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A Note on the Completeness of Certain Refinements of Resolution

Resolution and many refinements thereof have now been known for a long time. Completeness is usually proved by semantic means (e.g., semantic trees, Bachmair-Ganzinger forcing), or by syntactic tricks (Bledsoe's excess literal technique). The purpose of this paper is to note that there is a completely proof-theoretic way of proving completeness for several refinements of resolution, resembling Gentzen's method of cut-elimination. While this technique has a number of shortcomings compared to the semantic arguments cited above, it is valuable in that the completeness proofs for different refinements are the same. We have found this proof technique to be effective in teaching the ins and outs of refinements of resolution to masters level students. This can also be used to extract propositional proofs in one resolution format from resolution proofs in some other format automatically; in the first-order case, the same technique allows one to extract ordered resolution or hyperresolution proofs from proofs in any other resolution format mechanically.

Introduction

Context and related work. Resolution [START_REF] Robinson | A machine-oriented logic based on the resolution principle[END_REF] has several refinements, among which hyperresolution, semantic resolution, ordered strategies, and combinations thereof, most of which being complete [START_REF] Chang | Symbolic Logic and Mechanical Theorem Proving[END_REF]. The classical proofs of their completeness is different in each case, and sometimes feel ad hoc. Amongst these techniques, we find Kowalski and Hayes' semantic tree technique [START_REF] Kowalski | Semantic trees in automatic theorem-proving[END_REF], which works nicely for ordered resolution, hyperresolution and semantic resolution; Bachmair and Ganzinger's forcing technique [START_REF] Bachmair | Rewrite-based equational theorem proving with selection and simplification[END_REF], which is often used for ordered resolution with selection and provides an explicit model construction in case no refutation can be found. These semantic methods have several advantages, including the fact that it is easy to show that several deletion strategies (tautology elimination, subsumption) as well as additional rules (e.g., splitting [START_REF] Fermüller | Resolution Decision Procedures, chapter 25[END_REF] or condensation [START_REF] Joyner | Resolution strategies as decision procedures[END_REF]) can be used without destroying the completeness of the base calculus. One syntactic method of proving completeness is Boyer's excess literal technique, which applies notably to Boyer's locking and to semantic resolution, including hyperresolution: see [START_REF] Chang | Symbolic Logic and Mechanical Theorem Proving[END_REF].

It is then usually somewhat awkward to teach students a course in resolution techniques, as refinements look like a hodge-podge of ad hoc tricks, with specific semantic or syntactic completeness arguments. The purpose of this paper is threefold:

-First, to show one unifying intuition behind several refinements of resolution: resolution, at least in the propositional case, is Gentzen's cut rule, and there are many ways that a proof using only cuts can be rearranged by permuting and distributing cuts across each other. Normal proofs will then be of specific forms, allowing one to reduce non-determinism in proof search. This is very much in the spirit of Gentzen's Hauptsatz for sequent calculi [START_REF] Szabo | The Collected Papers of Gerhard Gentzen[END_REF]. While permuting and distributing cuts is easy, showing that this process terminates is slightly more challenging. (Note that weak termination would be enough, but it is not much harder to show strong termination: all rewrites terminate.) -Second, to provide a simple argument by which termination is ensured, hence from which completeness follows. This simple argument (condition (5) below) is enough to retrieve some of the most well-known refinements of resolution. -Third, to provide effective translations between resolution formats. For example, our argument allows one to rewrite any ordered resolution refutation into a positive hyperresolution refutation from the same set of clauses. This can be used to provide human-readable proofs from machine-generated proofs; positive hyperresolution derivations, notably, tend to be more readable than ordered resolution proofs.

On the other hand, it is not the purpose of this paper to show that resolution refinements are still complete in the presence of such or such deletion strategy, for which semantic trees or Bachmair and Ganzinger's technique are preferable. This is mostly an orthogonal concern. For example, it is still possible to show that subsumed clauses and tautologies can be eliminated, when they can, by syntactic methods [START_REF] Goubault-Larrecq | Proof Theory and Automated Deduction[END_REF]. Neither is it the purpose of this paper to introduce new refinements of resolution, or to introduce a universal completeness proof. In particular, it seems that certain refinements of resolution, e.g., ordered resolution with free selection of negative literals, are not easily amenable to the technique described here.

