
HAL Id: hal-03203058
https://hal.science/hal-03203058

Submitted on 20 Apr 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SKInT Labels
Jean Goubault-Larrecq

To cite this version:
Jean Goubault-Larrecq. SKInT Labels. [Research Report] LSV-02-7, LSV, ENS Cachan. 2002. �hal-
03203058�

https://hal.science/hal-03203058
https://hal.archives-ouvertes.fr


J. GoubaultïLarrecq

SKInT Labels
Research Report LSVï02ï7, Jul. 2002

Ecole Normale Supérieure de Cachan 
61, avenue du Président Wilson
94235 Cachan Cedex France



http://www.lsv.ensïcachan.fr/Publis/
Research Report LSVï02ï7, Lab. Spécification et Vérification, CNRS & ENS de Cachan, France, Jul. 2002

SKInT Labels

Jean Goubault-Larrecq

LSV/CNRS UMR 8643, ENS Cachan
61, av. du président-Wilson

94235 Cachan Cedex, France

Abstract. SKIn and SKInT are first-order rewrite systems, i.e., calculi of explicit
substitutions in a broad sense, that implement -reduction in the -calculus and
are confluent even on open terms. SKInT additionally preserves strong and weak
normalization, as well as existence of head normal forms. However it implements
call-by-value more naturally than call-by-name. In this paper we investigate a no-
tion of labelling à la Hyland-Wadsworth-Lévy for SKInT. Unsurprisingly, this
allows us to reprove that SKInT is confluent. However, the structure of labels
is surprisingly more complex than in the -calculus, and we try to explain why.
Finally, we show that labeled SKInT reduction naturally implements a modified
form of labeled reduction in the call-by-value -calculus that generalizes superde-
velopments à la Aczel.

1 Introduction

Implementing the -calculus and, in general, functional languages has long been the
subject of research. One line of research, exemplified notably by calculi of explicit sub-
stitutions such as [1], is to find first-order rewrite systems, i.e., without binders
such as that create opportunities for bugs in implementations. While imple-
ments -reduction correctly, it is not terminating in the simply-typed case [12] and is
only confluent on so-called semi-closed terms [14]. The question of finding first-order
rewrite systems that implement -reduction correctly (if in the -calculus, then

in the given rewrite system, where is some fixed computable translation
of -terms into the rewrite system), are confluent on open terms, and preserve strong
normalization (if is strongly normalizing in the -calculus, then is strongly nor-
malizing in the rewrite system) has long been open. This was first solved independently
by Lang and David [6] and by Goguen and the author’s SKInT [7]. In particular, the
calculus SKInT is confluent on open terms, enjoys a standardization property, termi-
nates on simply-typed terms [7], and preserves strong and weak normalization, as well
as existence of head normal forms [8]. The only catch is that the standard translation
of -terms to SKInT terms does not map full, call-by-name -reduction to legal
reductions in SKInT. However if in Plotkin’s call-by-value -calculus [13],
then in SKInT, and this can be used to define an alternative, more complex
translation , obtained by composition with a translation which
maps call-by-name reduction to call-by-value reduction. This results in a conservative
embedding of call-by-name calculus inside SKInT. However, it can be rightly said that
this is a bit of cheating, and that SKInT naturally encodes, through the transla-
tion, something in between call-by-value and call-by-name -reduction.



It has been argued [5] that this intermediate notion of reduction might in fact be an
alternative definition of call-by-value, with better logical properties:

– SKInT reduction simulates, but is not Plotkin’s call-by-value reduction. While
SKInT implements call-by-value, it actually implements more. For instance,

reduces to in SKInT, while is normal in Plotkin’s
call-by-value -calculus. So the notion of reduction in SKInT is naturally strictly
in between Plotkin’s call-by-value and call-by-name reduction.

