
HAL Id: hal-03203306
https://hal.science/hal-03203306

Submitted on 20 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Note on the Completeness of Certain Refinements of
Resolution

Jean Goubault-Larrecq

To cite this version:
Jean Goubault-Larrecq. A Note on the Completeness of Certain Refinements of Resolution. [Research
Report] LSV-02-8, LSV, ENS Cachan. 2002, pp.16. �hal-03203306�

https://hal.science/hal-03203306
https://hal.archives-ouvertes.fr

J. GoubaultïLarrecq

A Note on the Completeness
of Certain Refinements

of Resolution
Research Report LSVï02ï8, Jul. 2002

Ecole Normale Supérieure de Cachan
61, avenue du Président Wilson
94235 Cachan Cedex France

http://www.lsv.ensïcachan.fr/Publis/
Research Report LSVï02ï8, Lab. Spécification et Vérification, CNRS & ENS de Cachan, France, Jul. 2002

A Note on the Completeness of Certain Refinements of
Resolution

Jean Goubault-Larrecq

LSV/CNRS UMR 8643, ENS Cachan
61, av. du président-Wilson

94235 Cachan Cedex, France

Abstract. Resolution and many refinements thereof have now been known for
a long time. Completeness is usually proved by semantic means (e.g., semantic
trees, Bachmair-Ganzinger forcing), or by syntactic tricks (Bledsoe’s excess lit-
eral technique). The purpose of this paper is to note that there is a completely
proof-theoretic way of proving completeness for several refinements of resolu-
tion, resembling Gentzen’s method of cut-elimination. While this technique has
a number of shortcomings compared to the semantic arguments cited above, it is
valuable in that the completeness proofs for different refinements are the same.
We have found this proof technique to be effective in teaching the ins and outs of
refinements of resolution to masters level students. This can also be used to ex-
tract propositional proofs in one resolution format from resolution proofs in some
other format automatically; in the first-order case, the same technique allows one
to extract ordered resolution or hyperresolution proofs from proofs in any other
resolution format mechanically.

1 Introduction

Context and related work. Resolution [10] has several refinements, among which hy-
perresolution, semantic resolution, ordered strategies, and combinations thereof, most
of which being complete [2]. The classical proofs of their completeness is different in
each case, and sometimes feel ad hoc. Amongst these techniques, we find Kowalski and
Hayes’ semantic tree technique [9], which works nicely for ordered resolution, hyper-
resolution and semantic resolution; Bachmair and Ganzinger’s forcing technique [1],
which is often used for ordered resolution with selection and provides an explicit model
construction in case no refutation can be found. These semantic methods have several
advantages, including the fact that it is easy to show that several deletion strategies
(tautology elimination, subsumption) as well as additional rules (e.g., splitting [5] or
condensation [8]) can be used without destroying the completeness of the base calcu-
lus. One syntactic method of proving completeness is Boyer’s excess literal technique,
which applies notably to Boyer’s locking and to semantic resolution, including hyper-
resolution: see [2].

It is then usually somewhat awkward to teach students a course in resolution tech-
niques, as refinements look like a hodge-podge of ad hoc tricks, with specific semantic
or syntactic completeness arguments. The purpose of this paper is threefold:

– First, to show one unifying intuition behind several refinements of resolution: res-
olution, at least in the propositional case, is Gentzen’s cut rule, and there are many
ways that a proof using only cuts can be rearranged by permuting and distribut-
ing cuts across each other. Normal proofs will then be of specific forms, allowing
one to reduce non-determinism in proof search. This is very much in the spirit
of Gentzen’s Hauptsatz for sequent calculi [13]. While permuting and distributing
cuts is easy, showing that this process terminates is slightly more challenging. (Note
that weak termination would be enough, but it is not much harder to show strong
termination: all rewrites terminate.)

– Second, to provide a simple argument by which termination is ensured, hence from
which completeness follows. This simple argument (condition (5) below) is enough
to retrieve some of the most well-known refinements of resolution.

