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Review Article

Exo-Ocean Exploration with Deep-Sea
Sensor and Platform Technologies

J. Aguzzi,1,2 M.M. Flexas,3 S. Flögel,4 C. Lo Iacono,1,5 M. Tangherlini,2 C. Costa,6 S. Marini,7 N. Bahamon,1

S. Martini,8 E. Fanelli,2,9 R. Danovaro,2,9 S. Stefanni,2 L. Thomsen,10 G. Riccobene,11 M. Hildebrandt,12

I. Masmitja,13 J. Del Rio,13 E.B. Clark,14 A. Branch,14 P. Weiss,15 A.T. Klesh,14 and M.P. Schodlok14

Abstract

One of Saturn’s largest moons, Enceladus, possesses a vast extraterrestrial ocean (i.e., exo-ocean) that is
increasingly becoming the hotspot of future research initiatives dedicated to the exploration of putative life.
Here, a new bio-exploration concept design for Enceladus’ exo-ocean is proposed, focusing on the putative
presence of organisms across a wide range of sizes (i.e., from uni- to multicellular and animal-like), according
to state-of-the-art sensor and robotic platforms, technologies used in terrestrial deep-sea research. In particular,
we focus on combined direct and indirect life-detection capabilities, based on optoacoustic imaging and passive
acoustics, as well as molecular approaches. Such biologically oriented sampling can be accompanied by
concomitant geochemical and oceanographic measurements to provide data relevant to exo-ocean exploration
and understanding. Finally, we describe how this multidisciplinary monitoring approach is currently enabled in
terrestrial oceans through cabled (fixed) observatories and their related mobile multiparametric platforms (i.e.,
Autonomous Underwater and Remotely Operated Vehicles, as well as crawlers, rovers, and biomimetic robots)
and how their modified design can be used for exo-ocean exploration. Key Words: Exo-ocean—Enceladus—
Deep-sea technology—Autonomous underwater vehicles—Crawlers—Cryobots. Astrobiology 20, xxx–xxx.

1. Introduction

L iquid water is present in the form of vast extraterres-
trial oceans (i.e., exo-oceans) on various icy moons of

our solar system (NASEM, 2018; Hendrix et al., 2019; Ka-
mata et al., 2019). Five icy moons have been confirmed as
ocean worlds, namely, three satellites of Jupiter (Europa,
Ganymede, and Callisto) and two of Saturn (Enceladus and
Titan, the latter with an exo-ocean below a thick hydrocarbon
layer; Iess et al., 2012). Another four are likely to host a

subsurface ocean, such as Saturn’s moon Dione, Neptune’s
icy moon Triton, and the dwarf planet Pluto. Moreover, the
dwarf planet Ceres seems to have at least a subsurface sea
(Henin, 2018).

The primary conditions under which we could expect to
find extant life in exo-oceans (although this hypothesis is
still uncertain at this stage of scientific research) are the
presence of energy sources that facilitate a non-equilibrium
thermodynamic state of a marine-like medium containing
abundant organic compounds (Schwieterman et al., 2018).
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Among the above-mentioned icy moons, Enceladus and
Europa meet these conditions. Both host large water-based
oceans in which geothermal activity is present and where
life could be possible (Manga and Wang, 2007; Iess et al.,
2014; Deamer and Damer, 2017; Rovira-Navarro et al.,
2019). In fact, relevant geothermal activity has been imaged
on both moons by the Cassini-Huygens probe as well as by
the Galileo and Hubble Space Telescope space missions
(Henin, 2018). Notwithstanding, the presence of organic
molecules as markers for more complex compounds (e.g.,
amino acids and nucleotides), dissolved into a salty marine
medium, has been directly indicated by the Cassini-Huygens
probe of Enceladus’ plumes (McKay et al., 2014; Hsu et al.,
2015; Kimura and Kitadai, 2015; Mann, 2017; Postberg
et al., 2018). This fact makes Enceladus the most promising
site for extraterrestrial life exploration (Postberg et al.,
2018).

Enceladus is 500 km in diameter with a gravity field of
only 1.2% that of Earth (Manga and Wang, 2007). Its vast
exo-ocean mechanically decouples the rocky core from the
exterior ice shell (Thomas et al., 2016). The water body is
kept fluid by geothermal activity in combination with tidal
warming through Saturn’s tidal pull forces and by ice shell
thickness variations, all likely contributing to abrupt chan-
ges in water column pressure (Hussmann et al., 2006;
Manga and Wang, 2007; Jansen, 2016; Saxena et al., 2018;
Hemingway and Mittal, 2019; Neveu and Rhoden, 2019).
Pressure changes result in active geysers, which eject water
plumes into space, creating the phenomenon of cryo-
volcanism (F1 c Fig. 1). Strong geothermal gradients and high
pressure produce large fluxes of hot water, transported
through the ice shell via cracks and crevasses (Choblet
et al., 2017). Due to decompression shocks, water suddenly
evaporates and freezes once it emerges into space, dropping
back on the surface as snow (Běhounková et al., 2017).

Exo-ocean salinity conditions on Enceladus seem to be
similar to those on Earth (Fifer et al., 2019), which would
lead to a water density of approximately 1020 kg/m3, similar
to that of terrestrial oceans (Hemingway and Mittal, 2019).
However, the average depth is much higher, being approxi-
mately between 30 and 50 km (Iess et al., 2014, Hemingway
and Mittal, 2019). This would generate a total volume of
around 40% of the mass of the moon itself (Čadek et al.,
2016). Enceladus’ ice shell has an average thickness of 20–
30 km with reduced thickness at the South Pole (Čadek et al.,
2016; Lucchetti et al., 2017; Hemingway and Mittal, 2019).

