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Abstract: We examine a queue-based random-access algorithm where ac-
tivation and deactivation rates are adapted as functions of queue lengths.
We establish its heavy traffic behavior on a complete interference graph,
which turns out to be nonstandard in two respects: (1) the scaling depends
on some parameter of the algorithm and is not the N/N2 scaling usually
found in functional central limit theorems; (2) the heavy traffic limit is
deterministic. We discuss how this nonstandard behavior arises from the
idleness induced by the distributed nature of the algorithm. In order to
prove our main result, we develop a new method for obtaining a fully cou-
pled stochastic averaging principle.
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1. Introduction

In the present paper we investigate the heavy traffic behavior of a queue-based
random-access mechanism. Specifically, we analyze the joint queue length pro-
cess in a critically loaded system where packets arrive at the various nodes as
Poisson processes and are transmitted intermittently. When all nodes are inac-
tive, any of them may start a packet transmission at an exponential rate that
depends on its local queue length, i.e., the number of packets pending for trans-
mission. Once a node is transmitting, it prevents other nodes from activating
and turns inactive at an exponential rate which is also governed by its local
queue length.

1.1. Context and motivation

The above model arises in the context of distributed scheduling, i.e., deciding
which queues to serve without any central authority having a global knowledge
of the network state, in queueing networks with constraints on the set of queues
that can be active simultaneously (called constrained queueing networks). This
is a fundamental and challenging problem with applications in a wide range
of settings. In particular, the random-access mechanism described above cap-
tures the dynamics of queue-based versions of the Carrier-Sense Multiple-Access
Collision Avoidance (CSMA-CA) protocol as further explained below, which is
commonly used in wireless communication networks.

A breakthrough in the area of scheduling in constrained queueing networks
was achieved when Tassiulas and Ephremides introduced the Max-Weight algo-
rithm in the early nineties [TE90]. This scheme was the first to provably offer
maximum stability guarantees under fairly general conditions, and has been
generalized and refined in a huge body of follow-up work. However, the Max-
Weight algorithm is inherently centralized in nature, and crucially relies on the
solution of a potentially NP-hard global optimization problem at each iteration,
namely, finding an independent set of maximum weight which then serves as
schedule. This severely limits its implementation in large-scale networks.

Only after nearly twenty further years, Jiang and Walrand [JW08] and Ra-
jagopolan et al. [RSS09] proposed the first truly distributed algorithms with the
capability to match the throughput optimality of the Max-Weight algorithm. In-
formally stated, these algorithms aim to mimic the scheduling operations of the
Max-Weight algorithm while using only locally available information. Specif-
ically, the individual nodes make fairly autonomous decisions for controlling
activity periods (e.g. packet transmissions) and inactivity periods (e.g. back-off
intervals), subject to the constraints on simultaneous activity.

For a more detailed description, it is convenient to assume that the latter
constraints can be represented in terms of a conflict graph, where the edges in-
dicate which pairs of nodes are prevented from simultaneous activity. Such con-
straints may for example arise from interference issues preventing simultaneous
transmission in wireless networks, in which case the conflict graph is commonly
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referred to as interference graph. The operations of distributed scheduling al-
gorithms in these scenarios may be described as follows. Upon completion of a
packet transmission, a node either starts a random back-off period or proceeds
with the transmission of the next packet, if any, with a probability that depends
on the local queue length. When inactive, a node simply runs down its back-
off clock, but freezes it whenever any of its neigbhors in the conflict graph are
active, ensuring that a back-off period can only end when all its neighbors are
inactive. At that point, a node either initiates a packet transmission or proceeds
with the next random back-off period with a probability which is also a function
of the local queue length.

Now observe that transmission activity in wireless networks can be detected
by ‘sensing’ a shared channel, and that the above back-off mechanism precludes
concurrent transmissions of mutually interfering nodes, explaining the term
Carrier-Sense Multiple-Access Collision Avoidance. Further note that the idle-
ness and randomized deactivation may seem inefficient from a resource utiliza-
tion perspective, but play an instrumental role in sharing the medium through
‘listening’ in the absence of any centralized access control mechanism. The
extreme case where a node deactivates only when its queue is empty is re-
ferred to as the Random Capture algorithm [FPR10]. Although it may seem
to minimize idleness, it was actually shown that it is not always throughput-
optimal [GBW14].

When we now assume the interference graph to be complete and further
suppose that the back-off periods and transmission times are all independent
and exponentially distributed, the above model reduces to that described in the
first paragraph: when all nodes are inactive, any of them may turn active at a
queue-dependent exponential rate, and once a node is active, it de-activates at
a queue-dependent exponential rate.

The seminal results in [SS12, SST11] showed that the above-described queue-
based versions of the CSMA-CA algorithm (henceforth referred to as QB-CSMA)
achieve maximum stability, provided that the activation and deactivation prob-
abilities are governed by suitable functions of the local queue lengths. To the
best of our knowledge, however, little is known about the queueing dynamics of
these algorithms beyond the maximum stability properties.

1.2. A nonstandard heavy traffic behavior

The present paper aims at deepening the understanding of the above-described
queue-based random-access algorithms. We prove in particular that, near criti-
cality and for the particular case of a complete interference graph, these schedul-
ing mechanisms exhibit a nonstandard behavior in two ways:

1. the heavy traffic limit is deterministic;
2. the scaling depends on a parameter of the algorithm and is not the usual

central limit theorem (CLT) like scaling N/N2 where the time-scale N2 is
the square of the space scale N .



E. Castiel et al./Deterministic heavy traffic limits in QB-CSMA 4

In particular, the limit is not a reflected Brownian motion and is thus uncon-
ventional in the terminology of Harrison [Har95]. The literature on unconven-
tional heavy traffic results is quite scarce, at least compared to the important
number of conventional results. Harrison and Williams [HW96] exhibited the
first such example in the context of a closed queueing network, and Kruk later
provided an example for an open queueing network under the Earliest Dead-
line First policy [Kru11]. Atar and Cohen [AC19] study a multiclass single-
server queue which, subject to the usual CLT scaling, converges to a nonstan-
dard diffusion process (namely, a Walsh Brownian motion). Another example
is Puha [Puh15], who studies the Shortest Remaining Processing Time (SRPT)
policy: there the scaling is nonstandard but the limiting diffusion is conventional,
i.e., the heavy traffic limit is a reflected Brownian motion.

In the model studied in the present paper, the behavior is nonstandard in
two ways: (1) the limit is actually deterministic and governed by an ordinary
differential equation (ODE), and (2) if N is the space scale, the suitable time
scale is N1+a with a ∈ (0, 1/2) a parameter of the algorithm. In particular, the
time scale is in-between the usual fluid and diffusion time scales N and N2,
respectively. This peculiar scaling is due to the idleness which arises as a con-
sequence of the distributed nature of QB-CSMA, see Section 2.4.4 and 8.2 for
an illustrative back-of-the-envelope computation.

Despite these two nonstandard features, our model does exhibit a state space
collapse property which is commonly associated with the conventional Brownian
diffusion limits for a wide range of multi-dimensional queueing processes [Rei84,
Rei05]. Indeed, the queue lengths at the various nodes vary according to certain
fixed proportions in the heavy traffic limit, meaning that the joint queue length
process lives in a one-dimensional space.

1.3. Idleness in random-access settings

As alluded to above, in QB-CSMA, nodes deactivate at a state-dependent rate in
order for the system to be able to alternate between different activity states in a
distributed way. In particular, nodes may deactivate even when they have work
to process. This makes the system non work-conserving and induces additional
idleness compared to that owing to queues being empty.

For classical queueing models and stochastic networks, a large body of lit-
erature has investigated the impact of idleness on the heavy traffic behavior
and performance. For instance, one of the achievements in the study of Jack-
son networks is the understanding of this impact on the reflection matrix in
the limiting multi-dimensional reflected Brownian motion [HR81]. However, in
these “classical” settings, idleness occurs when queues are empty or resources
get stranded because of concurrency requirements.

In contrast, in random-access settings like ours, idleness occurs even when
there are large queues, and is simply part of a distributed mechanism to share
resources without explicit information exchange. In this distributed setting, the
impact of idleness on heavy traffic behavior is more subtle and model-dependent.
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For instance, considering QB-CSMA in a different regime than the one studied
here, a lingering effect was highlighted in [SBB14] leading to a heavy traffic
scaling 1

(1−ρ)2 , with ρ the load of the network, compared to the usual 1
1−ρ due

to idleness. In the present model, the fraction of idleness is inversely proportional
to (a power of) the queue lengths, yielding a yet different impact on the heavy
traffic behavior. After the model and main results are presented, we will describe
this behavior in greater detail in Section 2.4.4, and in particular explain why
the heavy traffic behavior is deterministic and the N/N1+a scaling emerges.

It is interesting to compare our results with those on Max-Weight. Indeed,
QB-CSMA algorithms were designed with the purpose of mimicking Max-Weight
in a decentralized manner, and Shah and Shin [SS12] establish the throughput-
optimality of these algorithms by applying the same Lyapunov function as for
Max-Weight. Thus, as far as throughput is concerned, QB-CSMA algorithms
behave very similarly as Max-Weight. What we show here is that the compari-
son breaks down at criticality concerning delay. Indeed, Stolyar [Sto04] showed
that the critical behavior of Max-Weight is “standard”, i.e., consists in the usual
CLT scaling and leads to a reflected Brownian motion. Here the behavior is com-
pletely different because of the additional idleness induced by the decentralized
nature of QB-CSMA.

1.4. Link with polling systems

When run on a complete interference graph, only one server can be active at a
time and so QB-CSMA can be viewed as a particular polling system with state-
dependent non-zero switchover times and switching decisions. This equivalence
has in fact been exploited to use results for polling systems with a so-called 1-
limited service discipline and a probabilistic routing policy in analyzing CSMA
algorithms where nodes deactivate at a fixed (non-queue-based) rate, see for
instance [CBvW16, DBBV15].

There is a significant body of heavy traffic results for polling systems by
now, starting with the seminal papers [CPR95, CPR98]. However, the model
in [CPR95] did not include any switchover times, so that the total amount
of work behaves as in a work-conserving single-server queue and in particu-
lar exhibits the standard heavy traffic scaling behavior. The model in [CPR98]
did incorporate non-zero switchover times, but involved an exhaustive service
discipline, which implies that the fraction of idleness is basically reciprocal to
the queue length, rather than the queue length raised to a power a ∈ (0, 1/2).
While the total amount of work is substantially larger than in a work-conserving
single-server queue due to the non-zero switchover times, it exhibits a similar
1

1−ρ scaling behavior because of the rapid decay of the idleness as function of
the queue length. Moreover, the exhaustive service discipline causes the work
to rapidly shift among the various queues, causing fundamentally different dy-
namics than the state space collapse that we observe in our model.

