
HAL Id: hal-03203240
https://hal.science/hal-03203240

Submitted on 20 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Continuous Reproducibility in GNSS Signal Processing
Carles Fernández-Prades, Jordi Vilà-Valls, Javier Arribas, Antonio Ramos

To cite this version:
Carles Fernández-Prades, Jordi Vilà-Valls, Javier Arribas, Antonio Ramos. Continuous Repro-
ducibility in GNSS Signal Processing. IEEE Access, 2018, 6, pp.20451-20463. �10.1109/AC-
CESS.2018.2822835�. �hal-03203240�

https://hal.science/hal-03203240
https://hal.archives-ouvertes.fr


�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	����������������������������������������
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

������������ ���

an author's https://oatao.univ-toulouse.fr/27095

 https://doi.org/10.1109/ACCESS.2018.2822835

Fernández-Prades, Carles and Vilà-Valls, Jordi and Arribas, Javier and Ramos, Antonio Continuous Reproducibility in

GNSS Signal Processing. (2018) IEEE Access, 6. 20451-20463. ISSN 2169-3536



Digital Object Identifier 10.1109/ACCESS.2018.2822835

Continuous Reproducibility in GNSS
Signal Processing
CARLES FERNÁNDEZ-PRADES , (Senior Member, IEEE),
JORDI VILÀ-VALLS , (Senior Member, IEEE),
JAVIER ARRIBAS , (Senior Member, IEEE), AND ANTONIO RAMOS
Department of Statistical Inference for Communications and Positioning, Centre Tecnològic de Telecomunicacions de Catalunya, 08860 Castelldefels, Spain

Corresponding author: Carles Fernández-Prades (cfernandez@cttc.cat)

This work was supported in part by the Spanish Ministry of Economy and Competitiveness through Project TEC2015-69868-C2-2-R
(ADVENTURE) and in part by the Government of Catalonia under Grant 2017–SGR–1479.

ABSTRACT This paper discusses the reproducibility of scientific experiments in which global navigation
satellite system (GNSS) signals play a role. After analyzing the factors that impact the reproducibility of an
experiment in the given context, this paper proposes a methodology that, leveraging on software container-
ization technologies and the best practices from professional software development, ensures the automated
reproduction of scientific experiments involving GNSS data and software-definedGNSS receivers, including
the generation of figures or tables of a research publication, while fostering scientific collaboration and
contributing to mitigate the effects of software aging in mutating computer environments. In order to show
a practical implementation of the proposed work flow, the authors propose a simple experiment based on
a freely available open source software-defined receiver and the automation of its execution in a popular
online platform.

INDEX TERMS Digital signal processing, global navigation satellite system, open source software,
reproducibility of results, software radio.

I. INTRODUCTION
This paper discusses software-defined Global Navigation
Satellite System (GNSS) receiver technology as a tool for sci-
entific purposes. Research topics such as space weather [1],
GNSS reflectometry for earth observation, GNSS radio
occultation [2], ionospheric scintillation monitoring and
mitigation [3], earthquake and tsunami prediction [4], pre-
cise timing or precision farming [5], to name a few, often
require non-standard features from GNSS receivers, as well
as a complete description of the signal processing applied
from the antenna up to the computation of the desired GNSS
product, which could be observables, position, timing, or any
other measure from intermediate processing stages, such as
the output of the acquisition or tracking stages.

However, researchers need to deal with an increasing
complexity and integration level of GNSS integrated cir-
cuits (ICs), resulting in the practical impossibility of hav-
ing an exact model on how the desired measurements were
obtained, together with blocked access to modify or even
inspect any internal aspect of the receiver. If the required

measurement is already provided by an existing manufac-
tured receiver, one can resort to statistical characterization
and fit models upon it. If the requiredmeasurement or process
is not implemented by an existing IC, researchers face the
complex and costly task of building a brand new receiver
from scratch, which is often far from their field of knowl-
edge or subject of interest.

Software-defined receivers have a longstanding recogni-
tion to be the technology of choice when a researcher faces
the need of obtaining GNSS products that are not already
delivered by commercially available IC-based receivers. This
popularity is driven by the notion that replacing hardwired,
closed circuits by lines of source code provides researchers
with unlimited capability to change and customize any aspect
of the receiver, from the overall architecture to the selection
of algorithms and the fine-tuning, and thus they are empow-
ered to do anything they need. However, it has been widely
recognized that scientific computing requires the observance
of a set of best practices, which should be considered from
the inception of the research activity, in order to permit the

https://orcid.org/0000-0002-9201-7007
https://orcid.org/0000-0001-7858-4171
https://orcid.org/0000-0001-6346-3406
https://orcid.org/0000-0003-4842-0744


effective communications not only of the research results, but
the tools and data required to verify and extend the generated
knowledge [6]–[9].

Commercial software-defined GNSS receivers use to con-
tain proprietary code, distributed in binary form and with no
possible inspection by a researcher external to the institution
that developed the software. Those programs use to pro-
vide an extensive application programming interface (API)
that allows for fine adjustment of receiver parameters, and
some of them even permit user-defined algorithms for certain
processing functions. However, they still can be considered
black boxes in which we can inject some stimuli (that is,
the complete receiver configuration and the stream of signal
samples to be processed) and obtain some outputs (the GNSS
products, such as observables and navigation data, and pos-
sibly other predefined performance indicators), but only with
partial information about the actual signal processing taking
place and limited access for modification.

This problem is overcome by software-defined GNSS
receivers released under Free and Open Source Soft-
ware (FOSS) licenses, which allow researchers to share the
actual source code and provide users with an explicit permis-
sion to modify it. Users can download the source code, make
modifications at their wish, create an executable upon it in
their own machine, and run any kind of experiment.

While FOSS licenses allow for the possibility of the full
inspection of every single step in the signal processing chain,
from the sample stream ingestion on the computer platform
up to the obtention of the desired GNSS signal products,
and its arbitrary modification, sharing the code still does not
ensure some basic requirements for any scientific research:
reproducible experiments and the practical possibility of
modifying existing code. These features require i) a careful
design of the software architecture, allowing for arbitrary
expansion, and where testability has been taken into account
from the scratch; ii) the possibility to interact with many
different radio-frequency front-ends, sample formats, data
collection topologies and processing platforms; iii) compre-
hensive and updated documentation; public fora to contact
other users and developers, or to get professional assis-
tance; and iv) possibility to extract measurements in standard
formats in order to chain the receiver outputs to other existing
tools. This paper discusses aspects of software-definedGNSS
receivers required for scientific experimentation, based on the
experience and lessons learned by the authors (as developers
and scientific users of GNSS-SDR [10], an open source,
software-defined GNSS receiver), building on the work pre-
sented in [11] and [12] and exposed for public discussion
at [13], and expanding it to more specifically scientific-
related needs.

The paper is organized as follows. Next section discusses
reproducibility of research results in the context of GNSS
signal processing from a software-defined receivers’ perspec-
tive. Then, Section III introduces the concept of continuous
reproducibility, a methodology which allows the automated
execution of experiments and provides an effective way to

scientific reporting and collaboration, while contributing to
mitigate the effects of software aging. A case study is pre-
sented in Section IV, discussing the features related to repro-
ducibility of an open source software-defined GNSS receiver
and presenting a working example for the topics discussed in
the previous sections. Finally, Section V concludes the paper.