Enceladus’ exo-ocean seems to have been in a fluid state
for a time span equivalent to that of the oceans on Earth
(Choblet et al., 2017; Lunine, 2017; Jia et al., 2018), po-
tentially allowing abiogenesis and evolution of unicellular
and multicellular-like life-forms (Barge et al., 2017, 2019).
Geothermal activity seems to be a component that favored
the emergence of primordial life on Earth, driving its evo-
lution in the deep sea (Baross and Hoffman, 1985; Burcar
et al., 2015). Similarly, exo-ocean geothermal activity could
favor the evolution of organisms with chemosynthetic meta-
bolic pathways analogous to those documented in highly
productive hydrothermal communities on Earth (e.g., Chyba
and Hand, 2001; Barge and White, 2017; Seewald, 2017).
During the geological history, those exo-ocean hydrothermal
vent systems could have evolved into biodiversity-rich en-
vironments with chemosynthetic autonomous communities of

primary producers, grazers, predators, scavengers, and re-
mineralizing organisms (e.g., Lelièvre et al., 2018).

Unfortunately, exploration for life in Enceladus’ exo-
ocean presents technological challenges of much higher
complexity than the exploration of any location in the deep
sea on Earth. Instrument payloads will likely have a con-
straining effect on their use for the exploration of Enceladus
over the next decades, although the weight of their casing
can be greatly reduced compared to ocean instrumentation
on Earth due to the reduced gravity on Enceladus. More-
over, the penetration of a potentially large ice shell requires
tools to carve or melt tunnels on the scale of kilometers, in
order to open the passage for any marine-like exploring
platforms (Weiss et al., 2008; Flögel et al., 2018). Anyway,
those technological efforts are already in place. Different
projects such as the Enceladus Explorer (EnEx) and the
Europa Explorer (EurEx) ( b AU1Konstantinidis et al., 2013), as
well as the Very-Deep Autonomous Laser-Powered
Kilowatt-Class Yo-Yoing Robotic Ice Explorer (VALK-
YRIE) are presently focusing on autonomous navigation and
control of robotic systems on, and especially under, exo-
ocean ice shells.

1.1. Objectives

Motivated by data indicating that Enceladus’ exo-ocean
may host complex organic life and given the time span of its
existence as a fluid body (Postberg et al., 2018), we provide
a perspective for implementing its environmental and life-
oriented exploration based on available deep-sea technologies.
We first describe high-priority sensors that are currently in
use for marine sciences, when aiming at the characterization
of pelagic and benthic seascapes, whose environmental
conditions may affect life itself. Then we focus on those
sensors that allow the detection of multicellular life-forms
(i.e., animal-like), which is, to date, primarily carried out by
imaging systems. At the same time, we also describe com-
plementary molecular methods for indirect traceability of
life (that would also allow the capability of detection of
unicellular life). Later, we illustrate the different marine mon-
itoring platforms and their assemblage into high-tech networks
that could be used as test beds for exo-ocean life-detecting
technologies. Ultimately, we propose a forward-looking path-
way for environmental exploration of exo-oceans based on
adapted versions of previously described sensor and plat-
form technologies.

2. Deep-Sea Sensors for Exo-Ocean Reckoning
and Life Detection

Prokaryotic-like life (i.e., unicellular) could be (theoreti-
cally) inhabiting exo-oceans (Merino et al., 2019). Traces of
biological activity could then be detectable from tens of
meters up to kilometers as has been accomplished on Earth’s
oceans with available deep-sea sensor technologies (Aguzzi
et al., 2019).

At the same time, other sensors could be used to char-
acterize exo-ocean seascapes, including circulation and ba-
thymetry, as relevant ancillary information for describing
ongoing oceanographic and geochemical processes, which
may create conditions conducive to life itself. To date, a
diversified group of environmental sensors are being used in
a remote, synchronous, and long-lasting fashion at virtually
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any depth of benthic and pelagic oceanic realms (Danovaro
et al., 2019). Below, we describe the most relevant sensors
for acquiring oceanographic and geochemical information;
then we move to those sensors, providing information on
potential life activity (T1 c Table 1).

It should be noticed that current marine sensors are far
from being exo-ocean flight-ready in terms of mass, ro-
bustness, autonomy, reliability, and so on. Such a develop-
ment would be an engineering effort, requiring important
economic sustainment, the description of which is out of the
scope of this work. Moreover, the environmental knowledge
needed to use these sensors in situ in an exo-ocean is not yet
currently available. Therefore, due to this limitation, we
describe them assuming that Enceladus’ water medium

conditions are similar to those present in Earth’s oceans
(Fifer et al., 2019; Hemingway and Mittal, 2019). In any
case, such sensors are already conceived to currently operate
in harsh deep-sea conditions (Ramirez-Llodra et al., 2010),
including darkness, high pressure, extreme low or very high
temperatures (e.g., 1–8�C at seabed and around 400�C close
to hydrothermal vent emissions), and variable turbidity
(Aguzzi et al., 2019).

2.1. Oceanographic and geochemical sensors

Enceladus’ exo-ocean seascapes can be explored with
different environmental sensors (Table 1). The concentra-
tion of floating particles as well as their size and organic or

FIG. 1. Enceladus is a small moon (di-
ameter of about 500 km) that became a
research hotspot when the space probe
Cassini-Huygens discovered evidence of
cryovolcanism, including exhalations into
space by geysers in 2005. (A and B) Ima-
ging of individual jets spurting ice mixed
with vapor and trace organic compounds.
(C and D) proposed mechanism generating
observed geysers. Sources: DCode by
Discovery; https://www.youtube.com/
watch?v=MjOpZrYLE1U; NASA/JPL/
Space Science Institute; https://www.jpl
.nasa.gov/news/news.php?feature=3382.
Color images are available online.
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inorganic composition can be measured by light absorbance
sensors, including laser diffraction and Raman spectroscopy
together with a wide range of related properties (Boss et al.,
2015). Floating particle size may be controlled by turbu-
lence and by biogenic activity (e.g., marine snowlike ag-
gregates; Turner, 2015), being the product of resuspension
from deeper seafloors.