– SKInT has good logical properties. SKInT arises as a language of proof terms, via
the Curry-Howard isomorphism, for a natural logic. This logic, near-intuitionistic
logic, is characterized by Kripke frames where the accessibility relation is a pre-
order, just like intuitionistic logic, except the set of worlds where atomic formulas
hold are not restricted to be upper sets [7]. Alternatively, this can be seen as a
fragment of the modal logic S4, through the translation of (near-)intuitionistic im-
plication as , where is intuitionistic or classical implication.

Note that Plotkin’s call-by-value -calculus can be analyzed through Moggi’s meta-
language [4], which corresponds to intuitionistic lax logic. No first-order calculus im-
plementing Moggi’s meta-language is known.

We seek here to understand the notion of call-by-value reduction that SKInT offers
by finding and studying a satisfactory notion of labeled reduction, such as those intro-
duced in the -calculus by Hyland, Wadsworth and Lévy [9, 15, 11]. There are a number
of ways we can justify our choice of labels and our label calculus. We would have loved
to explain our labels as abstract representations of paths, as in [2]. However there are at
least two difficulties here. The first is that paths are a way of connecting principal ports
of operators to principal ports of applications, regardless of any call-by-value related
concern. The second—and this is more complicated to explain—is that we cannot talk
about paths in SKInT, rather we need to talk about (infinite) sequences of paths. This is
related to the fact that a SKInT term does not just have one translation as a -
term (see [7]), but as many translations , one for each
natural number [7]. This implies in particular that our labels will be infinite sequences
of Lévy labels.

Outline. We recapitulate what SKInT is, and how it relates to the -calculus, in Sec-
tion 2. Instead of introducing SKInT labels as notations for paths, we use the fact that
the correct notion of path should be the one of the -calculus, lifted to SKInT along
the standard translation (see [7]), and we reverse-
engineer -calculus labels to the sought after labels for SKInT. We explore this in
Section 3, and show that using Hyland-Wadsworth labels, where contracting redexes
consume finite resources, yield a terminating labeled variant of SKInT. This is as in
the -calculus. To be fair, we use a modified, infinitely -expanded version of the -
calculus with labels and an additional operator. We then produce a new proof of
the fact that SKInT is confluent in Section 4. Reverse-engineering SKInT labels into
call-by-value -calculus yields a slightly different notion of labels for the -calculus:
whereas Hyland-Wadsworth labels generalize the finite developments theorem, ours
generalize superdevelopments [10]. This is shown in Section 5. We conclude in Sec-
tion 6.

2



2 Preliminaries on SKInT

Recall that the syntax of the -calculus is [3]:

where ranges over an infinite set of so-called variables, and terms and that are
-equivalent are considered equal; we denote -terms by , , . . . , and variables by ,
, , etc. We shall write for -equivalence; in the first-order calculi to come, will

denote syntactic equality.
The basic computation rule is -reduction, the compatible closure of:

where denotes capture-avoiding substitution. The relation is the com-
patible closure of this relation, is the reflexive-transitive closure of the latter, and

is its transitive closure. We shall use , , ambiguously in other
calculi as well, taking care to make clear which is intended. Plotkin’s rule for
call-by-value -calculus [13] is restricted to the cases where is a value, that is, a
variable or a -abstraction.

The terms of SKInT, and of its companion calculus SKIn [7], on the other hand, are
defined by the grammar:

where ranges over . This is an infinitary first-order language. The reduction rules of
SKInT are shown in Figure 1, thus defining an infinite rewrite system. The semantical
idea behind SKInT, or SKIn, will be made clear by stating an informal translation from
SKInT (or SKIn) to the -calculus. Informally:

So , , generalize Curry’s combinators , and respectively.
SKIn is defined as SKInT, except that rule is replaced by :

; conversely, SKInT is as SKIn, except
that rule is restricted to the case .

We can split SKInT in two: the set of all rules , , corresponds somehow
to the actual -reduction rule of the -calculus, or more precisely to -reduction (the
notion of reduction of ), and we shall call this group of rules . All other rules
essentially correspond to the propagation of substitutions in the -calculus, and we call
the set of these rules . Similarly, is SKIn minus . It turns out that both and

are confluent, but terminates while only normalizes weakly (even in a typed
setting, see [7]).