Outline. Because we can always rest on lifting arguments, we mostly deal with propositional resolution in this paper-that is, until Section 5. We fix notations and recall the resolution principle in Section 2. We then introduce our proof transformation rules in Section 3, and give sufficient conditions for them to terminate, thus implying completeness. Section 4 illustrates a number of known refinements that can be shown complete by this technique. Although the stress is put on the propositional case in this paper, we deal with the first-order case in Section 5; this is more difficult to tackle without going through lifting first. This effort pays up: our technique provides an effective translation from any first-order resolution refutation to ordered, or to hyperresolution refutations. We conclude in Section 6.

Resolution

Let us fix a vocabulary of atoms , , . . . ; literals are either positive atoms or negative atoms . Clauses , , . . . , are finite sets of literals, seen as disjunctions.

On propositional formulas, which is the case we deal with except in Section 5, the resolution rule is nothing else than Gentzen's Cut rule:

where comma denotes union, and disjoint union in premises (in particular, , ). We write the empty clause, the negation of literal , i.e., , . In the Cut rule above, is called the cut formula. A resolution proof of a clause from the set of clauses is any finite tree of resolution inferences (instance of Cut) whose leaves (at the top) are clauses in and whose root (at the bottom) is . A refutation from is a resolution proof of from .

The completeness of resolution, i.e., that there is a refutation from whenever is inconsistent, can be established by semantic means, or by appealing to the syntactic device of cut elimination: let denote Gentzen's sequent calculus for classical logic augmented with non-logical axioms taken from (clauses being read as sequents), then eliminating cuts from any -proof of the empty sequent yields one where the only rule is (Cut) [START_REF] Girard | Proofs and Types[END_REF][START_REF] Goubault-Larrecq | Proof Theory and Automated Deduction[END_REF]. That resolution is complete will be assumed in the sequel. To show that some refinement of resolution is complete, we only need to rewrite any given refutation of into a refutation of that obeys the constraints of the refinement. We shall do this by using rewrite rules ( -below) that express all possible ways of permuting one cut past another.

(1)

(2)

The , , , marks have been added for future reference. For example, we shall say that the -cuts are those marked with (the topmost cuts in each rule, on the right).

Recall that we assume that in premises such as , the literals and are distinct and not in .

These rules do not terminate in general. However we shall find a series of conditions that ensure termination in the next section, and demonstrate that several known refinements of resolution obey these conditions.

Completeness via Selection Functions

Let us specify a refinement of resolution by means of a selection function mapping each clause to a subset of literals that we are allowed to take as cut formulas in the (Cut) rule.

For example, if returns the set of all -maximal literals for some ordering , and compares literals by comparing the underlying atoms, then we get ordered resolution. We shall give more examples of functions in Section 4.

We ask the selection function to obey the following axioms. First, selects from literals in the clause:

(3)

Then, should select the unique literal from each unit (one-literal) clause:

(4)

for every literal . That is, it is not allowed to select nothing from a unit clause. Before we introduce the last condition, define the -cut rule as the restriction of the (Cut) rule where and . A resolution proof is a -resolution proof if and only if it only uses -cuts. We then require the following condition:

In ( 1), ( 2), if the -cut is a -cut, and the -cut is not, then the -cuts are -cuts.

(5) If is a non--resolution refutation from , there must be a lowest instance of (Cut) that is not a -cut. This lowest non--cut cannot be the last one. Indeed, because for every unit clause , any final instance of (Cut) in a refutation, which derives and therefore must be a cut between two unit clauses, is a -cut. So there must be a -cut below the lowest non--cut. That is, contains the following configuration: non--cut -cut [START_REF] Girard | Proofs and Types[END_REF] which we call a redex. Condition (5) says that (1) and ( 2) rewrite redexes to configurations where the -cut was permuted upwards: all topmost cuts in right-hand sides are required to be -cuts.

Since the non--cut in the redex ( 6) is an instance of (Cut), the clause must equal . Then either contains but not (or by symmetry does not but does), or both and contain : these yield the left-hand sides of rules ( 1) and ( 2) respectively.

We claim that under the assumptions (3), ( 4), ( 5), these rewrite rules ( 1) and ( 2) restricted to apply to redexes (6) terminate. It will follow that we can always transform any resolution refutation into a -resolution refutation; in particular, -resolution will be complete.