II. REPRODUCIBILITY
An experiment involving a software-defined GNSS receiver
is an experiment that occurs in a computer system. It is well-
known that today’s computational environments are complex,
and accounting for all the possible effects of changes within
and across systems is a challenging task [7], [14]–[16].
In computer systems research, an experiment is defined by
the workload, the specific system where the workload runs,
and the results from a particular execution. A key aspect
in order to obtain meaningful conclusions from the exper-
iments is reproducibility, which refers to the ability of an
entire experiment or study to be reproduced, either by the
researcher or by someone else working independently. It is
one of the main principles of the scientific method and relies
on ceteris paribus (other things being equal). Publication of
scientific theories, including experimental and observational
data on which they are based, permits others to scrutinize
them, to replicate experiments, identify errors, to support,
reject or refine theories, and to reuse data for further under-
standing and knowledge. Facilitating sustained and rigorous
analysis of evidence and theory is the most rigorous form of
peer review, and contributes to science’s powerful capacity
for self-correction [17].

As described in [18], this feature can be classified into
workload reproducibility (which requires access to the origi-
nal code and the particular workload that was used to obtain
the original experimental results); system reproducibility
(which requires access to hardware and software resources
that resemble the original dependencies, including the set
of hardware devices involved in the experiment such as the
antenna, the radio frequency front-end, the bus connection to
the host system, the specific processor model, possible com-
puting off-loading devices and network elements, the sys-
tem configuration, and the entire software stack, from the
firmware/kernel and linked libraries versions used in the
experiment) and results reproducibility (the degree to which
the results of the re-execution of an experiment are valid
with respect to the original). It follows a discussion of
those aspects from the perspective of experiments in which
software-defined GNSS receivers are involved.

A. WORKLOAD REPRODUCIBILITY
In the context of this paper, workload reproducibility refers
to the availability of the source code implementing the GNSS
receiver, and either a real-time stream of incoming digital sig-
nal samples delivered by a radio frequency front-end, or those
samples stored in files with a given format and data topology.

Obtaining the exact source code version in which
the original experiment was performed is not always
straightforward, since the source code is inherently dynamic.



Bug fixes, improvement and the addition of new features
to the code base are frequent, so it is important to have
unique identifiers for each source code snapshot. This is
solved by version control systems such as Git [19], [20],
which has become a standard de facto for code sharing due
to its support for distributed and non-linear workflows, and
its associated hosting services such as GitHub or BitBucket.
Git assigns a unique identifier to every repository change
(called ‘‘commits’’) obtained by a cryptographic SHA-1 hash
function of the whole source tree of the commit (not just the
changes), the parent commit SHA-1 hash function, the author
and committer information (date, name and email), and the
commit message. Hence, a researcher can refer to a partic-
ular code snapshot and others can retrieve an exact copy of
it. This includes the complete description of the receiver’s
configuration used in the experiment. For significant code
releases, another good practice is to assign a digital object
identifier (DOI) to them for easier citation.

When applied to software engineering, reproducibility has
other additional implications such as in security (i.e., gaining
confidence that a distributed binary code is indeed coming
from a given verified source code). A build is reproducible
if given the same source code, build environment and build
instructions, any party can recreate bit-by-bit identical copies
of all specified artifacts. In the open source community there
are well-established good practices (see [21]) which create a
verifiable path from human readable source code to the binary
code used by computers. This includes [22]: i) the build
system needs to be made entirely deterministic: transforming
a given sourcemust always create the same result; ii) the set of
tools used to perform the build and more generally the build
environment should either be recorded or predefined; and
iii) users should be given a way to recreate a close enough
build environment, perform the build process, and verify that
the output matches the original build.

The other component of the workload is the stream of
sampled GNSS signals feeding the software receiver. If the
original experiment reported results obtained in real-time
with live GNSS signals, using a radio frequency front-end
to feed the software receiver input, the exact conditions of
the experiment are impossible to reproduce. This can be
solved by storing the sample stream in files that can then
be read and processed by the software receiver. Storing the
samples delivered by the radio frequency front-end ensures
that the experiment will be reproducible by others in the
future. Although it still poses some technical challenges, such
as the availability of high-bandwidth storage systems, storage
capacity and means of sharing such large amount of data
(as an example: storing L1 signals with a bandwidth
of 20MHz and with 16 bits per sample during 6 months takes
more than 1 petabyte of data), it is becoming a trending prac-
tice in scientific experiments with software-defined GNSS
receivers. In addition to allow reproducibility, sample storage
would also allow in the future for corroboration or rebut-
tal of the obtained conclusions by other yet-to-be-invented
methods.

TABLE 1. Fundamental data collection topologies, as defined by the ION
GNSS SDR Standard Working Group [23].

There is still no well-established standard for GNSS sig-
nals sample storage. A relevant effort is being done by the
ION GNSS SDR Standard Working Group, which defines
some fundamental data collection topologies for raw GNSS,
and possibly other sensors, data stored digitally (reproduced
in Table 1), sample resolution (including 1, 2, 4, 8, 16,
32 or 64 bits per sample), encoding (sign, sign-magnitude,
signed integer, offset binary or floating-point), sampling
frequency, possible intermediate frequency and inverted spec-
trum indicator. The mentioned Working Group is proposing
a metadata standard that defines parameters and a formal
XML schema to express the contents of GNSS sampled data
files [23], allowing researchers to share the file(s) containing
the data and a metadata file containing the format description
of such data.

Finally, it is recommended to include a description of the
location and date in which the GNSS signals were captured,
including the type of receiver according to its antenna dynam-
ics (see Receiver Independent Exchange Format standard,
version 3.03 [24, §5.3] for a possible classification), and
description of surroundings as needed (nearby buildings and
other scatterers, possible presence of interference sources,
and any other information considered relevant for the inter-
pretation of the results). A 360-degree picture taken from the
antenna location for static receivers, or a 360-degree, time-
tagged video for moving platforms could be informative in
certain scenarios.

B. SYSTEM REPRODUCIBILITY
System reproducibility requires the full description of the
hardware and software resources that resemble the original
experimental setup, including the set of hardware devices
involved in the experiment such as the antenna, the radio fre-
quency front-end, specific CPU models, possible computing
off-loading devices (such as GPUs or FPGAs) and network
elements, system configuration, as well as the entire software
stack from the firmware/kernel up to the libraries used by the
experiment.

1) HARDWARE DESCRIPTION
The antenna should be described by its manufacturer, iden-
tification number and type. In case of multiple antennas,
its geometrical arrangement must be provided. Other rele-
vant data is the average antenna phase center relative to the
antenna reference point (ARP) for each specific frequency



band and satellite system, the orientation of the antenna
zero-direction as well as the direction of its vertical axis
(bore-sight), if mounted tilted on a fixed station, or XYZ vec-
tor in a body-fixed system, in case of mounted on a moving
platform (all units inmeters). If the antenna is physically apart
from the front-end the cable category and length, as well as
the connectors type, should be reported.

In case of using a signal generator instead of live GNSS
signals, its brand and model (or version if it is a software-
defined generator), as well as the complete set of config-
uration parameters should be included in the experiment
description.

Regarding the description of the radio-frequency front-end
originally used to capture the GNSS sampled signals used in
the experiment, it should include as many details as possi-
ble about its electrical features. There are many commercial
off-the-shelf solutions in the market that act as radio fre-
quency front-ends for GNSS signals. Some of them even
share the schematics, bill of materials, printed circuit board
layout data, and everything that is necessary for its manu-
facture, provided the access to the required fabrication tools,
materials and components. Notable examples are the HackRF
board by Great Scott Gadgets, which design is freely avail-
able in a git repository, and the BladeRF board by Nuand,
which design is also freely available. Such physical artifacts
are usually referred to as open-source hardware, and belong
to a broader paradigm known as Open Design [25], [26],
defined as design artifact projects whose source documen-
tation is made publicly available so that anyone can study,
modify, distribute, make, prototype and sell artifacts based on
those designs. The artifact’s source, the design documentation
from which it is made, is available in the preferred format
for making modifications to it. Ideally (but not exclusively
necessary), Open Design uses readily-available components
and materials, standard processes, open infrastructure, unre-
stricted content, and open-source design tools to maximize
the ability of individuals to make and use reproducible
hardware.

