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Multiple Quadrature Kalman Filtering
Pau Closas, Member, IEEE, Carles Fernández-Prades, Senior Member, IEEE, and Jordi Vilà-Valls

Abstract—Bayesian filtering is a statistical approach that natu-
rally appears in many signal processing problems. Ranging from
Kalman filter to particle filters, there is a plethora of alternatives
depending on model assumptions. With the exception of very few
tractable cases, one has to resort to suboptimal methods due to the
inability to analytically compute the Bayesian recursion in general
dynamical systems. This is why it has attracted the attention of
many researchers in order to develop efficient algorithms to im-
plement it. We focus our interest into a recently developed algo-
rithm known as the Quadrature Kalman filter (QKF). Under the
Gaussian assumption, the QKF can tackle arbitrary nonlinearities
by resorting to the Gauss-Hermite quadrature rules. However, its
complexity increases exponentially with the state-space dimension.
In this paper we study a complexity reduction technique for the
QKF based on the partitioning of the state-space, referred to as
the Multiple QKF. We prove that partitioning schemes can effec-
tively be used to reduce the curse of dimensionality in the QKF.
Simulation results are also provided to show that a nearly-optimal
performance can be attained, while drastically reducing the com-
putational complexity with respect to state-of-the-art algorithms
that are able to deal with such nonlinear filtering problems.

Index Terms—Adaptive filters, complexity reduction, high di-
mensional, Kalman filtering, nonlinear filters, quadrature rules.

I. INTRODUCTION

T HIS paper addresses nonlinear filtering problems where
both process and measurement noises are additive and

normally distributed. The filtering problem involves the recur-
sive estimation of time-varying unknown states of a system
using the incoming flow of information (estimation of the states
at time using the measurements up to time ), along some
prior statistical knowledge about the variations of such states.
The general discrete state-space model can be expressed as

(1)

(2)
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where is the hidden state of the system at time ,
is a known, possibly nonlinear, function of the states;

and is referred to as process noise, modeled with a zero-mean
Gaussian distribution of covariance ; is the mea-
surement at time , is a known, possibly nonlinear, func-
tion, which relates measurements with states; and is referred
to as measurement noise, also zero-mean normally distributed
with covariance , and independent of .
We are interested in the marginal distribution ,

which gathers all the information about the system contained
in the available observations, with . This
distribution can be recursively computed in two steps:
1) Prediction: we obtain the predictive distribution

using prior information, , and
the previous filtering distribution, ,

(3)

2) Update: we use the new measurements (measurement
likelihood) and the predictive distribution to obtain the new
filtering distribution ,

(4)

Under the Gaussian assumption, the state transition density
and the measurement likelihood function are Gaussian densi-
ties, which in turn reverts to a Gaussian posterior density [1].
Therefore, the problem is reduced to the estimation of the mean
and covariance of each distribution. The predictive and filtering
distributions can be expressed as

(5)

(6)

respectively, where and are the state estimates ob-
tained at the prediction and update stages at time , and
and are the corresponding covariance matrices of the esti-
mation error.
Depending on the dimensionality of the state-space model,

the computational complexity associated to such estimation can
be high. Actually, most algorithms are prone to fail in high-di-
mensional systems, an effect that is typically referred to as the
curse of dimensionality. For instance, particle filters (PFs) [2]
are known to require a large sample pool to characterize the fil-
tering distribution when increases [3]. In other words, PFs
suffer from the curse of dimensionality: it is generally not pos-
sible to generate samples with significant weight, as required for
importance sampling, in high dimensions. To circumvent this
problem, some solutions were reported in the literature in the



context of particle filtering. Marginalization of linear states was
proposed in [4], where the core idea was to use a Kalman filter
(KF) to optimally deal with those states, while reducing the di-
mension of the state-space that the PF has to explore (that is,
the nonlinear part). However, this technique can only be con-
sidered when the system has linear substructures and other so-
lutions should be considered for more general cases. The idea of
dividing the state-space into subsets and run a PF for each parti-
tion was presented in [5], [6]. The resulting method is known as
the Multiple PF (MPF), which showed promising results both in
terms of computational reduction and estimation performance.
Recently the Iterated MPF (iMPF) was proposed in [7], which
enhances the performance of the MPF by using tools of game
theory to deal with the coupling of the filters and overcome the
scarce data exchanged among them.
In this paper, we borrow the idea of the Multiple PF and

