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ABSTRACT

North Atlantic atmospheric blocking conditions explain part of the winter climate variability in Europe,

being associated with anomalous cold winter temperatures. In this study, the generalized extreme value

(GEV) distribution is fitted to monthly minima of European winter 6-hourly minimum temperatures from the

ECHAM5/MPI-OM global climate model simulations and the ECMWF reanalysis product known as ERA-

40, with an indicator for atmospheric blocking conditions being used as covariate. It is demonstrated that

relating the location and scale parameter of the GEV distribution to atmospheric blocking improves the fit to

extreme minimum temperatures in large areas of Europe. The climate model simulations agree reasonably

with ERA-40 in the present climate (1961–2000). Under the influence of atmospheric blocking, a decrease in

the 0.95th quantiles of extreme minimum temperatures can be distinguished. This cooling effect of atmo-

spheric blocking is, however, diminished in future climate simulations because of a shift in blocking location,

and thus reduces the chances of very cold winters in northeastern parts of Europe.

1. Introduction

Focusing on extreme cold temperatures seems not so

compelling in the context of global warming. However,

the recent winters serve as a good example of the impact

of persistent cold outbreaks and anomalous snow amounts

in Europe and North America, which posed a challenge

for communities, transportation services, and the econ-

omy. Cattiaux et al. (2010), Seager et al. (2010), and Wang

et al. (2010) have associated the anomalous winter of

2009/10 with large-scale atmospheric patterns or modes

of climate variability, such as the North Atlantic Oscil-

lation (NAO) and El Niño–Southern Oscillation (ENSO).

Particularly the NAO, being in a very persistent neg-

ative phase, has contributed substantially to extreme

cold spells in Europe. The negative NAO phase is also

strongly associated with the occurrence of long-lasting

(.10 days) atmospheric blocking conditions in the

North Atlantic (Luo 2005; Schwierz et al. 2006), which

was the case as well for the 2009/10 winter (cf. Fig. 1c in

Cattiaux et al. 2010).

North Atlantic atmospheric blocking conditions in

general disturb the predominant westerly flow over

Europe, with the associated anticyclonic conditions
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allowing a northeasterly inflow of cold and dry air

masses. Persistent clear-sky conditions favor increased

outgoing longwave radiation during winter nights and

result in a strong cooling of the earth surface and anom-

alous cold surface temperatures (e.g., Trigo et al. 2004).

Sillmann and Croci-Maspoli (2009) further showed that

atmospheric blocking conditions not only influence the

mean winter climate, but also extreme cold temperature

events in the Euro–Atlantic region. The latter study was

based on indices for extreme events (Peterson 2005),

which allow for a quantitative analysis provided the

events are not too extreme.

Another way to investigate the influence of large-scale

atmospheric patterns, or modes of climate variability, on

extreme climate events is to include them as covariates

in the statistical modeling of extreme values. This ap-

proach is based on extreme value theory (EVT), first

popularized by Gumbel (1958). It enables a more so-

phisticated analysis of the characteristics of the proba-

bility distribution of extreme climate, including more

efficient estimation of return values (i.e., an extreme event

with a specified return period), a term that is often used in

hydrology (e.g., ‘‘100-yr flood’’) for engineering design.

Classical EVT is based on the block maxima [the

highest observed value of a climate variable within

a certain time interval (year, season, month, etc.)], which

follow under a wide range of conditions approximately

the generalized extreme value (GEV) distribution [see

Coles (2001) for more details]. As an alternative to the

block maxima approach, the peaks-over-thresholds

(POT) approach involves the generalized Pareto distri-

bution (see Coles 2001), with the advantage of using

more information about extremes in a given time period

by modeling all values above a high threshold. One

drawback of the POT, however, is its application to large

(in spatial dimension) climate model datasets being

more complicated, primarily because of the lack of au-

tomatic techniques for threshold selection (Davison and

Smith 1990; Palutikof et al. 1999; Coles 2001). Thus, we

will concentrate on the block maxima approach in this

study.

EVT can also be extended to nonstationary processes

enabling the inclusion of trends, as well as other more

physically meaningful covariates (e.g., Coles 2001; Katz

et al. 2002, 2005). These covariates can contribute to the

frequency of occurrence and intensity of climate ex-

tremes. In this way, large-scale atmospheric patterns

such as atmospheric blocking or the NAO, which ex-

plain a large part of the European climate variability

(e.g., Scherrer et al. 2006), can be incorporated into the

statistical modeling of climate extremes.

In climate applications, there have been several at-

tempts to include such covariates in the GEV; most of

them concentrated on observational data (e.g., Coles

2001; Katz et al. 2002; Chavez-Demoulin and Davison

2005; El Adlouni et al. 2007; Abeysirigunawardena et al.

2009; Maraun et al. 2010a; Zhang et al. 2010) and a few

on coupled general circulation model (CGCM) output

(e.g., Wang et al. 2004). This application of covariates

based on large-scale atmospheric patterns, or modes of

climate variability, is expected to improve the skill of

statistical modeling of climate extremes, as would be

valuable for statistical downscaling (e.g., Katz et al. 2002;

Maraun et al. 2010b, 2011).

Hence, in the present study we want to investigate

whether the statistical analysis of extreme winter tem-

perature time series can be improved by conditioning

the parameters of the GEV distribution on a covariate

derived from an atmospheric blocking indicator. In par-

ticular, we use CGCM simulations and reanalysis to

analyze the influence of North Atlantic atmospheric

blocking events on the probability distribution of ex-

treme cold temperatures in Europe under present and

future climate conditions.

In section 2, we describe the CGCM simulations used

for our analyses and introduce the blocking indicator in

more detail. Section 3 concentrates on the methodology

of extreme value analysis in terms of the GEV distri-

bution for stationary and nonstationary processes. The

results of our analysis are presented in section 4. In the

last section, we draw conclusions and address problems

associated with incorporating a covariate such as atmo-

spheric blocking in the statistical modeling of climate

extremes.