If custom modifications were made to a commercially
available front-end (for instance, replacing and/or disciplin-
ing the shipped local oscillator with a more stable clock),
those modifications should be also clearly described.

However, having the schematics of a printed circuit board
for an RF front-end, or the VHDL model of the FPGA
firmware, still does not ensure reproducibility due to place
and route, a stage in the design of printed circuit boards,
integrated circuits, and FPGAs. The first step, placement,
involves deciding where to place all electronic components,
circuitry, and logic elements in a generally limited amount
of space. It assigns logic blocks to specific chip/board loca-
tions, trying to minimize the routing distance and there-
fore allowing successful routing. The second step, routing,
decides the exact design of all the wires needed to connect the
placed components, optimizing the delay of critical signals.
Those operations are usually performed by electronic design
automation (EDA) tools, which implement algorithms such

as simulated annealing or similar for placing, and pathfinder
for routing [27]. Those approaches are heuristic, randomly
initialized, and their results are non-deterministic. Thismeans
that every run of the route and place process could end upwith
a different distribution of components in the FPGA or printed
circuit board. Although the results are guaranteed to meet the
tolerance ranges defined by the designer, this feature poses
an extra challenge to reproducibility for printed circuit boards
defined by their schematic and for FPGA firmwares defined
by their VHDL model.

Even when code and data are shared, it remains difficult
to reproduce results due to differing underlying comput-
ing platform that is executing the software receiver: pro-
cessor architecture, memory, storage and communication
speed within the different components may vary in differ-
ent machines. In an experiment report, it is recommended
to annotate the processor architecture (e.g., i386, x86_64/
amd64, armhf or arm64), manufacturer and type; the avail-
able RAM memory and, when relevant, the storage capacity.
If computing off-loading devices were used (such as FPGAs
or GPUs), its vendor and model should be also specified.

2) SOFTWARE STACK DESCRIPTION
Most software applications, as is the case of software-defined
GNSS receivers, do not rely exclusively on their source code.
They require features provided by the underlying operating
system (for example, Windows, macOS or Linux) as well
as a set of supporting libraries (either required or optional)
that are called from the main program. This poses a problem
to reproducibility, since a researcher replicating the original
experiment should install exactly the same version of the
operating system, apply the same software upgrades, use the
same versions for all the dependency libraries, and the same
version of the kernel and other required firmware (that is,
the whole software stack that is supporting the main program)
than in the original setup. Even if the complete list of depen-
dencies and versions were reported, reproducing the same
combination in another machine is not straightforward.While
software package managing tools use to ease the upgrading
of software components to get the most recent release, they
in general do not allow rewinding the system to old versions.
In addition, different operating systems (and versions thereof)
may require different installation and configuration steps.

A possible solution for researchers is to share not only
the source code of the main program and the input data
but the whole software stack, including the entire operating
system and all software, scripts, code and data necessary to
execute the experiment [28]. This approach is known as soft-
ware virtualization, which consists of an encapsulation of the
whole software stack that can be executed on practically any
desktop, laptop or server, irrespectively of the main (‘‘host’’)
operating system installed on the computer that is actually
executing it.

A virtualized software application is a program that can
be executed regardless the underlying computer platform
(i.e., processor architecture, operating system and installed



library versions) that is executing it. This can be achieved by
packaging the application and all its software requirements
(the operating system and all the application-required sup-
porting libraries and programs) in a single, self-contained and
isolated software entity, that can be then run on any platform.
Hence, for instance, using virtualization tools a complete
Windows system can be run on a Linux machine, or on
another version of Windows. An instance of a software-
defined GNSS receiver executed in a virtual environment can
then be called a virtualized GNSS receiver [29]. This is a very
convenient strategy for sharing the full software stack as well
as data and all the scripts required to reproduce the plots from
the original paper. There are twomain approaches to software
virtualization: virtual machines and software containers.

A virtual machine (VM) is a software-based environment
designed to simulate a hardware-based environment, for the
sake of the applications it will host. A VM emulates a com-
puter architecture and provides the functionality of a physical
computer. Within each virtual machine runs a full operating
system, so conventional software applications expecting to be
managed by an operating system and executed by a set of
processor cores (e.g., a software-defined GNSS receiver) can
run within a VM without any required change. In addition,
the researcher has full control over the virtual (‘‘guest’’) oper-
ating system, and thus can install software, examine scripts
and code, and modify configuration settings as necessary.

Recently, however, software containers are replacing VMs
as the preferred supporting software stack system for virtu-
alized software applications because of the faster and more
lightweight nature of the former. An application running
in a container can be more efficient in making use of the
underlying hardware than when it is executed on a VM (since
it operates directly with the real processing units instead of
against an emulated layer, avoiding its overhead [30]), and
many more containers than VMs can be put onto a single
server, thus optimizing the investment in compute resources.
The concept of containerization was originally developed as
a mechanism to segregate namespaces in a Linux operat-
ing system for security purposes, isolating process groups
(a process and possible descendant processes) from the out-
side world. The first approach consisted of producing parti-
tions (sometimes called ‘‘jails’’) within which applications
of questionable security or authenticity could be executed
without risk to the kernel. The kernel was still responsible
for execution, though a layer of abstraction was inserted
between the kernel and the workload. Once the environment
within these partitions was minimized for efficiency’s sake,
the concept expanded to make the contents of those partitions
portable. Hence, this technology can be seen as an advanced
implementation of the standard chroot mechanism in
UNIX-like systems. The first container system was Linux
Containers (LXC), followed by a container hypervi-
sor (LXD), and then by other projects such as Docker or
Ubuntu Snaps. These latter systems provide native environ-
ments with no hypervisor but a daemon that supplements
the host kernel and that maintains the compartmentalization

between containers, while connecting the kernel to their
workloads.

In [31], Beaulieu-Jones and Greene proposed a continuous
analysis process combining Docker containers with contin-
uous integration, a popular software development technique
consisting of the verification of each new commit to the
source code by an automated build, to automatically re-run
computational analysis whenever relevant changes are made
to the source code. This allows results to be reproduced
quickly, accurately and without needing to contact the origi-
nal authors. It also provides an audit trail for analyses that use
data with sharing restrictions.

C. RESULTS REPRODUCIBILITY
In computer science, a deterministic algorithm is an algorithm
which, given a particular input, will always produce the same
output, with the underlying machine always passing through
the same sequence of states. If the software-defined receiver
is implemented as a single-threaded program (for instance,
as a MATLAB script with no parallelization), where the
instructions are always called in the same order, without using
external states other than the input, operates in a way that is
no timing-sensitive and without unexpected hardware errors,
the program can be deterministic, which offers many benefits
for debugging, fault tolerance, and security, in addition to
make reproducibility easier.

However, the computational load required by software-
defined GNSS receivers, and their inherently parallelizable
architecture design (e.g., many channels performing very
similar operations over the same input sample stream), drive
to concurrent programming in order to exploit the full capac-
ity of the underlying processors and to improve the processing
efficiency. Parallelism poses many correctness challenges,
from dealing with concurrency errors like data races, atom-
icity violations, and ordering violations, to coping with the
nondeterminism inherent in most parallel systems. In such
cases, a thread scheduler can play a key role in achieving effi-
ciency (that is, real-time processing) while avoiding problems
related to nondeterministic executions. It is then relevant to
analyze run-to-run reproducibility.
Software-defined receivers can be formally represented as

flow graph of nodes. Each node represents a signal processing
block, whereas links between nodes represents a flow of data.
The concept of a flow graph can be viewed as an acyclic
directional graph with one or more source blocks (to insert
samples into the flow graph), one or more sink blocks (to ter-
minate or export samples from the flow graph), and any signal
processing blocks in between. Those flow graph computa-
tions can be jointly modeled as a Kahn process [32], [33].
A Kahn process describes a model of computation where pro-
cesses are connected by communication channels to form a
network. Processes produce data elements or tokens and send
them along a communication channel where they are con-
sumed by the waiting destination process. Communication
channels are the only method processes may use to exchange
information. Kahn requires the execution of a process to be



suspended when it attempts to get data from an empty input
channel. A process may not, for example, test an input for the
presence or absence of data. At any given point, a process can
be either enabled or blocked waiting for data on only one of
its input channels: it cannot wait for data from more than one
channel.