Heavy traffic results for a broader class of polling systems with so-called
Bernoulli-exhaustive and Bernoulli-gated service disciplines are established in [vdM07].
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However, these concern stationary distributions rather than process-level limits,
and again pertain to disciplines where the idleness scales inversely proportional
to the queue length, yielding qualitatively similar scaling behavior as in [CPR98].

Finally, heavy traffic results for polling systems with k-limited service dis-
ciplines are presented in [BW14]. In these systems the idleness essentially ap-
proaches a constant, positive fraction as the queue lengths grow, again causing
fundamentally different scaling behavior from what we encounter in our model.

1.5. Methodological contribution

The seemingly simple case of a complete interference graph actually turns out
to be challenging to analyze. Technically, the main difficulty lies in controlling
the so-called stochastic averaging principle, or homogenization. This principle
asserts that when two processes interact but evolve on different time scales,
then the ’slow’ process only interacts with the ’fast’ process through the instan-
taneous equilibrium distribution of the fast process. The most difficult case is
the so-called fully coupled stochastic averaging principle which arises when this
instantaneous distribution depends on the state of the slow process, which is
the case here.

Controlling such an approximation is in general a difficult problem, and nu-
merous methods have been developed for that, see for instance the classical
monograph of Freidlin and Wentzell [FW84]. However, in our case we were
not able to apply any standard method, in particular the ones developed by
Kurtz [Kur92] and Luczak and Norris [LN13]. This led us to develop a new
method. It is close in spirit to that of Luczak and Norris but is more tailored to
Markov processes. The stochastic averaging principle is controlled by martingale
arguments and leverages properties of solutions to the Poisson equations associ-
ated with the fast generators, see Section 2.4.3 for more details. We believe that
this new approach has the potential of being applied to a wide class of problems
and its more general applicability will be studied elsewhere.

To give a more precise idea of our technique to control the homogenization,
imagine the Markov process under study is (QN , σN ) with QN the ’slow’ process
and σN the ’fast’ one. Controlling homogenization amounts to controlling the
approximation

∫ t

0

F
(
QN (s), σN (s)

)
ds ≈

∫ t

0

πQN (s)
[
F
(
QN(s), ·

)]
ds

with πq the stationary distribution of the fast process when the slow process is
in state q and ν[f ] the integral of a measurable function f with respect to the
measure ν. To do so, we first rewrite the difference

∫ t

0

(
F
(
QN(s), σN (s)

)
− πQN (s)

[
F
(
QN (s), ·

)])
ds
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in the form

V (QN (t), σN (t)) − V (QN(0), σN (0))

−
∫ t

0

LN,σN(s)
s (V ( · , σN (s)))(QN (s))ds + (martingale term)

with LN,σ
s the generator of the slow process when the slow process is in state σ.

Here the function V that appears is linked to solutions to the Poisson equation
LN,q
f φ = g−πq[g] with unknown φ, and so the above expression indeed makes it

possible to cast the problem of homogenization in terms of control of solutions
to Poisson equations. Moreover, this control is achieved by expressing solutions
φ in the form

φ(σ) =

∫ ∞

0

[Eσ(g(X(t))) − Eσ(g(X(∞)))] dt

with (X(t)) the fast Markov process started at σ under Pσ, and X(∞) is sta-
tionary distribution. To the best of our knowledge, this approach for controlling
homogenization, and in particular the bounds on the solutions to the Poisson
equation that we establish are new.

1.6. Organization of the paper

We introduce our model and state our main result in Section 2. This section
also presents a discussion of the result, in particular why we consider polynomial
activation functions, a back-of-the-envelope computation to provide an intuition
for the result, and also a more detailed discussion of the stochastic averaging
principle. Section 3 gathers the notation used throughout the paper, and in
particular the generators and their associated Poisson equations as well as im-
portant stopping times used in localization arguments. The three main steps of
the proof are then presented. Sections 4 to 7 contain the technical arguments:
Sections 4 and 5 describe the arguments controlling the stochastic averaging
principle, Section 6 the arguments controlling the state space collapse, and Sec-
tion 7 gathers the arguments to provide the full proof. The paper is concluded
with different extensions and directions for future research in Section 8.

2. Model description and main result

2.1. Model description with fixed arrival rates

We have a set of n nodes labeled by V = {1, . . . , n}. Each node v ∈ V represents
an M/M/1 queue with the FIFO service discipline and vacations, its arrival
rate is denoted by λv > 0. We denote by Qv(t) ∈ N := {0, 1, . . . , } the length
of v’s backlog at time t and by σv(t) ∈ {0, 1} the activity process: the server
at v is active and processing pending requests at unit rate if σv(t) = 1, and
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σv(t) = 0 otherwise. Put differently, σv(t) is the instantaneous service rate of
node v at time t. We define λ := (λv, v ∈ V ), Q(t) := (Qv(t), v ∈ V ) and
σ(t) := (σv(t), v ∈ V ).

We impose that only one node can be active at a time, and so whenever
convenient we will identify σ with the active node, or put σ = 0 if no node is
active (empty schedule). We will thus either consider σ ∈ {0, 1}V when seeing
σ as the vector of instantaneous service rates, or σ ∈ V0 with V0 = V ∪ {0}
when seeing σ as the current schedule. Because a schedule is associated with
a node, we will sometimes use the notation qσ to denote the vth coordinate of
the vector q ∈ R

V
+, with v the only non-zero coordinate of σ, and in this case

we will adopt the convention q0 = 0. Note that with this convention, we have
σ0 = 1 −

∑
v∈V σv.

Given the current schedule σ, the queue-length process Q evolves as n inde-
pendent M/M/1 queues with service rates σ and input rates λ. On the other
hand, given the current value Q of the queue-length process, σ evolves according
to the following dynamic, which is a particular case of the Glauber dynamics for
the hard-core model [Dob68, vdBS94]: an active node v with σv = 1 deactivates
at rate Ψ−(Qv) for some deactivation function Ψ−, and an inactive node v with
σv = 0 activates at rate Ψ+(Qv) for some activation function Ψ+, provided no
other node is active.

To be more formal, (Q, σ) is a Markov process on N
V ×{0, 1}V with infinites-

imal generator L that can be decomposed as the sum of two generators:

• the generator Lσ
s of the slow queue-length process Q whose dynamic de-

pends on σ;
• and the generator Lq

f of the fast activity process σ whose dynamic depends
on q.

The terminology slow and fast will be justified in Section 2.4.3 when discussing
the stochastic averaging principle. Thus, L acts on functions f : NV ×{0, 1}V →
R as

Lf(σ, q) = Lσ
s (f(σ, ·))(q) + Lq

f (f(·, q))(σ)

with

Lσ
s (g)(q) =

∑

v∈V

λv (g(q + ev) − g(q)) +
∑

v∈V

σv1qv>0 (g(q − ev) − g(q)) (2.1)

and

Lq
f (h)(σ) =

∑

v∈V

σvΨ−(qv) (h(σ − ev) − h(σ))

+
∏

w∈V

(1 − σw)
∑

v∈V

Ψ+(qv) (h(σ + ev) − h(σ)) (2.2)

with g : NV → R and h : {0, 1}V → R arbitrary functions and ev ∈ {0, 1}V
with 0’s everywhere except at the vth coordinate equal to 1. Note that a server
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does not deactivate immediately when its queue gets empty, which makes the
indicator term 1qv>0 necessary in (2.1). Since the graph associated with Lq

f

is a star centered at 0, this generator admits a reversible distribution denoted
πq. For reasons explained in Section 2.4, we consider polynomial activation and
deactivation functions of the form

Ψ+(x) =
(x + 1)a

1 + (x + 1)a
∈ [0, 1] and Ψ−(x) = 1 − Ψ+(x), x ∈ N,

with a > 0 a parameter of the algorithm. In this case, πq is given by

πq(σ) =
(1 + qσ)a∑

η∈V0
(1 + qη)a

, σ ∈ V0.

Let ρ =
∑

v∈V λv. Under the above assumptions, it is not hard to establish
that (Q, σ) is positive recurrent if ρ < 1 and transient if ρ > 1. Transience for
ρ > 1 can be proved by lower bounding X :=

∑
v Qv by an M/M/1 queue

with arrival rate ρ and service rate 1. Positive recurrence for ρ < 1 can be
proved using the Foster–Lyapunov criterion and showing that X is a Lyapunov
function. Indeed, as soon as one queue is active, arrivals make X increase in the
mean by ρ while the queue in service makes it decrease by 1, so that overall X
decreases at rate ρ− 1 < 0.

Thus, the regime where
∑

v λv = 1 will be referred to as the critical case and
the rest of the paper will be devoted to the study of the near-critical case where∑

v λv ≈ 1, which we introduce now.

2.2. Near-critical regime and heavy traffic scaling

Throughout the paper, we fix V = {1, . . . , n}, a > 0, λ∞ ∈ R
V
+ with

∑
v λ

∞
v = 1

and γ ∈ R
V . For each ε > 0, we define N = ε−1/a and consider

λN = λ∞ − εγ = λ∞ −N−aγ. (2.3)

The parameter ε > 0 represents the ’distance’ between λN and the boundary
of the stability region. We introduce N = ε−1/a because it will be simpler to
index the processes by N rather than by ε, as is for instance reflected by the
notation λN instead of λε. As will be seen shortly, N = ε−1/a is the ’right’ order
of magnitude of the queue length process (see the discussion in Section 8.2 for
more details).

Our main object of interest is the Markov process with infinitesimal generator
given by (2.1) and (2.2) but with λN instead of λ. Thus, the generator Lσ

s that
we will consider actually depends on N and is given by

Lσ
s (g)(q) =

∑

v∈V

λN
v (g(q + ev) − g(q)) +

∑

v∈V

σv1qv>0 (g(q − ev) − g(q)) ,

but in order to avoid cumbersome notation we will omit this dependency in N .
Likewise, we will denote by L the generator L = Lq

f +Lσ
s introduced above but
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with λN instead of λ, and in the sequel we will denote by (Q, σ) the Markov
process with this generator (again, omitting the dependency in N for ease of
notation).

In contrast, we will keep the dependency in N for the scaled processes. More
precisely, we consider (QN , σN ) the Markov process obtained from (Q, σ) by
speeding up time by a factor N1+a and scaling the Q-components by N in
space:

QN(t) =
1

N
Q
(
Na+1t

)
and σN (t) = σ

(
Na+1t

)
, t ≥ 0.