– Third, to provide effective translations between resolution formats. For example,
our argument allows one to rewrite any ordered resolution refutation into a positive
hyperresolution refutation from the same set of clauses. This can be used to provide
human-readable proofs from machine-generated proofs; positive hyperresolution
derivations, notably, tend to be more readable than ordered resolution proofs.

On the other hand, it is not the purpose of this paper to show that resolution refine-
ments are still complete in the presence of such or such deletion strategy, for which
semantic trees or Bachmair and Ganzinger’s technique are preferable. This is mostly an
orthogonal concern. For example, it is still possible to show that subsumed clauses and
tautologies can be eliminated, when they can, by syntactic methods [7]. Neither is it the
purpose of this paper to introduce new refinements of resolution, or to introduce a uni-
versal completeness proof. In particular, it seems that certain refinements of resolution,
e.g., ordered resolution with free selection of negative literals, are not easily amenable
to the technique described here.

Outline. Because we can always rest on lifting arguments, we mostly deal with propo-
sitional resolution in this paper—that is, until Section 5. We fix notations and recall the
resolution principle in Section 2. We then introduce our proof transformation rules in
Section 3, and give sufficient conditions for them to terminate, thus implying complete-
ness. Section 4 illustrates a number of known refinements that can be shown complete
by this technique. Although the stress is put on the propositional case in this paper, we
deal with the first-order case in Section 5; this is more difficult to tackle without going
through lifting first. This effort pays up: our technique provides an effective translation
from any first-order resolution refutation to ordered, or to hyperresolution refutations.
We conclude in Section 6.

2 Resolution

Let us fix a vocabulary of atoms , , . . . ; literals are either positive atoms or
negative atoms . Clauses , , . . . , are finite sets of literals, seen as disjunctions.

2

On propositional formulas, which is the case we deal with except in Section 5, the
resolution rule is nothing else than Gentzen’s Cut rule:

where comma denotes union, and disjoint union in premises (in particular, ,
).

We write the empty clause, the negation of literal , i.e., ,
. In the Cut rule above, is called the cut formula. A resolution proof of a clause

from the set of clauses is any finite tree of resolution inferences (instance of Cut)
whose leaves (at the top) are clauses in and whose root (at the bottom) is . A
refutation from is a resolution proof of from .

The completeness of resolution, i.e., that there is a refutation from whenever
is inconsistent, can be established by semantic means, or by appealing to the syntactic
device of cut elimination: let denote Gentzen’s sequent calculus for classical
logic augmented with non-logical axioms taken from (clauses being read as sequents),
then eliminating cuts from any -proof of the empty sequent yields one where
the only rule is (Cut) [6, 7]. That resolution is complete will be assumed in the sequel.
To show that some refinement of resolution is complete, we only need to rewrite any
given refutation of into a refutation of that obeys the constraints of the refinement.
We shall do this by using rewrite rules (– below) that express all possible ways
of permuting one cut past another.

(1)

(2)

The , , , marks have been added for future reference. For example, we
shall say that the -cuts are those marked with (the topmost cuts in each rule, on
the right).

Recall that we assume that in premises such as , the literals and are
distinct and not in .

These rules do not terminate in general. However we shall find a series of condi-
tions that ensure termination in the next section, and demonstrate that several known
refinements of resolution obey these conditions.

3

3 Completeness via Selection Functions

Let us specify a refinement of resolution by means of a selection function mapping
each clause to a subset of literals that we are allowed to take as cut formulas in the
(Cut) rule.

For example, if returns the set of all -maximal literals for some ordering , and
compares literals by comparing the underlying atoms, then we get ordered resolution.