The natural translation from the -calculus to SKInT, resp. SKIn, is , defined
in Figure 2. Whenever in the -calculus, in SKIn, but not in
SKInT. Still, in SKInT as soon as in Plotkin’s call-by-value

-calculus. We shall refine this observation in Section 5.

3



Fig. 1. SKInT reduction rules (for every )

Fig. 2. Translation from the -calculus to SKIn

3 Introducing SKInT labels

Recall the intuitive meaning of SKInT terms as -terms, e.g.,
. This can be made into a translation of SKInT to the -calculus. However,

doing this maps SKInT reductions to -reductions involving both and (see e.g.
Figure 2, Theorem 4.13, or Theorem 5.3 in [7]), and labeled reduction does not mix
well with -reduction. There is an easy way out: deal with infinitely -expanded terms
instead, e.g., .
We add a few gadgets like the infix binary operator (a technical device introduced in
[7], Theorem 4.13 to help in strong normalization proofs), and labels, which decorate

-abstraction and variables, to be introduced next.
Call a label structure any 4-tuple , where is a monoid.

Let denote any infinite sequence of pairwise distinct variables , , . . . ; similarly,
let denote any infinite sequence of (possibly identical) labels , , . . . Labeled
variables are pairs of a variable and a label. This is extended to infinite sequences

, defined by . The syntax of the -calculus is given by:

Terms
Bodies
Argument lists

where denotes the infinite sequence whose first element is , and whose remaining
elements are those of . Note that -abstractions bind infinitely many variables
at once, are decorated with a single label , and their bodies apply some head
term to some infinite argument list .

The rule below shows that behaves essentially like , so we might be
tempted by just writing instead of . In fact, doing so would also allow us to define

4



a label calculus for SKIn, too, but then termination of labeled reduction à la Hyland-
Wadsworth (Theorem 2 in the case of SKInT) would be lost. By the way, translations
using only work for SKInT, not for SKIn, so instead of dismissing as a technical
artifact, we take it seriously as an indication of what the specificities of call by value
should be.

Labels act on -terms on the right by:

(Acting on the right means that , and . This is easily
checked.)

This allows us to define a notion of substitution of infinitely many vari-
ables by infinitely many terms in the argument list in in a mostly obvious way:

(if for all ) (if for some )

where in the case, for all and no is free in , and where
is defined by . It is easy to check that is an argu-
ment list again. The -terms are defined up to infinite -equivalence, which allows
for the replacement of infinitely many bound variables by at once. This allows
us to make substitution total modulo . We shall always reason modulo infinite -
equivalence without saying so explicitly.

The top label of is defined by:

For each label , let be the infinite list of labels whose sole element is
. Define labeled reduction on the -calculus by the rules:

The important rule is . Note the similarity with Lévy labeled reduction
. The differences are that, first, infinitely many variables are

replaced by infinitely many terms in one step, and second and most importantly,
the labeling of the whole reduct by simply disappears. The reason is that redexes are
never created upwards in the -calculus: by syntactic restrictions, the right-hand side

is a body, and can therefore never be applied to any argument list.
A distinguishing feature of labeled reduction in the -calculus is that if labeled -

reduction is restricted to labels with at most nested underlinings, with fixed, then
every such -bounded labeled reduction terminates (local strong normalization [3]). We
shall prove this for in Section 3.2, and then for labeled SKInT in Section 3.3.

Now, provided we ignore labels, there is a translation of SKInT into that
preserves reduction; this is basically the translation of [7], Figure 8. This translation

5



is as follows, where we have not yet indicated labels. We take the convention that
associates on the right, so denotes
if , if . We also use the abbreviation for the sequence , and
similarly for :

(Let us stress that this is yet provisional; the real translation will be given in Figure 3.)
Let us now reverse-engineer labels for SKInT, so that labeled SKInT-reduction maps

to -reduction. The translation above gives a view of each SKInT term as a map
from an infinite sequence of -terms to some -term. Labels should allow

us to trace each element of through reductions in . This invites us to define
SKInT labels as infinite sequences of labels, one for each .