As salinity and carbon-dioxide contents of the exo-oceans
seem to be similar to those on Earth (Fifer et al., 2019;
Hemingway and Mittal, 2019), Conductivity-Temperature-
Density (CTD) probes as well as oxygen and pH sensors
could also be used as relevant markers for proteins and
nucleic acids stability and to set the boundaries for metab-
olism existence as we know it on Earth (NASEM, 2018).
Nitrate, phosphate, and even methane sensors could be used
as well, since they efficiently operate in environments where
marked fluctuations in those dissolved gases occur at dif-
ferent spatiotemporal scales (e.g., Thomsen et al., 2012;
Doya et al., 2015). In the case of Enceladus, measurements
of dissolved methane may be of relevance in order to
highlight the presence of biological chemosynthetic activity
as it occurs on Mars (Formisano et al., 2004). The occur-
rence of essential nutrients such as nitrates and phosphates
may also provide relevant hints on the distribution and
productivity of life into the exo-ocean itself, and when these
data are coupled with those from currents (see next section),
circulation effects on potential biological productivity can
be modeled (Olson et al., 2019).

2.2. Sonars

Enceladus’ exo-ocean current regimes are presently un-
known, and complex hydrodynamic seascapes may occur
below the ice shell, within the water column, and near the
rocky core (e.g., Rovira-Navarro et al., 2019). Scientific
findings on Earth have shown that currents may deeply alter
life existence, determining the concentration of life-limiting
gases (e.g., oxygen minimum zones in oceans; Paulmier and
Ruiz-Pino, 2009) and nutrient dispersal (Olson et al., 2019),
thus conditioning the appearance of organisms as sessile or
motile forms.

Active acoustic tools (e.g., acoustic Doppler current
profilers, ADCP), commonly used in oceanographic studies
for acquiring flow speed and direction data, could be de-
ployed faced down, below the ice shell (Table 1) (Fifer
et al., 2019; Hemingway and Mittal, 2019). For example,
Aquadopp models (Nortek1) working at 2000 kHz allow a
maximum depth resolution of 6 km with an accuracy of
0.5 cm/s.

Multibeam echo sounders (MBES), based on the emis-
sion of multiple ultrasonic frequencies, are commonly used
for the characterization of the seabed (Lo Iacono et al.,
2008; Lurton, 2010; Lecours et al. 2016), the analysis of the
water column–seabed interface, and the identification of gas
plumes (Colbo et al., 2014; Innangi et al., 2016; Zhao et al.
2017). When the MBES are combined with navigation data
of a moving platform (see next section), a complete char-
acterization of Enceladus’ rocky nucleus surface could be
obtained (e.g., Wynn et al., 2014). In a similar way to

Earth’s findings, the effects of bioturbation as well as the
presence of biogenic structures (actual or fossil) could be
revealed by recurrent marks on the seabed surface or spe-
cific geomorphologies (Baucon et al., 2017). MBES systems
could also be configured face-upward to scan the bottom of
the ice shell, providing important information on its mor-
phology and dynamics at the interface with the water
(McPhail et al., 2009; Dutrieux et al., 2014a, 2014b).

Multibeam echo sounders can also be used for the
quantification of animal presence in large volumes of water
via the analysis of acoustic backscatter returns, when an
adequate assessment of signal-to-noise ratio can be made
(e.g., Briseño-Avena et al., 2015). Although preexisting
knowledge on echo signature for acoustic signal cross-
referencing is not yet available for exo-oceans and MBES
cannot be used for the identification of any fauna, those
sensors could be used to identify objects moving in the
water column, thus contributing to the environmental char-
acterization (Dunlop et al., 2018).

Finally, acoustic tomography based on sound propagation
could also be employed to measure temperature, currents,
and internal tides among distant and time-keeping syn-
chronized acoustic sources (Munk et al., 1995; Finn and
Rogers, 2017). Such technology could be used to derive
large-scale information on exo-ocean circulation and geo-
thermal activity. For example, acoustic tomography enabled
the identification of localized convection ‘‘chimneys’’ in
Greenland’s deep sea (at 1800 m) that are caused by extreme
surface winter cooling (Wadhams et al., 2002). Similar
techniques could be applied to detect exo-ocean geothermal
fluxes.

2.3. Optical sensors

HD b AU2imaging is widely used in ecological exploration of
Earth’s deep-sea, and current tools may be used to identify
the presence of fauna with sessile or motile morphological
designs on icy moons, although that possibility is to date
still highly uncertain (Newman, 2018). Within this context,
fast-developing deep-sea imaging technologies centered on
high-definition photogrammetry, stereo, hyperspectral,
miniaturized cameras and low-light vision are established
tools that permit assessment of the presence and activity of
organisms (e.g., Kokubun et al., 2013; Bicknell et al., 2016;
Corgnati et al., 2016, Marini et al., 2018a). These imaging
assets could be adapted for the identification of exo-oceanic
fauna in a broad range of sizes (i.e., equivalent to our pro-
karyotes, including bacterial mat formations, as well as
micro-eukaryotes, micro- and meso-zooplankton, up to lar-
ger multicellular organisms). Those cameras require differ-
ent levels of light intensity, which is a monitoring footprint
whose biological effects are still under evaluation in deep-
sea contexts (Aguzzi et al., 2019).

2.4. Low-light imaging technologies

Different image-based technologies for life detection
could also be used to avoid the exogenous light footprint.
Such an imaging is capable of recording very low intensity
emissions from organisms, as in the case of bioluminescence
(see Table 1).

Environmental prerequisites that potentially favor biolu-
minescence existence in exo-oceans are light-deprivation1https://www.nortekgroup.com/products/aquadopp-6000-m
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and ecosystem stability as it occurs in Earth’s deep sea.
However, one should also consider the possibility that bio-
luminescence could be a non-existing phenomenon on En-
celadus, even in the extreme case of having identified any
life-form.

