Trends in reasons for emergency calls during the COVID-19 crisis in the department of Gironde, France using automatic classification. - Archive ouverte HAL
Journal Articles Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine Year : 2021

Trends in reasons for emergency calls during the COVID-19 crisis in the department of Gironde, France using automatic classification.

Abstract

Objectives During periods such as the COVID-19 crisis, there is a need for responsive public health surveillance indicators related to the epidemic and to preventative measures such as lockdown. The automatic classification of the content of calls to emergency medical communication centers could provide relevant and responsive indicators. Methods We retrieved all 796,209 free-text call reports from the emergency medical communication center of the Gironde department, France, between 2018 and 2020. We trained a natural language processing neural network model with a mixed unsupervised/supervised method to classify all reasons for calls in 2020. Validation and parameter adjustment were performed using a sample of 20,000 manually-coded free-text reports. Results The number of daily calls for flu-like symptoms began to increase from February 21, 2020 and reached an unprecedented level by February 28, 2020 and peaked on March 14, 2020, 3 days before lockdown. It was strongly correlated with daily emergency room admissions, with a delay of 14 days. Calls for chest pain, stress, but also those mentioning dyspnea, ageusia and anosmia peaked 12 days later. Calls for malaises with loss of consciousness, non-voluntary injuries and alcohol intoxications sharply decreased, starting one month before lockdown. Discussion This example of the COVID-19 crisis shows how the availability of reliable and unbiased surveillance platforms can be useful for a timely and relevant monitoring of all events with public health consequences. The use of an automatic classification system using artificial intelligence makes it possible to free itself from the context that could influence a human coder, especially in a crisis situation. Conclusion The content of calls to emergency medical communication centers is an efficient epidemiological surveillance data source that provides insights into the societal upheavals induced by a health crisis.
Fichier principal
Vignette du fichier
BPH_SJTREM_2021_Gil-Jardine.pdf (581.08 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03203146 , version 1 (20-04-2021)

Licence

Identifiers

Cite

Cédric Gil-Jardiné, Gabrielle Chenais, Catherine Pradeau, Eric Tentillier, Philipe Revel, et al.. Trends in reasons for emergency calls during the COVID-19 crisis in the department of Gironde, France using automatic classification.. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, In press, ⟨10.21203/rs.3.rs-106403/v1⟩. ⟨hal-03203146⟩

Collections

INSERM U1219
35 View
79 Download

Altmetric

Share

More