We shall give more examples of functions in Section 4.
We ask the selection function to obey the following axioms. First, selects from

literals in the clause:
(3)

Then, should select the unique literal from each unit (one-literal) clause:

(4)

for every literal . That is, it is not allowed to select nothing from a unit clause.
Before we introduce the last condition, define the -cut rule as the restriction of

the (Cut) rule where and . A resolution proof is a
-resolution proof if and only if it only uses -cuts. We then require the following

condition:

In (1), (2), if the -cut is a -cut, and the -cut is not, then the -cuts are -cuts.
(5)

If is a non- -resolution refutation from , there must be a lowest instance of
(Cut) that is not a -cut. This lowest non- -cut cannot be the last one. Indeed, because

for every unit clause , any final instance of (Cut) in a refutation, which
derives and therefore must be a cut between two unit clauses, is a -cut. So there must
be a -cut below the lowest non- -cut. That is, contains the following configuration:

non- -cut

-cut

(6)

which we call a redex. Condition (5) says that (1) and (2) rewrite redexes to configu-
rations where the -cut was permuted upwards: all topmost cuts in right-hand sides are
required to be -cuts.

Since the non- -cut in the redex (6) is an instance of (Cut), the clause must
equal . Then either contains but not (or by symmetry does not but
does), or both and contain : these yield the left-hand sides of rules (1) and (2)
respectively.

We claim that under the assumptions (3), (4), (5), these rewrite rules (1) and (2)
restricted to apply to redexes (6) terminate. It will follow that we can always transform
any resolution refutation into a -resolution refutation; in particular, -resolution will
be complete.

4

To establish termination, define an interpretation of proofs as first-order terms built
on one constant and two binary function symbols and , representing -cuts and
non- -cuts respectively. Recall that is the set of clauses that we start from:

-cut

non- -cut

We assume and to be commutative, i.e., to avoid ambiguity in
this translation. (We might also untie the knot by imposing that be, say, the translation
of the premise where the cut formula is positive, but this would unnecessarily duplicate
the cases to handle.)

Translating (1) and (2) through yields the following rewrite rules:

(7)
(8)

where ranges over . That is, by rules (1) or (2) implies
by rules (7) or (8); this is an easy check, using condition (5).

Lemma 1 (Termination). The rewrite system (7), (8) terminates.

Proof. Let be the set of terms that are terminating, i.e. such that every rewrite
starting from is finite. Let the contexts be terms with one hole, denoted (

where ranges over terms); denotes with the hole replaced by the term
. Similarly, let be the context obtained by replacing the hole of by the context
. Define -contexts inductively by: is an -context, and if is an -context

and , then is an -context. Finally, say that a term is reducible if
and only if for every -context ; the set of reducible terms is written

.
Observe that: (a) . This is because is an -context.
Note also: (b) if and , then . Indeed, for ev-

ery -context , is an -context by construction and , so
.

We also have: (c) if and then . Indeed, for any
-context , , so the one-step reduct is in , too.
We claim that: (d) if , then . To this end, let

be any -context, and let us show that . To fix ideas, write
as , and let us show the claim by induction on

ordered lexicographically, where terms , , , . . . , are com-
pared via the relation—which is well-founded on and on

5

. Then look at one-step reducts from . Some of them are
obtained by contracting a redex in , in , or in some , : then by (c) and
the induction hypothesis the obtained one-step reduct is in ; another is obtained
by contracting the redex , provided . If this reduces by (8), the
reduct is where .
Note that and are in by (b). So, if , we may con-
clude by the induction hypothesis (with decreased by , and replaced by); if

, then is in because
is an -context (in particular is in by (c) and (a)) and .
Similarly, every one-step-reduct obtained by contracting by (7) is in

: if , is in by induction hypothesis, using the fact
that and by (b); if , is in
since is an -context (using) and .
Since every one-step reduct of is in , is in , too. Since is
arbitrary, is reducible.

It is easy to see that . Indeed, for every ,
is indeed in (an easy induction on).

It follows that every term is reducible, by structural induction on . We have just
dealt with the base case , and the inductive cases are dealt with by (d) when

, by (b) and (a) when . Since every term is reducible, by (a)
every term is in .