2. Model simulations and blocking indicator

a. ECHAM5/MPI-OM model simulations

We use climate simulations from the coupled gen-

eral circulation model (CGCM) ECHAM5/MPI-OM

(Jungclaus et al. 2006) developed at the Max Planck

Institute for Meteorology (Hamburg, Germany). The

atmospheric component of the CGCM (ECHAM5)

(Roeckner et al. 2003) has a horizontal resolution of T63

in spectral space (corresponding to 1.8758 3 1.8758 in

gridbox space) and 31 vertical levels. The oceanic

component (MPI-OM) (Marsland et al. 2003) is a

z-coordinate circulation model with an integrated sea

ice model and has a nominal horizontal resolution of 1.58

and 40 vertical levels. The coupling of the atmosphere to

the ocean component requires no flux adjustments.

For our analyses, we use 6-hourly (2 m) minimum

temperature (T2MIN) time series obtained from en-

semble simulations (each with three ensemble mem-

bers) of ECHAM5/MPI-OM for the present and future
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climate. For the twentieth-century simulations, green-

house gases (GHGs) and sulfate aerosols are prescribed

according to observations and chemical transport model

results, respectively. The scenario simulations are forced

according to the Special Report on Emissions Scenarios

(SRES) A1B, as described in Nakicenovic and Swart

(2000). Each scenario ensemble member is a continua-

tion of the corresponding twentieth-century ensemble

member. The ensemble members of the present or fu-

ture climate simulation differ slightly in their initial

conditions and reflect independent realizations of the

respective time period.

We concentrate on the winter months, December–

February (DJF), in two 40-yr time slices: the first is taken

from the present climate simulation ranging from 1961

to 2000 (hereafter 20C), and the second ranges from

2160 to 2199 and is taken from the stabilization period of

the A1B scenario, when the atmospheric composition is

kept constant at the level of year 2100 (hereafter A1B).

In the stabilization period, the trends in temperature

and precipitation due to increases in GHG concentra-

tions are small relative to the trends simulated in the

twenty-first century. Given these relatively small trends

within the time slices, we concatenate the three en-

semble members of the 20C and A1B simulation, re-

spectively, to obtain a resulting time series of 120 years

for each time period. These concatenated time series,

referred to as 20Cens and A1Bens in the following, rep-

resent the climate at the end of the twentieth century

and at the end of the twenty-first century, respectively.

We also compare the 20C simulation of ECHAM5/

MPI-OM with the European Centre for Medium-Range

Weather Forecasts reanalysis product known as ERA-40

(Uppala et al. 2005) for the 1961–2000 time period.

b. The blocking indicator

To capture atmospheric blocking conditions in

ECHAM5/MPI-OM, we apply a dynamical blocking

indicator introduced by Schwierz et al. (2004). This

indicator is calculated in two steps: first by computing

the vertically averaged potential vorticity (PV) between

500 and 150 hPa and second by tracking the negative PV

anomalies. Anomalies are calculated relative to the

long-term climatology over the 1961–2000 and 2160–99

time period for ERA-40, 20C, and A1B. Structures of

negative PV anomalies that have a minimum spatial ex-

tension of 1.8 3 106 km2 and persist longer than 10 days

are captured as a block at every instance of time (6 hourly).

The blocking frequency (BF) is then defined as the per-

centage of the number of blocked days at a given grid

box compared to a total number of days considered.

For example, at a particular grid box a BF of 3% in a

31-day month would mean that blocking occurred for

approximately 1 day in conjunction with an event with

a lifetime of at least 10 days. We concentrate on these

long-lasting blocking events, as they are statistically un-

usual compared to a simple red noise model (Woollings

2010).

This blocking indicator has proven valuable in cli-

matological (Croci-Maspoli et al. 2007a,b) and also dy-

namical (Croci-Maspoli and Davies 2009; Altenhoff

et al. 2008) studies. An important advantage of this PV-

based blocking indicator is its ability to track blocking

events of a particular length in space and time. Fur-

thermore, the indicator has already been applied for

future climate simulations of the ECHAM5/MPI-OM

(Sillmann and Croci-Maspoli 2009), including a com-

parison between blocking events derived from ERA-40

data and present climate simulations.

In recent literature, CGCMs are often criticized for

underestimating observed blocking frequencies (e.g.,

D’Andrea et al. 1998; Doblas-Reyes et al. 1998; Randall

et al. 2007). Most of this deficiency can be directly at-

tributed to the climatological bias of the model as re-

vealed by Scaife et al. (2010). In their multimodel study,

ECHAM5/MPI-OM produces a relatively small error in

blocking frequencies compared to other CGCMs and

observations, and the PV-based blocking indicator has

also been shown to reduce the error in the mean model

state.

c. Blocking climatology

The winter (DJF) blocking climatology of Euro–Atlantic

domain (458–758N, 808W–308E) used in this study is shown

in Fig. 1 for ERA-40 in comparison with the ECHAM5/

MPI-OM ensemble simulations of 20C and A1B. In the

following, the term ‘‘atmospheric blocking’’ refers to North

Atlantic atmospheric blocking events occurring within this

Euro–Atlantic domain.

The CGCM agrees well with ERA-40 in the spatial

distribution and representation of blocking frequency in

the present climate (Figs. 1a,b, left column). However,

the center of maximum BF is located farther south in

ECHAM5/MPI-OM, leading to higher BF between

Iceland and the British Isles. In the future climate sce-

nario A1B (Fig. 1c), we see a northward shift in the

blocking location where the BF is diminished south of

Greenland, but increased toward northwestern Canada

in comparison with 20C. These changes in atmospheric

blocking have also been revealed in other studies (e.g.,

Lupo et al. 1997; Bates and Meehl 1986). Matsueda et al.

(2009) attribute the decrease in blocking frequencies

under future climate conditions to an increase in the

westerly jet over the North Atlantic. However, other

dynamical processes (such as a poleward shift in the jet

stream) could also lead to changes in BF and blocking
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location over the North Atlantic, as discussed in Woollings

et al. (2010).

