
HAL Id: hal-03203227
https://hal.science/hal-03203227

Submitted on 20 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Probabilistic Verification of Outsourced Computation
Based on Novel Reversible PUFs

Hala Hamadeh, Abdallah Almomani, Akhilesh Tyagi

To cite this version:
Hala Hamadeh, Abdallah Almomani, Akhilesh Tyagi. Probabilistic Verification of Outsourced Com-
putation Based on Novel Reversible PUFs. 8th European Conference on Service-Oriented and Cloud
Computing (ESOCC), Sep 2020, Heraklion, Crete, Greece. pp.30-37, �10.1007/978-3-030-44769-4_3�.
�hal-03203227�

https://hal.science/hal-03203227
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Probabilistic Verification of Outsourced
Computation Based on Novel Reversible PUFs

Hala Hamadeh1, Abdallah Almomani2, and Akhilesh Tyagi1

1 Iowa State University, Ames IA 50010, USA
2 Jordan University of Science and Technology, Irbid 22110, Jordan

Abstract. With the growing number of commercial cloud-computing
services, there is a corresponding need to verify that such computations
were performed correctly. In other words, after a weak client outsources
computations to an untrusted cloud, it must be able to ensure the cor-
rectness of the results with less work than re-performing the compu-
tations. This is referred to as verifiable computation. In this paper we
present a new probabilistic verifiable computation method based on a
novel Reversible Physically Unclonable Function (PUF) and a binomial
Bayesian Inference model. Our scheme links the outsourced software with
the cloud-node hardware to provide a proof of the computational in-
tegrity and the resultant correctness of the results with high probability.
The proposed Reversible SW-PUF is a two-way function capable of com-
puting partial inputs given its outputs. Given the random output signa-
ture of a specific instruction in a specific basic block of the program,
only the computing platform that originally computed the instruction
can accurately regenerate the inputs of the instruction correct within
a certain number of bits. To explore the feasibility of the proposed de-
sign, the Reversible SW-PUF was implemented in HSPICE using 45 nm
technology. The probabilistic verifiable computation scheme was imple-
mented in C++, and the Bayesian Inference model was utilized to esti-
mate the probability of correctness of the results returned from the cloud
service. Our proof-of-concept implementation of Reversible SW-PUF ex-
hibits good uniqueness compared to other types of PUFs and exhibits
perfect reliability and acceptable randomness. Finally, we demonstrate
our verifiable computation approach on a matrix computation. We show
that it enables faster verification than existing verification techniques.

1 Introduction

Verifiable computations (VC) have attracted enormous interest and attention
with the recent growth in cloud computing. The concept of verifiable computa-
tion allows a lower-resource client to outsource the computation of a program to
an untrusted cloud. With a proof provided by the cloud, the client can verify that
the results produced are consistent with the program specification and that the
computations were performed correctly. To be viable, the effort of performing
the verification must be negligible compared to the actual computation. Three
main solutions were proposed to support verifiable computation: VC based on

2 H. Hamadeh et al.

Trusted Computing [2]. The main drawback of this approach was the assump-
tion that the physical protections cannot be defeated. A second method, VC with
a Non-Interactive Argument, is described in [8]. This approach is not practical
because it relies on complex Probabilistically Checkable Proofs (PCPs) or fully-
homomorphic encryption (FHE). Finally, VC with Interactive Proofs [9] has
been propose. While this approach is often efficient, it applies to only a narrow
class of computations.

In recent years, interest in physically-unclonable functions (PUFs) has evolved.
PUFs have been deployed in different applications because of their ability to gen-
erate digital fingerprints of unique identities for a physical system. SW-PUF [6]
is a specific type of PUF that binds software execution to the exact hardware
platform and produces unique signatures at various points in the softwares ex-
ecution. The SW-PUF signature is a promising candidate for providing a proof
that a specific computation was performed on a specific platform. By expand-
ing the capabilities of a SW-PUF to include invertibility and commutativity, we
achieve elements of verifiable computation. Invertibility is achieved by capturing
a physical attribute such as time when an output bit settles using reversible
functions. Reversibility is obtained with transmission gates.

2 The Reversible SW-PUF

The design of the Reversible SW-PUF is an extension of our previous work
on the SW-PUF [6]. As in the original SW-PUF, the ALU signatures of an
instruction on the reversible SW-PUF are generated from an early sampling of
the ALU results. However, in the reverse mode, the roles of inputs and outputs
are reversed, and the early sampling is done on the original input end. Reversible
SW-PUF has two modes: forward and reverse. The forward mode is similar to the
SW-PUF where it generates a unique signature by capturing the delay variations
of carry propagation in ripple-carry adders (which is a basic component in an
ALU). The delay variation is caused by instruction input values and the silicon
fabrication foundry variations. The reverse mode computes the partial inputs
from the signature and the instruction output. Early sampling captures a subset
of original input bits correctly in a platform specific manner, which itself is a
platform specific secret. Only the computing platform that originally computed
the instruction can regenerate the inputs of the instruction accurate within a
certain number of bits. In this design, Reversible SW-PUF is implemented in
reversible logic. Fredkin gate [4] is used as the Boolean basis for conservative
logic because it is universal.