The infinitesimal generator of (QN , σN ) will be denoted by LN , see Section 3.1.2
for an explicit formula.

Remark 2.1. Other scalings are possible: actually, when the arrival rates are
still given by (2.3) and ε is the distance to the boundary of the stability region,
we investigate in Section 8.2 what happens on the space scale ε−1/a′

with a′ > 0
not necessarily equal to a.

2.3. Main result

For x ∈ R
V and b > 0, let in the sequel

‖x‖b =

(
∑

v∈V

|xv|b
)1/b

and s(x) =
∑

v∈V

xv.

As will be seen shortly, the limiting process lives in the one-dimensional vector
space

I =
{
x ∈ R

V
+ : λ∞

w xa
v = λ∞

v xa
w, v, w ∈ V

}
(2.4)

=

{
x ∈ R

V
+ : xv =

(
λ∞
v

µ

)1/a

s(x), v ∈ V

}
,

where here and in the sequel, µ = ‖λ∞‖1/a. Intuitively, I is the space where the
mean service rate at each node matches the corresponding arrival rate. In the
sequel we use ⇒ to denote weak convergence as N → ∞. The following result is
the main result of the paper, which describes the behavior of the queue-length
process in the near-critical case.

Theorem 2.2. Assume that the three following assumptions hold:

• a < 1/2;
• condition (2.3) holds, i.e., λN = λ∞ − N−aγ with λ∞ and γ introduced
above;

• QN (0) ⇒ q0 for some q0 ∈ I \ {0}.
Then QN ⇒ q uniformly on compact time-sets, where q is uniquely characterized
as follows: q(t) ∈ I for every t ≥ 0 and s ◦ q is the unique solution to the ODE

ẋ = µx−a − s(γ)
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with initial condition x(0) = s(q0) and where µ = ‖λ∞‖1/a.

Except when s(γ) = 0, there does not seem to be an explicit formula for the
solution of the previous ODE. For s(γ) = 0, the solution to the ODE ẋ = µx−a

is
x(t) =

(
x(0)a+1 + (a + 1)µt

)1/(a+1)
, t ≥ 0,

and so using the fact that q(t) ∈ I, the limit q in the previous statement is given
in this case by

qv(t) =

(
λ∞
v

µ

)1/a (
s(q0)a+1 + (a + 1)µt

)1/(a+1)
, v ∈ V, t ≥ 0.

From now on, we assume that the conditions of this theorem are enforced,
i.e., we assume throughout that a < 1/2, that (2.3) holds and that QN (0) ⇒
q0 ∈ I \ {0}.

With some extra work, but without giving much more insight on the system’s
behavior, the previous result could be generalized to an arbitrary initial condi-
tion q0 ∈ R

V
+. If q0 = 0 nothing changes in the statement of the above result,

while if q0 6∈ I then the convergence holds uniformly on compact time-sets from
(0,+∞) because the limiting process immediately jumps at time 0+ to the in-
variant manifold I even if it does not start there. The rest of this introduction
is devoted to discussing this result in more details.

2.4. Intuition and discussion

We discuss here in more details the context and implications of our result. We
begin by justifying our interest in polynomial activation functions, then give an
intuition behind the state space collapse result based on the stochastic averaging
principle, and we finally discuss the nonstandard scaling that emerges from it.

2.4.1. Polynomial activation functions

The literature on optimal CSMA algorithms is very rich and the interested
reader is for instance referred to the thorough survey by Yun et al. [YYSE12] for
more details. In this paper we are interested in the class of QB-CSMA algorithms
initially proposed by Rajagopalan, Shah and Shin [RSS09]. The main idea of
these algorithms is to have activation and deactivation rates Ψ+ and Ψ− being
adapted as a function of queue lengths. Rajagopalan, Shah and Shin study in
particular the case where Ψ+ + Ψ− = 1 with

Ψ+(q) =
f(qv)

1 + f(qv)

for some function f . The main result of [GS10, RSS09, SS12] is that this al-
gorithm is throughput-optimal for any interference graph provided f increases
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slowly enough, namely sub-polynomially1. However, results of [GBW14] suggest
that if f grows polynomially, then it is only throughput-optimal for some inter-
ference graphs, depending on the relation between the graph topology and the
exponent of the polynomial growth of f .

The rationale for seeking fast-increasing functions f is that a folklore result
has it that delay is improved with faster increasing functions f , an intuition
which is backed up by results in [BBvL11]. Polynomial activation and deactiva-
tion functions should therefore achieve the optimal trade-off between throughput
and delay for this class of algorithms, which is the reason why we focus on this
case here. Note that in the case of a complete interference graph as considered
here, the algorithm is throughput-optimal for any functions Ψ+ and Ψ− satis-
fying Ψ+(q) → 1 and Ψ−(q) → 0 as q → ∞, so that we need not worry about
stability issues for such polynomial activation and deactivation functions, as
may be the case in a more general setting.

2.4.2. State space collapse from the stochastic averaging principle

The reason behind the state space collapse property is simple to understand
based on the stochastic averaging principle. Put simply, when queue lengths are
large, say of the order of N , then the typical time scale of σ is much faster
than the one of Q which makes Q interact with σ only through the stationary
distribution πq of its corresponding instantaneous Glauber dynamics. The latter
depends on Q, which gives rise to a so-called fully coupled stochastic averaging
principle, which essentially amounts to the approximation

∫ t

0

F
(
QN (s), σN (s)

)
ds ≈

∫ t

0

πNQN (s)
[
F
(
QN (s), ·

)]
ds (2.5)

with ν[f ] =
∫
fdν for any positive measure ν and integrable function f .

Recall that in our case, the stationary probability πq(v) of node v ∈ V being
active is given by

πq(v) =
(1 + qv)a

1 +
∑

w∈V (1 + qw)a
.

According to the stochastic averaging principle, this should represent the in-
stantaneous service rate of node v which should thus behave as a subcritical
M/M/1 queue when πq(v) < λ∞

v and as a supercritical M/M/1 queue when
πq(v) > λ∞

v . As
∑

v λ
∞
v = 1 and

∑
v∈V πq(v) = 1 − πq(0) ≈ 1 for large q, we

see that the only way for the network to behave smoothly is that each average
service rate πq(v) matches its incoming service rate, i.e., πq(v) ≈ λ∞

v . When
q is large, this forces q to live in the invariant manifold I because πq(v) ≈ qav
up to a multiplicative constant. Thus, the state space collapse phenomenon can
be directly understood as a consequence of the stochastic averaging principle
together with the criticality assumption.

1Actually, these algorithms also use some information on the current maximum queue
length, whether the exact maximum or an estimation thereof.
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2.4.3. The stochastic averaging principle

In the context of stochastic networks, the stochastic averaging principle was put
forth for loss networks in the famous work by Hunt and Kurtz [HK94] but, as
mentioned in Feuillet and Robert [FR14], “outside this class of networks, there
are, up to now, few examples of stochastic networks for which a fully coupled
stochastic averaging principle occurs”. Establishing a fully coupled stochastic
averaging principle is in general a challenging task and, in the queueing liter-
ature, many works actually restrict their study to the so-called homogenized
process, assuming that timescale separation indeed occurs.

Rigorous proofs of stochastic averaging principles were established for polling
systems times [CPR95, CPR98, Jen10], for models of distributed hash tables [FR14]
and for the X model [PW13]. Luczak and Norris [LN13] also developed a new
method which they applied to a variant of the supermarket model.

Most of these works, in particular [FR14, HK94, PW13], rely on the machin-
ery developed by Kurtz [Kur92]. It relies on martingale arguments and identifies
the asymptotic occupation measure of the fast process as the invariant measure
of a limiting averaged generator. In our case this identification step is not clear
because some rates go to 0 in the limit. In particular, the limiting scheduling
process is degenerate: it starts at 0 and then jumps to one of the possible states
v ∈ V where it is absorbed. In the absence of uniqueness, it is known that
any accumulation point must be a linear combination of the different stationary
measures but no general method seem to exist to characterize this combination.

The method of Luczak and Norris [LN13] does not yield this problem. How-
ever, we have not been able to apply their results to our case. It seems plausible
to modify their arguments in order to obtain Theorem 2.2 but only for a < 1

3 .
The method that we develop here is close in spirit to theirs but is more tai-
lored to Markov processes. The approximation (2.5) is controlled by martingale
arguments and leverages properties of solutions to the Poisson equations (in
φ) Lq

f φ = g − πq[g] associated with the fast generators Lq
f and to functions

g : V0 → R.

2.4.4. Nonstandard behavior

Taking the state space collapse and the stochastic averaging principle for granted,
back-of-the-envelope computation can give insight into the nonstandard critical
behavior observed for our system. As mentioned above, a consequence of the
stochastic averaging and the criticality assumption is that πq(v) ≈ λ∞

v . How-
ever, taking into account the idle time induced by the necessary scheduling of
the empty state which, when queue lengths are of the order of N , is of the order
πq(0) ≈ N−a, gives rise to the second-order approximation where λ∞

v − πq(v)
is of the order of N−a (see Section 8.2 for a more detailed heuristic). This sug-
gests that node v ∈ V behaves as a near-critical M/M/1 queue with arrival rate
λN
v = λ∞

v −N−aγv and service rate λ∞
v −N−a.

What is the right time scale for such a queue? A first-order asymptotic ex-
pansion of its generator can give a clue, namely, if time is sped up by N b then
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the action on its generator on a function f is given by

N b
(
λ∞
v −N−aγv

)(
f

(
q +

1

N

)
− f(q)

)

+ N b
(
λ∞
v −N−a

)(
f

(
q − 1

N

)
− f(q)

)
.

The leading term is N b−a−1f ′(q) which suggests to take b = a+ 1, as turns out
to be indeed the case. Moreover, we see that only first-order terms are dominant,
which explains why the limiting process is deterministic and no diffusion term
arises. This discussion also clearly highlights the key impact of idleness on the
system performance at criticality, as without idleness, i.e., if we had λ∞ − πq

of the order of 1/N , then we would see the usual N/N2 scaling and a diffusion
process in the limit.

3. Notation and main steps of the proof

We introduce in this section further notation, and then explain the main steps
of the proof of Theorem 2.2.

3.1. Notation

We first gather notation used throughout the paper.