Bioluminescence is a ubiquitous phenomenon in envi-
ronments that have been stable over large geological times
on Earth (i.e., marine as compared to freshwater, where only
a few bioluminescent species are known) (Haddock et al.,
2010). Bioluminescence evolved independently, being
present in most of the major marine phyla (Herring, 1987;
Widder, 2010; Martini and Haddock, 2017; Martini et al.,
2019), as well as in some bacteria (Martini et al., 2016).
Bioluminescence is produced by organisms for predation,
defense, and intraspecific communication (Haddock et al.,
2010), and organisms can emit it after mechanical stimula-
tion at collisions (Craig et al., 2011).

Calibrated high-resolution measurements of mechanically
stimulated bioluminescence are made by the Underwater
Bioluminescence Assessment Tool (UBAT), similar to a
Multipurpose Bioluminescence Bathyphotometer (MBBP;
Herren et al., 2005). Other systems use a stimulating grid
mounted on oceanographic instruments, such as CTD, to
obtain vertical pelagic profiling of bioluminescence via
photomultiplying cameras (e.g., the Image Intensified Sili-
con Intensifier Target-ISIT; the Image Intensified Charge
Couple Device for Deep-sea Research, ICDeep; e.g., Craig
et al., 2015). Alternatively, other imaging systems have
been developed, that is, the extreme low-light working

LuSEApher camera with photon counting capability (e.g.,
Barbier et al., 2012; Dominjon et al., 2012)

Other means for measuring the bioluminescence of or-
ganisms are provided by deep-sea neutrino telescopes
(Martini et al., 2016; Aguzzi et al., 2017). Their mooring-
like towers cover the benthopelagic dimension and are pri-
marily instrumented with thousands of photon-detecting
sensors (i.e., photomultiplier tubes, PMTs) ( b F2Fig. 2a–2c),
capable of picturing the passage of neutrinos in the form of
high-energy light. The main stimulation of organisms to
emit light around those static structures comes on impact
when swimming or as induced by turbulence behind them.
The KM3NeT-Italia and ANTARES neutrino telescopes, off
Capo Passero (Sicily, Western Ionian Sea) located at a depth
of more than 2 km are an example of the three-
dimensionality of those infrastructures (reviewed by Aguzzi
et al., 2019). Telescope moorings cover the benthopelagic
dimension in the form of a cubic kilometer scale matrix of
vertically extended, flexible strings which rise for hundreds
of meters above the seabed (Sapienza and Riccobene, 2009).

2.5. Acoustic imaging

Deep-sea video monitoring of fauna is being integrated
with novel acoustic (multibeam, high-frequency) cameras
into efficient optoacoustic packages ( Juanes, 2018) that,
with an appropriate design, could be used in the search for
putative life in exo-oceans (see Table 1). The Dual-
frequency Identification Sonar (DIDSON) and Adaptive

FIG. 2. Sensor devices hosted in depth-rated glass spheres. (A) Curled-up moored line of neutrino telescope spheres
hosting PMTs, prior their deployment (the arrow indicates the element of the following plate, B). (B) Each single spherical
unit where a set of PMTs is installed to face different angles. (C) Schematic representation of the extended moored line with
all spherical units projected from the seabed, and whose PMTs are reading bioluminescence in all directions (color cones).
(D) GUARD-One camera into a glass sphere connected to an Argo float (the arrow indicates the element of the following
plate, E). (E) An enlargement of the glass sphere camera housing. Color images are available online.
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Resolution Imaging Sonar (ARIS) can deliver three-
dimensional images of organisms and map seabed features
in aphotic environments, depending on organism size and
ambient turbidity conditions (Aguzzi et al., 2019). That type
of assets does not require light to identify and scale objects
within the field of view. Unfortunately, the active emission
of sound is also another monitoring footprint to be consid-
ered in unknown ecological contexts.

2.6. Passive acoustic monitoring

Passive acoustic monitoring (PAM) by listening hydro-
phones provides relevant information on biological activity
based on specific sound markers (i.e., noise emission spec-
tra) (see Table 1). In deep-sea areas on Earth, the types of
organisms revealed by sound emissions cannot be identified
with this sensor technology, unless we can associate their
acoustic signaling with images (e.g., Archer, 2018; Mouy
et al., 2018). This condition cannot be met for exo-oceans
where no previous environmental knowledge exists, but the
broad characterization of soundscapes and their geological
and hydrographic processes are of high value, when crossed
with the multiparametric data collection proposed with
geochemical and oceanographic sensors. For example, the
use of this technique on Earth revealed the presence of gas
bubbling beyond the reach of optoacoustic imaging tech-
nologies and provided information on the extension of the
phenomenon (Maksimov et al., 2016).

2.7. Molecular-based technologies

The detection of potential life in exo-oceans could seek
environmental DNA/RNA forms (eDNA/eRNA-like) within
a structural framework as known from Earth (e.g., the
FISHbot initiative; Floyd, 2018) (see Table 1). Detection of
nucleic acids may be measured via fluorescent dyes (indirect
detection) or through nucleotide sequencing (direct detec-
tion). The former method relies on the binding of solubilized
molecules with either double- or single-strand nucleic acids
that interact with light at specific wavelengths. Fluorescence
imaging devices (i.e., microscopy or spectrometry) are ca-
pable of detecting a wide range of dye molecules with high
sensitivity, each of which shows preferential binding sub-
strate (Suseela et al., 2018). However, false positives may
occur when fluorescence dye imaging is applied to envi-
ronmental samples. Inefficient staining, nonspecific binding
to sample components, and autofluorescence of mineral
particles under light excitation often interfere with efficient
DNA/RNA detection (Li et al., 2004).

Direct sequencing of eDNA/eRNA has become a corner-
stone of future marine research (Scholin et al., 2017), and the
next generation of Environmental Sample Processor (ESP) on
board mobile robotic platforms (see below) is contributing
toward this goal (Zhang et al., 2019). A promising technology
for in situ nucleic acid identification, not yet suited for the
marine medium, is offered by nanopore devices (Oxford Na-
nopore Technologies). These devices have been successfully
tested in the International Space Station (Castro-Wallace et al.,
2017). Presently, the Search for Extra-Terrestrial Genomes
(SETG) program is aiming to detect free nucleic acids based
on nanopore sequencing technology (Carr et al., 2017).