Since Fredkin gates are based on transmutation gates, and TGs are slow
compare to a regular gate, we propose to use two ALUs (fast-ALU, rev-ALU).
The actual computation values consumed by the following program instructions
occur at the fast-ALU. The rev-ALU is used only for verification.

VC based on PUF 3

3 Verifiable Computation Scheme

In this section an efficient Verifiable Computation Scheme based on Reversible
SW-PUF is proposed. The proposed scheme fits with a probabilistic consistency
guarantee. In this scheme, we are interested in estimating the probability of a
cloud service to return a correct result for the outsourced function. The main idea
is to bind the verification scheme to the cloud service hardware by entangling
the computation with the SW-PUF. When the cloud computes the function,
an instruction sequence for each instruction generates relevant attributes which
are the two data inputs for the lth instruction - X l

0, X l
1, the instruction output

Y l, and the PUF output Pl. Effectively, the cloud node generates a signature
(response) for each instruction (challenge) in the execution path. This entire
sequence of challenge-response pairs will be returned to the client as a proof of
computational consistency.

For the verification process, the client can verify the behavior of a program of
variable granularities. Most straightforward granularity is to verify an individual
instruction behavior. Pick a random challenge-response(Ck, Rk) pair of an in-
struction Ik to verify. The client needs to send the response part (the instruction
output Y k, and the PUF output Pk) to the cloud node. The cloud instantiates
the reversible SW-PUF to re-compute the challenge from the response (the data
inputs of the instruction (X ′ k0 , X ′ k1). Only the cloud node that computed the
original signature will be able to compute the inverse PUF, so that (X ′ k0 , X ′ k1) is
consistent with the (Xk

0 , Xk
1) in the original computation’s proof of consistency

within a large number of bits. We assume that over all the clients and programs,
the amount of data is too large to be archived by the cloud node preventing a
look-up based response to the verification step.

Repeating this verification process for all the n instructions is not feasible
because a large number of instructions could be executed during a program run.
As we discuss later, an alternative approach to pick a subset of instructions is
used to increase the confidence interval for the verification while maintaining an
efficient verification.

Static program slices raise this granularity naturally. It is a technique for
reducing a program to a minimal form that still retains the original program
computation for a given variable at a chosen point. Merging the program slicing
technique with our verification scheme leads to a more efficient Verifiable Com-
putation. A program slice’s input/output consistency can be established with
the Reversible SW-PUF method. For a program slice, all of the instructions in
its execution flow can be verified leading to a deterministic verification. The
program slices can be extracted to maximize certain static properties.

Figure 1 describes an example of a client that wants to run the program on
a cloud server using the proposed protocol:

For choosing the slice set in our scheme, two elements are critical: the size
of the slice, and the number of slices. Since small slices result in more efficient
verification, we propose to use a selection method based on the super-node [10]
algorithm to reduce the verification effort. However, certain types of program
control flow graphs may not be amenable to small slices, and in such a case,

4 H. Hamadeh et al.

Fig. 1. The proposed protocol

different methods could be applied. As in any interactive proof system, increasing
the number of slices will increase confidence in the computed results. To provide a
desired probabilistic proof about the servers results, we propose to use a Bayesian
Inference [3] model to determine the appropriate number of static slices required.

Slices Selection:

Given a program P that contains a set of instructions S, our goal is to find a
subset of S called M such that M exhibits the same behavior as S with respect
to one of the program outputs. Once we find M , while we want to generate
static slices SS that go through M , the selection of M must be based in some
randomized algorithm to prevent an adversary from producing the same M to
cheat. For choosing M , we used the algorithm in [10], for selecting all the super-
nodes in P as our set of desired nodes. A super-node is formed from a strict
dominator-post-dominator pair. A node X is defined as a dominator to a node
Y if every path from the start node to Y goes through X. Similarly, a node
X is defined as a post-dominator to a node Y if all paths to the exit node of
the graph starting at Y go through X. The super-node method will reduce the
proposed verification scheme overhead. Verifying at least one instruction from
each super-node block will be sufficient to verify the entire slice.