When comparing the spatially averaged (Euro–Atlantic

domain) climatologies as depicted in the right column of

Fig. 1, we see that the BFs vary substantially over time

with an average of 1.60%, 1.77%, and 1.69% for ERA-40,

20Cens, and A1Bens, respectively. The time series of

monthly averaged BFs serve as covariates in the statistical

models described in section 3b. The maximum monthly

BF is 12.2% in ERA-40, 26.6% in 20Cens, and 16.3% in

A1Bens. We interpret the large BF of 26.6% in one of the

20C ensemble members as an extreme event consistent

with the climate variability in ECHAM5/MPI-OM under

the prescribed GHG forcing.

3. Methodology

a. GEV for stationary processes

We briefly review the extreme value theory on which

our assessment of extreme temperature events in CGCM

simulations and reanalysis is based [for more details on

extreme value analysis, see Coles (2001); for climate

applications, see Katz et al. (2002)]. We follow the block

maxima approach,

Mn 5 maxfX1, X2, . . . , Xng, (1)

where Mn are the maxima drawn from a series of ran-

dom variables Xi for i 5 1, . . . , n over a time interval of

fixed length (e.g., month, season, year). For the minima,

we follow the approach outlined by Coles (2001), fitting

the GEV distribution to the maxima of Yi 5 2Xi for i 5

1, . . . , n. Small values of Xi, hence correspond to large

values of Yi owing to the sign change. We draw the min-

ima separately from the individual months of December–

February, which represent a winter season. By applying

a second negation after the analysis, we present the re-

sults in terms of the original minima (see Coles 2001).

According to the Fisher–Tippett theorem (Fisher and

Tippett 1928), if the distribution of Mn asymptotically

FIG. 1. (left) Temporal and (right) spatial averaged climatologies of the North Atlantic (458–758N, 808W–308E)

atmospheric blocking frequencies (%) for (a) ERA-40 and (b) the 20C ensemble simulation (1961–2000) as well as

(c) the A1B ensemble simulation (2160–99).
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(i.e., as the block size n goes to infinity and Mn is suitably

normalized) converges toward a nondegenerate distribu-

tion function G, then G must be a member of the GEV

family,

G(x) 5 expf2[1 1 j(x 2 m)/s]21/jg, (2)

defined on fx: 1 1 j(x 2 m)/s . 0g. The GEV distri-

bution has three parameters, m, s . 0, and j, that denote

the location, scale, and shape, respectively. Generally

speaking, the location parameter determines the overall

position and the scale parameter the spread of the dis-

tribution. The shape parameter j characterizes the tail

behavior of the distribution, distinguishing between

three types: (i) the Gumbel distribution, (ii) the Weibull

distribution, and (iii) the Fréchet distribution. We esti-

mate the parameters of the GEV distribution by the

method of maximum likelihood (ML) (see Coles 2001

for more details).

We fit the GEV distribution to block minima of the

extreme winter T2MIN over land from the ECHAM5/

MPI-OM ensemble simulations and ERA-40. We use

the individual winter months (DJF) as time blocks, thus

obtaining 120 monthly minima for ERA-40 from the

40-yr (1961–2000) minimum temperature time series

and 360 monthly minima for 20Cens (1961–2000) and

A1Bens (2160–99). Although the rate of convergence to

the GEV is relatively slow for variables such as temper-

ature, the approximation is reasonably accurate, even on

a monthly time scale (Leadbetter et al. 1983). In fact, the

slow rate of convergence means that the approxima-

tion would not improve much for seasonal instead of

monthly minima. The choice of monthly minima is based

on being particularly interested in the influence of North

Atlantic atmospheric blocking conditions that usually

persist for less than a month. Thus, statistical results

based on monthly minima can be more readily inter-

preted physically than those based on seasonal or annual

minima.

The statistical significance of the observed differences

between the GEV parameter estimates of 20Cens and

A1Bens is determined by using the corresponding standard

errors to perform a z test based on a large sample normal

approximation.

b. GEV for nonstationary processes

Extreme value theory as described in section 3a can be

extended to nonstationary processes by including a co-

variate (e.g., Coles 2001). In our study we condition the

distribution of monthly negated minima on a covariate

derived from the atmospheric blocking indicator (see

section 2b). We assume the relationship between the

covariate atmospheric blocking (CAB) and the location

and log-transformed [to ensure s(z) . 0] scale param-

eter to be linear. That is, conditional on the value of the

atmospheric blocking indicator, say CAB 5 z, we obtain

a GEV distribution with parameters

m(z) 5 b0 1 b1z and (3)

lns(z) 5 g0 1 g1z. (4)

We consider a collection of nested models listed in

Table 1, where one or more parameters of the GEV are

conditioned on CAB. To determine which statistical

model best describes the variability in the underlying

data, we apply the deviance statistic [see appendix A and

Coles (2001) for more details]. Conditioning the shape

parameter on CAB did not improve the fit to the GEV

distribution, and thus will not be discussed.

c. GEV quantiles or return values

Under the assumption of stationarity, extremes are

often expressed in terms of return values. The T-yr re-

turn value XT, which is defined as the (1 2 1/T)th quantile

of the GEV distribution, is obtained by inverting the

GEV cumulative distribution function [Eq. (2); see, e.g.,

Coles 2001]. In this study we also consider the condi-

tional quantile function of the GEV distribution because

the parameters vary over time depending on the value z

assumed by the covariate, as in Eqs. (3) and (4),

XT 5

m(z) 2
s(z)

j
1 2

�
2ln 1 2

1

T

� ��2j
( )

, j 6¼ 0

m(z) 2 s(z) ln 2ln 1 2
1

T

� ��
, j 5 0.

�
8>>><
>>>:

(5)

As an example with a return period shorter than the

length of the time slice, we concentrate on the 0.95th

conditional quantile of the nonstationary GEV in our

analysis (hereafter Q95), which would correspond to the

T 5 20-yr return period if the GEV were stationary

(hereafter RV20). We calculate Q95 and RV20 for

ERA-40 and the concatenated time series 20Cens and

TABLE 1. Model collection of the GEV distribution for the sta-

tionary (model 0) and nonstationary cases (model 1 and 2) and

their corresponding degrees of freedom (DF).