Direct and indirect methods of detection of nucleic acids
may be used for identifying environmental nucleoside al-

ternative structures such as xeno-nucleic acids (eXNA;
Cleaves et al., 2015). Single-Walled Carbon NanoTubes
(SWCNTs) could also be used for the detection of eXNA
(Gillen et al., 2018).

Other life-tracing technologies could be based on in situ
mass spectrometry, which is being developed to target a
wide range of organic and inorganic compounds dissolved
in marine water by mobile robotic platforms (see below)
(e.g., Wollschlager et al., 2016). Additionally, the use of
Lab-on-a-Chip (LOC) technologies should be advanced to
facilitate miniaturized time-series measurements on those
platforms (Beaton et al., 2012). LOC could be used to trace
metabolic products, based on the detection of free-circulating
compounds through specifically designed markers, as sug-
gested by Cassini-Huygens’ recompiled information (Math-
ies et al., 2017).

3. Marine Platforms and Their Networks for Exo-Ocean
Exploration

The development of fixed and autonomous mobile plat-
forms is revolutionizing our ability to explore the deep-sea
benthic and pelagic environments, acquiring information at
a high resolution not achievable with vessels (Wynn et al.,
2014; Aguzzi et al., 2019). A wide spectrum of oceano-
graphic, geochemical, optic, and acoustic sensors can be
installed on those platforms to explore the seafloor, the
subseafloor, and the water column variability, including the
potential presence of extant life (see Table 1).

Different power sources are currently used on Earth-
based systems to sustain the functioning of those platforms.
A continuous provision of energy can be given to fixed
infrastructures by fiber optic cables or, if that is not possible,
using in situ marine renewable energy resources such as
water column turbines and vertical tidal oscillators, and
even eolic mills and solar panels (Favali et al., 2015). In the
case of exo-oceans, water turbines can be used if sufficiently
strong and temporally sustained hydrodynamic forces exist.
Space missions are currently using energy provision through
radioactive decay (Stone et al., 2016; Cwik et al., 2019) by a
Multi-Mission Radioisotope Thermoelectric Generator
(MMRTG) as the core of Radioisotope Power Systems
(RPS) (NASA, 2011), as in the case of the Mars Science
Laboratory (Loren et al., 2013; Holgate et al., 2015). A
nuclear battery efficiently converting heat into electricity
and generating electrical power in smaller increments could
be used for a variety of space missions, from the vacuum of
the space to exo-oceanic contexts. Such a solution may last
up to decades, and it may be used in future autonomous
long-lasting marine and exo-oceanic exploration missions.

Acoustic or light-based modem technologies (Bai et al.,
2019; Han et al., 2019; Shen et al., 2019) are being devel-
oped for communication and hence inter-operability among
mobile and fixed robotic platforms to increase their working
autonomy (Del Rio et al., 2011, 2018; Dunbabin and Mar-
ques, 2012; Wang et al., 2017). Those intercommunication
capabilities can be used for target tracking (Masmitja et al.,
2018, 2019), as navigational aids (McPhail and Pebody,
2009), or locating docking stations (Vallicrosa et al., 2014).

In this framework, this section describes the status of
technological developments of marine robotic platforms
with different levels of autonomy and mobility that can be
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adapted and used for exo-ocean exploration, either in stand-
alone modes or coupled together into cooperative networks
(T2 c Table 2). It is important to note that network-based re-
dundant and prolonged data collection is of relevance to
highlight spatiotemporal variations in ecological processes
(Aguzzi et al., 2019).

3.1. Cryobots

Enceladus exo-ocean exploration should be based on
penetrating robots as melting probes. The NASA-funded
cryobot named VALKYRIE, developed at Stone Aerospace
(Texas, USA), consists of a laser beamed down a fiber optic
cable as a heat source to melt the ice, and it was successfully
tested in an Alaskan glacier (Stone et al., 2014, 2018). In-
sights on potential pitfalls and issues related to the pene-
tration of ice shells could be gained from the results of
similar trials carried out in Antarctic subglacial lakes (Sie-
gert, 2018). In particular, Lake Vostok might be one of the
best examples to be compared to the exploration of exo-
oceans by being separated from the rest of Earth’s atmo-
sphere by a 4 km thick ice layer, which had to be drilled in
order to access the liquid water (Siegert et al., 2016). Un-
fortunately, in Lake Vostok the drill bit became damaged
due to the thermal shock caused by contact with the lake
water and produced an overspill of the drilling fluid (kero-
sene) that compromised the lake water analysis. The limits
of the drilling technology used in Lake Vostok were over-
come during the exploration of Lake Whillans, where a
clean hot water drilling technology was used, making this
lake the first successfully explored Antarctic subglacial lake
(Michaud et al., 2016). Many drilling technologies are
currently under investigation and under development for the
exploration of the Antarctic (Talalay, 2020) subglacial lakes
and Solar System worlds (Badescu and Zacny, 2018).

In relation to exo-oceans, similar melting probes could be
conceived as actively ‘‘driving’’ through the ice, while taking
and analyzing samples (e.g., Lucchetti et al., 2017). Active
exploration could be performed while penetrating the ice, in
order to detect remnants of life that were frozen in the ice when
the shell ruptured. In particular, the VALKYRIE cryobot had
an early on-board meltwater sampling system and an autono-
mous algorithm to command sampling (Clark et al., 2017).