Systems that obey Kahn’s mathematical model are deter-
minate: the history of tokens produced on the communication
channels does not depend on the execution order [32]. With a
proper scheduling policy, it is possible to implement software
defined radio process networks holding two key properties:
i) non-termination: understood as an infinite running flow
graph process without deadlocks situations, and ii) strictly
bounded: the number of data elements buffered on the com-
munication channels remains bounded for all possible execu-
tion orders. An analysis of such process networks scheduling
was provided in [34].

An open source example of a runtime scheduler fulfill-
ing the requirements described in [34] is found in GNU
Radio, a software framework for programming software-
radio applications. A detailed description of such scheduler
implementation (memory management, requirement compu-
tations, and other related algorithms and parameters) can be
found in [35]. Under this scheme, software-defined signal
processing blocks read the available samples in their input
memory buffer(s), process them as fast as they can, and place
the result in the corresponding output memory buffer(s), each
of them being executed in its own, independent thread. This
strategy results in a software receiver that always attempts
to process signal at the maximum processing capacity, since
each block in the flow graph runs as fast as the processor,
data flow and buffer space allows, regardless of its input data
rate, while allowing for a determinate system. However, even
using a deterministic scheduler, it still does not ensure the
exact replication of results from two different runs. Many
factors can affect the obtained numerical results, most notably
i) the workload and resources of the machine running the
experiment; ii) the receiver’s a priori knowledge of time,
ephemeris, almanac and rough position; iii) the availability
to data external to the receiver (as is the case of DGNSS and
A-GNSS solutions, or the combination with other sen-
sors); and iv) the use of other programming practices that
violate Kahn’s model and result in a nondeterminate system
(e.g., use of shared variables to circumvent the communica-
tion channels).

Another factor that has an impact on GNSS-related exper-
iments’ results is satellites’ geometry. In order to make
the measurement as independent as possible of this effect,
measurements should be spread in an interval of 8 hours
(see [36]).

Hence, for the all the reasons described along this Section,
getting exactly the same numerical results in two different
experiments can be extremely difficult, if not impossible,
to achieve. In such cases, it makes sense to define equiva-
lence criteria for different result sets. A possible tool for the
assessment of equivalence between the outputs of different

experiments are equivalence tests, a variation of hypothesis
tests used to draw statistical inferences from observed data.
In equivalence tests, the null hypothesis is defined as an effect
large enough to be deemed interesting, specified by an equiv-
alence bound. The alternative hypothesis is any effect that
is less extreme than said equivalence bound. The observed
data is statistically compared against the equivalence bounds.
Examples are the two sample t-test and the two one-sided
t-test (TOST) [37].

III. CONTINUOUS REPRODUCIBILITY
A software container provides a snapshot of a full soft-
ware stack, adequately packaged and ready to be run in
another computer. While this is a convenient feature for
reproducibility, it also clenches the results to the possible
bugs present in that particular version of the research source
code, the linked libraries, other used executables and the
OS. Ideally, an experiment should be reproducible not only
in the very specific computing environment used by the
original researcher but in a broad range of platforms, even
in those yet-to-be-released at the time the experiment was
conducted for the first time. In other words, it is desirable to
achieve long-term reproducibility. Here, ‘‘long-term’’ must
be framed in the context of Software Engineering, in which
changes happen at a rapid pace. For instance, Ubuntu (one
of the most popular GNU/Linux distributions) releases a
new version of the OS every 6 months. Other distributions
such as Arch Linux and Gentoo Linux are rolling release
systems, making packages available to the distribution a
short time (days or weeks) after they are released upstream.
As a consequence, software environments are constantly
mutating.

In 2008, some popular Operating Systems were Windows
Vista, Ubuntu 8.04 LTS and Mac OS X 10.5 Leopard. One
decade later, those OS releases have reached its end of life,
and users are no longer receiving new security and mainte-
nance updates. Although the reproduction of such environ-
ments in a software container is still possible, the resulting
software stack contains known bugs and could compromise
safety, reliability and compatibility when executed in a mod-
ern machine. On the other hand, trying to build source code
written in 2008 in a 2018 environment is likely to fail due
to the API-breaking features introduced in OSs, compilers
and libraries. This implies that maintaining long-term repro-
ducibility requires changes both in the source code of interest
and in the surrounding software environment.

This issue can be addressed with Continuous Integration,
a concept firstly introduced in [38] that consists of automating
the build and testing of code every time a researcher commits
changes to the version control system [39]–[41]. Continuous
Integration encourages developers to share their code and unit
tests by merging their changes into a shared version control
repository after every small task completion. Committing
code triggers an automated build system to grab the latest
code from the shared repository and to build, test, and validate
the obtained numerical results.



FIGURE 1. Continuous Reproducibility in the context of other practices such as Continuous Integration, Continuous Delivery and Continuous
Deployment.

For instance, it is possible to set up a Continuous Inte-
gration system which makes use of different OSs and their
respective versions. Then, every time a new commit is done in
the source code tree, the system automatically builds the code
and performs the numerical experiment in each of the targeted
OS versions. This helps to identify integration and back-
ward/forward compatibility problems as soon as the offend-
ing instruction is committed or a new OS appears, so they
are easier to fix, and ensures that research code performs as
expected in different environments.

The combination of software containerization technology
and Continuous Integration systems provides a very flexible,
affordable, automated and audited path from each change in
the source code tree to the regeneration of the experiment
results in a wide range of computing systems. If the scripts
required for that automation are made public, anyone external
to the original research team can reproduce the entire exper-
iment, make further validations or corrections, and, most
importantly, make changes and build upon it.

Leveraging on Continuous Integration, other practices
have extended within the software development industry. The
organizations’ need to frequently and reliably release new
features and products has bred the proliferation of Contin-
uous Delivery procedures, aimed at ensuring an application
is always at production-ready state after successfully passing
automated tests and quality checks. Continuous Deployment
practices go a step further and automatically and continuously
deploy the application to production or customer environ-
ments [42]. A toolchain implementing Continuous Integra-
tion, Continuous Delivery and Continuous Deployment is
shown in Figure 1.

Those practices and tools can be adapted and applied
to the context of research communication in GNSS Signal
Processing, enabling effective Continuous Reproducibility of
the research results. This includes, in addition of releasing

the source code under a FOSS license, to share the data set
on which the experiments were done (usually, files contain-
ing raw GNSS signal samples and possibly other sensors),
the full experiment configuration, and the scripts used to ana-
lyze the results and generate the figures and tables appearing
in the research paper in which the experiment was presented.

The proposed steps performed by a Continuous Repro-
ducibility system each time a new change is committed to
the source code repository can be described as a pipeline of
automated stages:

1) Build: This step can be iterated over a list of sup-
ported OS, versions and processor architectures.
• Install an image of a given OS, with specific brand,
version (or snapshot in case of rolling releases) and
processor architecture.

• Install all the required software dependencies.
• Grab the research code from the upstream
repository.

• In case of compilable code, configure, build and
install the required executables.

2) Test: Execute Quality Assessment (QA) executables
(unit, integration and system testing of the published
software). Again, this step can be iterated over a list of
supported OS, versions and processor architectures.

3) Create a software container:
• Generation of a software image (e.g., a Docker
container) with a snapshot of the full software
stack, including other analysis and graphical rep-
resentation tools required for the generation of the
figures appearing in the research paper.

• Tagging and publication of the newly created con-
tainer image.