apply it to the dimension reduction of the Quadrature Kalman
filter (QKF) [8], a kind of sigma-point Kalman filter (SPKF) [9].
SPKFs are a family of derivative-free Gaussian filters, which
are based on a weighted sum of function evaluations at spec-
ified (i.e., deterministic) points within the domain of integra-
tion, as opposite to the stochastic sampling performed by par-
ticle filtering methods. Different SPKF-like algorithms involve
different sigma-points and weights, which are used to approxi-
mate the transformation of means and covariances when applied
to a nonlinear system. For instance, the Unscented Kalman filter
(UKF) draws points using the Unscented Transform [10], [11],
delivering estimates that are exact in mean for monomials up
to third degree, while covariance computation is exact only for
linear functions; the Cubature Kalman filter (CKF) resorts to
spherical-radial cubature rules [12], which are exact in mean for
all polynomials in up to the third degree and in covariance
for linear functions; and the QKF is based on Gauss-Hermite
quadrature rules [1], [8], [13], [14]. Whereas UKF and CKF
exhibit a linear growth of with respect to , it is exponen-
tial for the QKF method. A single parameter is required for the
use of quadrature rules, which is the number of sigma-points
per dimension . The total number of quadrature points is then
fixed to . Indeed, this parameter can be used to ad-
just the algorithm, with the quadrature rules being optimal for
nonlinearities of degree . Despite the curse of dimen-
sionality, the remarkable performance improvement exhibited
by the QKF with respect to other SPFKs [15], makes it an ap-
pealing tool for practitioners. Recently, Smolyak rules (a.k.a.
sparse grids) have been applied to the QKF in order to avoid
tensor products of quadrature rules, further reducing the com-
putational load [16], an approach that can be complementarily
applied to the proposed Multiple QKF (MQKF).
Our contribution investigates if partitioning approaches could

be used to reduce the computational complexity of the problem
and proposes a method based on partitioning which we have
named the Multiple Square-root QKF (MSQKF). The assump-
tions are that the dynamic system is driven by Gaussian pro-
cesses and that the possible nonlinearities are approximated by
the Gauss-Hermite quadrature rules.
The paper is organized as follows. Section II introduces the

partitioning of the states and describes the implementation of the
MQKF and the corresponding square-root version (MSQKF).

Section III discusses some important issues related to the mul-
tiple approach. Section IV proves the complexity reduction of
partitioning schemes applied to the QKF. Section V supports
the approach with computer simulations where two examples
are considered: an illustrative academic example and a multiple
frequency estimation problem. Section VI draws some conclu-
sions.

II. MULTIPLE QUADRATURE KALMAN FILTER

A. State-Space Partitioning

The state-space (1) can be partitioned into subspaces, pos-
sibly with different dimensions. Also, the considered system can
be coupled in the observations, where states are combined via

. Therefore, state equation can be equivalently expressed
as1

...
...

...
(7)

where each function , with
, can be different, and we define the dimension

of each subspace such that
. Notice that the state-space models which can be considered

within the partitioning approach are general. A discussion is
provided in Section III on the simplifications and correlations
neglected by the multiple approach in general models. In the
sequel, we write instead of to
make the subspace partitioning more explicit.
The -th process noise is distributed as

, where is constructed from as the
entries corresponding to the -th subspace. In general, the
partitioned process noise vector is equivalent to in (1)
taking into account that the cross-covariance matrices among
subspace process noise vectors may not be null.
In the proposed approach, each subspace considers only

its own process noise, , and thus neglecting the possible
cross-correlations among subspace process noise vectors. In
practice, the partitioned process noise considered is only equiv-
alent to for uncorrelated partitions. This is also discussed
in Section III.
A special case: the state-space partitioning is strongly simpli-

fied when dealing with independent subspaces, where the sub-
space process noise cross-covariances are null and there is no
interconnection among subspaces. The -th subspace process
equation is reduced to

(8)

with in this case.

1 denotes the -th element (possibly a vector) in a vector and is
the vector of all elements in except for .