3.2. Observatories

Multiparametric seafloor observatories, receiving power
and transferring data via telecommunication cables, are
currently deployed on Earth’s seabed (Danovaro et al.,
2017). These structures allow for highly integrated multi-
parametric environmental and biological data collection in
benthic realms that can be extended to the pelagic ones
through depth profiling yo-yo probes (i.e., performing cyclic
water column ascent and descent; e.g., Fujii and Jamieson,
2016; Fanelli et al., 2019). Such platforms are open win-
dows of the continental margin, from coastal areas to
abyssal plains, to remotely study in real time life activity
and its responses to environmental changes (Aguzzi et al.,
2019). For example, on Earth, compacted versions of these
observatories have been successfully deployed in the deep
sea close to hydrothermal vents, with cable-to-shore or in a
stand-alone (i.e., moored) fashion, enabling a remote and
long-lasting monitoring of biological components and en-

vironmental variables at hydrothermal vent sites (e.g., Co-
laço et al., 2011; Cuvelier et al., 2017). On Enceladus, these
types of platforms may provide long-lasting Eulerian mea-
surements of the exo-oceanic proximal water mass charac-
teristics, alerting scientists in the case of detection of any
relevant transient object.

Such fixed platforms are used to further control docked
mobile platforms (see next section and Table 2). Their op-
erational value for exo-ocean exploration resides in the
necessity to deploy fixed nodes below the ice shell, capable
of releasing mobile platforms, providing communications
capability and power energy, permitting sampling and ex-
ploration of a larger area, while yo-yo probes move cycli-
cally from the bottom of the ice shell through the underlying
water column.

3.3. Crawlers and rovers

Autonomous or tethered crawlers are mobile multi-
parametric platforms, moving on the seabed on caterpillars
(Flögel et al., 2018). They are used to expand the biological
and environmental monitoring area around cabled nodes
(Aguzzi et al., 2015; Thomsen et al., 2017). Crawlers are
known as Internet operated vehicles (IOVs) and have the
advantage of great bandwidth with the onshore station, al-
lowing real-time navigation capability and data collection/
transmission to land via interacting web interfaces (Purser
et al., 2013). Deep-sea applications of crawler technology
can be found in the study of cold seeps (Chatzievangelou
et al., 2016; Doya et al., 2017) and the envisaged monitoring
of ecological impacts at mining (Chatzievangelou et al.,
2017). For Enceladus, crawler action may increase the
monitoring radius around nodes providing larger monitoring
coverage.

Presently, increasing autonomy in crawler missions and
data collection is being implemented through technical so-
lutions for full cable-independence via inductive powering
(i.e., recharging is based on new depth-rated lithium batte-
ries; Brandt et al., 2016) and autonomous navigation (Wehde
et al., 2019). Rover (i.e., wheeled vehicle) technology is also
being implemented as a nontethered alternative to crawlers,
being operative through a vessel-deployable docking station
(Flögel, 2015; Wedler et al., 2015; Flögel et al., 2018). For
example, the benthic mobile physiology laboratory rover has
been tested in the northeastern Pacific at 4000 m depth and
220 km west of the central California coast (McGill et al.,
2007).

Crawlers and rovers are of relevance for developing ro-
botic operations practices during exo-ocean explorations,
since both can move beneath the ice shells even in the
presence of currents, waiting for commands from a distant
control center. Reduced size/weight material and positively
buoyant versions of those platforms could move upside-
down below the ice shell. Crawlers could even release floats
and sink to the seafloor for upside operations. With the in-
crease of their autonomous driving capability and multi-
parametric monitoring capacity, crawlers may be transformed
in the future into a marine analog of the Mars Science La-
boratory (Loren et al., 2013, Holgate et al., 2015), but adapt-
able to Enceladus.

Platforms similar to the crawler, as the Buoyant Rover for
Under-Ice Exploration (BRUIE; Berisford et al., 2013),
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have already been tested in field deployments ( Jet Propul-
sion Laboratory, 2015a). These positively buoyant platforms
have two wheels endowed with teeth, allowing them to
adhere to the ice shell bottom surface with anchoring ca-
pability at greatly reduced energy costs. These platforms
have odometry-navigation capabilities and four thrusters
allowing yaw control as well as the viewing angle of the
camera to be independent of the vehicle’s motion. Control
and data transfer can be either realized by a tether or with an
acoustic modem. BRUIEs are an ideal option for the ex-
ploration and monitoring of areas around fixed observatories
(see the next section).

3.4. Deep-sea autonomous underwater
vehicles (AUVs)

Autonomous underwater vehicles are of high relevance
for exo-ocean exploration due to their large versatility and
autonomy. A relatively wide spectrum of sensor payloads
can be installed on those platforms. AUVs’ geophysical
seafloor acoustic sensors can be programmed to autono-
mously map the seafloor and image the first meters of the
subseafloor (e.g., MBES; Lo Iacono et al., 2008; Lurton,
2010; Lecours et al. 2016). Such seafloor imaging can be
coupled with other oceanographic and geochemical tools to
explore and quantify water column variability (Morris et al.
2014; Lecours et al. 2016) (see Table 1).

Autonomous underwater vehicles are presently pre-
programmed, unmanned, self-propelled vehicles that navi-
gate for various distances possibly using dead-reckoning
systems (Paull et al., 2014). Navigation systems are based
on seafloor-relative velocity measurements through Doppler
Velocity Log (DVL) instruments and Inertial Measurement
Units (IMU). However, dead-reckoning systems need peri-
odic adjustments in order to maintain an acceptable accu-
racy due to inherent errors and their accumulation over the
time (Masmitja et al., 2018, 2019). Usually, AUVs emerge
on the sea surface to fix GPS positions or use a combination
of ultra short baseline (USBL) acoustic communication or
arrays of long baseline (LBL) acoustic beacons positioned
on the seafloor. Operational constraints related to an ice
shell covering an exo-ocean may limit traditional navigation
methods and require other approaches such as range-only
single-beacon navigation (Masmitja et al. 2019).