4) Reproduce the experiment:
• Install the image of the container created in the
previous step.



• Grab a data set (files or stream containing raw
GNSS signal samples).

• Execute the experiment.
• Validation of results: Check whether the numerical
results of this instance of the experiment are signif-
icantly worse, comparable or better to those of the
original experiment, in some defined metric.

• Produce experiment results:
– Generate the figure(s) that appeared in the

research paper with the newly obtained results.
– Post the resulting figures/numerical results

online.
This proposed pipeline is shown in Figure 1. Each stage

can havemultiple parallel jobs, but the execution is sequential
from stage to stage. Each job (usually consisting of a script
to be run by a Unix command-line interpreter) is executed in
an isolated computer environment. The list of tested OS can
be expanded a soon as a new release appears, thus detecting
forward compatibility problems as early as possible. If the
execution fails at some step, the pipeline stops and a full
report is sent to the original research team or any other user
triggering the process. The automation of the full process
ensures that anybody can reproduce the experiment without
need of contacting the original authors, and to experiment
with new changes with a rapid evaluation of the results in fair
conditions.

The generation of a software container for each particular
execution is specially interesting in case of experiments using
large data sets, in which moving the container to the physical
computing system storing the data can be cheaper than trans-
mitting such data over a communication network, or in cases
where data sets have not been publicly released.

Nowadays, most commercial Continuous Integration/
Continuous Delivery platforms offer their services for free to
open source projects. There are also high-quality open source
tools such as Jenkins, Travis CI, Buildboot and GitLab,
among others [43]. Most of them can easily accommodate a
Continuous Reproducibility system such as the one described
above. If the pipeline is deployed in a server with public
access, anyone can reproduce the experiment, make changes
and apply the pipeline to other data sets (public or private).
It is also possible to run all or some of the jobs at users’
premises, thus providing an audit trail for private implemen-
tations and data sets.

For the original researcher team the initial investment is
not negligible, although beneficial in many aspects. Setting
up a Continuous Reproducibility system requires an effort in
getting familiar with the related tools and in developing the
automation scripts that allow the execution of the experiment
and the production of the results with no human intervention.
In addition, exposing the implementation of a newly invented
algorithm to public scrutiny can be problematic in terms
of intellectual property rights, or by other factors such as
the reluctance to publish poor-written code, to attend people
demanding support and bug fixes, and to share implementa-
tion details with possible competitors [44].

As a counterpart, adopting such practices redounds in
improved credibility, usability and perceived quality of the
research communication [45], while effectively contribut-
ing to extend software lifetime and to mitigate the effects
of software aging [46]. Last but not least, this methodol-
ogy implements the automation of continuous improvement
cycles, which constitutes an approach that is aligned with the
scientific method [47] and allows others to build upon it in
the terms established by the source code license.

IV. CASE STUDY: GNSS-SDR
Reproducibility requirements have an impact in how a
software-defined GNSS receiver is designed, implemented,
documented and shared.While strictly speaking reproducibil-
ity is only possible with exactly the same setup as in the
original experiment, in practice it is desirable to allow the
reproduction in the widest range of systems as possible,
in order to make possible such replication to researchers with
access to other kind of equipment (for instance, a computer
with different features, operating system or library versions).
This section describes some of the design choices and fea-
tures related to reproducibility taken in GNSS-SDR, an open
source project that implements a GNSS software-defined
receiver. With no claim of optimality, this is aimed to provide
a working example for the topics discussed in Section II and
Section III.
• License: The source code is released under the GNU
General Public License version 3. Some specific files
are released under other compatible licenses. All those
licenses provide users with the freedom to run the pro-
gram as they wish, for any purpose; the freedom to study
how the program works, and to make modifications at
their wish; and the freedom to redistribute copies (and
the modified versions) to others.

• Version control system: The source code is kept under
a version control system by Git, a free and open
source tool that automates the process of keeping an
annotated history of the project, allowing reversion of
code changes, easy branching and merging, sharing
and change tracking, and the coordination of work
on those files among multiple people in a distributed
fashion.

• Branching model: GNSS-SDR’s reference Git repos-
itory, also referred to as ‘‘upstream’’, is hosted online
by GitHub (see https://github.com/gnss-sdr/gnss-sdr),
a web-based Git repository hosting service that offers
all the distributed revision control and source code man-
agement functionality of Git as well as adding its own
features, such as review changes, comment on lines of
code, report issues, and plan the evolution of the project
with discussion tools, all in a rich web-based graphical
interface. In this repository there are two development
branches with infinite lifetime:
– master is the main, most stable branch that con-

tains the latest software release plus some occa-
sional, portability-related bug fixes, and



FIGURE 2. Results of GPS L2C signal processing with GNSS-SDR. Figure taken as example for the
Continuous Reproducibility demonstration.

– next is where all the code development is hap-
pening, containing the most updated code that will
eventually form part of the next stable release.

In addition, the repository offers source code releases
packet in a single file and its digital signature, to make
easier their distribution and future reference.

• Digital Object Identifier: A DOI is issued by
Zenodo.org for each software release (e.g., [48]).

• Build system: In order to address reproducibility of
the source code building rules (compiler flags, linking,
etc.), GNSS-SDR uses CMake as its building system
generator. CMake is used to control the software com-
pilation process using platform and compiler indepen-
dent configuration files, from which it generates native
makefiles and workspaces that can be used in a wide
range of compiler environments. Popular open source
build automation tools, such as Make and Ninja, can
be used to automatically build the required executable
programs and libraries from the source code with the
aid of the building files generated by CMake. Using
popular, widely available cross-platform tools helps to
ensure portability among different systems and proces-
sor architectures.

• Compilers: The source code can be compiled with the
two most popular open source compilers, GCC and
LLVM/Clang. In general, it is desirable to be able to
build the source code with different compilers, since
it improves the overall quality of code by providing
different checks and alerts.

• Programming standards: GNSS-SDR’s source code
honors the C++11 and C++14 standards [49], thus
ensuring the validity of the source code in a wide range
of processing platforms and compilers for a long time
span (in computer engineering’s time scale).

• Packaging: GNSS-SDR was accepted as a software
package by the Debian Project, and it is available in their
most recent releases. This secures software availability
in a wide list of other popular GNU/Linux distributions
(e.g., Ubuntu) and ensures correctness in terms of licens-
ing and the availability of software dependencies in a
large list of processor architectures. AMacports package
is also available for macOS.

• Containerization: A ‘‘Dockerfile’’ example for the
generation of Docker container images with a work-
ing executable of GNSS-SDR is available at https://
github.com/carlesfernandez/docker-gnsssdr. Docker is
an open source tool designed to make it easier to create,
deploy, and run applications by using software contain-
ers. Docker containers wrap a piece of software in a
complete filesystem that contains everything needed to
run: code, runtime, system tools and system libraries,
and ship it all out as one package. This guarantees that
the software will always run the same, regardless of any
customized settings that the executing machine might
have that could differ from the machine used for writing
and testing the code.

• Documentation: Project website at http://gnss-sdr.org,
containing building instructions, tutorials, and the



FIGURE 3. Continuous Reproducibility pipeline for GNSS-SDR, as implemented on GitLab. Publicly available at
https://gitlab.com/gnss-sdr/gnss-sdr.

documentation about the receiver’s configuration. The
website source content is available as a Git repository at
https://github.com/gnss-sdr/geniuss-place.

• Interoperability: GNSS signal products delivered in
standard output formats such as RINEXfiles (navigation
and observables) in versions 2.11 and 3.03, and RTCM
v3.2 messages, with configurable rates.

• Configuration: Full receiver configuration in a sin-
gle text file, allowing easy exchange and reference of
receiver’s full configuration.

• Scalability: Modular design and runtime scheduler
inherited from GNU Radio (see https://www.gnuradio.
org), a well-established open source software framework
for software-defined radio applications.