Most standard methods in rewriting fail to prove Lemma 1. In particular, the recur-
sive path ordering [3] cannot deal with rules (7) or (8) when . In fact, this rewrite
system is not simply terminating, and being included in a recursive path ordering im-
plies simple termination. Recall that a rewrite system is simply terminating if and
only if plus the simplification rules , is terminating. A
counter-example is:

by (8)
by simplification

Condition (5) is also maximal in that any liberalization leads to non-termination;
in fact even weak termination (existence of normal forms) fails with any liberalized
form of condition (5). Allowing some -cuts to be non- -cuts while the -cut is
a -cut would mean creating redexes on the right-hand side, leading immediately to
non-terminating behavior. More subtly, allowing some -cuts as well as the -cut
to be non- -cuts, which might seem a benign extension, also leads to non-termination.
Consider the case of rule (1) for example, then allowing the latter would enable the fol-
lowing non-terminating behavior. We have elided the actual clauses, which are unim-
portant. First

non- -cut

non- -cut

-cut

rewrites to
-cut

non- -cut

-cut

-cut

6

by (2), then to

-cut

non- -cut

non- -cut

-cut

if we allow for the indicated liberalization of rule (1). The latter derivation is then
again a -cut under a non- -cut under a non- -cut, which allows us to start this cycle of
reductions all over again.

Having proved Lemma 1, we are now done:

Theorem 1. Every resolution refutation from can be effectively transformed into a
-resolution refutation from , provided (3), (4), (5) hold.

Corollary 1. Every refinement of resolution based on a selection function satisfying
(3), (4), (5) is complete.

4 Applications

We first show that Corollary 1 allows us to justify some standard refinements of resolu-
tion. As announced in the introduction, we won’t deal with every known refinement of
resolution. In particular, free selection functions [1], even in the propositional case that
we are now considering, do not seem to fit well in this framework.

4.1 Ordered resolution.

Let be a strict ordering on atoms. Ordered resolution is the case where is the set
of all literals such that is maximal in : i.e., there is no in , with a possibly
different sign, such that .

Clearly, (3) and (4) hold. For (5), assume that , , and is a
-cut in (1):

In other words, (a) is maximal in , and (b) no atom in is greater than
in . If is not a -cut, then there must be an atom greater than in . It

cannot be in by (b), so we must have . So is maximal in ,
otherwise there would be a greater atom in : then , contradicting
(b). must also be maximal in , otherwise there would be a greater atom in

, so , contradicting (b) again.

7

The argument for rule (2) is similar:

Since is a -cut, (a) is maximal in , and (b) is maximal in .
If some -cut is not a -cut, say the left one by symmetry, then is not maximal in

, so by (b) . Then is maximal in both premises of . Therefore
(5) holds.

In particular by Corollary 1 ordered resolution is complete.
There was in fact an easier syntactic proof of termination here. Modify the trans-

lation so that:

where for each atom there is a new binary commutative function symbol . Then
the termination of the rewrite system on proofs of Section 3 in this case can be shown
by using a multiset path ordering [3] with the precedence iff . This
applies since there are only finitely many atoms in any given refutation, therefore is
well-founded.

4.2 Positive hyperresolution.

Let be the set of negative atoms in if any, otherwise . A -cut
between two parent clauses and is then such that only contains
positive atoms, otherwise cannot be selected. Conversely, every positive hyperres-
olution step defined as (Cut) where one premise is a positive clause (a clause containing
only positive atoms) is a -cut with this definition of .

Again, conditions (3) and (4) are clear. If the left-hand side of (1) (or (2)) is a redex,
we claim that must be a positive clause. Indeed, since the -cut is a positive
hyperresolution step, the only other possibility is that , resp. , is a
positive clause; then one of the premises of the -cut must be positive, so the -cut
would be a -cut, contradicting the fact that we have got a redex. So is a positive
clause, hence the -cut is a positive hyperresolution step, i.e., a -cut. Similarly for
(2). Since is a positive clause in any case, condition (5) holds. Therefore positive
hyperresolution is complete.