To establish termination, define an interpretation of proofs as first-order terms built on one constant and two binary function symbols and , representing -cuts and non--cuts respectively. Recall that is the set of clauses that we start from:

-cut non--cut
We assume and to be commutative, i.e., to avoid ambiguity in this translation. (We might also untie the knot by imposing that be, say, the translation of the premise where the cut formula is positive, but this would unnecessarily duplicate the cases to handle.)

Translating ( 1) and ( 2) through yields the following rewrite rules:

(7) (8) 
where ranges over . That is, by rules ( 1) or ( 2) implies by rules ( 7) or [START_REF] Joyner | Resolution strategies as decision procedures[END_REF]; this is an easy check, using condition [START_REF] Fermüller | Resolution Decision Procedures, chapter 25[END_REF].

Lemma 1 (Termination). The rewrite system [START_REF] Goubault-Larrecq | Proof Theory and Automated Deduction[END_REF], [START_REF] Joyner | Resolution strategies as decision procedures[END_REF] ). It follows that every term is reducible, by structural induction on . We have just dealt with the base case , and the inductive cases are dealt with by (d) when , by (b) and (a) when . Since every term is reducible, by (a) every term is in .

Most standard methods in rewriting fail to prove Lemma 1. In particular, the recursive path ordering [START_REF] Dershowitz | Termination of rewriting[END_REF] cannot deal with rules ( 7) or ( 8) when . In fact, this rewrite system is not simply terminating, and being included in a recursive path ordering implies simple termination. Recall that a rewrite system is simply terminating if and only if plus the simplification rules , is terminating. A counter-example is: by ( 8) by simplification Condition ( 5) is also maximal in that any liberalization leads to non-termination; in fact even weak termination (existence of normal forms) fails with any liberalized form of condition [START_REF] Fermüller | Resolution Decision Procedures, chapter 25[END_REF]. Allowing some -cuts to be non--cuts while the -cut is a -cut would mean creating redexes on the right-hand side, leading immediately to non-terminating behavior. More subtly, allowing some -cuts as well as the -cut to be non--cuts, which might seem a benign extension, also leads to non-termination. Consider the case of rule (1) for example, then allowing the latter would enable the following non-terminating behavior. We have elided the actual clauses, which are unimportant. First 3), ( 4), ( 5) hold.

Corollary 1. Every refinement of resolution based on a selection function satisfying

(3), ( 4), ( 5) is complete.

Applications

We first show that Corollary 1 allows us to justify some standard refinements of resolution. As announced in the introduction, we won't deal with every known refinement of resolution. In particular, free selection functions [START_REF] Bachmair | Rewrite-based equational theorem proving with selection and simplification[END_REF], even in the propositional case that we are now considering, do not seem to fit well in this framework.

Ordered resolution.

Let be a strict ordering on atoms. Ordered resolution is the case where is the set of all literals such that is maximal in : i.e., there is no in , with a possibly different sign, such that . Clearly, (3) and (4) hold. For (5), assume that , , and is a -cut in (1):

In other words, (a) is maximal in , and (b) no atom in is greater than in . If is not a -cut, then there must be an atom greater than in . It cannot be in by (b), so we must have . So is maximal in , otherwise there would be a greater atom in : then , contradicting (b). must also be maximal in , otherwise there would be a greater atom in , so , contradicting (b) again.

The argument for rule (2) is similar:

Since is a -cut, (a) is maximal in , and (b) is maximal in . If some -cut is not a -cut, say the left one by symmetry, then is not maximal in , so by (b) . Then is maximal in both premises of . Therefore (5) holds.

In particular by Corollary 1 ordered resolution is complete.

There was in fact an easier syntactic proof of termination here. Modify the translation so that: where for each atom there is a new binary commutative function symbol . Then the termination of the rewrite system on proofs of Section 3 in this case can be shown by using a multiset path ordering [START_REF] Dershowitz | Termination of rewriting[END_REF] with the precedence iff . This applies since there are only finitely many atoms in any given refutation, therefore is well-founded.

Positive hyperresolution.

Let

be the set of negative atoms in if any, otherwise . A -cut between two parent clauses and is then such that only contains positive atoms, otherwise cannot be selected. Conversely, every positive hyperresolution step defined as (Cut) where one premise is a positive clause (a clause containing only positive atoms) is a -cut with this definition of .