3.1.1. General notation

For b > 0 and x ∈ R
V recall the notation ‖x‖b = (|x1|b + · · · + |xn|b)1/b and

s(x) = x1+· · ·+xn. We write ‖·‖∞ for the supremum norm, thus ‖f‖∞ = sup|f |
for f : RV → R and ‖q‖∞ = maxv|qv| for q ∈ R

V . If U ⊂ R
V and f : RV → R

we also define ‖f‖U,∞ = supx∈U |f(x)|.
Whenever f is smooth enough, we denote by ∂v its partial derivative along

qv and ∂2
v,w its second-order derivative along qv and qw, i.e.,

∂vf =
∂f

∂qv
and ∂2

v,wf =
∂2f

∂qv∂qw
.

We will also consider the discrete differences ∆N
±,vf for a function f : RV ×V0 →

R, given by

∆N
±,vf(q, σ) = f

(
q ± ev

N
, σ

)
− f(q, σ).

Thus, N∆N
±,vf → ±∂vf as N → ∞ for f differentiable.
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3.1.2. Generators

Let EN = 1
NN

V be the state space of the scaled process QN . We define LN ,

LN,q
f and LN,σ

s for q ∈ EN and σ ∈ V0 the scaled generators with arrival rates
λN : for f : EN × V0 → R, g : EN → R, h : V0 → R, q ∈ EN and σ ∈ V0,

LNf(q, σ) = Na+1Lf (N)(Nq, σ), LN,σ
s g(q) = Na+1Lσ

s g
(N)(Nq)

and
LN,q
f h(σ) = Na+1LNq

f h(σ)

with f (N)(q, σ) = f(q/N, σ) and g(N)(q) = g(q/N) for q ∈ N
V . Note that the

stationary distribution of LN,q
f is πNq. Let ΓN be the carré du champ operator

associated with LN : for any f : EN × V0 → R, . We have

ΓN (f) = LN (f2) − 2fLN(f)

and elementary computation shows that for (q, σ) ∈ EN × V0 we have

ΓNf(q, σ) = Na+1
∑

v∈V

λN
v

(
f

(
q +

ev

N
, σ

)
− f(q, σ)

)2

(3.1)

+ Na+1
∑

v∈V

σv1qv>0

(
f

(
q − ev

N
, σ

)
− f(q, σ)

)2

+ Na+1
∑

v∈V

(f(q, 0) − f(q, ev))2
(

σv

1 + (Nqv + 1)a
+

σ0

1 + (Nqv + 1)−a

)
.

From standard Markov process theory, for any function f the process

MN
f (t) = f(QN (t), σN (t)) − f(QN(0), σN (0)) −

∫ t

0

LNf(QN (s), σN (s))ds

is a local martingale with increasing process

〈
MN

f

〉
(t) =

∫ t

0

ΓNf(QN (s), σN (s))ds.

For N ≥ 1 we consider the homogenized generator LN
h acting on functions

f : EN → R as

LN
h f(q) = Na+1

∑

v∈V

λN
v

(
f

(
q +

ev

N

)
− f(q)

)

+ Na+1
∑

v∈V

πNq(v)1qv>0

(
f

(
q − ev

N

)
− f(q)

)
. (3.2)

This is the same generator as the generator Lσ
s of the (scaled) slow process given

by (2.1), but where the instantaneous service rate σv of node v is replaced by
its average value πq(v).
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3.1.3. Poisson equation

For any function g : V0 → R and any q ∈ EN we denote by φN
g (q, ·) the unique

solution to the Poisson equation associated with the scaled fast generator LN,q
f

and the function g, i.e., φN
g (q, ·) is the unique solution with πNq[φN

g (q, ·)] = 0
to the equation with unknown φ

LN,q
f φ = g − πq[g]. (3.3)

In the sequel, we will be particularly interested in φN
v (q, · ) solution to (3.3)

with g(σ) = σv for v ∈ V0, which therefore satisfies for any q ∈ EN and any
σ ∈ V0

LN,q
f

(
φN
v (q, · )

)
(σ) = σv − πNq(v). (3.4)

3.1.4. Initial state, limiting ODE

Recall that we fix throughout an initial state q0 ∈ I \ {0} and we assume that
QN(0) → q0. Moreover, we consider S = (S(t), t ≥ 0) the solution to the ODE

ẋ = µx−a − s(γ)

with initial condition S(0) = s(q0). We also consider q = (q(t), t ≥ 0) the
R

V -valued function with s ◦ q = S and q(t) ∈ I for all t ≥ 0, i.e.,

qv(t) =

(
λ∞
v

µ

)1/a

S(t), t ≥ 0, v ∈ V.

Note that for any choice of γ ∈ R
V , S(t) is bounded away from zero, i.e.,

inft≥0 S(t) > 0. If s(γ) = 0, S has an explicit expression:

S(t) =
(
µ(a + 1)t + s(q0)a+1

)1/(a+1)
, t ≥ 0.

3.1.5. Localization, constants

Most of the proof of Theorem 2.2 is carried out for a localized process QN (t∧TN)
with TN the first time that QN significantly departs from q. More precisely, in
the rest of the paper we fix some finite time horizon T > 0 and we consider the
following two constants:

M = min

(
2 sup
[0,T ]

S,
2

inf [0,T ] S
,

1

2

)
and m =

1

Mµ1/a
min
v

(λ∞
v )

1/a
.

Here and in the sequel, we will treat as constants all numerical parameters
that only depend on a, n, T , λ∞, q0 and the sequence (λN ) as these are fixed
throughout the entire paper. Moreover, we will use the letter C to denote pos-
itive and finite constants, that only depend on a, n, T , λ∞, q0 and (λN ), and
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whose precise value is irrelevant and that may change from line to line. Note in
particular that the constants C do not depend on N , so that if 0 ≤ uN ≤ CvN
with vN → 0, then also uN → 0.

We then define

TN := inf
{
t > 0 :

∥∥QN (t) − q(t)
∥∥
1
>

m

2

}
,

the set U ⊂ R
V
+

U :=

{
q ∈ R

V
+ :

1

M
< s(q) < M and min

v
qv > m

}
,

its intersection UN with EN

UN = U ∩ EN ,

and the exit time of QN from U (or UN ):

τN := inf
{
t ≥ 0 : QN(t) /∈ U

}
.

Because jumps of QN are of size 1/N , at time TN we have

∥∥QN (TN) − q(TN)
∥∥ ≤ m

2
+

1

N
.

The constants m and M have been chosen such that the following result holds.
The proof is computational and omitted.

Lemma 3.1. We have TN ≤ τN . In particular, QN (t∧TN ) ∈ UN for all t ≥ 0.

3.1.6. Distance to I

In order to control the distance to the invariant manifold I given by (2.4), i.e.,
to control the state space collapse property, we will use the Kullback-Leibler
divergence between λ and (πq(v), v ∈ V ) (note that the latter is not a probability
measure). More precisely, for q ∈ R

V
+ and N ≥ 1 let

dN (q) =
∑

v∈V

λ∞
v log

(
λ∞
v

πNq(v)

)
.

When N → ∞ and q ∈ U we have πNq(v) → πq
∞(v) where

πq
∞(v) =

qav
‖q‖aa

, v ∈ V.

We thus introduce

d∞(q) =
∑

v∈V

λ∞
v log

(
λ∞
v

πq
∞(v)

)
.

which therefore satisfies dN (q) → d∞(q) as N → ∞. The convergence is actually
uniform in q ∈ U , as the next lemma states (the proof is omitted).
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Lemma 3.2. As N → ∞ we have

sup
q∈UN

∣∣dN (q) − d∞(q)
∣∣→ 0.

Note that d∞(q) = 0 if and only if q ∈ I, so d∞ can indeed be seen as a
distance to I. For x ∈ I we have by definition xv = (λ∞/µ)1/as(x). The distance
d∞ to I will actually also control the difference between xv and (λ∞/µ)1/as(x),
and the next lemma will prove useful in the sequel.

Lemma 3.3. For x ∈ U we have
∣∣∣∣∣xv −

(
λ∞
v

µ

)1/a

s(x)

∣∣∣∣∣ ≤ C [d∞(x)]
1/2

, v ∈ V.

Proof. Because y ∈ [m,M ] → y1/a is Lipschitz, for x ∈ [m,M ]V and v ∈ V we
have ∣∣∣xv − (λ∞

v )
1/a ‖x‖a

∣∣∣ ≤ C |xa
v − λ∞

v ‖x‖aa| ≤ C |πx
∞(v) − λ∞

v |

and so Pinsker’s inequality gives
∣∣∣xv − (λ∞

v )
1/a ‖x‖a

∣∣∣ ≤ C [d∞(x)]
1/2

.

Thus, since s(x) =
∑

v xv and µ1/a =
∑

v(λ∞
v )1/a we also have

∣∣∣s(x) − µ1/a ‖x‖a
∣∣∣ ≤

∑

v∈V

∣∣∣xv − (λ∞
v )

1/a ‖x‖a
∣∣∣ ≤ C [d∞(x)]

1/2
.

Finally, since

∣∣∣∣∣xv −
(
λ∞
v

µ

)1/a

s(x)

∣∣∣∣∣ ≤
∣∣∣xv − (λ∞

v )
1/a ‖x‖a

∣∣∣

+

∣∣∣∣∣(λ
∞
v )

1/a ‖x‖a −
(
λ∞
v

µ

)1/a

s(x)

∣∣∣∣∣ ,

we obtain the result.

3.2. Main steps

The proof of Theorem 2.2 has three main steps which are proved in Sections 4–7.

3.2.1. First step: homogenization

The first main step of the proof is the following averaging result: we give the
main idea of its proof below, and defer the full proof to Sections 4 and 5. Recall
that C denotes a numerical constant allowed to depend on a, n, T , λ∞, (λN )
and q0.
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Proposition 3.4. If f : U → R is continuously differentiable, then for any
v ∈ V we have

E

[
sup

0≤t≤T∧TN

∣∣∣∣
∫ t

0

(
σN
v (s) − πNQN (s)(v)

)
f
(
QN (s)

)
ds

∣∣∣∣

]

≤ C ‖f‖∞,U

(logN)3/2

N1/2
+ C max

v
‖∂vf‖∞,U

(logN)3/2

N1−a
.

The proof of this result has two steps: first, provide a bound in terms of
solutions to the Poisson equation (3.3) and then controlling these solutions.
These two steps are performed in Sections 4 and 5, respectively and, as far as
we know, the bounds that we derive there are new. To see how the Poisson
equation arises, let us proceed with the following preliminary computation. We
get from (3.4)

σN
v (s) − πNQN (s)(v) = L

N,QN(s)
f

(
φN
v (QN (s), · )

) (
σN (s)

)
.