Model m s j

GEV

function DF

0 0 0 0 F(x) ; GEV(m, s, j) 3

1 CAB 0 0 F(xjCAB5z)

; GEV(m(z), s, j)

4

2 CAB CAB 0 F(xjCAB5z)

; GEV(m(z), s(z), j)

5
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A1Bens for the 1961–2000 and 2160–99 time periods,

respectively. Confidence intervals for RV20 and Q95 in

the present and future climate are calculated as de-

scribed in appendix B.

4. Results and discussion

a. Stationary GEV

First we assess the goodness of fit of a GEV distri-

bution for negated monthly minima by looking at

quantile–quantile (Q–Q) plots to obtain a visual impres-

sion, as well as by performing a Kolmogorov–Smirnov

(KS) test [as described in Kharin and Zwiers (2000)

and Goubanova and Li (2007)]. The Q–Q plots (not

shown) reveal that the quantiles of the fitted stationary

and nonstationary GEV [Gumbel scaled, following Coles

(2001)] are distributed closely around the diagonal line

for the majority of grid boxes, indicating that the GEV

distribution is a reasonably good fit to negated monthly

T2MIN minima even for the upper tail of the distribution

(i.e., the lower tail of minimum temperature).

In Fig. 2 we show a comparison between 20Cens and

ERA-40 of the GEV parameters and of the RV20 for

the extreme T2MIN. Grid boxes over land, where the

null hypothesis of the KS test (extremes are drawn from

the fitted distribution) is rejected at the 5% significance

level, remain blank. Since there are only very few boxes

in Fig. 2 where the null hypotheses is rejected for 20Cens,

the GEV distribution can be considered as an overall

good representation of the extreme winter minimum

temperature in Europe. For ERA-40, the KS test rejected

the null hypothesis at most grid boxes over the Iberian

Peninsula and northwestern France, indicating that the

extreme T2MIN is not very well represented by the GEV

distribution with one-month block length in this region.

In a comparison of 20Cens with ERA-40 for the 1961–

2000 time period as presented in Fig. 2, an overall good

agreement in the spatial patterns of the estimated GEV

parameters and RV20 can be seen for extreme T2MIN.

There is a distinct north–south gradient with higher

values in the south and lower in the north for the esti-

mated location parameter (Figs. 2a,e) and a reversed

gradient for the estimated scale parameter (Figs. 2b,f).

This gradient reflects the overall spatial European

temperature pattern with generally warmer tempera-

tures and less variability in the south and colder temper-

atures and higher variability in the north. In northeastern

Europe, however, the estimated location parameter of

the GEV fitted to the 20C simulations is lower (258C on

average) and the estimated scale parameter higher than

for ERA-40. This indicates that ECHAM5/MPI-OM

simulates colder extreme T2MIN with higher variability

in northern latitudes than ERA-40. The difference in

the estimated location parameter can be up to 98C in

northern Russia.

FIG. 2. GEV parameters [location (8C), scale (8C), and shape] and 20-yr return values RV20 (8C) for the DJF monthly minimum

temperature extremes of the concatenated 20C ensemble members and the ERA-40 data for the time period 1961–2000. Grid boxes over

land where the KS test failed are left blank.
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A possible reason for this bias could be the over-

estimation of winter sea level pressure in the Norwegian

Sea and farther eastward (e.g., van Ulden and van

Oldenborgh 2006), which leads to a weaker westerly

flow and anomalous easterly winds in high northern

latitudes resulting in anomalous cold winter tempera-

ture extremes in northeastern Europe. However, it should

be noted that ERA-40 also has a bias at northern latitudes

toward warmer winter surface air temperatures relative

to observations (Hagemann et al. 2005). Furthermore,

Sillmann and Roeckner (2008) showed in their study on

indices for extremes that the index for the annual min-

imum of T2MIN obtained from ECHAM5/MPI-OM

output agrees well with the index derived from observa-

tions from the Hadley Centre Global Climate Extremes

dataset (HadEX). The cold bias in ECHAM5/MPI-OM

is thus not as large as suggested from the comparison with

ERA-40.

The estimated shape parameter (Figs. 2c,g) is always

negative, indicating a Weibull type of GEV for 20Cens

and ERA-40 typical for temperature extremes in agree-

ment with other studies (e.g., Kharin and Zwiers 2005;

Parey 2008). RV20 (Figs. 2d,h), which involves the es-

timates of the three individual GEV parameters, also

reveals a north–south gradient with lower values in the

north and higher values in the south. The reduced lo-

cation parameter over Scandinavia is also reflected in

lower RV20 in 20Cens compared to ERA-40.

We further assess differences in the estimated sta-

tionary GEV parameters and RV20 between present

and future climate simulations as illustrated in Fig. 3.

For the extreme T2MIN, we identified significant dif-

ferences in the location parameter all over Europe. In

A1B, the location parameter (Fig. 3a) indicates a strong

temperature increase in northeastern Europe (128–148C)

that decreases in magnitude toward southwestern Europe

(28–48C). Goubanova and Li (2007) and Kharin et al.

(2007) have also identified this pattern for other CGCMs,

giving further confidence in our results. In addition, we

found a significant decrease in the scale parameter (Fig. 3b)

in large parts of Europe, indicating less variability in

extreme T2MIN under future climate conditions. The

latter result deviates from Kharin and Zwiers (2005)

whose study indicates that future changes in extreme

T2MIN in Europe are mainly governed by changes in

the location and not the scale parameter. These differ-

ences are likely due to the different CGCM simulations

utilized for the studies.

The estimated shape parameter (Fig. 3c) significantly

increases, particularly in central Europe, but remains

negative (20.02) even for the greatest increase of 0.257

in this region. Thus, extreme T2MIN apparently remains

distributed as the Weibull type of the GEV distribution

in A1B.