Again, conditions (3) and (4) are clear. If the left-hand side of (1) (or (2)) is a redex, we claim that must be a positive clause. Indeed, since the -cut is a positive hyperresolution step, the only other possibility is that , resp. , is a positive clause; then one of the premises of the -cut must be positive, so the -cut would be a -cut, contradicting the fact that we have got a redex. So is a positive clause, hence the -cut is a positive hyperresolution step, i.e., a -cut. Similarly for (2). Since is a positive clause in any case, condition (5) holds. Therefore positive hyperresolution is complete.

In fact, we can spell out the rewrite rules (1), (2) in this case as follows:

(9) [START_REF] Robinson | A machine-oriented logic based on the resolution principle[END_REF] where it should be clearer that the -cuts must be positive hyperresolution steps. Here is positive, however we shall use the same rules in Section 4.4 without this restriction.

The alternate form of hyperresolution where macro-steps with premises are used, consisting of a non-positive clause (the nucleus) and positive clauses (the electrons) [START_REF] Chang | Symbolic Logic and Mechanical Theorem Proving[END_REF] which are resolved in steps to yield a new positive clause is complete, too. It is enough to notice that in a positive hyperresolution refutation, as defined above, if some -cut has a non-positive conclusion, then going down the refutation we eventually reach a positive clause: at the latest, is a positive clause. Hence we can extract a refutation consisting entirely of macro-steps from any -resolution refutation.

We let the interested reader check that the only role of in the argument of Section 3 is to show that the last instance of (Cut) in a refutation is a -cut. In positive hyperresolution we may generalize: any resolution derivation of any positive clause must end in a positive hyperresolution step (a -cut). We can then replay Section 3: every resolution derivation of can be effectively transformed into a positive hyperresolution derivation of . In particular, we get the well-known fact that positive hyperresolution derives exactly the same positive clauses as unconstrained resolution.

Negative hyperresolution, semantic resolution.

Negative hyperresolution is obtained similarly by letting be the set of all positive atoms in if any, otherwise . In general, -resolution, a.k.a. semantic resolution, where is a set of atoms, that is, a Herbrand interpretation, is obtained by letting be the set of all literals that are true in if any, otherwise . Just as in the case of positive hyperresolution, in rules ( 1) and ( 2) must be restricted to be false in .

We do not need to use Corollary 1 here, though: completeness of -resolution follows from that of positive hyperresolution by renaming every atom to in clauses whenever , and noticing that such a renaming preserves the existence of refutations.

Semi-ordered hyperresolution

While imposing an ordering constraint on both premises of positive hyperresolution steps destroys completeness, it is well-known that imposing that be maximal only in the positive clause leads to a complete refinement of resolution. This is called semi-ordered hyperresolution in [START_REF] Goubault-Larrecq | Proof Theory and Automated Deduction[END_REF] to distinguish it from the aforementioned incomplete ordered refinement of hyperresolution. This is obtained by letting be the set of all negative atoms in if any, otherwise is the set of maximal (positive) atoms in .

Curiously, Corollary 1 does not apply directly. The reason is that condition (5) is not satisfied. Indeed, note that -cuts are cuts where one premise is positive and the cut formula is maximal. Then in rule (1) it might be the case that is a positive clause with and maximal in (whence is a -cut), but is also positive with but is not maximal in (whence is not a -cut); in this case there is no reason why should be a -cut: neither nor is positive, in particular. It might be that there is still a way of showing that (1) and ( 2) terminate in this case, too. However, an easier way of converting any resolution refutation into a semiordered positive hyperresolution refutation is to proceed in two steps. First convert into an ordered refutation as in Section 4.1, then convert into a positive hyperresolution refutation as in Section 4.2, using rules ( 9) and [START_REF] Robinson | A machine-oriented logic based on the resolution principle[END_REF]. Then apply the following lemma.

Call an instance of (Cut) -ordered if and only the cut formula is maximal in the one premise where is positive. A resolution derivation is -ordered if every step in it is. It is clear that ordered resolution derivations are -ordered, while positive hyperresolution derivations that are -ordered are exactly the semi-ordered positive hyperresolution derivations. For convenience, assume that is total here: if is maximal in then is greater than or equal to all atoms in . Lemma 2. If by rules ( 9) or [START_REF] Robinson | A machine-oriented logic based on the resolution principle[END_REF] and is -ordered, then is -ordered.