B. Bayesian Filtering Formulation in the Gaussian Domain

As we mentioned, the key idea consists of dividing the
state-space into subspaces and applying a QKF to each
partition. The Gaussian filter in charge of the -th subspace,

, is mainly interested in the marginal posterior distribution
, where the conditioning on shows

the interconnection among subspaces. The Bayesian recursive
solution to obtain this distribution is given in (3) and (4), which
in this case reads as

(9)

and

(10)

respectively.
Notice that the marginal predictive distribution is conditioned

to and not to , because the distribution is obtained
by integrating out the latter over the corresponding marginal
posterior at .
In the Gaussian domain, the expressions of the marginal pre-

dictive and filtering distributions are:

(11)

(12)

respectively. The problem is then to estimate first the predicted
state vector and its covariance matrix, , and
then the estimates at instant incorporating the information pro-
vided by the new measurement , .
The equations involved in the -th prediction and update

steps2 are summarized as follows:
• Prediction:

(13)

(14)

• Update:

(15)

2We write , , and as the shorthand for , ,
and , respectively. We omitted the dependence with time

and the superscript of the process function , and the dependence with
time of the measurement function , for the sake of clarity.

(16)

where the Kalman gain, measurement prediction, innova-
tion covariance and cross-covariance are obtained as

Inspecting the prediction and update steps equations, we
realize that a number of integrals must be solved by the filter.
These integrals can be seen as expectations of some known
(nonlinear) function of the states over a distribution, which
can be either the predictive or the filtering distribution. Under
the Gaussian assumption, these distributions are Gaussian and
given by (11) and (12). The assumption done allows us to
resort to the Gauss-Hermite quadrature rules to solve for the
integral [17]. Those rules were seen to be a powerful tool to
approximate integrals of the kind we mentioned [13],

constituting the core concept of the QKF.
The difference with a conventional filter is that each step is

performed in parallel by the bank. At each step, the -th filter is
aware of the estimates delivered by the rest of filters. The dif-
ferent filters are interconnected at each step as expressed in (11)
and (12) with the conditional distribution upon and ,
respectively. Unfortunately, these two quantities are not avail-
able due to the inability to marginalize over nonlinear functions,
and hence approximations should be performed. Following the
approach in [5], [6], here we propose to use

(17)

in prediction and update steps of each parallel filter, respec-
tively. Notice that these values are available at the required step.

denotes the filtering solution of all the filters but at
the previous time instant, which is shared among filters to pre-
dict at . The update is performed using the predicted values of
each subspace, .
To sum up, the simplifications made here when applying par-

titioning schemes are twofold: i) the cross-terms among state-
partitions in are neglected and ii) the coupling among fil-
ters is performed with the point estimates in (17). The impact



of these simplifications is studied in Sections III-B1 and III-B2,
respectively.

C. Multiple Square-Root Quadrature Kalman Filter

In the following, we describe the operation of the proposed
MSQKF. Initially, we have to specify the state-space parti-
tioning , the number of sigma-points per
dimension , an estimation of the process and measurement
noise covariances and (assuming stationarity for the
sake of simplicity, they will be considered constants over the
time of observation), and the initial conditions and the
corresponding covariance .
This new algorithm is constructed as a bank of parallel

SQKFs, each one tracking a different subspace. Each filter com-
putes sigma-points and weights, , resorting
to the Gauss-Hermite quadrature rules [15], [17]. The corre-
sponding deterministic points are indeed function of the dimen-
sion of the subspace and the number of points per dimension .
Hereinafter, the latter is considered equal for all filters. We de-

fine the weighting matrix as .
The prediction step can be done in parallel for each sub-

space. At time step , the previous state and covariance esti-
mates ( , and ) and the estimation

of the subspace process noise covariance are available.
First we evaluate the sigma-points

(18)
and then we propagate each one through the corresponding tran-
sition function

(19)

The subspace predicted state is computed as the weighted
mean of the propagated sigma-points

(20)

The predicted state is then constructed as the concatena-

tion of each subspace predicted state, .
The square-root factor of the predicted error covariance is

(21)

where is a square-root factor of such

that , and

, and

denotes a general triangulation algorithm (for
instance, the QR decomposition), where , ,
and is a lower triangular matrix such that . For
computational reasons, we prefer to keep the square root as a
triangular matrix of the dimension . This can be achieved
by the thin QR decomposition [18, Section 5.2, Theorem
5.2.2]], which has a computational complexity of
flops.