Let therefore be the set of all infinite sequences of labels in . Let
be the sequence of all labels , and be the sequence of all labels , .
This defines a new label structure . Given this, we would like to
define an action of on SKInT (or rather, labeled SKInT) terms mapping to

. The natural way to trace each through reductions in is by consider-
ing , where denotes the infinite sequence The ac-
tion should allow us to do this tracing job in SKInT, in other words
should be exactly the same as . This will be Lemma 2.

3.1 The Definition of SKInT Labels

It turns out that a simple way to do this is to add SKInT labels to free variables and to
the constants only. We therefore get the following modified syntax for labeled SKInT
terms:

Define the action of on labeled SKInT terms (on the left) by:

where:

This is indeed an action:

Lemma 1 (Action). For every labeled SKInT term , ; for every

, .

Proof. Easy structural induction on .

6



We can now formally define the translation, including all needed labels. This
requires has a right zero , i.e., for every . We can always adjoin
one freely to if there is none already in . See Figure 3. We take as an
abbreviation of ; single variables denote , and in argument lists stands for

.

Fig. 3. Translation of labeled SKInT terms to -terms

Lemma 2. For every labeled SKInT term , for every , for every argument
list , .

Proof. By structural induction on . If ,

.
If ,

.
If ,

(by induction hypothesis)
(by definition of )

(by induction hypothesis)
(by definition of ) .

If ,

(by induction hypothesis)
(by defini-

tion of )
.

7



Let us now reverse-engineer how labels should be handled in SKInT reduction. Let
us look at the -redex :

(1)

by . Now it is easy to see that the latter equals exactly

By Lemma 2, this is exactly , where denotes occurrences
of . The reduction rules of the labeled SKInT calculus follow by the same token. See
Figure 4.

Fig. 4. Labeled SKInT reduction rules (for every )

Lemma 3. If in the labeled SKInT calculus, then for every ,
in the -calculus. Moreover, if

by or .

Proof. This is similar to the proof of Theorem 4.13 in [7], so let us proceed quickly.
First, observe that if and differ only at position , and (resp. ),
then (resp. ) for every labeled SKInT term : this is by
structural induction on . (This is where the use of is crucial: it allows us to keep
in the term .) This allows us to prove the Lemma by induction on the depth
of the contracted redex in , and handles the inductive case. The only remaining cases
are the base cases, when itself is the contracted redex. The case of rule has
been dealt with above. The other rules are easy but boring computations.

3.2 Local Strong Normalization of

The purpose of this section is to show that by limiting nestings of underlinings
in -reduction to some fixed bound , all reductions terminate. Equivalently, let

8



be the label structure where with its natural ordering,
is , the unit is , and is defined by . Adjoin a zero: this is traditionally
written (to be consistent with common usage, then, we let ).

That is, we shall prove:
Theorem 1. Fix . On the labeled structure ,
every -reduction where in rule is finite.

First three lemmas that hold in any labeled structure, with the general or the re-
stricted rule.
Lemma 4. If are terms then .

Proof. Easy structural induction on . Observe that this works in the case of
because -redexes are not terms, but bodies.

Lemma 5. For every term , .

Lemma 6. If in , then either:

(i) for some body such that , or
(ii) for some , and with .

Proof. First observe that: (a) if then by a shorter
rewrite sequence. This is an easy induction on the length of the given rewrite: the given
rewrite cannot be empty, so consider the first redex. If the first reduction occurs in or
in , appeal to the induction hypothesis; if instead we reduce by , this is
clear; if and the first reduction is by , then by induction hypothesis
there is an even shorter rewrite from to , then from to by
induction hypothesis again.