In order to demonstrate the feasibility of a Continuous
Reproducibility system as proposed in Section III, we pro-
pose an example implemented in GitLab, a web-based Git
repository manager. The experiment considered for this
example consists of processing raw signal samples captured
with a radio frequency front-end. The input signal is a raw
data collection in the L2 band carried out at Fraunhofer IIS,
Nuremberg (Germany), with a Flexiband receiver [50] and

Spirent GSS8000 signal generator. The data set is available
online [51]. The results of processing that signal with GNSS-
SDR configured as a GPS L2C receiver in a cold start are
shown in Figure 2. The receiver was able to get position
fixes in single point positioning mode, with metrics given in
circular error probability (CEP, the radius of circle centered at
mean of the obtained values, containing the horizontal posi-
tion estimate with probability of 50%, in m) and twice the dis-
tance root mean square (2DRMS, containing the horizontal
position estimatewith probability of 95%) for 2D positioning,
and the mean radial spherical error (MRSE, containing the
three-dimensional position estimate with probability of 61%,
in m) for 3D positioning (center and right bottom plots in
Figure 2).
The implementation of the proposed Continuous Repro-

ducibility system in GitLab consists of the creation of a file
at the root folder, named ‘‘.gitlab-ci.yml’’, that defines the
automated pipeline. The process consists of four stages, each
one populated with one or more jobs, which can be manda-
tory, optional (manually triggered) or ‘‘allowed to fail’’. Each
job consists of a set of commands executed in an independent
virtual computer environment.



FIGURE 4. Terminal commands to reproduce Figure 2 of this paper in any machine with Docker installed and running.

Stages are defined as follows:

1) Build: Multiple mandatory jobs building the source
code in most popular GNU/Linux distributions (Arch
Linux, CentOS, Debian, Fedora, Ubuntu), in different
versions and architectures. Additional versions can be
easily added as soon as they appear. An optional job
performs a compilation with a specific compiler and
sends the results to Coverity Scan, a static code analysis
service which is free for FOSS projects and provides
valuable feedback on code quality and identification
of defects. Checking the building process is highly
important in GNSS-SDR, which is written in C++
and links to other FOSS libraries which API change
along time. This also holds in case of using scripting
languages (such as Matlab/Octave or Python), where
this step is recommended in order to check whether the
code runs as expected in the different versions of the
language interpreter and associated packages shipped
with different OS.

2) Test: Set of jobs in charge of the execution in different
environments of the quality assessment code, which
consists of a set of noninteractive procedures evaluating
assertions and leading to pass/fail decisions based upon
some predefined requirements. This includes unit tests,
checking certain functions and areas (or units) of the
source code, and system tests, conducted on a complete,
integrated system to evaluate the software receiver’s
requirements compliance.

3) Deploy: One job in this stage creates a software con-
tainer image that is ready to execute the experiment.
This includes an OS, all the required external soft-
ware library dependencies and executables required to
run GNSS-SDR, the scripts required to execute the
software receiver over a data set and to generate the

figures and tables of the research paper (in this exam-
ple, Figure 2), and all the graphical representation
tools and packages required to generate it (in this
case, Octave and some LATEX–related packages for
the generation of files in PDF format). More jobs
creating images for other experiments with different
requirements can be easily added. The data set itself
is intentionally left out in this image, in order to ease
the insertion of other data sets in the next stage. Two
additional jobs implement a Continuous Delivery sys-
tem for GNSS-SDR, and are only executed in the
‘‘next’’ branch. All jobs in this stage end publishing a
tagged image in a public container register (in this case,
https://hub.docker.com).

4) Experiment: A job installing the image created in the
previous stage, grabbing the data set, executing the
experiment and generating Figure 2 from the results.
Other jobs executing different experiments can be
easily added.

The process is shown in Figure 3, where each column
represents a stage in the Continuous Reproducibility work-
flow. All the mandatory jobs in each stage must be com-
pleted successfully before starting the execution of next stage
jobs. Each time a commit is pushed to any branch of the
GitLab repository containing a file in the root folder named
‘‘.gitlab-ci.yml’’, the workflow is automatically triggered.
If a mandatory job fails, the process is stopped and the user
that triggered it receives an email with a report. If all the
mandatory jobs in the pipeline end successfully, the job at
the last stage will have reproduced a downloadable version
of Figure 2.
The complete system is available online (see https://

gitlab.com/gnss-sdr/gnss-sdr/pipelines), so the experiment
can be readily reproduced by others in a fully transparent



procedure (see Fig. 4), and changes can bemade in a traceable
manner.

V. CONCLUSIONS
This paper discussed the reproducibility of scientific exper-
iments in which a software-defined GNSS receiver plays a
role. While reproducibility is largely recognized as an essen-
tial feature of the scientific method, it is usual to find sci-
entific papers that fail to provide enough information for the
replication of the original experiment by other researchers.
Those aspects were analyzed in terms of workload, system
and results reproducibility, providing recommendations for
reporting experiments in a way that can be reproduced by
others. Then, leveraging on software containerization tech-
nologies and the best practices from professional software
development, this paper proposed a methodology that allows
for the automated execution of experiments, provides an
effective way to scientific reporting and collaboration, and
contributes to mitigate software aging by detecting forward
compatibility problems as soon as possible. A practical
example implemented in a popular online platform was also
provided.

REFERENCES
[1] X. Yue et al., ‘‘Space weather observations by GNSS radio occul-

tation: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2,’’
Space Weather, vol. 12, no. 11, pp. 616–621, Nov. 2014, doi: 10.1002/
2014SW001133.

[2] L. Lestarquit et al., ‘‘Reflectometry with an open-source software GNSS
receiver: Use case with carrier phase altimetry,’’ IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 9, no. 10, pp. 4843–4853, Oct. 2016,
doi: 10.1109/JSTARS.2016.2568742.

[3] J. Vila-Valls, P. Closas, C. Fernandez-Prades, and J. T. Curran, ‘‘On
the ionospheric scintillation mitigation in advanced GNSS receivers,’’
IEEE Trans. Aerosp. Electron. Syst., to be published, doi: 10.1109/
TAES.2018.2798480.

[4] L. He andK. Heki, ‘‘Three-dimensional distribution of ionospheric anoma-
lies prior to three large earthquakes in Chile,’’ Geophys. Res. Lett., vol. 43,
no. 14, pp. 7287–7293, Jul. 2016, doi: 10.1002/2016GL069863.

[5] H. J. Heege, ‘‘Precision in guidance of farm machinery,’’ in Precision in
Crop Farming, H. J. Heege, Ed. Dordrecht, The Netherlands: Springer,
2013, ch. 4, pp. 35–50, doi: 10.1007/978-94-007-6760-7_4.

[6] G. K. Sandve, A. Nekrutenko, J. Taylor, and E. Hovig, ‘‘Ten simple rules
for reproducible computational research,’’ PLoS Comput. Biol., vol. 9,
no. 10, pp. 1–4, Oct. 2013, doi: 10.1371/journal.pcbi.1003285.

[7] V. Stodden and S. Miguez, ‘‘Best practices for computational science:
Software infrastructure and environments for reproducible and exten-
sible research,’’ J. Open Res. Softw., vol. 2, no. 1, pp. 1–6, 2014,
doi: 10.5334/jors.ay.

[8] G. Wilson et al., ‘‘Best practices for scientific computing,’’ PLoS Biol.,
vol. 12, no. 1, p. e1001745, Jan. 2014, doi: 10.1371/journal.pbio.1001745.

[9] G. Wilson, J. Bryan, K. Cranston, J. Kitzes, L. Nederbragt, and T. K. Teal,
‘‘Good enough practices in scientific computing,’’ PLoS Comput. Biol.,
vol. 13, no. 6, p. e1005510, Jun. 2017, doi: 10.1371/journal.pcbi.1005510.