As for the prediction step, the update step can also be
parallelized. Considering the -th filter, the sigma-points are
first evaluated using the subspace predicted state and its corre-
sponding predicted error covariance matrix

(22)

and then propagated through the measurement function

(23)

The predicted measurement is computed as the weighted
mean of the propagated sigma-points

(24)

The square-root of the innovation covariance matrix is

(25)

where denotes a square-root factor of such that

, and

The cross-covariance matrix can be obtained from

(26)

where

Using now the standard Kalman solution we obtain the
Kalman gain

(27)

the subspace estimated state

(28)

and the square-root factor of the corresponding error covari-
ance3

(29)

The final state estimate is obtained as the concatenation

of each subspace state estimates, .

3Notice that the SQKF computes the square-root factor of the estima-
tion covariances, and . The distributions in (11) and (12)

can be readily obtained using and

.



III. ON THE MULTIPLE APPROACH

Considering the partitioned state-space model defined by (2)
and (7), the posterior distribution of interest is

. In the proposed method, the -th filter of
the bank tracks the -th subspace using the subspace marginal
predictive and filtering distributions specified in (11) and (12),
considering the implementation approximation stated in (17),
and the final estimate is constructed from the concatenation of
the subspace estimates.
In the following subsections we address some questions

which naturally arise when using the multiple approach.

A. Equivalence Between Both Approaches

Intuitively we can see that the estimation using the parti-
tioning and the direct estimation of the full state may not be
equivalent in a general case. But, when is the estimation ob-
tained with both approaches equivalent?
The standard estimation can be expressed as

(30)

and the proposed multiple approach is

...
... (31)

Expressions (30) and (31) are equivalent only when the sub-
spaces are independent and one can write the posterior distribu-
tion as

(32)

and the subspace marginal filtering distributions as

(33)

In this case, we have that , where

(34)

Notice that the independence among subspaces does not
imply that we deal with independent estimation problems,
because the observations still may combine the full state:

(35)

The coupling of all the subspaces can also be seen within
the MQKF structure through the innovations. Because the
subspaces are independent, the -th filter subspace prediction is

(36)

but the predicted measurement (24) still depends on the full state

(37)

Moreover, the different subspaces are coupled in (15) through
the innovations and the cross-covariance to compute the sub-
space estimates.

B. QKF Vs MQKF: Theory and Practice

In the previous subsection we stated that from a theoretical
point of view the multiple approach is equivalent to the standard
filtering method only when the subspaces are independent. But
in a general case, which is the difference between bothmethods?
From a theoretical standpoint, we have to analyze the differ-

ence between the standard and themultiple approach. Regarding
the implementation of theMSQKF, we need to assess the impact
of using the estimates and instead of and

.
1) Theoretical Analysis: The standard solution uses the pos-

terior density

(38)

and the multiple approach uses the subspace filtering densities

(39)

From a probabilistic point of view, the inability to marginalize
the subspace filtering densities makes impossible to obtain a
closed form comparison of these two distributions. That is why
we resort to the Gaussian expressions of the posterior and the
subspace marginal densities:

(40)

(41)

Using expressions (41) and (39), we can compute the multiple
approach log-posterior density

with . This distribu-
tion may be reformulated as

where corresponds to a vector containing the subspace es-
timates and is a block diagonal matrix

(42)

(43)



The difference between both methods and the information
that we lose with the partitioning is given by the differ-
ence between both Gaussian distributions, and ,
which are characterized by their mean and covariance matrix:

As we are dealing with a recur-
sive estimation method, the update is directly related to the
prediction. Notice that the same derivation can be done for
the standard and subspace marginal predictive distributions,

and , respectively, and
we also need to compare their mean and covariance matrix:

where is also con-
structed as the concatenation of the subspace predicted states
and is block diagonal.
Concerning the prediction step (see Section II-B), note that

each subspace predicted error covariance matrix
is computed using the corresponding subspace process
noise covariance , so the block diagonal matrix

considers only the noise affecting each subspace,

, instead of the full process
noise covariance matrix . We lose the information about
the correlation of the noise among partitions. Also, if there
exists any information, because of the interconnection among
subspaces, which may contribute to the off-diagonal elements
of , it is not taken into account by the algorithm.
The errors introduced in the prediction step are propagated

to the update step and the computation of and . In
this step, we also note that the innovation’s covariance matrix is
computed only over the subspace marginal predictive distribu-
tion instead of the complete predictive density, what may also
imply a loss of information. For numerical results illustrating
these effects see Section V-A.
2) Practical Implications: To assess the impact of using the

predicted and estimated states instead of the true values for the
interconnection among the different subfilters, refer to (17), we
perform here a first-order analysis. To that aim we consider the
following linear/Gaussian state-space model