Proof. The -cuts are clearly -ordered. It remains to show that the -cuts are, too. If is a positive literal in ( 9), then by assumption ; since , in particular , so the -cut is -ordered. If is a negative literal in (9) then by assumption , so again the -cut is -ordered. In the case of rule [START_REF] Robinson | A machine-oriented logic based on the resolution principle[END_REF], by symmetry we may assume that ; then by assumption , so since ; so the -cut is -ordered.

It follows that the end refutation obtained in the two-step process above is both a positive hyperresolution refutation and -ordered, so it is a semi-ordered positive hyperresolution refutation.

Again, similar arguments show that semi-ordered negative hyperresolution or semiordered -resolution are complete, and give an effective procedure to transform any resolution refutation in one of the required format.

The First-Order Case

While this is not completely immediate, the rewrite rules (1) and ( 2) generalize to the first-order case, where the resolution rule reads: provided is the most general unifier of . For any substitution , we write the result of applying the substitution to the atom , and we use similar notations for substituting in clauses. As is traditional, we leave implicit the fact that the parent clauses and are first renamed so that they have no free variable in common.

For short, write for the set . Such sets will always be assumed to be non-empty, i.e., . Let denote the most general unifier of . Extend this to literals and to several equality signs: is the most general common substitution (if any) that instantiate to the same literal , and . . . , and to the same literal . Let , the domain of , be the set . We shall always assume that most general unifiers are idempotent, i.e., for every , is not free in . If is idempotent, letting be the set of all equations , , then ; furthermore, if and are idempotent and , then (we write the substitution mapping every variable to ), and if two sets of equations and have the same unquantified equational consequences, then . In particular if then . The rewrite rules (1) and ( 2) change as follows in the first-order case. The left-hand side of rule (1) now reads: [START_REF]Handbook of Automated Reasoning[END_REF] Now, because clauses are renamed apart, . Also, . It follows in particular that exists, that exists and that . We can then rewrite the redex above to: [START_REF]Automation of Reasoning: Classical Papers in Computational Logic[END_REF] where . Since , the conclusion of ( 12) is the same as that of [START_REF]Handbook of Automated Reasoning[END_REF].

The case of rule ( 2) is slightly more complicated. The left-hand side is:

, where derives a clause that is more general than -say, and -, and is:

(16)

Note indeed that unifies , hence the substitution mapping every variable free in to and every variable free in to unifies . So exists and is more general than . Since , is also more general than . It follows that the relation is well-defined and rewrites derivations of clauses into derivations of more general clauses. In particular, it rewrites refutations into refutations.

As in Section 3, let be a selection function, and call a first-order resolution step a -step if and only if all literals resolved upon ( and in (15) for example) are selected in their respective clauses.

The last difficulty that awaits us in adapting the arguments of Section 3 is that the resolution step of (15) might be a -step while that of (16) fails to be, or conversely. It turns out that converting a non--step into a -step is benign, while the converse leads to non-termination. The former requires us to add the following rewrite rule to ( 7), ( 8):

(17) Then the termination Lemma 1 extends smoothly: Lemma 3. The rewrite system [START_REF] Goubault-Larrecq | Proof Theory and Automated Deduction[END_REF], [START_REF] Joyner | Resolution strategies as decision procedures[END_REF] At this point, the technique of Section 3 applies almost without modification. We only have to replace condition (5) by the condition that, whenever the bottom resolution step in ( 11) is a -step and the top step is not, then the top resolution step in ( 12) is a -step; and similarly, that whenever the bottom resolution step in ( 13) is a -step and the top step is not, then the top two resolution steps in (14) are -steps. By extension, call this condition (5) again. Then: Theorem 2. Let the selection function be stable: for every literal , clause , and substitution , if then . Assume that conditions (3), ( 4) and ( 5) hold. Then every resolution derivation of from can be effectively transformed into a -resolution derivation of some clause more general than from .

By the same remark as in Section 4.2, every first-order resolution derivation of a positive clause (not just the empty clause) can be similarly effectively transformed into a positive hyperresolution derivation of some more general clause.

Conclusion

Our goal here is to demonstrate a simple effective transformation of resolution refutations, in the style of Gentzen's cut-elimination technique. With it, we are able to give constructive proofs of completeness of several important refinements of resolution, including ordered resolution, hyperresolution, semantic resolution and their semi-ordered variants. The technique is completely elementary, and although the termination result (Lemma 1) is more challenging, it still affords a simple proof from first principles.