In fact, we can spell out the rewrite rules (1), (2) in this case as follows:

(9)

8

(10)

where it should be clearer that the -cuts must be positive hyperresolution steps. Here
is positive, however we shall use the same rules in Section 4.4 without this restriction.

The alternate form of hyperresolution where macro-steps with premises are
used, consisting of a non-positive clause (the nucleus) and positive clauses (the elec-
trons) [2] which are resolved in steps to yield a new positive clause is complete, too.
It is enough to notice that in a positive hyperresolution refutation, as defined above, if
some -cut has a non-positive conclusion, then going down the refutation we eventu-
ally reach a positive clause: at the latest, is a positive clause. Hence we can extract a
refutation consisting entirely of macro-steps from any -resolution refutation.

We let the interested reader check that the only role of in the argument of Sec-
tion 3 is to show that the last instance of (Cut) in a refutation is a -cut. In positive
hyperresolution we may generalize: any resolution derivation of any positive clause
must end in a positive hyperresolution step (a -cut). We can then replay Section 3:
every resolution derivation of can be effectively transformed into a positive hy-
perresolution derivation of . In particular, we get the well-known fact that positive
hyperresolution derives exactly the same positive clauses as unconstrained resolution.

4.3 Negative hyperresolution, semantic resolution.

Negative hyperresolution is obtained similarly by letting be the set of all positive
atoms in if any, otherwise . In general, -resolution, a.k.a. semantic
resolution, where is a set of atoms, that is, a Herbrand interpretation, is obtained by
letting be the set of all literals that are true in if any, otherwise . Just
as in the case of positive hyperresolution, in rules (1) and (2) must be restricted to
be false in .

We do not need to use Corollary 1 here, though: completeness of -resolution fol-
lows from that of positive hyperresolution by renaming every atom to in clauses
whenever , and noticing that such a renaming preserves the existence of refuta-
tions.

4.4 Semi-ordered hyperresolution

While imposing an ordering constraint on both premises of positive hyperresolution
steps destroys completeness, it is well-known that imposing that be maximal only in
the positive clause leads to a complete refinement of resolution. This is called
semi-ordered hyperresolution in [7] to distinguish it from the aforementioned incom-
plete ordered refinement of hyperresolution. This is obtained by letting be the set
of all negative atoms in if any, otherwise is the set of maximal (positive)
atoms in .

9

Curiously, Corollary 1 does not apply directly. The reason is that condition (5) is
not satisfied. Indeed, note that -cuts are cuts where one premise is positive and
the cut formula is maximal. Then in rule (1) it might be the case that is
a positive clause with and maximal in (whence is a -cut),
but is also positive with but is not maximal in (whence

is not a -cut); in this case there is no reason why should be a -cut: neither
nor is positive, in particular.

It might be that there is still a way of showing that (1) and (2) terminate in this
case, too. However, an easier way of converting any resolution refutation into a semi-
ordered positive hyperresolution refutation is to proceed in two steps. First convert
into an ordered refutation as in Section 4.1, then convert into a positive hyperreso-
lution refutation as in Section 4.2, using rules (9) and (10). Then apply the following
lemma.

Call an instance of (Cut) -ordered if and only the cut formula is maximal in the
one premise where is positive. A resolution derivation is -ordered if every step in it
is. It is clear that ordered resolution derivations are -ordered, while positive hyperres-
olution derivations that are -ordered are exactly the semi-ordered positive hyperres-
olution derivations. For convenience, assume that is total here: if is maximal in

then is greater than or equal to all atoms in .

Lemma 2. If by rules (9) or (10) and is -ordered, then is -ordered.

