategies.

some dimensions redundant [11]. This is the case with the first and the second
dimensions here.

ASD samples are more centered and close from each other using the original
and scaling deformation descriptors compared to the gradient descriptors. The
different populations seem more separated for these strategies especially the
ToF and controls. However, the distribution of samples in the latent spaces
is not enough to assess the difference between normalization strategies. In the
next section, we explore the influence of the shape normalization on the main
variations encoded in the latent spaces.

3.1 Shape descriptors

For the similarity-original and rigid-original latent spaces encoding shape, we
reconstructed the main characteristics encoded from −2σ to 2σ along the first
dimensions (σ being the standard deviation along the considered dimension),
using multi-scale regression as described in [12]. Visualization consisted of the
shapes obtained after adding the reconstructed vector fields to the reference
shape. We then compared the different normalization strategies by defining some
shape characteristics on the reconstructed meshes: the intra-valve distance, the
width, the depth and the length of the meshes as depicted in Fig.3a and also
the volume. Each distance was computed between chosen points on the mesh
for each measure, which are straightforward to obtain for different subjects as
point-to-point correspondences are known.
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(a) (b)

Fig. 3: Variations of 5 different shape characteristics defined on each mesh, when
moving from −2σ to +2σ along a given dimension of the latent space with rigid
and similarity normalizations. The characteristics are defined in (a) with (1)
valve distance, (2) RV width, (3) depth and (4) length.

Figure 3b shows the relative change of a given measure when moving between
−2σ and +2σ for the first three modes of variations. We can observe that the
similarity strategy concentrates volume and depth variations on the first mode,
while finer changes predominate on the next modes, such as length and valve
distance on the second mode. For the rigid descriptor, substantial variations of
volume, length and width happened on the first two modes. The depth and the
valve distance variations are mainly on one mode (first and second respectively).

3.2 Deformation descriptors

In this section, we evaluated the influence of the normalization choice for the
deformation descriptors. We first applied MML on two combinations of the
deformation descriptors (original/scaling or original/gradient) and each shape
normalization. These spaces are considered as reference and we evaluated the
difference to the corresponding latent space displayed in Fig. 2. By comparing
them to a combination of both descriptors equally weighted (to do so, we replaced
the submatrix WD by the arithmetic average of the associated affinity matrices),
a predominant normalization may appear. Differences between the latent spaces
were quantified by the point-to-point differences between samples. As these may
be noisy, a 2D kernel regression was used on the first two dimensions of the
latent spaces to smooth out the differences and better visualize trends for the
whole population or specific subgroups. The regression involved a 18 × 18 grid
equally distributed between -0.1 and 0.1 for the first two dimensions. To leverage
the contribution of samples in less populated regions, we encoded the density
around each sample as the opacity of arrows.
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(a) (b)

Fig. 4: Vector field encoding the local distances in the latent spaces between
a combination of (a) original/scaling and (b) original/gradient. The opacity
reflects to the estimated density at each point of the grid.

Figure 4a shows the results for the original/scaling combination. The original
deformation vector field seems to rotate around the center for the latent space,
for the two shape normalizations. Few changes are observed for the scaling defor-
mation, even though the rigid + scaling exhibits a reduced rotation. Concerning
the combination of original/gradient displayed in Fig.4b, rigid + original and
rigid + gradient show substantial changes that seem to be in opposite directions.
similarity + original also exhibits a rotation and changes occur for similarity +
gradient mainly in a low density zone.

4 Discussion and conclusion

In this paper, we investigated the influence of the normalization on the study
of the interactions between the myocardial shape and the cardiac deformation
using MML.

We evaluated the differences between two shape normalization strategies
(rigid and similarity with a scaling factor), through the main modes of variations
of the population. Several measurements on the meshes show that the variations
are mainly concentrated on one mode for similarity (first mode for volume and
depth, second mode for length and valve distance), unlike rigid where substantial
variations jointly appear on several modes, except for the valve distance. Specific
latent dimensions provide more understandable variations, which is an asset for
the study of the population intra-variability.

Then, we assessed the influence of the normalization on the deformation
feature. The two normalizations (scaling and gradient) predominate on original
(a rotation appeared on every combination with no normalization). This rotation
might correspond to the bias introduced by an improper pair of shape and
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deformation normalizations. Indeed, it can be expected that applying a volume-
related normalization on only one of the features can introduce such a bias. The
similarity descriptor has more affinity to the normalized deformation descriptor
(less change in deformation field) compared to the rigid.

As we focus our work on the study of interactions between cardiac shape
and deformation, we would like to prevent potential biases introduced by the
normalization. These experiments provided insights into the influence of the
shape normalization by itself, and the choices of pairs of shape and deformation
normalizations. They revealed differences between the two strategies of norma-
lization for the deformation feature. However the choice of an optimal strategy
is likely to depend on the application and the associated data. Other state-of-
the-art strategies to normalize the descriptors will be explored in future work.
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