Our point in this paper is not to compete in the race for ever more powerful arguments of completeness for refinements of resolution. Kowalski and Hayes' semantic trees and Bachmair-Ganzinger forcing are still to date the most powerful for proving completeness. However our technique is simple and uniform enough, and perhaps more importantly, provides constructive completeness proofs from which one can extract effective transformations from one complete resolution format to another: see Section 4 for the propositional case, Corollary 2 for first-order ordered resolution, and Corollary 3 for first-order hyperresolution. This can prove useful for the purpose of explanation of proofs. There is still ample room for research here, notably in the first-order setting; we believe that our technique provides a valuable alternative to existing proof explanation paradigms (see [START_REF] Felty | Proof explanation and revision[END_REF] for some pioneering work). The termination criterion of Lemma 1, which only observes whether cuts are -cuts or non--cuts, will probably have to be refined to this aim.

However, we believe that the main uses of this technique should be in one of the following domains. First, there are many logics which do not have a semantics as simple as Herbrand semantics, as required for standard semantic completeness proofs to go through [START_REF] Kowalski | Semantic trees in automatic theorem-proving[END_REF][START_REF] Bachmair | Rewrite-based equational theorem proving with selection and simplification[END_REF]; e.g., the technique presented here should pave the way to produce decision procedures for uniform provability in certain restricted classes of hereditary Harrop formulae; note that the backchaining rule used there is essentially a form of resolution already. Second, as usual with syntactic normalization proofs, this technique should have some meaning from a programming language point of view: if each clause in the initial set of clauses is thought of as denoting the type of some primitive, then proof normalization is computation in a corresponding language, as in the Curry-Howard isomorphism for the -calculus. What this language of clauses, with normalization of resolution proofs as computation mechanism, really does is still to be discovered.

Theorem 1 .

 1 for the indicated liberalization of rule[START_REF] Bachmair | Rewrite-based equational theorem proving with selection and simplification[END_REF]. The latter derivation is then again a -cut under a non--cut under a non--cut, which allows us to start this cycle of reductions all over again.Having proved Lemma 1, we are now done: Every resolution refutation from can be effectively transformed into a -resolution refutation from , provided (

  Some of them are obtained by contracting a redex in , in , or in some , : then by (c) and the induction hypothesis the obtained one-step reduct is in

						; another is obtained
	by contracting the redex			, provided	. If this reduces by (8), the
	reduct is			where	.
	Note that	and		are in	by (b). So, if	, we may con-
	clude by the induction hypothesis (with decreased by , and replaced by ); if
	, then			is in	because
	is an	-context (	in particular is in	by (c) and (a)) and	.
	Similarly, every one-step-reduct obtained by contracting	by (7) is in
	: if	,			is in	by induction hypothesis, using the fact
	that		and		by (b); if	,	is in
	since		is an	-context (using	) and	.
	Since every one-step reduct of			is in	,	is in	, too. Since is
	arbitrary,	is reducible.		
	It is easy to see that			. Indeed, for every	,
				is indeed in	(an easy induction on
	Note also: (b) if	and		, then	. Indeed, for ev-
	ery	-context ,	is an	-context by construction and	, so
			.		
	We also have: (c) if		and	then	. Indeed, for any
	-context ,	, so the one-step reduct	is in	, too.
	We claim that: (d) if		, then	. To this end, let
	be any				

terminates.

Proof. Let be the set of terms that are terminating, i.e. such that every rewrite starting from is finite. Let the contexts be terms with one hole, denoted ( where ranges over terms); denotes with the hole replaced by the term . Similarly, let be the context obtained by replacing the hole of by the context . Define -contexts inductively by: is an -context, and if is an -context and , then is an -context. Finally, say that a term is reducible if and only if for every -context ; the set of reducible terms is written . Observe that: (a)

. This is because is an -context. -context, and let us show that . To fix ideas, write as , and let us show the claim by induction on ordered lexicographically, where terms , , , . . . , are compared via the relation-which is well-founded on and on

. Then look at one-step reducts from .

  , (17) is terminating.