(44)

(45)

where and act as the state transition and measurement
matrices. The rest of the variables are defined as in the original
state-space model, (1) and (2).
Applying the multiple approach, the -th subspace state equa-

tion is

(46)

where the process noise is distributed as

and is the corresponding subspace state transition matrix.
The multiple prediction step should be

(47)

but instead we use the following approximation

(48)

We can separate the matrix into two blocks (the first one af-
fecting the -th subspace, , and the other the rest, )

(49)

with dimensions and , respec-
tively.
The covariance of the prediction error is

(50)

instead of what we would expect

(51)

where

(52)

and .

Thus, the effect of using the estimation instead of

the true value is that we introduce noise into the system,
as it is evidenced in (50) and (51). The prediction error cross
covariance matrix between the -th subspace and the rest is
not available, and this is precisely the information that the
algorithm discards when using the partitioning strategy.
Regarding the measurement update step, we can see that the

different subspaces are interconnected to compute the innova-
tions,

(53)

and the corresponding innovation covariance is

(54)

with defined as in (52). In this case, we are also intro-

ducing noise into the innovation, because the terms and

should be null for equality.
Regarding the state estimation we can see that this also intro-

duces an error

(55)



where we used a similar partition than for the state transition
matrix

(56)

with dimensions and , respectively.

C. On the State Partitioning

We have seen in the previous subsections that theMQKF does
not take into account possible correlations among noise process
subspaces, therefore, there is a possible loss of information re-
garding interconnections among such subspaces due to the ar-
chitecture of the algorithm. As a result, the information that is
lost using the multiple approach is directly related to the parti-
tioning, which is set by the user and should be determined ac-
cording to the model. The questions to be considered here are:
“How do we specify the state partitioning?” and “Which is the
best partitioning?”.
For the first question, the most important point to consider is

that the partitioning should be based on the model under study.
The preferred partitioning design depends on the application,
the degree of the nonlinearity and the available computational
resources. It is important to keep in mind that the required com-
putational complexity which defines the resources needed, is
directly related to the number of sigma-points per dimension,
, and the subspace dimensions, . For a fixed complexity,
the best partitioning is the one that groups the states which are
highly correlated and puts the uncorrelated ones (or with low
correlation) into different subspaces.
For example, in a multiple target tracking application, we

would group the parameters of each target into a subspace.
Otherwise, we could use an adaptive state partitioning method
which first computes the correlation among states and then sets
the partitions according to the result obtained.

IV. A COMPLEXITY RESULT FOR THE MQKF

The time complexity of an algorithm can be viewed as the
number of floating point operations it performs per time step.
The asymptotic time complexity of square-root SPKFs is known
to be , where and represents
the number of sigma points. This computation only considers
the cost of the matrix operations, without taking into account
the evaluations of the nonlinear functions, which implemen-
tation can range from a look-up table to very complex numer-
ical methods that could represent the actual computational bot-
tleneck of the algorithm. More details of this analysis can be
found in [14], [19]. Thus, the number of sigma points is the
dominant parameter in QKF schemes, as grows exponentially
with the state dimension, and can be considered an indicator of
the computational complexity of the algorithms.
Whereas the number of points used by a QKF is ,

the total number of points generated by the MQKF is
. The computational complexity of SPKFs in gen-

eral is highly related to the number of generated points, and thus
reducing this value has a beneficial impact on the implementa-
tion cost. In this section, we are interested in identifying whether
is larger than in general, and under which conditions. The

result is stated in Proposition 1.

Proposition 1: Let and with
, , and guaranteeing that

. Then,

(57)

for and .
Proof: The proof is given in Appendix A.