Probabilistic Verification Algorithms:
In this section, we propose use of a Bayesian inference on a binomial proportion
method to verify the outsourced computation statistically. Bayesian inference
is a statistical technique to update our subjective beliefs as new evidence or
data becomes available. Our objective here is to characterize the probability
density function for the outsourced computation correctness given that a set of

VC based on PUF 5

slices were run correctly. In particular, we are interested in estimating confidence
in verifying the correctness of the calculation results returned by an untrusted
cloud server. Bayesian computation of probability distributions starts with a
prior belief about a model parameter, then updates this distribution based on
observed data to produce new posterior beliefs. The mathematical definition of
the Bayesian method is as follows:

p(H|D) =
p(D|H)× p(H)

p(D)
(1)

4 Evaluation of the Reversible SW-PUF

We evaluate 32-bit Reversible SW-PUF in HSPICE using predictive technology
model. We studied three metrics: uniqueness, randomness, and reliability.

Uniqueness: Uniqueness measures the capability to distinguish between dif-
ferent devices. Hamming distances (HD) between PUF responses are used to
measure uniqueness. An ideal HD between any two PUF responses is 50% (16-
bit). To evaluate the uniqueness of the Reversible SW-PUF on the same ALU
under different data inputs (Intra-chip), we measured the average HD distri-
bution between a pair of output data on the same device PUF instance with
different set of input data. The uniqueness of the forward signature for the Re-
versible SW-PUF has been measured the same way as the regular SW-PUF [6].
Figure 2 (A) shows the HD in Forward mode. For the reverse computation, both
ALU inputs were measured on ten different PUF instances with identical output
(response, which constitutes the input for a reversible PUF in reverse mode).
The HD between each pair of different ALUs was calculated. Figure 2 (B) shows
the HD in Reverse mode.

Fig. 2. Hamming distance distribution of reversible SW-PUF: (A) Forward mode; (B)
Reverse mode

Randomness:
Randomness evaluates a PUF signature by analyzing the distribution of 0s

and 1s. The standard statistical test suite of the National Institute of Standard

6 H. Hamadeh et al.

Fig. 3. The reliability of reversible SW-PUF against temperature variations.

and Technology (NIST) was used to evaluate the responses of the reversible SW-
PUF. We have applied the NIST tests to 512-bit stream that was produced from
the 16 PUF instances. Only two categories (rank and linear complexity), out of
fifteen statistical tests, failed.

Reliability: Reliability measures robustness of a PUF in the presence of en-
vironmental variations. Temperature variations are the main factor that affect
the stability of a PUF response. Figure 3 shows the reliability results for the
responses of the Reversible SW-PUF for both the forward and backward com-
putations. The reversible PUF is very stable under the temperature variation
from -10°C to 65°C.

Case Study: Verification of Matrix Multiplication
We evaluate the proposed method thorough a matrix multiplication experi-

ment, a widely-used example in Verifiable Computation Systems. We considered
the following scenario: a client C needs to multiply two large scale matrices
A(n× n)and B(n× n) using a cloud service S. However, since the client C does
not completely trust the cloud S to return the correct results for multiplication,
the client C could verify the results in many ways. A naive algorithm could repli-
cate the multiplication using another cloud service and compare the results, but
this method is expensive, e.g., multiplying n × n matrices execute O(n3) time
using the standard method. A faster check could use Freivalds’ algorithm [5], a
probabilistic randomized algorithm that verifies matrix multiplication in O(kn2)
with a probability of failure less than 2−k. Our approach improves Freivalds’ al-
gorithm by reducing the running time of the verification process by a factor of
O(n). Finally, we compare the execution time of our approach with the Verifiable
Computation method proposed in [11].

Experimental Setup We implemented a C++ tool to generate the random
slices and perform the verification, and a LLVM compiler framework to compile
the matrix multiplication program into LLVM Immediate Representation (IR).
We used the Symbiotic 3 tool [1] to obtain the backward static slice for the
program. Symbiotic 3 linked with C++ code to generate the random slices in

VC based on PUF 7

which the slicing criterion was one element of the output matrix. The number
of slices was chosen based on the Bayesian Inference model. For simplicity, we
assumed that client C challenges must completely match the server signatures,
and any failure will result in rejection of the verification. Finally, a Pin tool
was used to generate the desired instruction traces, while HSPICE was used to
represent the Reversible SW-PUF to generate the signatures.

Performance evaluation
We performed the experiments for evaluating our scheme and present the

computation time cost for each of its elements. The resultant time cost was
obtained by averaging the outcomes of testing 10 different randomly generated
inputs of the matrix multiplication code for matrix sizes ranging from 1000 to
7000. Table 1 shows a computational cost comparison between the server S
(i.e. Matrix Multiplication, Reverse computations) and the client C (i.e. Slices
Generation ”the number of slices was picked to produce a probability of more
than 0.97”, Signatures Verification) sides.