	Proof. As for Lemma 1. The only additional case is in claim (d), where in
	the subterm	rewrites to	, with		,
	and	,		. Then the contractum	is	, where
	is in	and			is clearly an	-context,
	so that		.		
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where denotes the union of the sets and . Recall that both and are assumed not empty. Again , and .

Let now be a renaming (one-to-one, mapping variables to variables) substitution so that as no free variable in common with . Then is a unifier of , so exists; is a unifier of , so exists. Then Note that and have disjoint domains. So the union makes sense, and we claim that it unifies . Indeed, unifies and (because is their common most general unifier), and also and . In particular, unifies , and is therefore an instance of . any atom, clause or substitution , an instance of is any atom, clause or substitution , for any substitution . We then say that is more general than if and only if is an instance of .)

We may then generate the derivation:

Now because all clauses are renamed apart, the bottom clause in ( 14) is also

Then

, and we have already noticed that is an instance of this.

In general, is not the same as , however, contrarily to the case for rule [START_REF] Bachmair | Rewrite-based equational theorem proving with selection and simplification[END_REF]. For example, take be the atom , take to be , to be , to be . Let us say that is , and assume that every two variables with different names are distinct. Then , and therefore also , map , , , to the same term. On the other hand, only equates with and with .

With the rules (11) ( 12) and ( 13) (14) we can now define a transformation on derivations as follows:

if and only if either is of the form [START_REF]Handbook of Automated Reasoning[END_REF] and is [START_REF]Automation of Reasoning: Classical Papers in Computational Logic[END_REF], or is of the form [START_REF] Szabo | The Collected Papers of Gerhard Gentzen[END_REF] and is (14 15) is a -step, then . Letting as above be and be , it obtains , so by stability . Therefore ( 16) is a -step too. Using the obvious adaptation of the interpretation, terminates if the rewrite system ( 7), ( 8), (17) does. Then apply Lemma 3. Finally, observe thatnormal forms consist only of -steps, using condition (4). This requires showing that the last resolution step in a refutation is a -step, and taking bottommost non--steps, as in Section 3. And indeed the last resolution step must be a resolution between clauses and , with ; by condition (4), since this is a unit clause, and similarly , so by stability and , therefore the last resolution step is a -step.

This can be used to extract ordered refutations from any resolution refutation: Corollary 2. Let be a stable ordering, i.e., implies for every substitution . Then every first-order resolution refutation can be effectively transformed into an ordered resolution refutation (wrt. ) from the same set of clauses.

Proof. Apply a similar argument as in Section 4.1. Consider rule [START_REF]Handbook of Automated Reasoning[END_REF] (12), and assume that (a) every literal in is maximal in , and (b) every literal in is maximal in

. By stability, (b') every literal in is maximal in . If the topmost resolution step in ( 12) is not ordered, then, because of (a), some literal in is less than some literal in . By (b') this literal in must be less than some literal in : (c) . We claim that every literal in is maximal in . Otherwise there would be a literal in that is less than some literal in . First, cannot be in : since instantiates all of to the same atom, if then by stability, contradicting . Second, cannot be in : otherwise implies by stability; since by (c) and stability, , contradicting (b). Third, cannot be in : otherwise (by stability) (by (c) and stability) , a contradiction. So every literal in is indeed maximal in , therefore the topmost resolution step in [START_REF]Automation of Reasoning: Classical Papers in Computational Logic[END_REF] is a -step.

The case of rule (13) (14) is similar. Now since defined as the set of maximal literals in is stable in the sense of Lemma 3, the result follows.

It is probably more interesting to rearrange resolution refutations into hyperresolution proofs instead. Recall that positive hyperresolution derivations can be seen as proofs deriving new facts from old facts [START_REF] Chang | Symbolic Logic and Mechanical Theorem Proving[END_REF]: arguably these proofs look like standard mathematical proofs, proceeding from assumptions to theorems. The following corollary can then be used to improve the readability of proofs obtained by any resolution theorem prover, provided it keeps a trace of the proof obtained, by extracting a positive hyperresolution proof from it.

Corollary 3. Every first-order resolution refutation can be effectively transformed into a positive hyperresolution refutation from the same set of clauses.

Proof. As in Section 4.2, this is the case where is a positive clause in ( 11), ( 12), ( 13), (14). Condition ( 5) is then verified. Moreover, the corresponding selection function , which selects literals based on signs, is clearly stable.