Proof. The -cuts are clearly -ordered. It remains to show that the -cuts are, too.
If is a positive literal in (9), then by assumption ; since ,
in particular , so the -cut is -ordered. If is a negative literal in
(9) then by assumption , so again the -cut is -ordered. In the case of rule
(10), by symmetry we may assume that ; then by assumption ,
so since ; so the -cut is -ordered.

It follows that the end refutation obtained in the two-step process above is both
a positive hyperresolution refutation and -ordered, so it is a semi-ordered positive
hyperresolution refutation.

Again, similar arguments show that semi-ordered negative hyperresolution or semi-
ordered -resolution are complete, and give an effective procedure to transform any
resolution refutation in one of the required format.

5 The First-Order Case

While this is not completely immediate, the rewrite rules (1) and (2) generalize to the
first-order case, where the resolution rule reads:

provided is the most general unifier of . For any substitution
, we write the result of applying the substitution to the atom , and we use

10

similar notations for substituting in clauses. As is traditional, we leave implicit the fact
that the parent clauses and are first renamed so
that they have no free variable in common.

For short, write for the set . Such sets will always be assumed
to be non-empty, i.e., . Let denote the most general uni-
fier of . Extend this to literals and to several equality signs:

is the most general common substitution (if any)
that instantiate to the same literal , and . . . , and

to the same literal .
Let , the domain of , be the set . We shall always assume that

most general unifiers are idempotent, i.e., for every , is not free in .
If is idempotent, letting be the set of all equations , , then

; furthermore, if and are idempotent and , then
(we write the substitution mapping every variable to

), and if two sets of equations and have the same unquantified equational
consequences, then . In particular if then

.
The rewrite rules (1) and (2) change as follows in the first-order case. The left-hand

side of rule (1) now reads:

(11)

Now, because clauses are renamed apart, . Also,
. It follows in particular that

exists, that exists and that
. We

can then rewrite the redex above to:

(12)

where . Since , the conclusion of (12) is the same as
that of (11).

The case of rule (2) is slightly more complicated. The left-hand side is:

(13)

11

where denotes the union of the sets and . Recall that both and
are assumed not empty. Again , and

.
Let now be a renaming (one-to-one, mapping variables to variables) substitution

so that as no free variable in common with . Then is a unifier of
, so exists; is a unifier of , so

exists. Then Note that and have disjoint domains. So the
union makes sense, and we claim that it unifies . Indeed,

unifies and (because is their common most
general unifier), and also and . In particular,
unifies , and is therefore an instance of

. (For any
atom, clause or substitution , an instance of is any atom, clause or substitution ,
for any substitution . We then say that is more general than if and only if is an
instance of .)

We may then generate the derivation:

(14)

Now because all clauses are renamed apart, the bottom clause in (14) is also

Then
, and we have already noticed that is an instance of this.

In general, is not the same as , however, contrarily to the case
for rule (1). For example, take be the atom , take to be ,

to be , to be . Let us say that is , and assume
that every two variables with different names are distinct. Then , and therefore also

, map , , , to the same term. On the other hand, only
equates with and with .

With the rules (11) (12) and (13) (14) we can now define a transformation on
derivations as follows: if and only if either is of the form (11) and is (12),
or is of the form (13) and is (14), or is

(15)

12

and , where derives a clause that is more general than —say,
and —, and is:

(16)

Note indeed that unifies , hence the substitution mapping every variable
free in to and every variable free in to unifies . So exists

and is more general than . Since , is also more
general than .

It follows that the relation is well-defined and rewrites derivations of clauses
into derivations of more general clauses. In particular, it rewrites refutations into

refutations.
As in Section 3, let be a selection function, and call a first-order resolution step

a -step if and only if all literals resolved upon (and in (15) for example) are
selected in their respective clauses.