The changes in the estimated RV20 (Fig. 3d) are sig-

nificant throughout Europe and are comparable with the

changes in the location parameter. There is a large in-

crease in the return values (up to 168C) in northeastern

Europe and smaller increase toward southwestern Eu-

rope (58C on average). This overall increase of RV20

would be consistent with an increased waiting time for

extreme T2MIN events based on a fixed threshold.

b. Nonstationary GEV

In the following, we address two main issues by ap-

plying the nonstationary GEV distribution under pres-

ent and future climate conditions: (i) to identify regions

in Europe where CAB plays a statistically significant

role in describing the underlying variability of extreme

T2MIN by means of the deviance statistic and (ii) to

quantify the effect of CAB on the parameters of the

GEV distribution in these regions.

Including atmospheric blocking as a covariate in the

GEV distribution results in nonstationary GEV param-

eters that vary over time according to the magnitude of

CAB (cf. Fig. 1, right column). As an example of this

procedure, we show a summary of the results of fitting

different models (cf. Table 1) to the extreme T2MIN to

FIG. 3. Significant differences of the GEV parameters [location (8C), scale (8C), and shape] and RV20 (8C) for T2MIN between the

concatenated ensemble members of the A1B (2160–99) and 20C (1961–2000) model simulations.
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20Cens at one grid box centered at 45.78N, 7.58E in Table

2. Model 1 was selected as best model at this grid box

according to the deviance statistic. Although model 2

has a slightly smaller nllh, the deviance [cf. Eq. (A1)] of

D 5 0.48 is not large enough on the scale of the x2 dis-

tribution to conclude that model 2 explains significantly

more of the variability in the extreme T2MIN than does

model 1.

As displayed in Fig. 4, the statistical model (cf. Table

1) selected as best at each grid box for 20Cens is in

agreement with that for ERA-40, with model 1 being

selected in most parts of Europe. In other words, at-

mospheric blocking (linked to the location parameter)

explains a significant part of the variability in the ex-

treme T2MIN. Model 2 appears to be the best fitting

model in southeastern Europe and northern Great

Britain in ERA-40. For 20Cens, model 2 fits best in central

Europe, reaching from northern France to northern

Greece, and southwestern parts of the Iberian Peninsu-

la. These spatial differences could be due to the differ-

ences in the spatial extension of the blocking climatology

of ERA-40 and 20Cens as shown in Fig. 1 (left column).

Under future climate conditions (A1B scenario, Fig.

4c), the influence of atmospheric blocking seems to di-

minish, with the stationary model being sufficient to

explain the variability in extreme T2MIN in most of

eastern Europe (most grid boxes east of 158E). Model 1

is selected as best at most grid boxes between 08 and

158E, whereas in southern Europe model 2 describes

the extreme T2MIN best. The southwestward shift of the

atmospheric blocking influence can be explained by the

northward shift of the blocking distribution under future

climate conditions as depicted in Fig. 1c (left column).

It is, however, difficult to physically interpret the re-

gional differences in the selection of the statistical

models 1 and 2 since CGCMs hardly replicate reality at

these detailed scales. Thus, in the following, we will

simplify the analysis by using only model 2 at all grid

boxes where a nonstationary model was selected by the

deviance statistic (cf. Fig. 4).

In Figs. 5a,b, the estimated slope of the location pa-

rameter at grid boxes where a nonstationary model was

selected is negative for both 20Cens and ERA-40. A

negative slope implies that with increasing blocking

frequency we can expect lower extreme T2MIN. For

example, for a slope of 20.58C we can expect a decrease

in the GEV location parameter of 0.58C per 1% increase

in blocking frequency. In comparison with ERA-40 with

a minimum slope of 20.578C, the slopes are generally

smaller in absolute magnitude in 20Cens (minimum slope

of 20.488C). However, the spatial patterns are similar,

with greatest absolute values of the slope along the south

TABLE 2. Minimized negative log likelihoods (nllh) and parameter estimates with standard errors (SE) for the model collection (cf.

Table 1) of the stationary (model 0) and nonstationary GEV distribution (models 1, 2) fitted to extreme T2MIN of 20Cens for one grid box

centered at 45.78N, 7.58E.

Model nllh m (SE) s (SE) j (SE)

0 983.96 29.65 (0.21) 3.62 (0.15) 20.23 (0.032)

1 980.24 29.34 (0.24) 20.18 (0.06) 3.58 (0.15) 20.23 (0.034)

2 980.00 29.34 (0.24) 20.18 (0.06) 1.29 (0.05) 20.009 (0.013) 20.23 (0.033)

FIG. 4. Best statistical model (cf. Table 1) for (a) ERA-40 and the concatenated ensemble members of (b) 20C and (c) A1B according to

the deviance statistic. Grid boxes over land where the KS test failed are left blank.
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coast of the Baltic Sea in both 20Cens and ERA-40, in-

dicating that atmospheric blocking has the greatest im-

pact in northeastern Europe.

The slope of the estimated log-transformed scale pa-

rameter g1 is also generally negative in central and

northeastern Europe, as shown in Figs. 5d,e for 20Cens

and ERA-40. However, g1 has a positive sign in south-

ern Europe, particularly on the Iberian Peninsula in

20Cens. In other words, the variability of extreme T2MIN

in southern Europe tends to increase, whereas it de-

creases toward central or northern Europe under the

influence of atmospheric blocking. This behavior could

partly be explained by different anomalies in the 500-hPa

geopotential height and precipitation patterns governing

months with high BF as revealed by a composite analysis

[not shown, but see Sillmann and Croci-Maspoli (2009)

for European blocks]. Southern Europe, in particular,

lies on the interface between positive and negative flow

and precipitation anomalies associated with atmospheric

blocking in 20C, with this interface moving northeast-

ward in A1B.

In the future climate simulation the slope for the es-

timated location parameter (Fig. 5c) remains negative,

but has smaller absolute values than those in 20Cens and

ERA-40. Hence, the relationship between atmospheric

blocking and extreme T2MIN remains similar under

future climate conditions; namely, when atmospheric

blocking occurs in A1B, we still can expect colder ex-

treme nighttime temperatures. However, because the

overall area of the influence of CAB will be decreased in

A1B according to the models selected (cf. Fig. 4c),

North Atlantic atmospheric blocking events will not

necessarily play an important role in the variability of

future extreme T2MIN in northeastern parts of Europe.