[10] GNSS-SDR. (2017). An Open Source Global Navigation Satellite Systems
Software Defined Receiver. Accessed: Apr. 2, 2018. [Online]. Available:
http://gnss-sdr.org

[11] C. Fernández-Prades, J. Arribas, and P. Closas, ‘‘Assessment of software-
defined GNSS receivers,’’ in Proc. 8th Ed. NAVITEC, ESA/ESTEC,
Noodwijk, The Netherlands, Dec. 2016, pp. 1–9, doi: 10.1109/
NAVITEC.2016.7931740.

[12] C. Fernández-Prades, J. Arribas, M. Majoral, J. Vilà-Valls, A. García-
Rigo, M. Hernández-Pajares, ‘‘An open path from the antenna to scientific-
grade GNSS products,’’ in Proc. 6th Intl. Colloq. Sci. Fundam. Aspects
GNSS/Galileo, Valencia, Spain, Oct. 2017, pp. 1–8

[13] (2017). GNSS-SDR Website: 16 Design Forces for Software-Defined
GNSS Receivers. Accessed: Apr. 2, 2018. [Online]. Available: http://gnss-
sdr.org/design-forces/

[14] P. Vandewalle, J. Kovacević, and M. Vetterli, ‘‘Reproducible research in
signal processing,’’ IEEE Signal Process. Mag., vol. 26, no. 3, pp. 37–47,
May 2009, doi: 10.1109/MSP.2009.932122.

[15] R. D. Peng, ‘‘Reproducible research in computational science,’’ Science,
vol. 334, no. 6060, pp. 1226–1227, Dec. 2011, doi: 10.1126/science.
1213847.

[16] D. Irving, ‘‘A minimum standard for publishing computational results in
the weather and climate sciences,’’ Bull. Amer. Meteorol. Soc., vol. 97,
no. 7, pp. 1149–1158, Jul. 2016, doi: 10.1175/BAMS-D-15-00010.1.

[17] The Royal Society, ‘‘Science as an open enterprise,’’ Sci. Policy Centre,
London, U.K., Tech. Rep. 02/12, Jun. 2012.

[18] I. Jimenez et al., ‘‘The role of container technology in reproducible com-
puter systems research,’’ in Proc. IEEE Int. Conf. Cloud Eng., Tempe, AZ,
USA, Mar. 2015, pp. 379–385, doi: 10.1109/IC2E.2015.75.

[19] S. Chacon and B. Straub, Pro Git, 2nd ed. New York, NY, USA:
Apress, 2014, Accessed: Apr. 2, 2018. [Online]. Available: https://git-scm.
com/book/en/v2

[20] J. D. Blischak, E. R. Davenport, and G. Wilson, ‘‘A quick introduction to
version control with Git and GitHub,’’ PLoS Comput. Biol., vol. 12, no. 1,
p. e1004668, Jan. 2016, doi: 10.1371/journal.pcbi.1004668.

[21] (2017). Reproducible Builds. Accessed: Apr. 2, 2018. [Online]. Available:
https://reproducible-builds.org

[22] J. Bobbio, ‘‘How to make your software build reproducibly,’’ in Chaos
Communication Camp. Zehdenick, Germany: Mildenberg, 2015.

[23] ION GNSS SDR Standard Working Group. (Aug. 2017). Global Nav-
igation Satellite Systems Software Defined Radio Sampled Data Meta-
data Standard Revision 1.0. Accessed: Apr. 2, 2018. [Online]. Available:
https://github.com/IonMetadataWorkingGroup

[24] International GNSS Service (IGS) and RINEX Working Group and
Radio Technical Commission for Maritime Services Special Com-
mittee, ‘‘RINEX—The receiver independent exchange format, version
3.03,’’ Accessed: Apr. 2, 2018. [Online]. Available: ftp://igs.org/pub/
data/format/rinex303.pdf

[25] M. Avital, ‘‘The generative bedrock of open design,’’ inOpen Design Now:
Why Design Cannot Remain Exclusive, B. van Abel, L. Evers, R. Klaassen,
and P. Troxler, Eds. Amsterdam, The Netherlands: BIS Publishers, 2011,
pp. 48–58.

[26] Open DesignWorking Group. (2017). The Open Design Definition
v. 0.5. Accessed: Apr. 2, 2018. [Online]. Available: https://github.
com/OpenDesign-WorkingGroup

[27] T. Feist, ‘‘Vivado design suite,’’ Xilinx, Inc., San Jose, CA,
Tech. Rep. WP416 (v1.1), Jun. 2014.

[28] S. R. Piccolo and M. B. Frampton, ‘‘Tools and techniques for computa-
tional reproducibility,’’ GigaScience, vol. 30, no. 5, pp. 1–13, Jul. 2016,
doi: 10.1186/s13742-016-0135-4.

[29] C. Fernández-Prades et al., ‘‘A cloud optical access network for virtualized
GNSS receivers,’’ in Proc. 30th Int. Techn. Meeting Satellite Division Inst.
Navigat., Portland, OR, USA, Sep. 2017, pp. 3796–3815.

[30] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, ‘‘An updated perfor-
mance comparison of virtual machines and Linux containers,’’ in Proc.
IEEE Int. Symp. Perform. Anal. Syst. Softw., Philadelphia, PA, USA,
Mar. 2015, pp. 171–172, doi: 10.1109/ISPASS.2015.7095802.

[31] B. K. Beaulieu-Jones and C. S. Greene, ‘‘Reproducibility of computational
workflows is automated using continuous analysis,’’ Nature Biotechnol.,
vol. 35, no. 4, pp. 342–346, Apr. 2017, doi: 10.1038/nbt.3780.

[32] G. Kahn, ‘‘The semantics of a simple language for parallel programming,’’
in Information Processing, J. L. Rosenfeld, Ed. Stockholm, Sweden: North
Holland, Aug. 1974, pp. 471–475.

[33] G. Kahn and D. B. MacQueen, ‘‘Coroutines and networks of paral-
lel processes,’’ in Information Processing, B. Gilchrist, Ed. Amsterdam,
The Netherlands: North Holland, 1977, pp. 993–998.

[34] T. M. Parks, ‘‘Bounded scheduling of process networks,’’ Ph.D. disserta-
tion, Univ. California, Berkeley, Berkeley, CA, USA, Dec. 1995.

[35] T. W. Rondeau. (Sep. 2013). Explaining the GNU Radio Sched-
uler. Accessed: Apr. 2, 2018. [Online]. Available: http://www.trondeau.
com/blog/2013/9/15/explaining-the-gnu-radio-scheduler.html

[36] C. Hay, ‘‘Standardized GPS simulation scenarios for SPS receiver test-
ing,’’ in Proc. IEEE/ION Position, Location, Navigat. Symp., Apr. 2006,
pp. 1080–1085, doi: 10.1109/PLANS.2006.1650713.

[37] S. Wellek, Testing Statistical Hypotheses of Equivalence and Noninferior-
ity, 2nd ed. Boca Raton, FL, USA: CRC Press, Jun. 2010.

http://dx.doi.org/10.1002/2014SW001133
http://dx.doi.org/10.1002/2014SW001133
http://dx.doi.org/10.1109/JSTARS.2016.2568742
http://dx.doi.org/10.1109/TAES.2018.2798480
http://dx.doi.org/10.1109/TAES.2018.2798480
http://dx.doi.org/10.1002/2016GL069863
http://dx.doi.org/10.1007/978-94-007-6760-7_4
http://dx.doi.org/10.1371/journal.pcbi.1003285
http://dx.doi.org/10.5334/jors.ay
http://dx.doi.org/10.1371/journal.pbio.1001745
http://dx.doi.org/10.1007/s00603-015-0784-0
http://dx.doi.org/10.1109/NAVITEC.2016.7931740
http://dx.doi.org/10.1109/NAVITEC.2016.7931740
http://dx.doi.org/10.1109/MSP.2009.932122
http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.1126/science.1213847
http://dx.doi.org/10.1175/BAMS-D-15-00010.1
http://dx.doi.org/10.1109/IC2E.2015.75
http://dx.doi.org/10.1371/journal.pcbi.1004668
http://dx.doi.org/10.1186/s13742-016-0135-4
http://dx.doi.org/10.1109/ISPASS.2015.7095802
http://dx.doi.org/10.1038/nbt.3780
http://dx.doi.org/10.1109/PLANS.2006.1650713


[38] G. Booch, Object Oriented Design With Applications. New York, NY,
USA: Benjamin Cummings, 1991.