Then: (b) if then for some such that . This is
by structural induction on . Indeed, if this is by at the top then
and , so take . The cases of at the top, or where reduction does
not occur at the top of terms are immediate.

Therefore: (c) if then for some such that .
We now prove the Lemma by induction on the length of the given reduction from

to . If then this is trivial; notice in particular that cannot be
of the form . So let . If is of the form , so by (a) with
and , rewrites to by a rewrite of length at most , whence
we conclude by induction. If is of the form (with the same , using infinite

-renaming), then since all rewrites in occur in the
body , in particular and (i) holds. If is of the form for some
variable , then first must be some , —otherwise cannot rewrite to

—and . By (c) with and , for
some such that ; in particular for some such that

, so (ii) holds.

We now imitate van Daalen’s proof of termination of the labeled -calculus [3]. Fix
, let be the reduction relation of restricted to the case in rule

. Let be the set of all terms, bodies, or argument lists that are -strongly
normalizing.

9



Lemma 7. For every body , for every argument list , is
in .

Proof. Let be the strict ordering on defined by iff and .
This is well-founded. Define . We prove the lemma by induc-
tion on the pair ordered in the lexicographic product of on and
on —so this ordering is again well-founded.

Write as . Notice that, because is of the form , rewrit-
ing in can only occur either at the top, or in finitely many subterms:

, , . . . , . So any infinite rewrite starting from
must eventually rewrite at the top by contracting a -redex. More

precisely, any infinite rewrite must rewrite to some term , each
to some term , , and then contract the -redex

to . Since the given rewrite is

infinite: (a) is not in . Also since the restricted
form of applies: (b) . By Lemma 6, either:

(i) and: (c) ; then
. Since

, and by (b), it obtains . So the in-

duction hypothesis applies: . Since rewrites
in at least one step to the latter body, i.e., the latter is less than in

, the induction hypothesis applies again, so

. But the latter is

(by Lemma 5)

. This is in

, and rewrites to (by (c),
and using together with Lemma 4), contradicting (a). Or:

(ii) for some , and with .
Observing that top labels of terms are preserved during reduction, ,
so . But then

. Since by (b), ,

so the induction hypothesis applies: is in ,
contradicting (a).

Since argument lists contain only finitely many terms that are not variables, by
induction terms contain only finitely many redexes. In particular the tree of all possible
rewrites from a given term is finitely-branching. By König’s Lemma, therefore, any
term in has a longest rewrite: let be its length.

10



Lemma 8. If and are in , then so is .

Proof. Easy induction on ordered in the lexicographic product of on
, the subterm ordering on terms, and on again. Notice that implies

. The only subtle case is when rewrites by at the top: then
. Since and , the induction hypothesis applies, therefore

. Since and , by the induction hypothesis again
.

Lemma 9. If is in , then is in .

Proof. By structural induction on the term , using Lemma 8 in case is headed by
.

Lemma 10. If is in and is in , then is in .

Proof. Otherwise there is an infinite rewrite starting from . Since and are in
and contains only finitely many non-variable entries, it must be that ,

and is not in . Since , , so by

Lemma 9 . Since , and therefore also is in , by Lemma 7
, a contradiction.

Theorem 1 follows: every term, body or argument list is in , by structural
induction on . If is a labeled variable, this is obvious; this is an easy appeal to the
induction hypothesis if is a labeled -abstraction; this is by Lemma 8 if is headed
by , and by Lemma 10 if is a body.

3.3 Local Strong Normalization for SKInT

The strong normalization result for lifts immediately to SKInT:

Theorem 2. Fix . On the labeled structure , every
SKInT-reduction where in rule is finite.

Proof. By Lemma 3 (in particular, see (1)) and Theorem 1.

Note that we do not need a zero (i.e., ) here: we only needed it to work out the
translation to the -calculus.

4 Confluence

Theorem 2 can be used, much as in then -calculus, to give an alternative proof of
confluence of SKInT. Confluence was proved by a method of parallel reductions in [7].

Lemma 11. The labeled SKInT-calculus is locally confluent.