This result proves that the MQKF is always reducing the
number of generated quadrature points, and thus the computa-
tional complexity of the overall filter.
As a final remark, it should be pointed out that the multiple

filtering architecture might not be suitable in general SPKFs.
For instance, the UKF requires sigma-points, whereas
a Multiple UKF would require ,
that is an increase of points. Similarly, the CKF generates

cubature points, and a Multiple CKF would use exactly the
same amount.

V. COMPUTER SIMULATIONS

In this Section, in order to provide illustrative numerical re-
sults, the performance of the proposed method is shown in an
academic example and a practical estimation problem.

A. Illustrative Academic Example

We considered the academic example proposed in [12], where
state dimension can be arbitrarily set. States evolved according
to with a zero-mean Gaussian
noise with covariance matrix , and measurements were
obtained as

(58)

where is a parameter used to tune the nonlinearity of the func-
tion and .
With this setup, we compared the Root Mean Square Error

(RMSE) of 6 nonlinear filters in their square-root version (i.e.,
with enhanced numerical stability), namely, the standard SQKF
and the MSQKF with 5 different state partitions (see Table I).
We averaged over 5000 independentMonte Carlo runs, with 100
measurements per run. The standard QKF was used as a bench-
mark for this problem, and the results were also compared to the
CKF and UKF, being the state-of-the-art reference methods for
lightweight nonlinear Gaussian filtering.
As the filters not always converged, we define the of

failure: for each realization, a filter is said to fail if its resulting
RMSE is larger than the RMSE at initialization. In the figures
we only plot the RMSE of the realizations which did not fail,
while the of failure is shown in the corresponding tables.
Notice that the results in this section do not include those
obtained by an Extended Kalman filter (EKF), the reason is
that EKF exhibited a of failure, that is it diverged in this
highly nonlinear example.
In order to assess the performance of the proposed method

we considered three explanatory cases:
1) Case 1: In this first case, we considered that the state tran-

sition and the process noise covariance matrices were diagonal,
so the state evolved according to , where



TABLE I
DIFFERENT SUBSPACE PARTITIONING AND THE CORRESPONDING NUMBER OF

SIGMA-POINTS FOR AND

Fig. 1. Case 1: RMSE of state estimation, with .

, , and . The measurement
noise variance was set to , , and .
The filter used and , and was initialized as

. The MSQKF with ( filter) is equiva-
lent to the conventional SQKF, which is plotted in order to vali-
date our implementation (we will not plot again the results of
in the following figures). As simulations show, Fig. 1, a remark-
able reduction of the computational cost can be achieved by em-
ploying the multiple architecture with moderated (depending on
the state-space partitioning) accuracy degradation, and always
obtaining better results than the UKF and the CKF. The reason
is that the third-order rules used by the UKF and CKF are not
able to characterize the high nonlinearity of the model. Notice
that the standard SQKF and the MSQKF considering the full
state use 15625 points, and the MSQKF with more than 2 sub-
spaces use less than 100 points (Table I), with the consequent
reduction in the overall computational cost.
The filters which considered partitions with dimension

, namely and , provided a worse estimation
performance because the errors introduced by the MSQKF
implementation (see Section III-B2) are larger than in case of
considering triples and pairs . Moreover, the smaller
is the subspaces dimension, the larger is the estimation error.
To overcome this problem we could to increase the noise
covariance matrices, to allow the filters converge to the results
obtained by the SQKF, which is known to be optimal in the
minimum-mean-square-error (MMSE), the maximum likeli-
hood (ML), and the maximum a posteriori (MAP) senses for

Fig. 2. Case 1: RMSE of state estimation, with an overestimated process noise
covariance .

TABLE II
OF FAILURE FOR THE 8 FILTERS FOR CASE 1
WITH TWO CONFIGURATIONS OF

all functions and expressible as a polynomial of
degree [20]. Fig. 2 shows the results obtained with
a modified process covariance matrix: . With
this configuration we can see that all the MSQKFs performed
as the SQKF with notable savings in the computational cost.
Table II provides the of failure for each filter. Considering

the setup with , we can see that filters and
never failed in 5000 realizations. When compared to the CKF
and the UKF, the of failure for the MSQKF is much lower
even in the worst partitioning cases ( and ). When over-
estimating the process noise covariance, we decrease also the
number of fails.
2) Case 2: In this case, we used the same setup as in Case 1

but introducing correlation in the process noise, that is, a non-di-
agonal covariance matrix . We considered a weak correlation
matrix , with values in the main diagonal and in
the off-diagonal entries; and a strong correlation matrix with
values in the main diagonal and in the off-diagonal
entries.
In the weak correlation case, , we can see (Fig. 3) that all

the filters deal correctly with the process noise correlation, be-
cause there is few information outside the block matrices con-
sidered . When dealing with a strong correlation, ,

there is much more information outside which is lost, so a
greater error is introduced. Notice that the smaller the subspace



Fig. 3. Case 2: RMSE with two different correlated process noise covariance
matrices, namely, (top) and (bottom).