Since f does not depend on σ, this makes it possible to rewrite

∫ t

0

(
σN
v (s) − πNQN (s)(v)

)
f
(
QN (s)

)
ds

=

∫ t

0

L
N,QN(s)
f

(
V N
v (QN (s), · )

) (
σN (s)

)
ds

with V N
v (q, σ) = φN

v (q, σ)f(q). Making use of the martingale decomposition, we
finally rewrite this as

∫ t

0

(
σN
v (s) − πNQN (s)(v)

)
f
(
QN (s)

)
ds

= V N
v

(
QN (t), σN (t)

)
− V N

v

(
QN (0), σN (0)

)

−
∫ t

0

LN,σN (s)
s

(
V N
v ( · , σN (s))

) (
QN(s)

)
ds−MN

V N
v

(t). (3.5)

This expression will be the basis for the proof of Proposition 3.4.

3.2.2. Second step: state space collapse

Using the averaging result of Proposition 3.4, the next step is to prove the
following state space collapse result.

Proposition 3.5. As N → ∞ we have

E

[
sup

0≤t≤T∧TN

d∞
(
QN(t)

)
]
→ 0.

The proof proceeds by controlling the action of the homogenized generator
LN on dN and then use this result to control d∞ ◦QN thanks to the averaging
result of Proposition 3.4.
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3.2.3. Third step: full proof

The third step of the proof consists in showing that QN ( ·∧TN) ⇒ q. The proof
proceeds in two steps: first we establish the convergence of the one-dimensional
total queue length process s ◦ QN( · ∧ TN) ⇒ s ◦ q = S by using Gronwall’s
lemma. Together with the state space collapse property of Proposition 3.5, this
gives the convergence of the entire n-dimensional process QN ( · ∧ TN) stopped
at time TN .

We finally conclude the proof: because the limiting process q does not exit
the set U by time T , we prove that with high probability QN also stays in U by
time T : this implies in particular that P(TN ≥ T ) → 1 which makes it possible
to transfer the convergence result from the stopped process QN( · ∧ TN) to the
unstopped one QN .

4. Control of homogenization in terms of solutions to the Poisson
equation

This section provides a first step toward the proof of Proposition 3.4. We first
derive a bound in terms of the following constants:

ΩN := sup
q∈UN , ‖g‖

∞
≤1

∥∥φN
g (q, · )

∥∥
∞

,

BN := sup
q∈UN , ‖g‖

∞
≤1

max
i∈V,σ∈V0

∣∣∆N
±,iφ

N
g (q, σ)

∣∣

and
ΘN = Na+1BN + N1/2ΩN + N (a+1)/2Ω

3/2
N + Na+1ΩNB

1/2
N

Lemma 4.1. For any v ∈ V we have

E

[
sup

0≤t≤T∧TN

∣∣∣∣
∫ t

0

(
σN
v (s) − πNQN (s)(v)

)
f
(
QN (s)

)
ds

∣∣∣∣

]

≤ C‖f‖∞,UΘN + C max
w

‖∂wf‖∞,U

(
N (a+1)/2BN + NaΩN

)
.

Recall from the arguments preceding (3.5) that V N
v (q, σ) = f(q)φN

v (q, σ):
thus for every v we have for q ∈ UN

∣∣V N
v (q, σ)

∣∣ ≤ ‖f‖∞,UΩN (4.1)

and ∣∣∆N
±,wV

N
v (q, σ)

∣∣ ≤ max
w

‖∂wf‖∞,U
ΩN

N
+ ‖f‖∞,UBN . (4.2)

We start with two preliminary lemmas.

Lemma 4.2. We have

E

[∫ T∧TN

0

σN
0 (s)ds

]
≤ CN−a + CΩN + CNa+1BN .
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Proof. Note that

πNQN (s)(0) =
1

1 +
∑

w∈V (NQN
w (s) + 1)a

and so since QN
w (s) ≥ m − 1/N for t ≤ TN , we have πNQN (s)(0) ≤ CN−a for

s ≤ TN and so

E

[∫ T∧TN

0

σN
0 (s)ds

]
≤ CN−a + E

[∫ T∧TN

0

(
σN
0 (s) − πNQN (s)(0)

)
ds

]
.

Starting from (3.5) with f = 1 and taking the mean, we obtain

E

[∫ T∧TN

0

(
σN
0 (s) − πNQN (s)(0)

)
ds

]

= E
[
φN
0

(
QN (T ∧ TN), σN (T ∧ TN)

)]
− φN

0

(
QN (0), σN (0)

)

− E

[∫ T∧TN

0

LN,σN(s)
s

(
φN
0 ( · , σN (s))

) (
QN(s)

)
ds

]
.

By definition of LN,σ
s we have

LN,σN(s)
s

(
φN
0 ( · , σN (s))

) (
QN(s)

)
= Na+1

∑

v∈V

λN
v ∆N

+,vφ
N
0 (QN (s), σN (s))

+ Na+1
∑

v∈V

σN
v (s)1QN

v (s)>0∆N
−,vφ

N
0 (QN (s), σN (s)).

The result thus follows directly from the definitions of ΩN and BN since QN (t∧
TN) ∈ U according to Lemma 3.1.

Lemma 4.3. We have

E

[
sup

0≤t≤T∧TN

∣∣∣MN
V N
v

(t)
∣∣∣
]

≤ C max
w

‖∂wf‖∞,UN
(a+1)/2BN + C‖f‖∞,UΘN .

Proof. By Doob’s inequality and It’s isometry we have

E

[
sup

t≤T∧TN

(
MN

V N
v

(t)
)2
]
≤ 4E

[(
MN

V N
v

(T ∧ TN)
)2]

= 4E
[
〈MN

V N
v
〉(T ∧ TN)

]

= 4E

[∫ T∧TN

0

ΓNV N
v (QN (s), σN (s))ds

]
.
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According to (3.1), we have

ΓNV N
v (q, σ) = Na+1

∑

w∈V

λN
w

(
∆N

+,wV
N
v (q, σ)

)2

+ Na+1
∑

w∈V

σw1qw > 0
(
∆N

−,wV
N
v (q, σ)

)2

+ Na+1
∑

w∈V

(
V N
v (q, 0) − V N

v (q, w)
)2 σw

1 + (Nqw + 1)a

+ Na+1
∑

w∈V

(
V N
v (q, 0) − V N

v (q, w)
)2 σ0

1 + (Nqw + 1)−a
.

We integrate this quantity over the trajectory (QN , σN ) for t ≤ T ∧ TN : along
this trajectory we bound the terms σN

w (s) and 1/(1 + (NQN
w (s) + 1)−a) by one,

the terms 1/(1 + (NQN
w (s) + 1)a) by CN−a (because QN

w (s) ≥ m − 1/N for
t ≤ TN) and we use (4.1) and (4.2) to obtain

E

[∫ T∧TN

0

ΓNV N
v (QN(s), σN (s))ds

]

≤ CNa+1

(
max
w

‖∂wf‖∞,U
ΩN

N
+ BN‖f‖∞,U

)2

+ C‖f‖2∞,UNΩ2
N

+ C‖f‖2∞,UN
a+1Ω2

NE

[∫ T∧TN

0

σN
0 (s)ds

]
.

Using (x + y)2 ≤ 2x2 + 2y2 and Lemma 4.2, we therefore obtain

E

[
sup

0≤t≤T∧TN

MN
V N
v

(t)2

]
≤ C max

w
‖∂wf‖2∞,UN

a+1B2
N

+ C‖f‖2∞,U

(
Na+1B2

N + NΩ2
N + Na+1Ω3

N + N2a+2Ω2
NBN

)
.

The result then follows by Cauchy-Schwarz and sub-linearity of the square root,
and also because

N (a+1)/2BN + N1/2ΩN + N (a+1)/2Ω
3/2
N + Na+1ΩNB

1/2
N ≤ CΘN .
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Proof of Lemma 4.1. Starting from (3.5), we obtain

sup
0≤t≤T∧TN

∣∣∣∣
∫ t

0

(
σN
v (s) − πNQN (s)(v)

)
f
(
QN(s)

)
ds

∣∣∣∣

≤
∣∣V N

v (QN (0), σN (0))
∣∣+ sup

0≤t≤T∧TN

∣∣V N
v (QN (t), σN (t))

∣∣

+ sup
0≤t≤T∧TN

∣∣∣∣
∫ t

0

LN,σN(s)
s

(
V N
v

(
· , σN (s)

))
(QN (s))ds

∣∣∣∣

+ sup
0≤t≤T∧TN

∣∣∣MN
V N
v

(t)
∣∣∣ .

As QN(t) ∈ U for t ≤ TN by Lemma 3.1, similar arguments as in the proof
of Lemmas 4.2 and 4.3 give a control on the three first terms in the right-hand
side of the previous display, namely

∣∣V N
v (QN (0), σN (0))

∣∣+ sup
0≤t≤T∧TN

∣∣V N
v (QN (t), σN (t))

∣∣ ≤ C‖f‖∞,UΩN

and

sup
0≤t≤T∧TN

∣∣∣∣
∫ t

0

LN,σN(s)
s

(
V N
v

(
· , σN (s)

))
(QN (s))ds

∣∣∣∣

≤ CNaΩN max
w

‖∂wf‖∞,U + C‖f‖∞,UN
a+1BN .

Combining these bounds with the bound of Lemma 4.3 gives the result.

5. Control of solutions to the Poisson equation

In the previous section we have established a bound on some averaging property
in terms of the constants ΩN and BN . The goal of this section is to prove the
following result which provides a bound on these constants.

Lemma 5.1. We have the following two bounds:

ΩN ≤ C
(logN)3/2

N
and BN ≤ C

(logN)3

N2
.

We will prove this in a series of lemmas. It is more convenient to focus on
unscaled quantities. For q ∈ N

V let αq and ℓq be the log-Sobolev constant and
spectral gap associated with Lq

f , respectively, and φg(q, · ) the solution to the
Poisson equation Lq

fϕ = g − πq[ϕ].

Lemma 5.2. For q ∈ N
V and v ∈ V let

Ω(q) =
(log(1/πq(0)))1/2 log(1/πq(0) − 1)

ℓq(1 − 2πq(0))
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and

Bv(q) =
Ω(q)

q1−a
v

(
4Ω(q)

q2av
+ πq(0)

)
.

Then
‖φg(q, · )‖∞ ≤ ‖g‖∞Ω(q) (5.1)

and
‖φg(q ± ev, · ) − φg(q, · )‖∞ ≤ ‖g‖∞Bv(q). (5.2)

Proof. Let mq
σ,t denote the law at time t of the Markov process starting at σ

with generator Lq
f : then it is well-known that φg(q, ·, ) is given by

φg(q, σ) = −
∫ ∞

0

(
mq

σ,t[g] − πq[g]
)

dt.