11



Proof. The critical pairs are as for the unlabeled calculus. We show the two most im-
portant ones.

Between (i.e., ) and , : rewrites by
to , and by to

(by )

.
Between (i.e., ) and , : rewrites

by to , and by to

.

By Theorem 2, it follows that any subcalculus of labeled SKInT where the number
of underlinings is bounded by some constant is confluent. Now let be any (unla-
beled) SKInT term that reduces in steps to , in steps to . Decorate with labels

, yielding a labeled SKInT term . Then rewrites to terms and such that,
first, and are obtained by removing labels from and respectively; second, the
labels in and are at most . We can then rewrite both and to
some common term in labeled SKInT. Erase all labels, getting the unlabeled SKInT
term : then and . So SKInT is confluent.

The same argument shows:

Theorem 3. The labeled SKInT calculus is confluent.
The labeled SKInT calculus on the labeled structure with

rule restricted to , for fixed , is confluent and strongly normalizing.

5 Labels in the -Calculus and Superdevelopments

Let the labeled -terms be defined in the standard way:

The construction is now a term forming operation, not a meta-notation for an
action on -terms.

Extend the translation of Figure 2 to labeled -terms as follows:

Lemma 12. For every labeled SKInT term , .

Proof. Easy structural induction on .

12



Unlabeled SKInT has the property that , which
looks like saying that SKInT implements full call-by-name -reduction. However this
only implies that . The latter does
not always rewrite to , however it does so when is a value in the sense
of Plotkin. Similar properties hold here (define substitution in labeled SKInT so that

, , the other clauses being obvious; in particular
):

Lemma 13. For every labeled SKInT terms , ,
.

Proof. By structural induction on . If ,
. If for some other vari-

able , . The
other cases are straightforward.

Define a labeled version of -reduction by the rule:

where denotes if . Note again the difference with Hyland-
Wadsworth-Lévy labeled reduction: the outer label is not underlined. Note also that
Lemma 13 would suggest to drop the outer label entirely. This is deceiving: see the
proof of Theorem 4 to understand where the outer label comes from.

The rule of call-by-value -reduction in the sense of Plotkin is the restriction
of where is a value:

Lemma 14. If in labeled SKInT, then .

Proof. Straightforward structural induction on .

Corresponding to values, SKInT-values are SKInT terms containing no subterm of
the form .

Lemma 15. The following hold:

1. If is a value, then is a SKInT-value.
2. For every SKInT-value , for every variable not free in

and every .
3. For every distinct variables and , for every SKInT term and every SKInT-

value not containing free, .
4. For every term and value , for every variable not free in ,

.

13



Proof. Claims 1 and 2 are easy structural structural inductions on and respectively.
Claim 3 is by structural induction on . When is a variable , by assumption

, so . If , then this is
(by Claim 2) ; otherwise

. The other cases are straightforward.
Claim 4 is by structural induction on , using Claim 3 when is a -abstraction,

and Lemma 14 when is of the form .

Theorem 4. If by labeled , then in labeled SKInT.

Proof. By structural induction on . The only interesting case is when is it-
self the redex . Then, letting

, (by Lemma 12)

(by Lemma 13)

(by Lemma 15, Claim 4, and
Lemma 14) .

In particular:

Theorem 5. Fix . On the labeled structure , every
labeled reduction where in rule is finite.

Proof. By Theorem 2 and Theorem 4.

The case , in particular, yields a call-by-value form of notion of superdevelop-
ments, as introduced by Aczel in 1978 (see [10], Section 13.2), where not just residuals
of initial redexes can be contracted, but also all redexes created upwards.

We do not know whether Theorem 5 holds also for general, call-by-name -
reduction. Proof arguments such as given in [3], 14.1.10 and 14.1.11 in particular do not
go through with this relaxed notion of labeled reduction. Neither does the -translation
of [7] or any other translation that we know of from call-by-name to call-by-value seem
to help.

