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Abstract. We propose a strategy to perform population-based person-
alization of a model, to overcome the limits of case-based personalization
for generating virtual populations from models that include randomness.
We formulate the problem as matching the synthetic and real popula-
tions by minimizing the Kullback-Leibler divergence between their dis-
tributions. As an analytical formulation of the models is complex or even
impossible, the personalization is addressed by a gradient-free method:
the CMA-ES algorithm, whose relevance was demonstrated for the case-
based personalization of complex biomechanical cardiac models. The al-
gorithm iteratively adapts the covariance matrix which in our problem
encodes the distribution of the synthetic data.
We demonstrate the feasibility of this approach on two simple geometri-
cal models of myocardial infarction, in 2D, to better focus on the rel-
evance of the personalization process. Our strategy is able to repro-
duce the distribution of 2D myocardial infarcts from the segmented late
Gadolinium images of 123 subjects with acute myocardial infarction.

Keywords: Model personalization ; myocardial infarction ; late Gadolinium
enhancement ; cardiac magnetic resonance.

1 Introduction

The interest of developing realistic simulations of myocardial infarction is unde-
niable for understanding and validation purposes [1]. As for many biophysical
models, personalization is a necessary milestone for the realism of such simu-
lations. The standard personalization approach consists in adjusting the model
to the data of a given individual. In order to generate large virtual populations
that can for example feed machine learning algorithms, the personalization pro-
cess should be extended beyond the fit to individuals’ data. In this sense, two
approaches may be adopted:
– Case-based personalization, which consists in finding the optimal model pa-

rameters for each individual, from which a range of relevant values can be
determined a-posteriori. A synthetic population can therefore be generated
by randomly sampling within this range and running the corresponding sim-
ulations. This approach is suited for fully deterministic models, but cannot
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cover models with randomness inside (e.g. generating a lesion at a random
location or of random shape).

– Population-based personalization (the approach we propose), which can over-
come the latter issue by finding the optimal model parameters that best
match a virtual population to the real population under study. This strat-
egy is somehow comparable to the matching of distributions pursued in vari-
ational auto-encoders [2], except that in our case the virtual population is
generated from the personalized model parameters, not from a related latent
space that encodes the data.

In this context, we propose a strategy to perform population-based person-
alization of a model, which we illustrate on simple geometrical models of my-
ocardial infarction.

Tissue-level geometrical models of the lesions have been proposed based on a
regional prior about a given coronary territory [3–5] or even up to mimicking the
wavefront phenomenon [6] for the lesion propagation around an existing coronary
segmentation [7]. Here we rely on two very simple models whose output is rather
straightforward to visualize and assess, in 2D, so that we can better focus on the
relevance of the personalization process: one that iteratively models an infarct as
the union of spheres of random size [4], and one that uses an ellipsoid centered
on the endocardium to represent the infarct [8].

Our primary objective is to demonstrate the feasibility of the population-
based personalization. In addition, our secondary objective is to state on the
relevance of these geometrical models of myocardial infarction to mimic a real
population of patients with acute infarcts.

2 Methods

2.1 Data and pre-processing

The population under study consisted of 123 subjects for which late Gadolin-
ium enhancement images were available and segmented, distributed into 45, 17,
and 61 cases for which the LAD, LCX, or RCA coronary arteries were responsi-
ble of the infarct. These data came from the Minimalist Immediate Mechanical
Intervention (MIMI) study [9], which consists of acute ST-Elevation Myocar-
dial Infarction (STEMI) patients who underwent either immediate or delayed
stenting. Cardiac magnetic resonance was performed 5 days (interquartile range
4-6) after inclusion with Avanto 1.5T systems (Siemens, Erlangen, Germany).
The infarct patterns were derived from the late Gadolinium enhancement im-
ages, performed 10 minutes after bolus injection, with an inversion time around
240-280 ms. The myocardial contours were manually segmented offline by con-
sensus reading of three experienced observers using commercial software (CVI42
v.5.1.0 Circle Cardiovascular Imaging, Calgary, CA). The LV ranged over 17±2
slices. The infarct zone was determined semi-automatically using the full-width
half-maximum (FWHM) method. All contours were controlled and corrected
manually if needed.
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Fig. 1: (a) Transport of the data from an individual to the reference anatomy, illus-
trated on a subset of slices. The black dot points out the LV-RV junction. (b) Schematic
view of the two simple geometrical models of infarct used in this paper.

Radial, circumferential, and long-axis coordinates ranging from 0 to 1 were
automatically defined on each stack of slices, after manually identifying the LV-
RV junction on each slice and the myocardial borders around the LV outflow
tract, when relevant. For this automatic parameterization of the LV geometry,
we used images upsampled by a factor of 4 to prevent artifacts that may occur
with few pixels covering the myocardium, in particular along the radial direction.