The last difficulty that awaits us in adapting the arguments of Section 3 is that the
resolution step of (15) might be a -step while that of (16) fails to be, or conversely. It
turns out that converting a non- -step into a -step is benign, while the converse leads
to non-termination. The former requires us to add the following rewrite rule to (7), (8):

(17)

Then the termination Lemma 1 extends smoothly:

Lemma 3. The rewrite system (7), (8), (17) is terminating.

Proof. As for Lemma 1. The only additional case is in claim (d), where in
the subterm rewrites to , with ,
and , . Then the contractum is , where
is in and is clearly an -context,
so that .

At this point, the technique of Section 3 applies almost without modification. We
only have to replace condition (5) by the condition that, whenever the bottom resolution
step in (11) is a -step and the top step is not, then the top resolution step in (12) is a
-step; and similarly, that whenever the bottom resolution step in (13) is a -step and

the top step is not, then the top two resolution steps in (14) are -steps. By extension,
call this condition (5) again. Then:

Theorem 2. Let the selection function be stable: for every literal , clause , and
substitution , if then . Assume that conditions (3), (4) and (5)
hold. Then every resolution derivation of from can be effectively transformed into
a -resolution derivation of some clause more general than from .

13

Proof. If (15) is a -step, then . Letting as above be and
be , it obtains , so by stability . Therefore (16)
is a -step too. Using the obvious adaptation of the interpretation, terminates if
the rewrite system (7), (8), (17) does. Then apply Lemma 3. Finally, observe that -
normal forms consist only of -steps, using condition (4). This requires showing that
the last resolution step in a refutation is a -step, and taking bottommost non- -steps, as
in Section 3. And indeed the last resolution step must be a resolution between clauses

and , with ; by condition (4), since this is a
unit clause, and similarly , so by stability and ,
therefore the last resolution step is a -step.

This can be used to extract ordered refutations from any resolution refutation:
Corollary 2. Let be a stable ordering, i.e., implies for every sub-
stitution . Then every first-order resolution refutation can be effectively transformed
into an ordered resolution refutation (wrt.) from the same set of clauses.

Proof. Apply a similar argument as in Section 4.1. Consider rule (11) (12), and as-
sume that (a) every literal in is maximal in , and (b) every literal in is max-
imal in . By stability, (b’) every literal in is maximal in .
If the topmost resolution step in (12) is not ordered, then, because of (a), some literal
in is less than some literal in . By (b’) this literal in must be less
than some literal in : (c) .

We claim that every literal in is maximal in . Otherwise there would
be a literal in that is less than some literal in . First, cannot be
in : since instantiates all of to the same atom, if then by
stability, contradicting . Second, cannot be in : otherwise
implies by stability; since by (c) and stability,

, contradicting (b). Third, cannot be in : otherwise
(by stability) (by (c) and stability) ,

a contradiction. So every literal in is indeed maximal in , therefore the
topmost resolution step in (12) is a -step.

The case of rule (13) (14) is similar. Now since defined as the set of maxi-
mal literals in is stable in the sense of Lemma 3, the result follows.

It is probably more interesting to rearrange resolution refutations into hyperreso-
lution proofs instead. Recall that positive hyperresolution derivations can be seen as
proofs deriving new facts from old facts [2]: arguably these proofs look like standard
mathematical proofs, proceeding from assumptions to theorems. The following corol-
lary can then be used to improve the readability of proofs obtained by any resolution
theorem prover, provided it keeps a trace of the proof obtained, by extracting a positive
hyperresolution proof from it.

Corollary 3. Every first-order resolution refutation can be effectively transformed into
a positive hyperresolution refutation from the same set of clauses.

Proof. As in Section 4.2, this is the case where is a positive clause in (11), (12),
(13), (14). Condition (5) is then verified. Moreover, the corresponding selection func-
tion , which selects literals based on signs, is clearly stable.

14

By the same remark as in Section 4.2, every first-order resolution derivation of a
positive clause (not just the empty clause) can be similarly effectively transformed
into a positive hyperresolution derivation of some more general clause.