[39] P. Duvall, S. Matyas, and A. Glover, ‘‘Continuous Integration,’’ in Improv-
ing Software Quality and Reducing Risk. Upper Saddle River, NJ, USA:
Addison Wesley, 2007.

[40] J. Humble and D. Farley,Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation. Upper Saddle River, NJ,
USA: Addison Wesley, 2011.

[41] M. Shahin, M. A. Babar, and L. Zhu, ‘‘Continuous integration, deliv-
ery and deployment: A systematic review on approaches, tools, chal-
lenges and practices,’’ IEEE Access, vol. 5, pp. 3909–3943, Mar. 2017,
doi: 10.1109/ACCESS.2017.2685629.

[42] P. Rodríguez et al., ‘‘Continuous deployment of software intensive prod-
ucts and services: A systematic mapping study,’’ J. Syst. Softw., vol. 123,
pp. 263–291, Jan. 2017, doi: 10.1016/j.jss.2015.12.015.

[43] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, ‘‘Usage, costs,
and benefits of continuous integration in open-source projects,’’ in Proc.
31st IEEE/ACM Intl. Conf. Automated Softw. Eng., Singapore, Sep. 2016,
pp. 426–437, doi: 10.1145/2970276.2970358.

[44] N. Barnes, ‘‘Publish your computer code: It is good enough,’’ Nature,
vol. 467, no. 7317, p. 753, Oct. 2010, doi: 10.1038/467753a.

[45] M. Ihle, I. S. Winney, A. Krystalli, and M. Croucher, ‘‘Striving for
transparent and credible research: Practical guidelines for behavioral
ecologists,’’ Behavioral Ecol., vol. 28, no. 2, pp. 348–354, Apr. 2017,
doi: 10.1093/beheco/arx003.

[46] F. Machida, J. Xiang, K. Tadano, and Y. Maeno, ‘‘Lifetime extension of
software execution subject to aging,’’ IEEE Trans. Rel., vol. 66, no. 1,
pp. 123–134, Mar. 2017, doi: 10.1109/TR.2016.2615880.

[47] G. J. Langley, R. D. Moen, K. M. Nolan, T. W. .Nolan, C. L. Norman, and
L. P. Provost, The Improvement Guide. San Francisco, CA, USA: Jossey-
Bass, 2009.

[48] C. Fernández-Prades, J. Arribas, and L. Esteve,GNSS-SDR v0.0.9, Zenodo,
Feb. 2017, doi: 10.5281/zenodo.291371.

[49] Information Technology—Programming languages—C++, International
Organization Standardization, Standard ISO/IEC 14882:2014(E), Geneva,
Switzerland, Dec. 2014.

[50] A. Rügamer, F. Förster, M. Stahl, and G. Rohmer, ‘‘Features and applica-
tions of the adaptable FlexibandUSB3.0 front-end,’’ inProc. 27th Int. Tech.
Meeting Satellite Division Inst. Navigat., Tampa, FL, USA, Sep. 2014,
pp. 330–362.

[51] A. Ramos and C. Fernández-Prades. (Feb. 2018). GNSS Signal Samples
in the L2 Band, Zenodo. Accessed: Apr. 2, 2018. [Online]. Available:
https://zenodo.org/record/1184601, doi: 10.5281/zenodo.1172670.

CARLES FERNÁNDEZ-PRADES (S’02–M’06–
SM’12) received the M.S. and Ph.D. (cum-laude)
degrees in electrical engineering from the Univer-
sitat Politècnica de Catalunya (UPC), in 2001 and
2006, respectively. In 2001, he joined the Depart-
ment of Signal Theory and Communication, UPC,
as a Research Assistant, getting involved in
European and National research projects both with
technical and managerial duties. He also was a
Teaching Assistant in the field of analog and

digital communications, UPC, from 2001 to 2005. In 2006, he joined the
Centre Tecnològic de Telecomunicacions de Catalunya, where he is currently
a Senior Researcher and serves as the Head of the Statistical Inference
for Communications and Positioning Department. He was an Advisor of
two theses acknowledged with the EURASIP Best Ph.D. Thesis Award
in 2014 and 2015. His primary areas of interest include Bayesian estimation,
signal processing, communication systems, GNSS, software-defined radio,
and design of RF front-ends.

JORDI VILÀ-VALLS (SM’17) received the Ph.D.
degree in electrical engineering from Grenoble
INP, France, in 2010. He is currently a Senior
Researcher with the Statistical Inference for Com-
munications and Positioning Department, Centre
Tecnològic de Telecomunicacions de Catalunya,
and also a Lecturer with the Telecommunications
and Aerospace Engineering School, Universitat
Politècnica de Catalunya, Barcelona, Spain. His
primary areas of interest include robust statistical

signal processing at large, nonlinear Bayesian inference, computational and
robust statistics, with applications to: GNSS, indoor positioning/localization,
tracking and sensor fusion systems, wireless communications, and aerospace
science.

JAVIER ARRIBAS (S’09–M’12–SM’14) received
the M.Sc. degree in telecommunication engineer-
ing from La Salle University in 2004 and the
Ph.D. degree from the Universitat Politècnica
de Catalunya in 2012. He holds the position of
a Senior Researcher with the Statistical Infer-
ence for Communications and Positioning Depart-
ment, Centre Tecnològic de Telecomunicacions de
Catalunya. His primary areas of interest include
statistical signal processing, GNSS synchroniza-

tion, detection and estimation theory, software defined receivers, FPGA
prototyping and the design of RF front-ends. He was a recipient of the
2015 EURASIP Best Ph.D. Thesis Award.

ANTONIO RAMOS received the M.Sc. degree
in telecommunication engineering from the Uni-
versitat Politècnica de Catalunya in 2013. He is
currently a Research Assistant with the Statisti-
cal Inference for Communications and Positioning
Department, Centre Tecnològic de Telecomunica-
cions de Catalunya. His primary areas of interest
include statistical signal processing with appli-
cation in spectroscopy analysis techniques and
GNSS software defined receivers.

http://dx.doi.org/10.1109/ACCESS.2017.2685629
http://dx.doi.org/10.1016/j.jss.2015.12.015
http://dx.doi.org/10.1145/2970276.2970358
http://dx.doi.org/10.1038/467753a
http://dx.doi.org/10.1093/beheco/arx003
http://dx.doi.org/10.1109/TR.2016.2615880
http://dx.doi.org/10.5281/zenodo.291371
http://dx.doi.org/10.5281/zenodo.1172670

	INTRODUCTION
	REPRODUCIBILITY
	WORKLOAD REPRODUCIBILITY
	SYSTEM REPRODUCIBILITY
	HARDWARE DESCRIPTION
	SOFTWARE STACK DESCRIPTION

	RESULTS REPRODUCIBILITY

	CONTINUOUS REPRODUCIBILITY
	CASE STUDY: GNSS-SDR
	CONCLUSIONS
	REFERENCES
	Biographies
	CARLES FERNÁNDEZ-PRADES
	JORDI VILÀ-VALLS
	JAVIER ARRIBAS
	ANTONIO RAMOS