The lesion segmentations were transported to a reference anatomy (defined
as a semi-ellipsoid with maximal endocardial and epicardial radii of respectively
30 and 50 pixels, represented as a stack of 21 slices of 80x80 pixels each), using
linear interpolation tailored for data defined on a scattered grid (Fig.1a).

Finally, we rotated all infarct patterns along the circumference such that the
centers of mass of the infarcts for each coronary territory are aligned to the LAD
one. This allows better focusing on the infarct shape and extent, and lowering
the effects of the infarct localization without being restricted to a given coronary
territory. Although this is arguable, as wall characteristics and infarct patterns
may differ across coronary territories, it allowed us to demonstrate the feasibility
of the personalization process on large enough populations.

2.2 Geometric models of myocardial infarction

We focused on two geometrical models that generate synthetic lesions of varying
shape, extent, and location. Each model is parameterized by a starting point on
the endocardial surface, which conditions the infarct location, and other param-
eters that encode the shape and extent of the lesion (Fig.1b):

– The first model approximates a random infarct shape as the union of several
spheres of random sizes (intersected with the myocardium) [4]. The first
sphere is centered on a given endocardial point, and the model generates
at each iteration a new sphere centered on a random point of the previous
sphere. This model requires setting the total number of iterations and the
maximal radius of the spheres (2 parameters).

– The second model generates an ellipsoid centered at a given endocardial
point, and sets the infarcted region as the intersection between the ellipsoid
and the myocardium [8]. It requires setting the short- and long-axes of the el-
lipsoid, which respectively lie on the radial and circumferential/longitudinal
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directions of the endocardium. Randomness is introduced in this model by
sampling the short- and long-axis values using a uniform distribution (4
parameters: for each axis, the distribution center and its extension).

To better initialize the models and limit the number of parameters to optimize,
the starting point was sampled within a small zone around the center of mass of
the infarcts obtained from the real subjects, for both models.

In 3D, the synthetic lesions are generated on a template mesh that corre-
sponds to the reference anatomy used to align the real image data (Sec.2.1).
Synthetic slices are then estimated by resampling the mesh data on an image
grid. In this paper, to better focus on the personalization process within a rea-
sonable computing time, we focused on a 2D version of the geometrical models
at the mid-level of the left ventricle.

2.3 Personalization of the models

The personalization relied on the CMA-ES algorithm (Covariance Matrix Adap-
tation – Evolution Strategy) [10], a method that consists in adapting across
iterations (referred to as generations) the synthetic data distribution parame-
terized by its covariance matrix. It uses a stochastic search that retains at each
iteration a subset of the best cases (in the sense of the energy to minimize) sam-
pled from a multi-normal distribution, and updates the covariance matrix of the
distribution with such samples.

CMA-ES is a gradient-free method whose relevance was demonstrated for the
personalization of complex models as in cardiac electromechanical simulations
[11]. Besides, this generic personalization strategy allows to remain non-specific
to a given model.

Let’s denote {x1, . . . ,xp} and {y1, . . . ,yq} the sets of synthetic and real
infarct images, represented by the distributions P and Q, respectively.

The case-based personalization means finding for each i ∈ [1, q] the optimal
parameters θi ∈ Rmd such that xi = fd(θi) ≈ yi, where md is the number of
parameters of a given (deterministic) model fd (e.g. the number of iterations
and the maximal sphere radius for the iterative model).

In contrast, the population-based personalization consists in finding the opti-
mal parameters θ ∈ Rmr that lead to comparable synthetic and real distributions
P and Q, where xi = fr(θ) and fr is the (random) model. From the point of
view of the energy to minimize during the personalization process, this can be
formulated as minimizing the Kullback-Leibler divergence between the distri-
butions P and Q, approximated from the known samples {xi}pi=1 and {yi}qi=1

using a Gaussian kernel of bandwidth σ. The personalization is stopped when
one of the three following conditions are met: the energy to minimize is below a
given threshold �, or Nmax iterations have been performed, or the average and
covariance of the synthetic population no longer substantially evolve.
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Fig. 2: Minimized energy (top), covariance matrix coefficients (middle), and model
parameters (bottom) across iterations of the CMA-ES algorithm, for the iterative (a)
and elliptical (b) models.

3 Experiments and results

3.1 CMA-ES parameters and convergence

For both models, the CMA-ES hyperparameters were empirically set to: 100
samples generated at each new generation of the algorithm, 15 samples retained
to estimate the covariance matrix, maximum number of iterations Nmax = 500,
and the functional threshold � = 0.004 such that the covariance coefficients and
the model parameters have enough iterations to stabilize. The kernel bandwidth
σ used for the Kullback-Leibler divergence was set to the average distance be-
tween each sample and its 10 nearest neighbors.

The initial values were the identity for the covariance matrix, and 2 for each
parameter of the model. However, as recommended by the CMA-ES authors, the
long-axis of the elliptical model was rescaled by a factor 3 so that the sensitivity
to the long- and short-axis parameters are (a-priori) comparable. This means a
wider range of values for the infarct spread along the circumferential direction,
although this does not explicitly constrain infarcts to spread more along this
direction (to better correspond to what is observed on the real data).