Table 1. Computation cost of proposed scheme for different problem size.

Dimension Verification at Client Side Computations at Server Side

Slices Generation Signatures Verification Matrix Multiplication Reverse computations
n= 1000 10.025 ms 0.570 ms 0.201 s 0.008 s
n= 2000 11.504 ms 0.684 ms 2.129 s 0.078 s
n= 3000 12.753 ms 0.746 ms 6.372 s 0.183 s
n= 4000 15.025 ms 0.866 ms 12.479 s 0.366 s
n= 5000 16.875 ms 0.925 ms 20.692 s 0.675 s
n= 6000 17.752 ms 0.990 ms 29.668 s 1.065 s
n= 7000 20.057 ms 1.136 ms 44.050 s 1.523 s

We evaluate the advantage of our scheme by comparing our experiment with
the PVCBMM scheme proposed in [11]. Both of the experiments are performed
on the same computer properties. However, we used the Strassen's algorithm [7]
to reduce the time required to multiply matrices. We studied seven dimensions
size ranging from 1000 to 7000. As shown in Table 2, the experimental results
reveal that our scheme is more efficient than the PVCBMM scheme.

5 Conclusions

We present reversible SW-PUF, a novel PUF design for computing partial inputs
given a set of outputs. We implemented the reversible SW-PUF in HSPICE and
established its desirable properties (uniqueness, randomness, and reliability).
We then provided an efficient interactive verifiable computation scheme based
on the proposed PUF and based on the Bayesian method. Our approach links
outsourced computation with server cloud node hardware to provide proof of
correctness of the results with high probability.

8 H. Hamadeh et al.

Table 2. Computation and Verification cost between two schemes.

Dimension The proposed scheme PVCBMM scheme [11]

Computations cost Verification cost Computations cost Verification cost
n= 1000 0.201 s 0.018 s 1.75 s 6.94 s
n= 2000 2.12 s 0.090 s 4.36 s 14.86 s
n= 3000 6.37 s 0.19 s 8.35 s 32.26 s
n= 4000 12.47 s 0.38 s 24.62 s 61.37 s
n= 5000 20.69 s 0.69 s 36.31 s 85.03 s
n= 6000 29.66 s 1.08 s 65.16 s 178.54 s
n= 7000 44.05 s 1.54 s 105.28 s 193.86 s

References

1. Chalupa, M., Jonáš, M., Slaby, J., Strejček, J., and Vitovská, M. Sym-
biotic 3: New slicer and error-witness generation. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (2016),
Springer, pp. 946–949.

2. Chen, L., Landfermann, R., Löhr, H., Rohe, M., Sadeghi, A.-R., and
Stüble, C. A protocol for property-based attestation. In Proceedings of the First
ACM Workshop on Scalable Trusted Computing (New York, NY, USA, 2006), STC
’06, ACM, pp. 7–16.

3. Dempster, A. P. A generalization of bayesian inference. Journal of the Royal
Statistical Society: Series B (Methodological) 30, 2 (1968), 205–232.

4. Fredkin, E., and Toffoli, T. Conservative logic. International Journal of
Theoretical Physics 21, 3 (Apr 1982), 219–253.

5. Freivalds, R. Fast probabilistic algorithms. In International Symposium on
Mathematical Foundations of Computer Science (1979), Springer, pp. 57–69.

6. Hamadeh, H., and Tyagi, A. Physical unclonable functions (pufs) entangled
trusted computing base. In 2019 IEEE International Symposium on Smart Elec-
tronic Systems (iSES)(Formerly iNiS) (2019), IEEE.

7. Huss-Lederman, S., Jacobson, E. M., Johnson, J. R., Tsao, A., and Turn-
bull, T. Implementation of strassen’s algorithm for matrix multiplication. In
Supercomputing’96: Proceedings of the 1996 ACM/IEEE Conference on Supercom-
puting (1996), IEEE, pp. 32–32.

8. Parno, B., Howell, J., Gentry, C., and Raykova, M. Pinocchio: Nearly
practical verifiable computation. Commun. ACM 59, 2 (Jan. 2016), 103–112.

9. Vu, V., Setty, S. T. V., Blumberg, A. J., and Walfish, M. A hybrid ar-
chitecture for interactive verifiable computation. In IEEE Symposium on Security
and Privacy (2013), IEEE Computer Society, pp. 223–237.

10. Zhang, M., Gu, Z., Li, H., and Zheng, N. Wcet-aware control flow checking with
super-nodes for resource-constrained embedded systems. IEEE Access 6 (2018),
42394–42406.

11. Zhang, X., Jiang, T., Li, K.-C., Castiglione, A., and Chen, X. New pub-
licly verifiable computation for batch matrix multiplication. Information Sciences
(2017).