In the southwestern part of Europe, where the non-

stationary models are still selected as the best in A1B,

the slope in the estimated log-transformed scale pa-

rameter remains positive on the Iberian Peninsula and

FIG. 5. (a)–(c) Slope of the location parameter b1 (8C) and (d)–(f) slope of the log-transformed scale parameter g1 (8C) for the

nonstationary GEV model 2 (cf. Table 1) for ERA-40 and the concatenated ensemble members of the 20C and A1B simulations.
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changes from a negative to a positive sign farther east-

ward (Fig. 5f). The reason for this sign change has yet to

be investigated. In general terms, an increase in the

variability of extreme T2MIN can be expected over

southwestern Europe in the future climate when atmo-

spheric blocking occurs.

c. GEV quantiles or return values

In this section, we more closely examine the influence

of CAB on Q95 for ERA-40 and the 20C and A1B en-

semble simulations in comparison to RV20 in those re-

gions where CAB has a statistically significant influence

on extreme T2MIN. We spatially average Q95 or RV20

over all grid boxes for which a nonstationary model was

selected (cf. Fig. 4). As already mentioned, we fit model

2 to all of those grid boxes to calculate the spatially av-

eraged Q95 in the following analysis. The spatial aver-

aging allows us to ‘‘borrow strength’’ in a statistical sense

by combining information over a region with similar

statistical characteristics (Katz 2010).

The parameters of the nonstationary GEV distribu-

tion, and hence Q95, vary over time according to the

covariate at each time step. Figure 6a shows this tem-

poral evolution of Q95 depending on the strength of

the atmospheric blocking event in ERA-40, 20Cens, and

A1Bens. For small or zero blocking frequencies, Q95

does not differ significantly from RV20, but the higher

the BF or the longer the atmospheric blocking event

persists in the Euro–Atlantic domain, the stronger be-

comes its influence on the extreme T2MIN in Europe. In

general, this means that under the influence of CAB we

can expect colder Q95 than would be obtained by just

considering a stationary model under present as well as

future climate conditions.

We assessed the statistical significance of the differ-

ences between RV20 and Q95 at roughly the 10% level

by comparing whether their 80% confidence intervals

overlap [see appendix B and Kharin and Zwiers (2005)].

The difference between Q95 and RV20 becomes sig-

nificant when the BFs are larger than 10% or 6.5% for

20C or A1B, respectively, as can be seen in Fig. 6b.

Owing to the shorter sample length of ERA-40 (only 120

months instead of 360 for 20C and A1B), the 80%

confidence intervals of Q95 are comparably wider and

FIG. 6. Spatially averaged Q95 for regions where a nonstationary model was selected as best for ERA-40 (blue),

20Cens (green), and A1Bens (red) and the corresponding RV20 (black horizontal lines). (a) Temporal evolution of

Q95 vs blocking frequencies with 20Cens and ERA-40 starting in year 1961 and A1Bens starting in year 2160. Light

shading indicates the respective 80% confidence intervals. (b) Q95 vs blocking frequencies. The 80% confidence

intervals are indicated for Q95 (dashed lines) and for the corresponding RV20 (horizontal shaded area).
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the differences between RV20 and Q95 remain insignif-

icant at the 10% level, even for maximum BF in ERA-40.

Figure 6b clearly shows the decrease of Q95 with in-

creasing BF. The slope of the location parameter is, in

absolute values, greatest for ERA-40 (b1 5 20.368C)

and least for A1B (b1 5 20.138C). The 80% confidence

intervals (indicated as dashed lines) widen with in-

creasing BF because there are more zero and small BF

values but only very few high BF values within the time

periods. The linear relationship between the location

parameter and CAB [cf. Eq. (3)] would correspond to

a linear decrease in Q95 with increasing BF, but due to

the relationship between the log-transformed scale pa-

rameter [cf. Eq. (4)] and CAB, the decrease is actually

slightly nonlinear. The spatially averaged slope of the

scale parameter g1 is negative for ERA-40 (20.0148C) and

20Cens (20.0118C) and positive for A1Bens (0.0168C). In

the regions where a positive g1 has been obtained (Fig. 5),

the rate of decrease in Q95 with increasing BF is greater

owing to the increase in variability of the conditional GEV

distribution from the dependence of the scale parameter

on CAB.

To analyze this aspect in more detail, we look at the

spatially averaged estimated probability density func-

tions (PDF) of the nonstationary and stationary GEV.

Comparing the PDF of the stationary GEV with the

nonstationary GEV for a month with high BF (;12%)

and zero BF (Fig. 7), we can see a close resemblance

between the stationary PDF (black) and the PDF for

zero BF (green). The PDF for high BF (red) is, however,

shifted to lower temperature values compared to zero

BF or to the stationary GEV for ERA-40, 20Cens, and

A1Bens, emphasizing the importance of atmospheric

blocking in explaining the variability of extreme T2MIN.

Also, the corresponding Q95, as indicated by vertical

dashed lines, are shifted to lower values of T2MIN for

high BF compared to zero BF or RV20. This behavior

follows directly from the relationship between the quan-

tiles or return values (XT) and the location parameter m

[Eq. (5)].

In regions where the estimated slope g1 is negative,

the PDF narrows for high BF in comparison to zero

BF or to the stationary GEV, as is evident in Fig. 7 for

ERA-40 and 20C for which most of the grid boxes where

a nonstationary model was selected have a negative g1.

We see a widening of the PDF for high BF in regions with

an estimated positive slope g1 of the log-transformed

scale parameter, most obvious for A1B in Fig. 7 since

only grid boxes with a positive slope in the estimated

scale parameter were obtained in the future climate

simulation (cf. Fig. 5). In general, a positive g1 leads to

increased variability in the extreme T2MIN under the

influence of CAB, as can be seen in the comparison of

present and future climate conditions in Fig. 7 where for

similar BF (;12%) the difference between RV20 and

Q95 is greater for A1B with mainly positive g1 than for

20C with mainly negative g1.