6 Conclusion

Our goal here is to demonstrate a simple effective transformation of resolution refuta-
tions, in the style of Gentzen’s cut-elimination technique. With it, we are able to give
constructive proofs of completeness of several important refinements of resolution, in-
cluding ordered resolution, hyperresolution, semantic resolution and their semi-ordered
variants. The technique is completely elementary, and although the termination result
(Lemma 1) is more challenging, it still affords a simple proof from first principles.

Our point in this paper is not to compete in the race for ever more powerful argu-
ments of completeness for refinements of resolution. Kowalski and Hayes’ semantic
trees and Bachmair-Ganzinger forcing are still to date the most powerful techniques
for proving completeness. However our technique is simple and uniform enough, and
perhaps more importantly, provides constructive completeness proofs from which one
can extract effective transformations from one complete resolution format to another:
see Section 4 for the propositional case, Corollary 2 for first-order ordered resolution,
and Corollary 3 for first-order hyperresolution. This can prove useful for the purpose
of explanation of proofs. There is still ample room for research here, notably in the
first-order setting; we believe that our technique provides a valuable alternative to ex-
isting proof explanation paradigms (see [4] for some pioneering work). The termination
criterion of Lemma 1, which only observes whether cuts are -cuts or non- -cuts, will
probably have to be refined to this aim.

However, we believe that the main uses of this technique should be in one of the
following domains. First, there are many logics which do not have a semantics as sim-
ple as Herbrand semantics, as required for standard semantic completeness proofs to go
through [9, 1]; e.g., the technique presented here should pave the way to produce deci-
sion procedures for uniform provability in certain restricted classes of hereditary Harrop
formulae; note that the backchaining rule used there is essentially a form of resolution
already. Second, as usual with syntactic normalization proofs, this technique should
have some meaning from a programming language point of view: if each clause in the
initial set of clauses is thought of as denoting the type of some primitive, then proof
normalization is computation in a corresponding language, as in the Curry-Howard iso-
morphism for the -calculus. What this language of clauses, with normalization of res-
olution proofs as computation mechanism, really does is still to be discovered.

Acknowledgements

I thank Francis Klay, who expressed interest in this technique in 1999, as well as the
students of the 1999 edition of my DEA course on automated deduction. They all en-
couraged me to publish it.

15

References

1. L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection
and simplification. Journal of Logic and Computation, 4(3):217–247, 1994.

2. C.-L. Chang and R. C.-T. Lee. Symbolic Logic and Mechanical Theorem Proving. Computer
Science Classics. Academic Press, 1973.

3. N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation, 3:69–116, 1987.
4. A. Felty and D. Miller. Proof explanation and revision. Technical Report MS-CIS-88-17, U.

Pennsylvania, 1987.
5. C. Fermüller, A. Leitsch, U. Hustadt, and T. Tammet. Resolution Decision Procedures, chap-

ter 25, pages 1791–1849. Volume II of Robinson and Voronkov [11], 2001.
6. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts in

Theoretical Computer Science. Cambridge University Press, 1989.
7. J. Goubault-Larrecq and I. Mackie. Proof Theory and Automated Deduction, volume 6 of

Applied Logic Series. Kluwer, May 1997.
8. W. H. Joyner Jr. Resolution strategies as decision procedures. Journal of the ACM,

23(3):398–417, July 1976.
9. R. Kowalski and P. J. Hayes. Semantic trees in automatic theorem-proving. Machine Intel-

ligence, 4:87–101, 1969. Reprinted in [12].
10. J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the

ACM, 12(1):23–41, Jan. 1965.
11. J. A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning. North-

Holland, 2001.
12. J. Siekmann and G. Wrightson, editors. Automation of Reasoning: Classical Papers in Com-

putational Logic, volume 2, 1967–1970. Springer Verlag, 1983.
13. M. E. Szabo. The Collected Papers of Gerhard Gentzen. North-Holland Publishing Com-

pany, Amsterdam, 1969.

16