Autonomous underwater vehicles are being coupled with
cryobots (see previous crawlers and rovers section) in pro-
jects such as Subglacial Polar Ice Navigation, Descent, and
Lake Exploration (SPINDLE) or Sub-Ice Marine Planetary
Analog Ecosystems (SIMPLE), both funded by NASA
(Stone et al., 2016). A 20 km range hover-capable hybrid
AUV, named Autonomous Rovers/airborne-radar Transects
of the Environment beneath the McMurdo Ice Shelf (AR-
TEMIS), developed at Stone Aerospace2, is used to perform
long-range surveying of the under-ice ocean. The hybrid
AUV/ROV Nereid-Under Ice (NUI; Woods Hole Oceano-
graphic Institution) has performed near-seafloor surveys
under the ice pack in the Arctic Ocean ( Jakuba et al., 2018).
Presently, AutoSub 3 performed the most successful under-
ice-shelf exploration to date at the Pine Island Glacier

(McPhail et al., 2009; Jenkins et al., 2010). While these
large AUVs are not suited for exo-ocean exploration, they
offer platforms on which to test new technologies and au-
tonomous methods in an analogous environment on Earth.

Autonomous underwater vehicle autonomy is presently
implemented through permanent docking at cabled obser-
vatories (Wirtz et al., 2012; Hildebrandt et al., 2017). Such
docking capabilities, similar to stationary ROVs presently
used by the deep-sea oil industry, will allow AUVs to per-
form depth-rated water column ascents or descents from
beneath ice shell locations (e.g., ARTEMIS docking; Kim-
ball et al., 2018). A similar concept of remote control is
represented by the Europa Underwater Probe ‘‘Icefin.’’ This
AUV platform can be considered as an autonomous and
remotely controlled small multiparametric probe designed to
operate below the ice shell through a tether, and could also
be used in exo-ocean exploration (Spears et al., 2016).

Other innovative AUV approaches are based on novel
emerging robotic technologies inspired by nature (i.e., bio-
mimicking designs) and are of great relevance for space
missions and for exo-ocean exploration. Fish-inspired so-
lutions may be of some utility (Menon et al., 2007) due to
component miniaturization (low volume/weight), robust-
ness, mission cooperative behavior (e.g., self-repair), and
long-lasting autonomy (low-energy consumption) (e.g., see
Bluman et al. [2017] and Funke and Horneck [2018] for a
conceptually analogous approach to the small cooperative
units conceived for Mars land/atmospheric exploration). A
new class of swimming robots (see Table 2) are currently
being assembled with miniaturized sensor components and
tested in coastal or shallow water areas (Degnarian and
McCauley, 2016). In the near future, swarms of modular
units (swarm-bot, or s-bot), showing some level of self-
regrouping/self-repair capability and redundancy in data
collection (Hunt, 2019), may prompt fine-tuned spatial
coverage in Earth’s deep-sea areas, to be later tested for
space missions.

3.5. Drifting platforms

The Argo concept design3 could be implemented and
adapted to explore exo-oceans. These multiparametric au-
tonomous and freely drifting devices are being used to
collect salinity and temperature in the water column down to
2000 m depth through consecutive cycles of ascent and de-
scent (Riser et al., 2016). When at surface, platforms
transmit data via satellite before starting a new cycle. Pre-
sently, below ice-shelf observations have been successfully
carried out with floats in a prolonged and autonomous
fashion (Dutrieux et al., 2018; Lee et al., 2018), also in
challenging contexts of unpredictable hydrodynamic re-
gimes (Troesch et al., 2018).

In the past 10 years, Argo platforms have been im-
plemented with new sensors and miniaturized analyzers
such as fluorescence for chlorophyll-a and dissolved organic
material, or oxygen, pH, and pCO2 (Riser et al., 2016;
Stanev et al., 2017). Imaging devices are getting small en-
ough to be integrated into an Argo structure (see Fig. 2) with
hardware supports capable of running artificial intelligence–

2http://stoneaerospace.com/artemis 3http://www.argo.ucsd.edu
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based computer vision for the detection of pelagic organ-
isms (Marini et al., 2018a, 2018b). Those devices are being
used to study a still evanescent life component of our
oceans, which is represented by large aggregates (deep-
scattering layers) of bathymetrically displacing organisms,
being hence of utility to scan large volumes of Enceladus’
exo-ocean for similar purposes.

4. A Pathway for Exo-Ocean Exploration

A possible mission scenario can be globally drafted, ac-
cording to previously presented sensor and platform tech-
nologies, following different steps described by previous
authors (e.g., Cwik et al., 2019). Our concept, summarized

in b F3Fig. 3, consists of three phases: Phase 1 is landing and
platform delivery on the surface (only synthetically por-
trayed); Phase 2 is platform penetration (already treated in
the section on cryobots above); and Phase 3 is platform
dispersion below ice and the release of drifting assets.

4.1. Landing, platform delivery on surface, and data
communication capability

Enceladus exploration scenarios are based on the pres-
ence of a fixed lander system that should arrive at a safe
distance from active geysers and then should release cryo-
bots that penetrate the ice shell (Dachwald et al., 2014;
Konstantinidis et al., 2015). While descending, each cryobot

FIG. 3. The implementation of the mission concept design for Enceladus exo-ocean exploration by a network of fixed and
mobile cooperative platforms. (A) Landing and platform delivery on surface. (B) Platform penetration. (C) Platform
dispersion below ice, water mass reckoning, and the releasing of drifting assets. Color images are available online.
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should unroll a thin cable fixed to the lander and capable of
transferring power and data. That cable should resist the
mechanical stress of ice closing after its passage; such a
stretch and compression reliance can be achieved by a
specific coating (e.g., Kevlar).

The releasing platform should remain on the surface of
the icy moon in order to transmit data back from the exo-
ocean’s moon to Earth. Such a platform should be respon-
sible for all data communication and transmission, suffering
different constraints which should be carefully taken into
account because of the limited navigation autonomy of
mobile platforms (as described in the following sections).