This gives

‖φg(q, ·)‖∞ ≤ 2 ‖g‖∞
∫ +∞

0

∥∥mq
σ,t − πq

∥∥
TV

dt

with ‖ · ‖TV the total variation distance and then

‖φg(q, ·)‖∞ ≤ 2 ‖g‖∞
∫ +∞

0

(
1

2
mq

σ,t

[
ϕq
σ,t

])1/2

dt

where ϕq
σ,t = log(mq

σ,t/π
q), by Pinsker’s inequality. As minσ π

q(σ) = πq(0),
Theorem 3.6 in [DSC96] gives

mq
σ,t

[
ϕq
σ,t

]
≤ log(1/πq(0))e−4αqt

while Corollary 2.2.10 in [SC97] gives

αq ≥ 1 − 2πq(0)

log((1 − πq(0))/πq(0))
ℓq.

Gathering the three previous bounds gives the desired bound (5.1) on ‖φg(q, · )‖∞.
We now prove (5.2). Fix temporarily v ∈ V , q ∈ N

V with qv > 0 and let
Φ = φg(q − ev, · ) − φg(q, · ) and G = Lq

f (Φ). Since πq(G) = 0, the first
bound (5.1) thus implies

‖φg(q − ev, · ) − φg(q, · )‖∞ ≤ Ω(q) ‖G‖∞ .

Since by definition of φg we have Lq
f (φg(q, · ))(σ) = g(σ) − πq[g] we obtain

G(σ) = −
(
Lq−ev

f − Lq
f

)
(φg(q − ev, · )) (σ) −

∑

ρ∈V0

(πq−ev (ρ) − πq(ρ))g(ρ)

and so

‖G‖∞ ≤
∥∥∥
(
Lq−ev

f − Lq
f

)
(φg(q − ev, · ))

∥∥∥
∞

+ ‖g‖∞
∑

ρ∈V0

∣∣∣πq−ev (ρ) − πq(ρ)
∣∣∣ .
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For any function h : V0 → R we have according to (2.2)

(
Lq−ev

f − Lq
f

)
(h)(σ) = σv (Ψ−(qv − 1) − Ψ−(qv)) (h(σ − ev) − h(σ))

+ σ0 (Ψ+(qv − 1) − Ψ+(qv)) (h(σ + ev) − h(σ))

and so since Ψ+ + Ψ− = 1, this gives
∥∥∥
(
Lq−ev

f − Lq
f

)
(h)
∥∥∥
∞

≤ 4 ‖h‖∞ |Ψ−(qv − 1) − Ψ−(qv)| .

Therefore, using again the bound (5.1) gives

∥∥∥
(
Lq−ev

f − Lq
f

)
(φg(q − ev, · ))

∥∥∥
∞

≤ 4Ω(q) ‖g‖∞
∫ 1

0

|Ψ′
d(qv − u)| du.

Direct calculation yields

Ψ′
−(qv) = − a

(qv + 1)1−a(1 + (qv + 1)a)2

and so
∣∣Ψ′

−(qv − u)
∣∣ ≤ qa−1

v

(1+qav )
2 as long as u ≤ 1. Moreover, for any v ∈ V and

w ∈ V0 with w 6= v, one can check that

|∂vπq(w)| = a(qv + 1)a−1πq(w)πq(0)

and
|∂vπq(v)| = a(qv + 1)a−1πq(0)(1 − πq(v))

so that in any case, |∂vπq(σ)| ≤ aπq(0)(qv + 1)a−1. Gathering the previous
bounds gives the result.

We now prove a lower bound on the spectral gap of Lq
f . Related bounds

were for instance proved in [SS12] using Cheeger’s inequality in a more general
setting. However, this method would only lead to ℓq ≥ C‖q + 1‖−2a

∞ which is
not sharp enough in our case.

Lemma 5.3. For any q ∈ N
V we have

ℓq ≥ C

‖q + 1‖a∞
.

Proof. Let (η(t), t ≥ 0) be a Markov process with generator Lq
f and P

q
σ its law

started from σ ∈ V0. Let as in the previous proof mq
σ,t denote the law of η(t)

under P
q
σ and define the random times

T q
mix = inf

{
t ≥ 0 : max

σ∈V
‖mq

σ,t − πq‖TV <
1

2e

}

and
T q
hit = max

σ∈V,A⊂V0

πq(A)Eq
σ0 (TA)
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with TA the hitting time of A for η:

TA = inf {t ≥ 0 : η(t) ∈ A} , A ⊂ V0.

Recall that ℓq is the spectral gap of Lq
f . It is proved in [LP17] that T q

mix ≥ 1/ℓq−1
(the proof for discrete time extends to continuous time) and in [Ald82] that
T q
mix ≤ c0T

q
hit for some universal constant c0. Combining those two results, we

get that

ℓq ≥ 1

c0T
q
hit + 1

and so in order to prove the desired bound, we only need to prove that T q
hit ≤

C‖q + 1‖a∞. Since

T q
hit ≤ max

σ0∈V0

∑

σ∈V0

E
q
σ0 (Tσ)

this actually reduces to proving that

E
q
σ(T0) ≤ C‖q + 1‖a∞ and E

q
0(Tσ) ≤ C‖q + 1‖a∞ (5.3)

for any σ ∈ V . Indeed, for σ0 6= σ ∈ V the process η needs to pass through 0 to
go from σ0 to σ and so the strong Markov property gives

E
q
σ0(Tσ) = E

q
σ0 (T0) + E

q
0(Tσ).

So let us prove (5.3). The bound on E
q
σ(T0) is obvious since by definition T0

under E
q
σ is an exponential random variable with parameter Ψ−(qσ) so that

E
q
σ(T0) =

1

Ψ−(qσ)
= 1 + (qv + 1)

a ≤ C‖q + 1‖a∞.

Let us now prove that Eq
0(Tσ) ≤ C‖q+1‖a∞. Under Pq

0, decompose the trajectory
(η(t), 0 ≤ t ≤ Tσ) into cycles away from 0: in the a-th cycle, η stays in 0 for a
duration Xa, then moves to some i ∈ V where it stays for a duration Ya and
then comes back to 0. If A ∈ {1, . . . , } denotes the first cycle where η visits σ,
we can thus write

Tσ =

A−1∑

a=1

(Xa + Ya) + XA.

Each time η leaves 0, it goes to i ∈ V with probability

pqv =
Ψ+(qv)∑

w∈V Ψ+(qv)
=

(
∑

w∈V

1 + (qv + 1)−a

1 + (qw + 1)−a

)−1

≥ 1

2n
.

In particular, with a suitable coupling we can write

Tσ ≤
G∑

a=1

(Xa + Ya)
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with G a geometric random variable with parameter 1/(2n) independent from
the Xa and Ya’s. Since the (Xa, a ≥ 1) and (Ya, a ≥ 1) are two independent
sequences of i.i.d. random variables, it follows that

E
q
0(Tσ) ≤ E(G) [Eq

0(X1) + E
q
0(Y1)] .

By definition, X1 under P
q
0 is an exponential random variable with parameter

∑

v∈V

Ψ+(qv) =
∑

v∈V

1

1 + (qv + 1)−a
≥ n

2

so that E
q
0(X1) ≤ 2/n. Moreover, Y1 under P

q
0 is distributed as T0 under P

q
Σ

with P(Σ = v) = pqv for v ∈ V , so that

E
q
0(Y1) =

∑

v∈V

pqvE
q
v(T0) ≤ C‖q + 1‖a∞

using E
q
v(T0) ≤ C‖q + 1‖a∞. Gathering the previous bounds yields the desired

result.

Thanks to Lemmas 5.2 and 5.3 we now provide a proof of Lemma 5.1.

Proof of Lemma 5.1. Let g : V0 → R and q ∈ EN given. Recall that φN
g (q, ·, )

and φg(Nq, ·, ) are such that

LN,q
f

(
φN
g (q, ·, )

)
= g − πNq[g] = LNq

f (φg(Nq, ·, ))

and since LN,q
f = Na+1LNq

f , this gives φN
g (q, σ) = N−(a+1)φg(Nq, σ) by unique-

ness. According to (5.1) and (5.2) this gives

∥∥φN
g (q, · )

∥∥
∞

≤ ‖g‖∞
Ω(Nq)

Na+1
and

∥∥∆N
±,vφ

N
g (q, · )

∥∥
∞

≤ ‖g‖∞
Bv(Nq)

Na+1

and so in order to prove the result, we only have to prove that

Ω(Nq) ≤ CNa+1 (logN)3/2

N
and Bv(Nq) ≤ CNa+1 (logN)3

N2

for q ∈ UN . To do so, note that for q ∈ UN we have

n(Nm)a ≤ 1

πNq(0)
≤ 1 + n(NM + 1)a

and so our convention makes it possible to write CN−a ≤ πNq(0) ≤ CN−a.
Since ℓNq ≥ CN−a by Lemma 5.3, for q ∈ UN we obtain the desired bounds on
Ω(Nq) and Bv(Nq).

Proof of Proposition 3.4. The proof of Proposition 3.4 now follows readily from
Lemmas 4.1 and 5.1 since for a < 1/2 one readily checks that ΘN ≤ C(logN)3/2/N1/2

and

N (a+1)/2BN + NaΩN ≤ C
(logN)3/2

N1−a
.
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6. State space collapse

In this section we prove Proposition 3.5 through a series of lemmas. In view of
Lemma 3.2, it is enough to prove the result with dN instead of d∞, i.e., to prove
that

E

[
sup

0≤t≤T∧TN

dN (QN (t))

]
→ 0.

Starting from the semimartingale decomposition of dN ◦ QN and then adding
and subtracting LN

h , we obtain

dN (QN (t)) = dN (QN(0)) +

∫ t

0

LN
h dN (QN (s))ds

+

∫ t

0

(LN − LN
h )dN (QN (s), σN (s))ds + MN

dN (t)

where, in order to give sense to LNdN we consider dN (q, σ) = dN (q). Taking
the supremum and the expectation and using that QN(t) ∈ UN for all t ≤ TN ,
this leads to

E

[
sup

0≤t≤T∧TN

dN (QN (t))

]
≤ dN (QN (0)) + T sup

q∈UN

LN
h dN (q) + I + II (6.1)

with

I = E

[
sup

0≤t≤T∧TN

∣∣∣∣∣

∫ t∧TN

0

(LN − LN
h )dN (QN (s), σN (s))ds

∣∣∣∣∣

]

and

II = E

[
sup

0≤t≤T∧TN

∣∣MN
dN (t)

∣∣
]
.