TABLE III
OF FAILURE FOR THE 8 FILTERS IN BOTH SCENARIOS FOR CASE 2

dimensions are, the larger the amount of information lost and
the bigger the estimation errors are.
Table III shows that with a weak correlation, the of failure

for the MSQKFs is slightly higher than in the reference case
, but in the strong correlation scenario only and

resist to fail most of the time. Thus, in such strongly correlated
noise scenarios, the partitions with higher dimension capture
more information, and this constitutes the recommended parti-
tion strategy. With adequate tuning of the process noise covari-
ance matrix, even in the strong correlation case, the MSQKFs
perform as the SQKF with a drastically reduced computational
cost, obtaining the same results as plotted in Fig. 2.
3) Case 3: In the third case we introduced an interconnec-

tion among states in their evolution, that is, a non-diagonal state

Fig. 4. Case 3: RMSE with two different state transition matrices (3 3 and
2 2 correlations), namely, (top) and (bottom).

transition matrix . We considered a first scenario where
states were correlated in triples:

and a second scenario where the states were correlated in pairs:

Simulation results are in Fig. 4 and Table IV. Notice that,
as expected, the error for (which considers the partition in
pairs) was larger with than with . It can be explained
by the fact that partition strategy is optimal when it fits the inter-
connection among states. So the partitioning should be related
to the model, that is, considering correlated states in the same
subspace provides better results.
When overestimating the process noise covariance, as done

in Case 1 and Case 2, we obtained optimal results with all the
MSQKFs, because a larger process noise covariance matrix al-
lowed the filter to converge and implicitly introduced a higher



TABLE IV
OF FAILURE FOR THE 8 FILTERS IN BOTH SCENARIOS FOR CASE 3

uncertainty on the systemmodel, that is, trusting the observation
much more than the model itself. This is not a general statement
and an overestimated process noise covariance may give worse
performances depending on the application and the overestima-
tion ratio.

B. Multiple Superimposed Sinusoids Estimation

In the presented application, we considered the problem of
estimating the parameters of superimposed sinuosoids [21],
which is a problem appearing in many engineering fields, such
as power systems [22]–[24], nuclear science [25] or communi-
cations [26].
The complex measurements were obtained as

(59)

which can be rewritten as

(60)

where . The state consisted of the ampli-
tudes and the normalized frequencies per sinusoid,

(61)

that is, parameters were estimated. For each parameter
we considered a random walk evolution, so the state evolved
according to with ,

and .

We considered 3 sinusoids with the following initial pa-
rameters: , , ,

, , , so the initial state was
. The signal was sampled at 5

KHz, the variances of the Gaussian process noise driving the
states were and , and the
measurement noise variance was set to . The
filter was set with and , and initialized
with a random variable with distribution , where

.
With this setup, we compared the RMSE of the estimation of

the frequencies, , using

TABLE V
DIFFERENT SUBSPACE PARTITIONING AND THE CORRESPONDING
NUMBER OF SIGMA-POINTS FOR THE MULTIPLE SUPERIMPOSED

SINUSOIDS ESTIMATION PROBLEM

Fig. 5. Results of the estimation of the frequencies for the multiple superim-
posed sinusoids problem.

TABLE VI
OF FAILURE FOR THE MULTIPLE SINUSOIDS ESTIMATION PROBLEM

the filters in Table V. As in the case of the academic example,
the EKF diverged for all realizations. We made 400 independent
Monte Carlo runs with 350 measurements per run (70 ms), and
we set the number of sigma-point per dimension to .
The of failure was defined as follows: a realization was said

to fail if the error on the estimation of the frequencies was larger
than 300 Hz. Considering this threshold we obtained the results
plotted in Fig. 5 and the of failure given in Table VI. The sim-
ulations show the good performance of the MSQKF, corrobo-
rating the results obtained in the previous example. TheMSQKF
improves the CKF with a similar number of sigma-points (
uses 18 points) while being more robust, and with a suitable
partitioning gives almost optimal performance compared
to the SQKF with a notable complexity reduction (729 vs 54
sigma-points).