The latency associated with deep space communications
(79 – 8.3 min for Enceladus) and the communication dropout
expected due to occlusion by orbital bodies (approximately
16.5 h for every 33 h on Enceladus) prevent real-time and
continuous communication. The platform hosting the sci-
entific instruments would autonomously prioritize objec-
tives to maximize its efficiency while obeying resource and
time constraints as well as completing mandatory activities,
such as rendezvous for communication. To increase the
effectiveness of the scientific operations, methods for semi-
autonomous and autonomous data collection would be de-
signed and implemented for identifying regions of scientific
interest (Zhang et al., 2012, 2016; Flexas et al., 2018),
scientifically relevant features like hydrothermal vents
(Branch et al. 2018), and select targets on which to perform
observations (Estlin et al., 2012, Francis et al., 2017). A
strategy for high-level human guidance is required to allow
for refinement of autonomous behaviors based on analysis
of data by scientists on Earth.

The large amount of data collected in situ cannot be en-
tirely transmitted to Earth. Due to strict data communication
constraints, it is mandatory to equip the observation plat-
forms with software solutions able to identify and transmit
only the relevant information collected. This problem hap-
pens also in deep-sea research, where solutions are provided
by data science, pattern analysis, and artificial intelligence
methodologies (Skiena, 2017; Aguzzi et al., 2019). Simple
computer vision algorithms can be executed on board plat-
forms’ imaging asset, to identify any subject different from
the water or seabed itself (Corgnati et al., 2016; Marini et al.,
2018a). General approaches based on image enhancement,
differencing, and background subtraction methods can be
used to discard irrelevant information (Moeslund, 2012;
Peters, 2017); for example, in the case of water column, ice
shell, or seabed surfaces, changes in patterns would be
slower with respect to traveling objects. This information
can be transmitted to Earth through periodic reports and
analyzed by expert scientists. Specific algorithms could
then be trained to recognize and classify relevant subjects
(e.g., suspended particulate, living organisms). Then the
updated algorithms could be sent back to the in situ plat-
forms to improve their effectiveness.

4.2. Platform dispersion below ice
and water mass reckoning

Once deployed in the exo-ocean, the cryobot should act as a
fixed observatory equipped with a minimal set of scientific
instruments for estimating the ocean’s environmental condi-
tions. According to a positive evaluation of those conditions,

the cryobots should release the BRUIEs equipped with mul-
tiparametric sensors, which would start the exo-ocean obser-
vation of the surroundings of the fixed platform. These mobile
units should be equipped with wireless intercommunication
capability via acoustic or light-based modem technologies (see
the previous section). Data download recharging and battery
could be performed by inductive pinless connection (e.g., Fonn
model by Wi-Sub4; Wehde et al., 2019) among BRUIEs and/
or between the BRUIEs and the cryobot.

Those moving platforms could be endowed with high-
sensitivity cameras and acoustic imaging equipment (see
Table 1), allowing for detection of organisms under extreme
low light with a reduced footprint (i.e., potentially harmful
light effects in aphotic environments). At the same time,
photomultiplier tubes (PMTs) and passive acoustic tech-
nologies (PAM) should be included as well, to measure
bioluminescence presence and characterize soundscapes in
terms of biophony (as analogous to cetacean-like commu-
nication) and geophony (providing important data on
background oceanographic and geological processes). Mo-
lecular sensors (e.g., nanopore sequencing technology) and
mass spectrometry devices could complete the detection
capability of any putative life, allowing organism trace-
ability well beyond previously described sensor assets.

Some of the BRUIEs could be endowed with moored
lines replicating the above-described sensor asset, to be
projected into the water mass in an initial reckoning phase at
unknown hydrodynamic conditions (see Fig. 3). A Eulerian
picturing of water masses could be carried out with sensors
hosted in physically inert and depth/pressure-rated cases
(e.g., glass spheres equivalent to those used for neutrino
telescope assets; Fig. 2d, 2e).

4.3. The release of drifting platforms

In a second stage, drifting platforms similar to Argo floats
(i.e., Bio-Argo; Claustre et al., 2010) and even swarms of
biomimicking robots capable of short-range swimming au-
tonomy (see Table 2), could be released from moored pro-
jections of BRUIEs. A swarm of those walking or
swimming platforms would allow local exploration of the
water column or below the ice shell in areas where larger
platforms could not arrive. These could deliver multidisci-
plinary redundant oceanographic, geochemical, and bio-
logical data within the shortest time span, to counteract any
potential equipment failure under unknown oceanographic
conditions (e.g., Gissinger and Petitdemange, 2019).

Once the local hydrodynamics have been characterized,
BRUIE platforms may release also another group of larger
cooperatively communicating mobile robotic autonomous
units as AUVs (see Table 2). These AUVs would be re-
quired to expand the monitoring radius around each node.
These should permit autonomous but coordinated sampling
activity, constituting a locally flexible cooperative network,
similar to what has been conceived for marine surveying
(e.g., Thompson et al., 2017) and defense (e.g., Micro Un-
manned Surface Vehicle Diving-USV from Aquabotix
Technology Corporation).

4http://www.wisub.com/products/fonn
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4.4. A strategy for exo-ocean platform testing

The implementation and testing of exo-ocean life-
detection technologies could be performed in relevant deep-
sea environments on Earth, currently endowed with flexible
monitoring benthopelagic networks of cabled fixed and
mobile platforms. All these processes should involve marine
scientists and aerospace engineers, who should be consulted
for different mission stages of conceptualization, planning,
and development. Having space agencies test their tech-
nologies at deep-sea monitoring networks will allow us to
tie together the necessities for exploring remote ecosystems
on Earth in order to explore extraterrestrial ones.
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Flögel, S. (2015) A new concept for high resolution benthic
mapping and data acquisition: MANSIO-VIATOR. AGU Fall
Meeting Abstracts. Available online at https://ui.adsabs
.harvard.edu/abs/2015AGUFMIN33C1808F/abstract
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Abbreviations Used

AUVs¼ autonomous underwater vehicles
BRUIE¼Buoyant Rover for Under-Ice Exploration

CTD¼Conductivity-Temperature-Density
eDNA¼ environmental DNA
eRNA¼ environmental RNA
eXNA¼ xeno-nucleic acids

LOC¼Lab-on-a-Chip
MBES¼multibeam echo sounders

PAM¼ passive acoustic monitoring
PMTs¼ photomultiplier tubes
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