Figure 2 reports the evolution of the minimized energy, the covariance matrix
coefficients, and the model parameters across the generations of the CMA-ES
algorithm. It shows that although the energy is rapidly minimized, the evolution
of the covariance matrix coefficients needs to be monitored to ensure a stable
solution: the highest coefficient exhibits a first increase necessary to get the
energy minimum within the reach of the distribution P , and then decreases
and stabilizes while the model parameters also converge, indicating that the
personalization has been achieved and is stable. Of note, due to the randomness
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Fig. 3: Relative decrease of the eigenvalues (a) and distribution in the latent space (b)
using non-linear dimensionality reduction with Isomap on the real (123 subjects) and
synthetic populations generated using the iterative and elliptical models (100 samples
for each model).

in the models, we do not expect a perfect stabilization of the model parameters
and covariance coefficients fully converging to 0, unless an infinite set of synthetic
samples is generated.

3.2 Distribution of the synthetic and real populations

We applied non-linear dimensionality reduction (Isomap) on the infarct patterns
from the synthetic and real populations to better examine their distributions and
the main variations they encode.

Figure 3 illustrates the relative decrease of the eigenvalues and the distri-
bution of samples in the latent space. It shows that after personalization, the
synthetic populations generated from the two models and the real population
have similar distribution, although the synthetic populations are slightly more
compact (faster decrease of eigenvalues), which is expected given that they orig-
inate from rather simple models.

Figure 4 complements these observations by representing the main variations
encoded in these latent spaces, obtained by reconstructing the infarct patterns
associated to {−2,−1, 0, 1, 2} standard deviations along the first two dimensions.
Reconstruction was achieved by multi-scale kernel regression [12], with equally
weighted regularization and data terms. The regression used for the reconstruc-
tion of samples from the latent space may provide intermediate values between
the healthy myocardium (blue) and the infarct (yellow): we kept them on pur-
pose to assess the soundness of the reconstructed patterns, and only thresholded
the values above/below these limits.

The synthetic and real populations exhibit comparable infarct shape, extent,
and location along these modes of variation. Similar results are visible along the
next dimensions (not displayed here to fit the page limit), although variations
become more subtle as these distributions are rather compact. Slightly unplau-
sible patterns may be observed at extreme values (e.g. +2 standard deviations
for the elliptical model), due to the limits of the reconstruction method and the
lower density of samples in this region of the latent space. The intrinsic limits
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Fig. 4: First modes of variation (obtained through non-linear dimensionality reduction
with Isomap on the infarct patterns) for the real and synthetic populations generated
using the iterative and elliptical models. Intermediate values are observed between
the healthy myocardium (blue) and the infarct (yellow) due to the regression used to
reconstruct samples from the latent space.

of the models are also slightly visible: the iterative model tends to provide fully
transmural lesions, while the elliptical model provides simpler infarct shapes.

4 Discussion

We proposed a method for the population-based personalization of simulations,
illustrated in 2D on two simple geometrical models of myocardial infarction with
respect to a real population of acute infarcts. We demonstrated the feasibility
of this personalization strategy, which is therefore promising to generate virtual
populations from models that intrinsically contain randomness.

The iterative model provides limited control on the infarct shape and its
propagation from the endocardium. This intrinsic randomness, combined with
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the stochastic search performed by the CMA-ES algorithm, are rather challeng-
ing to reach stable personalizations, although the examination of the optimiza-
tion values (energy, covariance coefficients, and optimized parameters) confirms
the convergence of the personalization. Besides, comparable optimal values of
the model parameters were obtained by using a large covariance matrix as ini-
tialization. Adding relevant constraints on this model may improve realism and
the robustness and efficiency of the personalization process.

Examining 2D data allowed focusing on the personalization process in a
reasonable computing time (around 1 minute for the personalization of each
model). The Kullback-Leibler divergence seems viable to compare the synthetic
and real populations during personalization, although comparisons are directly
performed on the infarct patterns and not on a relevant latent space as in vari-
ational auto-encoders [2]. We obtained comparable results with the Maximum
Mean Discrepancy [13], although it tended to provide less stable results.

In 2D, the elliptical model seemed to better encode the infarct transmurality
but the generated shapes are rather simple. However, generalizing this work
to 3D (planned for future work) will help to better state on the realism of such
models to generate relevant synthetic populations. In any case, our primary focus
here was to assess the feasibility of population-based personalization, and not
on developing more complex infarct models. Nonetheless, further work should
consider reducing the gap between synthetic and real data, using heterogeneous
(instead of binary) infarct patterns, or at least a third region that could represent
the border zone, and infarcts that may originate from the occlusion of several
arteries. Provided relevant real data are available, our work is also generalizable
beyond the acute infarct setting, for example to chronic infarcts, or to consider
remodeling that may occur over time.
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