We should point out that the influence of the scale

parameter s on the return values XT depends on the

chosen return period T as indicated in Eq. (5). De-

creasing the return period T thus reduces the influence

of s on the return value XT —in opposite direction to the

influence of the location parameter m. For example, if

one chooses a return period smaller than 20 yr, for ex-

ample, 2 yr (which corresponds to the median or 0.5th

quantile of the distribution), we would obtain a different

picture (not shown). The differences in 2-yr return

values for the stationary and the nonstationary GEV

distribution for high BF would be very small for positive

values of g1 and larger for negative values.

In addition to the influence of atmospheric blocking

on the extreme T2MIN, two other aspects are depicted

by Figs. 6 and 7. First, we can see the cold bias in 20Cens

compared to ERA-40 (as already discussed in section

4a), indicated by the colder RV20 and Q95 in 20Cens

FIG. 7. Probability density functions of the stationary (solid) and

nonstationary GEV for zero (dotted) and high blocking frequen-

cies (dashed) of ERA-40, 20Cens, and A1Bens, spatially averaged

over regions where a nonstationary model was selected as best.

Corresponding RV20 and Q95 for BF ; 12% are indicated (vertical

lines) with the respective 80% confidence intervals (gray shading).
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compared to ERA-40 (see also Table 3). Second, and

much more pronounced, we can see a shift of RV20 or

Q95 and of the PDFs to warmer temperatures from 20C

to A1B, reflected, for instance, by a warmer RV20 of

278C in A1B and around 2208C in ERA-40 and 20Cens.

Note that in these figures we are using the spatial aver-

ages of the areas where a nonstationary model was se-

lected as best fitting according to the deviance statistic

(cf. Fig. 4). Hence, the spatial averages of RV20 and Q95

in A1B are mainly derived from grid boxes in the

southwestern part of Europe, which exhibits generally

warmer winter T2MIN than the northeastern part. As

seen in Table 3, the difference between A1B and 20C

becomes somewhat smaller (by ;58C) when averaging

RV20 and Q95 (for BF ; 12%) over all land grid boxes

in Europe. But, the difference is still very significant, as

the confidence intervals for RV20 or Q95 in A1B and

20C do not overlap for these spatial averages.

As part of the general warming trend under enhanced

GHG, average waiting times for a particular cold ex-

treme event will increase in the future climate scenario,

meaning reduced chances for very cold winters. Atmo-

spheric blocking still has a cooling effect on extreme

T2MIN in future climate, as can be seen in by the de-

crease in Q95 for increasing blocking frequency (Fig. 6).

However, this effect is small compared to the overall

warming in Europe in A1B, which is reflected in the

comparison between RV20 and Q95 for 20Cens and

A1Bens in Table 3. Especially in northeastern Europe,

the cooling effect of atmospheric blocking is decreased

under future climate conditions. The nonstationary

models cannot explain a statistically significant part of

the variability of extreme T2MIN in this region anymore,

with the influence of atmospheric blocking diminishing

as the blocking location shifts northward in A1B.

5. Summary and concluding remarks

In summary, the fit of the GEV distribution to negated

extreme winter T2MIN can be significantly improved in

large parts of Europe when atmospheric blocking is in-

cluded as a covariate. In those regions with improved fit,

we demonstrated a persistent negative relation between

the location parameter and the CAB for ERA-40 as well

as 20Cens and A1Bens. Especially for blocking frequen-

cies above 10% in 20ens and 6.5% in A1Bens, the 0.95th

quantile for the nonstationary GEV distribution is sig-

nificantly reduced with respect to the 20-yr return value

of the stationary GEV distribution. This effect is rein-

forced in regions where the scale parameter has a posi-

tive slope (e.g., in southern Europe). In winters with

long-lasting atmospheric blocking events over the North

Atlantic, we can expect significantly colder extreme

nighttime temperatures in large parts of Europe. This

response of extreme T2MIN to atmospheric blocking

strengthens with increasing blocking frequency.

The relationship between extreme T2MIN and atmo-

spheric blocking can also be seen under future climate

conditions (A1B scenario), where we can still expect

colder nighttime temperatures when persistent blocking

events occur. However, the region where atmospheric

blocking as a covariate can explain a significant part in

the variability of extreme T2MIN is diminished in size to

southwestern Europe as atmospheric blocking location

shifts northward. Large areas in eastern and northern

Europe are not significantly influenced by atmospheric

blocking contributing to the general warming trend in

T2MIN under enhanced GHG concentrations and re-

ducing the chances of very cold winters.

As determined in the comparison of ECHAM5/MPI-

OM with ERA-40, the representation of a large-scale

atmospheric pattern, such as atmospheric blocking, can

differ in location and magnitude between CGCM sim-

ulations and reanalysis [or observations as in Scaife et al.

(2010)]. The results of the statistical modeling are also

influenced by these differences and can, therefore, not

be interpreted on small scales (e.g., grid boxes). Thus,

the statistical modeling with covariates derived from

large-scale atmospheric patterns can rather provide re-

gional tendencies of the covariate’s impact on a climate

extreme. Improving the skill of CGCMs to represent, for

instance, the blocking phenomenon correctly would in-

crease the resolution at which the results of the statistical

modeling of temperature extremes can be interpreted.

The PV-based atmospheric blocking indicator used in

this study has emerged as a valuable tool for repre-

senting the dynamical features and the evolution of the

blocking phenomenon. Thus, this indicator can be helpful

for investigating the spatial dimension, geographical

location, and time persistence of a blocking event that is

most prominent for the occurrence of temperature ex-

tremes in Europe. In fact, the actual location of an at-

mospheric blocking event over the North Atlantic has

an impact on how much the temperature extremes over

Europe are affected. Blocking events occurring in the

western Atlantic seem to have less influence on minimum

TABLE 3. Spatially averaged RV20 and Q95 (model 2 for BF ;

12%) in degrees Celsius over all grid boxes in Europe for ERA-40,

20Cens, and A1Bens with the respective 0.1th and 0.9th quantiles

given in parentheses.