The first term dN (QN (0)) in the right-hand side of (6.1) vanishes because
QN(0) → q0 ∈ I (and because of Lemma 3.2). The next three lemmas show
that supq∈UN LN

h dN (q) → 0 and that the terms I and II also vanish.

Lemma 6.1. For N large enough, we have for any q ∈ EN ∩ U

LN
h dN (q) ≤ CN−a + CN−(1−a).

Proof. Let q ∈ UN and for each v ∈ V , let ζv± = (ζv±,w, w ∈ V ) such that

dN
(
q ± ev

N

)
= dN (q) ± 1

N
∂vd

N (q) +
1

2N2
∂2
v,vd

N (ζv±).
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Note that ζv±,w = qw if w 6= v and |ζv±,v − qv| ≤ 1/N . Then, recalling that

∆N
±,vd

N (q) = dN (q ± ev/N) − dN (q), we obtain

LN
h dN (q) = Na+1

∑

v∈V

λN
v ∆N

+,vd
N (q) + Na+1

∑

v∈V

πNq(v)∆N
−,vd

N (q)

= Na+1
∑

v∈V

(
λ∞
v −N−aγv

)( 1

N
∂vd

N (q) +
1

2N2
∂2
v,vd

N (ζv+)

)

+ Na+1
∑

v∈V

πNq(v)

(
− 1

N
∂vd

N (q) +
1

2N2
∂2
v,vd

N (ζv−)

)

= A + B

with
A = Na

∑

v∈V

(
λ∞
v − πNq(v)

)
∂vd

N (q) −
∑

v∈V

γv∂vd
N (q)

and

B =
1

2N1−a

∑

v∈V

((
λ∞
v −N−aγv

)
∂2
v,vd

N (ζv+) + πNq(v)∂2
v,vd

N (ζv−)
)
.

We now show that A ≤ CN−a and B ≤ CN−(1−a), which will give the result.
Let us start with controlling A. Let in the sequel δNv (q) = λ∞

v − πNq(v). Then
it may be checked through elementary algebra that

∂vd
N (q) = − aδNv (q)

qv + 1
N

which leads to the relation

A = −aNa
∑

v∈V

δNv (q)2

qv + 1
N

− a
∑

v∈V

γvδ
N
v (q)

qv + 1
N

.

Since q ∈ UN , and in particular m ≤ qv ≤ M for every v, we obtain by using
the equivalence of the L1 and L2 norms that

A ≤ −c1N
a
∥∥δN (q)

∥∥2
2

+ c2
∥∥δN (q)

∥∥
2

for some positive constants c1 and c2 that only depend on n, m, M and γ. It is
readily checked that the supremum of the function x 7→ c2x − c1N

ax2 is equal
to c22/(4c1N

a), which gives A ≤ CN−a as desired.
Let us now control B. Computing the second derivative of dN gives

∂2
v,vd

N (q) =
a
(
δNv (q) + aπNq(v)(1 − πNq(v))

)

(qv + 1
N )2

.

In particular, since q ∈ UN and ‖ζv± − q‖∞ ≤ 1/N , we have

∣∣∂2
v,vd

N
(
ζN±
)∣∣ ≤ 1

m2
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and so

B ≤ 1

2mN−(1−a)

(
2 + N−as(γ)

)

which gives B ≤ CN−(1−a) for N large enough, as desired.

Lemma 6.2. We have

E

[
sup

0≤t≤T∧TN

∣∣∣∣∣

∫ t∧TN

0

(LN − LN
h )dN (QN (s), σN (s))ds

∣∣∣∣∣

]
→ 0.

Proof. Since

(LN − LN
h )dN (q, σ) = (LN,σ

s − LN
h )dN (q)

= Na+1
∑

v∈V

(
σv − πNq(v)

)
1qv>0∆N

−,vd
N (q)

Proposition 3.4 gives

E

[
sup

0≤t≤T∧TN

∣∣∣∣∣

∫ t∧TN

0

(LN − LN
h )dN (QN (s), σN (s))ds

∣∣∣∣∣

]

≤ CNa+1 max
v∈V

∥∥∆N
−,vd

N
∥∥
∞,U

(logN)3/2

N1/2

+ CNa+1 max
v,w

∥∥∂w∆N
−,vd

N
∥∥
∞,U

(logN)3/2

N1−a
.

For q ∈ UN and w ∈ V one can check that
∣∣∆N

−,vd
N (q)

∣∣ ,
∣∣∂w∆N

−,vd
N (q)

∣∣ ≤ C
N

so that

E

[
sup

0≤t≤T∧TN

∣∣∣∣∣

∫ t∧TN

0

(LN − LN
h )dN (QN (s), σN (s))ds

∣∣∣∣∣

]
≤ C

(logN)3/2

N1/2−a
.

Thus for a < 1/2 this bound indeed vanishes, which proves the result.

Lemma 6.3. We have

E

[
sup

0≤t≤T∧TN

∣∣MN
dN (t)

∣∣
]
≤ C

N (1−a)/2
.

Proof. Proceeding as in the proof of Lemma 4.3 we obtain

E

[
sup

0≤t≤T∧TN

MN
dN (t)2

]
≤ 4Na+1

E

[∫ T∧TN

0

∑

v∈V

(∆N
+,vd

N (QN (s))2ds

]

+ 4Na+1
E

[∫ T∧TN

0

n∑

v∈V

(∆N
−,vd

N (QN (s))2ds

]
.

The result then follows from the same Taylor expansion as in the proof of
Lemma 6.1.
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7. Proof of main result

To prove Theorem 2.2, we will establish its equivalent for the stopped process
QN( · ∧TN) using Gronwall’s lemma. We then transfer the result on the stopped
process to QN using Lemma 3.1.

7.1. First step: s ◦ QN( · ∧ TN) ⇒ S

The first step is to prove that s◦QN( · ∧TN) ⇒ S uniformly on [0, T ], which we
do now. Starting from the definition of LN,σ

s and using s(λN ) = 1 −N−as(γ)
by (2.3) and

∑
v∈V σv = 1 − σ0 we obtain

LN,σ
s s(q) = Nas(λN ) −Na

∑

v∈V

σv1qv>0 = Naσ0 + Na
∑

v∈V

σv1qv=0−s(γ).

The semimartingale decomposition of s ◦QN and the fact that

S(t) = S(0) + µ

∫ t

0

S(s)−ads−s(γ)t

by definition of S then leads to

s(QN (t)) − S(t) = s(QN (0)) − S(0) +

∫ t

0

(
NaσN

0 − µ

S(s)a

)
ds

+
∑

v∈V

∫ t

0

σN
v (s)1QN

v (s)=0ds + MN
s (t). (7.1)

Define

εN(t) = s(QN (0)) − S(0) + ηN (t) + eN(t) + hN (t) + MN
s (t)

where

ηN (t) =

∫ t∧TN

0

(
1

N−a + ‖QN(s) + 1/N‖aa
− 1

‖QN (s)‖aa

)
ds,

eN(t) =

∫ t∧TN

0

(
1

‖QN (s)‖aa
− µ

s(QN (s))a

)
ds

and

hN (t) = Na

∫ t∧TN

0

(
σN
0 (s) − πNQN (s)(0)

)
ds.

Since QN
v (s) > 0 for t < TN , starting from (7.1) and plugging in the above

expressions, we obtain

s(QN(t ∧ TN)) − S(t) = εN (t) + µ

∫ t

0

(
1

s(QN(s))a
− 1

S(s)a

)
ds.
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Since x ∈ [m,M ] 7→ x−a is Lipschitz and all queue lengths are in [m,M ] before
time TN , we finally obtain

∣∣s(QN (t ∧ TN)) − S(t)
∣∣ ≤

∣∣εN (t)
∣∣+ C

∫ t

0

∣∣s(QN(s ∧ TN)) − S(s)
∣∣ ds

and Gronwall’s lemma implies

sup
0≤t≤T

∣∣s(QN (t ∧ TN)) − S(t)
∣∣

≤
(
∣∣s(QN(0)) − S(0)

∣∣+ η̄N + ēN + h̄N + sup
0≤t≤T∧TN

∣∣MN
s (t)

∣∣
)
eCT

with

η̄N =

∫ T∧TN

0

∣∣∣∣
1

N−a + ‖QN(s) + 1/N‖aa
− 1

‖QN (s)‖aa

∣∣∣∣ds,

ēN =

∫ T∧TN

0

∣∣∣∣
1

‖QN(s)‖aa
− µ

s(QN (s))a

∣∣∣∣ ds

and

h̄N = Na sup
0≤t≤T∧TN

∣∣∣∣
∫ t

0

(
σN
0 (s) − πNQN (s)(0)

)
ds

∣∣∣∣ .

By assumption we have s(QN (0)) → S(0) and so in order to prove the desired
result s◦QN( · ∧TN ) ⇒ S on [0, T ], we only have to prove that η̄N , ēN , h̄N and
the martingale term vanish. The fact that η̄N ⇒ 0 comes directly from the fact
that QN (s) ∈ U for s ≤ T ∧TN . The martingale term is handled with the exact
same arguments as the previous martingale terms in Lemmas 4.3 and 6.3, the
proof is omitted. The next two lemmas show that the last two terms ǭN and h̄N

also vanish.

Lemma 7.1. We have ēN ⇒ 0.

Proof. Since the process is stopped at TN and so all coordinates considered are
bounded away from 0, all the functions considered are Lipschitz and so according
to Lemma 3.3 we have

∣∣∣∣Q
N
v (s)a − λ∞

v

µ
s(QN (s))

∣∣∣∣ ≤ Cd∞(QN (s))a/2.

Using the triangular inequality and the fact that s(λ∞) = 1, we thus obtain

∣∣∣∣
∥∥QN (s)

∥∥a
a
− 1

µ
s(QN (s))

∣∣∣∣ ≤ Cd∞(QN(s))a/2.

The convergence ēN ⇒ 0 follows therefore readily from Proposition 3.5 which
implies that d∞(QN (s)) ⇒ 0 uniformly in s ≤ T ∧ TN .
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Lemma 7.2. We have E(h̄N ) → 0.

Proof. Since σ0 =
∑

v∈V σv and πq(0) =
∑

v∈V πq(v) we have

h̄N ≤ Na
∑

v∈V

sup
0≤t≤T∧TN

∣∣∣∣
∫ t

0

(
σN
v (s) − πNQN (s)(v)

)
ds

∣∣∣∣

and so Proposition 4.1 with f(q) = q implies that

E(h̄N ) ≤ C
(logN)3/2

N1/2−a
.