6 Conclusion

We have introduced a notion of labeled reduction for the SKInT-calculus, a first-order
calculus that implements call-by-value -reduction naturally. This notion is more com-
plex than in the -calculus, and is based on infinite lists of Lévy labels. This arises
naturally from a translation to an infinitely -expanded version of the -calculus, the

-calculus. While this may look like a trick, this should rather be taken as a way of
lifting a yet undefined notion of paths [2] in the -calculus to SKInT. The operator
of , which was originally a mere technical device, appears in this context as an es-
sential additional construct in defining call-by-value in path-based calculi. We plan to
explore this issue in the future.

SKInT labels also allow us to reprove that SKInT is confluent, which was somewhat
to be expected. However, Theorem 2 shows more: SKInT is locally strongly normalizing

14



(as the -calculus; we borrow the phrase from [3]), in the sense that any finite family
of finite SKInT rewrites can be embedded in a confluent and terminating subcalculus,
namely labeled SKInT where rule is restricted to , for some fixed .

Finally, we have shown that the labeled SKInT calculus implements correctly a
liberalized version of the standard rule of labeled reduction, only for Plotkin’s call-by-
value reduction. This liberalization allows one to copy labels on the outside of terms
without any underlining (without any consumption of resources), while still remaining
locally strongly normalizing.

From another perspective, this modified labeled reduction rule defines a liberal-
ized notion of redex family [11], where families are larger: redexes created upwards by
some -abstraction are put in the same family as all initial redexes having the same

-abstraction in functional position. We conjecture that sharing implementations of
SKInT should provide optimal implementations, in a sense close to Lévy: all redexes in
an extended family should be contracted at once.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. In Proceedings of
the 17th Annual ACM Symposium on Principles of Programming Languages, pages 31–46,
San Francisco, California, January 1990.

2. A. Asperti and C. Laneve. Paths, computations and labels in the -calculus. In RTA’93,
pages 152–167. Springer Verlag LNCS 690, 1993.

3. H. Barendregt. The Lambda Calculus, Its Syntax and Semantics, volume 103 of Studies in
Logic and the Foundations of Mathematics. North-Holland Publishing Company, Amster-
dam, 1984.

4. P. N. Benton, G. M. Bierman, and V. C. V. de Paiva. Computational types from a logical
perspective I. Journal of Functional Programming, 8(2):177–193, 1998.

5. V. Danos. Personal communication, 2001.
6. R. David and B. Guillaume. A -calculus with explicit weakening and explicit substitution.

MSCS, 11:169–206, 2001.
7. H. Goguen and J. Goubault-Larrecq. Sequent combinators: A Hilbert system for the lambda

calculus. MSCS, 10(1):1–79, 2000.
8. J. Goubault-Larrecq. Conjunctive types and SKInT. In Types’98, pages 106–120. Springer

Verlag LNCS 1657, 1999.
9. J. M. E. Hyland. A syntactic characterization of the equality in some models of the -

calculus. Journal of the London Mathematical Society, 12(2):361–370, 1976.
10. J. W. Klop, V. van Oostrom, and F. van Raamsdonk. Combinatory reduction systems: Intro-

duction and survey. TCS, 121(1–2):279–308, 1993.
11. J.-J. Lévy. Réductions correctes et optimales dans le lambda calcul. PhD thesis, Université

Paris 7, 1978.
12. P.-A. Melliès. Typed lambda-calculi with explicit substitutions may not terminate. In Pro-

ceedings of the CONFER workshop, München, April 1994.
13. G. Plotkin. Call-by-name, call-by-value and the -calculus. Theoretical Computer Science,

1(2):125–159, 1975.
14. A. Rı́os. Contributions à l’étude des lambda-calculs avec substitutions explicites. PhD

thesis, École Normale Supérieure, December 1993.
15. C. P. Wadsworth. The relation between computational and denotation properties for Scott’s

-models of the lambda-calculus. SIAM Journal of Computing, 5:488–521, 1976.

15