RV20 Q95

ERA-40 217.7 (216.8, 218.4) 219.3 (217.1, 221.1)

20Cens 221.3 (220.8, 221.7) 222.4 (221.7, 223.4)

A1Bens 212.2 (211.8, 212.6) 213.0 (212.1, 213.7)

5910 J O U R N A L O F C L I M A T E VOLUME 24

Unauthenticated | Downloaded 04/22/21 06:37 AM UTC



temperatures in Europe than blocking events closer to

the continent, for example, the European blocks in

Sillmann and Croci-Maspoli (2009).

Since atmospheric blocking explains only part of the

variability of the European winter climate, the inclusion

of other large-scale atmospheric patterns could proba-

bly further improve the fit of the GEV distribution to

extreme T2MIN, explaining more of the variation in the

data. However, given the limited data for extremes,

models with several covariates are unlikely to be selected

as best. A careful preselection of covariates is thus es-

sential for the statistical modeling, depending on the

climate extreme (e.g., T2MIN, T2MAX, precipitation,

wind) and season under consideration.

Apart from considering more covariates, this study

could be complemented by looking at more complex

types of extreme temperature events such as cold spells,

following the example of Furrer et al. (2010) for hot spells

using the POT approach. This approach could also be

useful when applying covariates that vary substantially

on shorter time scales, such as North Atlantic atmo-

spheric blocking conditions.

In general, the inclusion of covariates in the statistical

modeling of climate extremes allows for the study of the

relationship between a large-scale atmospheric pattern

and the climate extreme. Such a relationship is man-

ifested in time-dependent return values and thus raises

various questions, such as how to treat this range of

return values or what is the best choice of a return pe-

riod. As we recognized in our study, the influence of the

covariate on the climate extreme alters with the in-

tensity of the covariate as well as with the chosen return

period. Thus, when considering a nonstationary extreme

value analysis we have to adjust the measures for risk

assessment as established for the stationary extreme

value analysis. In this respect, focusing on return values

for a single return period might be misleading, with

a detailed analysis of changes in the GEV density func-

tions providing more information. These questions how-

ever can only be answered in close collaboration with

studies concerning the impacts of climate extremes and

concerning adaption and mitigation strategies for cli-

mate change impacts.

The overall promising benefit of the inclusion of

covariates in the statistical modeling of climate extremes

is the use of information on large-scale atmospheric

patterns, which can be simulated more skillfully with

CGCMs (van Ulden and van Oldenborgh 2006) than the

climate extremes themselves. Improving the un-

derstanding of the interaction of covariates and climate

extremes, such as the relationship between North At-

lantic atmospheric blocking and European extreme

minimum temperatures, could thus help us to project

more reliably the occurrence and magnitude of such

extreme events.
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APPENDIX A

Model Selection with Deviance Statistic

The deviance statistic D distinguishes between the

negative log-likelihood (nllh) of two models, M0 and M1:

D 5 2[nllh(M0) 2 nllh(M1)] . c
a

. (A1)

Let model M0 be a subset of model M1 by limiting the

degrees of freedom (e.g., by constraining some of the

parameters in M1 to zero). This means that M1 is the more

complicated model with higher degrees of freedom.

The deviance statistic is, for a sufficiently large sample

size, approximately x2
k distributed with k degrees of

freedom under the assumption of M0 being the correct

model. Here k is equal to the difference in the number of

free parameters of the two compared models. As de-

scribed in Coles (2001), we can test the validity of model

M0 relative to M1 at the a (50.05) level of significance

and reject M0 in favor of M1 if D . ca, where ca is the

(1 2 a)th quantile of this x2
k distribution.

APPENDIX B

Confidence Intervals for RV20 and Q95

For the stationary case, in which the parameters and

thus RV20 remain constant over time, we determine

significant differences by comparing whether the 80%

confidence intervals for the 20C RV20 and A1B RV20

overlap. These confidence intervals are calculated using

a parametric bootstrap approach (Efron and Tibshirani

1993) as follows. At each grid box, we generate 1000

samples of the length N of the original time series (N 5

360 for 20Cens and A1Bens, N 5 120 for ERA-40) using

the parameters from a stationary GEV distribution fit-

ted to the original data. The 0.1th and 0.9th quantiles of
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the distribution of RV20i for i 5 1, . . . , 1000 derived from

the generated samples are used then as lower and upper

bounds for the 80% confidence interval of the RV20 from

the initial sample. Comparing whether individual 80%

confidence intervals overlap would correspond to a test of

significance at roughly the 10% level (Kharin and Zwiers

2005).

For the spatial analysis in section 4c where we par-

ticularly concentrate on the time-varying Q95 for the

nonstationary GEV distribution, we modify the resam-

pling technique as described in Kharin and Zwiers

(2005). Owing to the time-dependent parameters in the

nonstationary case, the original data xi for i 5 1, . . . , N

(with N 5 360 for 20Cens and A1B, N 5 120 for ERA-40)

needs to be transformed, for instance, by computing the

residuals yi, which are approximately identically dis-

tributed according to the Gumbel distribution with zero

location and unit scale parameter:

yi 5
1

ĵ(z)
ln 1 1 ĵ(z)

xi 2 m̂(z)

ŝ(z)

�� ��
, (B1)

where m̂(z), ŝ(z), and ĵ(z) denote the estimated pa-

rameters for the best nonstationary model (cf. Table 1)

selected at each grid box. To preserve spatial depen-

dence, we resample with replacement the whole field of

residuals yi with the same best nonstationary model over

the respective time period N. The 1000 generated samples

are transformed [using the inverse of Eq. (B1)] to original

fields with nonstationary GEV distribution as follows:

xi 5 m̂(z) 2
ŝ(z)

ĵ(z)
f1 2 exp[ĵ(z)yi]g. (B2)

The GEV distribution of the best nonstationary model

selected at each grid box is then fitted to the 1000 sam-

ples of xi and Q95k for k 5 1, . . . , 1000. Finally, over all

grid boxes with the same best nonstationary model se-

lected, the 0.1th and 0.9th quantiles of the distribution of

Q95k are used as lower and upper bounds for the 80%

confidence interval of the spatially averaged Q95.
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