As a < 1/2 we have the result.

7.2. Second step: proof of Theorem 2.2

We now conclude the proof of Theorem 2.2, so we have to control QN
v (t)−qv(t).

The idea is to combine the convergence s ◦ QN (· ∧ TN) ⇒ s ◦ q = S of the
previous step, together with the state space collapse property d∞ ◦QN ⇒ 0 of
Proposition 3.5. Since q(t) ∈ I, we have qv(t) = (λ∞

v /µ)1/aS and so this leads
us to write

sup
0≤t≤T∧TN

∣∣QN
v (t) − qv(t)

∣∣ ≤ sup
0≤t≤T∧TN

∣∣∣∣∣Q
N
v (t) −

(
λ∞
v

µ

)1/a

s(QN (t))

∣∣∣∣∣+

sup
0≤t≤T∧TN

∣∣s(QN (t)) − S(t)
∣∣ .

The second term vanishes by the first step, and so the first term vanishes as a
consequence of the state space collapse property (combine Proposition 3.5 and
Lemma 3.3). Thus we have proved that QN (· ∧ TN) ⇒ q.

Let us now remove the localization and prove that QN ⇒ q. In order to do
so, it is enough to show that P(TN ≥ T ) → 1. By definition of TN , we have

∥∥QN (TN) − q(TN)
∥∥
1
≥ m

2
.

Since TN ∧ T = TN in the event {TN ≤ T }, this entails

P
(
TN ≤ T

)
≤ P

(∥∥QN (TN ∧ T ) − q(TN ∧ T )
∥∥
1
≥ m

2

)
.

Since we have proved that QN ( · ∧ TN) ⇒ q uniformly on [0, T ], the previous
probability vanishes. This concludes the proof of Theorem 2.2.

8. Extensions and directions for future research

8.1. Beyond a < 1

2

Proposition 3.4 shows that the averaging approximation (2.5) holds for a < 1.
This is in line with Lemma 5.3 which shows that the mixing time of the fast
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process is of the order of Na: since the typical time scale of the slow process is
N , the condition a < 1 reflects that the fast process evolves much faster than
the slow process, which is the condition expected for homogenization to hold.

However, our condition in Theorem 2.2 is the more stringent condition a <
1/2. To see why this condition appears, consider the following semimartingale
decomposition of QN :

QN
v (t) −QN

v (0) = Na

∫ t

0

(
λ∞
v − πNQN (s)(v)

)
ds

+ (martingale term) + Na

∫ t

0

(
σN
v (s) − πNQN (s)(v)

)
ds.

The martingale term can be shown to vanish for a < 1, but we see that in order
for the first term to also vanish we would need to show that the integral on
the second line is o(N−a): Proposition 3.4 shows that this term is O(1/N1/2 +
1/N1−a) and so although it is o(1) for a < 1, in order to have it o(N−a) we
need to assume that a < 1/2. Whether Theorem 2.2 continues to hold for
1/2 < a < 1 constitutes in our view an interesting open problem, which also
testifies to the difficulty of proving fully coupled stochastic averaging principles
even in seemingly simple cases.

8.2. Two other scalings

Keeping ε > 0 as the distance to the stability region, we now discuss what
happens on different space scales than the scale N = ε−1/a studied so far. To
be more precise, we continue to consider arrival rates λ given by

λ = λ∞ − εγ

with s(λ∞) = 1, but now we consider the queue length process on the space
scale N = ε−1/a′

with a′ > 0. Let N b be the general time scale, and so consider
the scaled processes

QN (t) =
1

N
Q(N bt) and σN (t) = σ(N bt), t ≥ 0.

Assume for a moment that the stochastic averaging principle and state space
collapse continue to hold: thus, determining the asymptotic behavior of QN

reduces (at least informally) to understanding the asymptotic behavior of s◦QN

under the homogenized dynamic. With the considered scaling, the homogenized
generator is given by

LN
h f(q) = N b

∑

v∈V

λN
v

(
f

(
q +

ev

N

)
− f (q)

)

+ N b
∑

v∈V

πNq(v)1(qv > 0)

(
f

(
q − ev

N

)
− f (q)

)
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and so for q > 0 we have

LN
h s(q) = N b−1

∑

v∈V

λN
v −N b−1

∑

v∈V

πNq(v)

= N b−1
(

1 − s(γ)N−a′

)
−N b−1

(
1 − πNq(0)

)
.

We have

πNq(0) =
1

1 +
∑

v∈V (Nqv + 1)a
≈ 1

Na ‖q‖aa
and since the state space collapse assumption entails ‖q‖aa = s(q)a/µ, we obtain

LN
h s(q) ≈ −N b−1−a′

s(γ) + N b−1−aµs(q)−a.

We see that except when a = a′, which is the case studied so far, we cannot have
both terms contributing in the limit: one dominates the other. In some sense,
the space scale N = ε−1/a is the only one where we see in the limit at the same
time the influence of the idleness induced by the distributed scheduling and the
asymptotic drift term arising from the pre-limit processes being near-critical.
More precisely, two cases arise:

Case a′ < a: this is the space scale on which the near-criticality assumption
dominates, the idleness induced by the distributed scheduling has no im-
pact. In this case, the right time-scale is b = 1 + a′ and QN ⇒ q with
q(t) ∈ I for all t ≥ 0, and s ◦ q solution to ẋ = −s(γ)1(x > 0), i.e.,
s(q(t)) = (s(q(0)) − s(γ)t)+;

Case a′ > a: this is the reversed case: one only sees the idleness induced by
the distributed scheduling, the limit is the same as the one obtained in
Theorem 2.2 with γ = 0. In this case, the right time-scale is b = 1 + a and
QN ⇒ q with q(t) ∈ I for all t ≥ 0 and s ◦ q solution to ẋ = µx−a.

Except for controlling s ◦ QN after (potentially) hitting 0 in the case a′ < a,
these results can be established by making appropriate changes in the arguments
developed above for a′ = a. Actually, only minor changes are needed along the
way. When a′ < a and s(γ) > 0, which is the only case where s◦q hits 0 in finite
time, namely s(q(0))/s(γ), s ◦QN can be controlled after time s(q(0))/s(γ) by
coupling arguments that will be developed in [Cas].

8.3. Interchange of limits

Heavy traffic results are often investigated as a means to establish convergence
of stationary distributions according to the well-known interchange of limits ar-
gument presented schematically in Figure 1. In our case, QN admits a stationary
distribution QN(∞) in the subcritical case s(γ) > 0, and in this case we have
QN ⇒ q with q(t) ∈ I for all t ≥ 0 and s ◦ q solution to ẋ = µx−a − s(γ).
Although we do not know how to solve this equation explicitly, it is readily seen
that, when s(γ) > 0, the solution to this ODE converges to β := (µ/s(γ))1/a
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XN (t) X(t)

XN (∞) X(∞)

N → ∞

t → ∞ t → ∞

?

N → ∞

Fig 1. Illustration of the interchange of limits argument: if XN
⇒N X and X(t) ⇒t X(∞),

then provided technical assumptions (typically, tightness of (XN (∞))) we have XN (∞) ⇒N

X(∞).

as t → ∞. At first, the interchange of limits of arguments seems therefore to
suggest that QN (∞) ⇒ β. The result being deterministic, this would be a rather
unusual heavy traffic result. However, we do not know whether this reasoning
applies because of the following argument.

If we start at QN (0) with s(QN(0)) → β, then QN ⇒ q with q a constant
function, which suggests to look at Q on a faster time scale than N1+a. Indeed,
it is thus conceivable that Q scaled differently converges to a non-constant,
possibly random, limit. More precisely, the fact that QN ⇒ q with q a constant
function opens the possibility that Q̃N ⇒ X with X a diffusion process, where

Q̃N(t) =
1

N
Q(N bt), t ≥ 0,

for some b > 1 + a. In this case, the interchange of limits would suggest that
QN(∞) ⇒ X(∞), provided X has a stationary distribution.

This argument is plausible because this is typically what happens when con-
sidering the near-critical case. For instance, a near-critical M/M/1 queue in the
fluid regime converges to a constant function, but in the diffusive scale it con-
verges to a positive recurrent Brownian motion. If one were only to consider the
fluid limit and naively apply the interchange of limits principle, one would be
led to conclude that the stationary distribution converges to a constant, which
is not the case. Thus, the asymptotic behavior of QN stationary distribution
constitutes in our view an intriguing open question.

8.4. Beyond a complete interference graph

What makes the case of a complete interference graph tractable is that all queues
are of the same order of magnitude and remain away from 0 at all times, i.e., all
coordinates are scaled by N and the limiting process q satisfies inft≥0 qv(t) > 0
for every v ∈ V . We believe that the techniques developed in the present paper
can be applied beyond the case of the complete interference graph as long as this
property holds. For instance, they should be applicable to a square interference
graph with four nodes 1, 2, 3, 4 and edges (1, 2), (2, 3), (3, 4) and (1, 4) and equal
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arrival rates λv = 1/4 at all nodes. Note that in this case, the stability condition
is max(λ1, λ3) + max(λ2, λ4) < 1 so all λ’s equal to 1/2 is indeed critical.

However, the fact that all queues remain positive at all times now depends
on the underlying interference graph and also on the arrival rates. If we take the
above square interference graph with λ1 = λ2 = λ3 = 1/2 but λ4 < 1/2, then
we believe that queue 4 will remain at 0. In this case, our techniques can no
longer apply, especially the localization arguments that need all queue lengths
to be bounded away from 0. We believe that in such cases, subtle behavior can
arise and calls for new ideas.

To give a flavor of the kind of possible new behavior, consider three nodes
on a line: the interference graph has three nodes 1, 2, 3 and two edges (1, 2) and
(2, 3). In this case, the ’outer’ nodes 1 and 3 compete against the ’middle’ node
2 to access the channel. The two maximal independent sets are {1, 3} and {2}
with respective weight, for the Glauber dynamics,

πq({1, 3}) =
(q1q3)a

1 + qa1 + qa2 + qa3 + (q1q3)a

and

πq({2}) =
qa2

1 + qa1 + qa2 + qa3 + (q1q3)a
.

In the critical and symmetric case λ1 = λ2 = λ3 = 1/2, we must have πq({1, 3}) =
πq({2}) = 1/2 in order for service to match arrivals, which imposes q1q3 = q2.
This relation imposes a constraint on the product q1q3 but not on the individual
queues q1 and q3. In particular, if q2 is of the order of N , then q1 and q3 will be
much smaller, say

√
N each. Different queues may thus live on different space

scales, which suggests the necessity for a multiscale analysis.
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