VI. CONCLUSIONS

The QKF constitutes a powerful tool for dealing with non-
linear dynamic systems. However, in order to estimate accu-
rately the posterior distribution, it requires a number of sigma-
points that increases exponentially with the dimension of the
state-space model.



Fig. 6. Plot of function (dotted line) with the evaluation over the valid
support in solid thick line.

In this paper, a new method based on the partitioning of the
state-space, called Multiple QKF, was proposed in order to alle-
viate this issue. It was proved in Proposition 1 that the state-par-
titioning approach reduces the computational complexity of a
QKF operating on the complete system.
The performance of the filter was assessed by computer sim-

ulations using an academic example, and compared to the stan-
dard QKF, CKF and UKF, with a remarkable reduction of the
computational cost with a relatively low performance degrada-
tion compared to the QKF, while improving the performance
of the other state-of-the-art methods. The new method’s per-
formance was also shown for a practical estimation problem
(where the standard QKF is not an option because of its high
computational cost), corroborating the good results obtained in
the first example.
The assumptions made are that the dynamic system is driven

by Gaussian processes and that the possible nonlinearities are
approximated by the Gauss-Hermite quadrature rules. Separa-
bility of process function is not required, although it is desir-
able to partition the state-space in such a way that one groups
the states which are highly correlated and puts the uncorrelated
ones (or with low correlation) into different subspaces. The sim-
plifications made are that the subspace cross-terms of the noise
covariance are neglected and that the coupling among filters is
performed by point estimates. Depending on the partitioning,
these simplifications may degrade the performance of the filter.
We have observed that overestimation of the model covariance
might result inmore robust implementations of theMQKFwhen
subspaces are correlated.
To conclude, the MQKF can be considered to be a versatile

tool for practitioners with an applicability covering a large va-
riety of high-dimensional problems.

APPENDIX
PROOF OF PROPOSITION 1

Proof: Let us operate with the difference :

(62)

(63)

we would like to see if , that is under which conditions
a MQKF scheme provides computational cost reduction with
respect to conventional QKF. We resort to the procedure used
to proof some set of Weierstrass’ inequalities [27], which tackle
a similar problem4.
For the sake of clarity, let us define , then we can

express as the following function of interest

(64)

which is multivariate and depending on the different dimensions
of each subspace .
Since we seek to proof that , it suffices to

show that the function is lower bounded by a positive constant.
Let us thus analyze and characterize the function as follows,
with Fig. 6 being a supporting illustration for the mathematical
derivations. Suppose now that all but one variable are fixed, then
we obtain a linear function of a single variable

(65)

with constants

(66)

The support in which function (65) can be evaluated is in
the closed set in the real line, with the limit
points corresponding to the cases (i.e., each state has an
associated filter) and (i.e., the conventional QKF without
state partitioning), respectively. Since (65) is linear on , its
lower bound is given by evaluation of one of its limit points
depending on the sign of the slope .
We can easily see that , if we identify that

the dimension of subspaces is at least equal to 1 and that the
minimum number of quadrature points5 is 2. Then,

(67)

and thus

(68)

Therefore, the supremum and infimum of are

(69)

(70)

4More precisely, we recall the Weierstrass’ product inequality that states that

where and .
5Note that for , Gauss-Hermite rules are exact for polynomials of de-

gree 1. The case of linear systems is not of interest in the context of QKF as these
could be tackled optimally by other means, namely the KF. Also, first-order ap-
proximations could be obtained by the Extended KF.



for any subspace , respectively. Notice that the root for
which is positive

(71)

The analysis holds , and thus it can be extended to the
rest of variables in (64) to see that the lower bound is

(72)

(73)

and then . To show that it suffices to
prove that . After straightforward mathematical
manipulation of the latter, we found the following condition to
ensure strict positiveness of :

(74)

which is easy to attain if , q.e.d.
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