Jean Goubault-Larrecq

SKInT Labels

SKIn and SKInT are first-order rewrite systems, i.e., calculi of explicit substitutions in a broad sense, that implement -reduction in the -calculus and are confluent even on open terms. SKInT additionally preserves strong and weak normalization, as well as existence of head normal forms. However it implements call-by-value more naturally than call-by-name. In this paper we investigate a notion of labelling à la Hyland-Wadsworth-Lévy for SKInT. Unsurprisingly, this allows us to reprove that SKInT is confluent. However, the structure of labels is surprisingly more complex than in the -calculus, and we try to explain why. Finally, we show that labeled SKInT reduction naturally implements a modified form of labeled reduction in the call-by-value -calculus that generalizes superdevelopments à la Aczel.

Introduction

Implementing the -calculus and, in general, functional languages has long been the subject of research. One line of research, exemplified notably by calculi of explicit substitutions such as [START_REF] Abadi | Explicit substitutions[END_REF], is to find first-order rewrite systems, i.e., without binders such as that create opportunities for bugs in implementations. While implements -reduction correctly, it is not terminating in the simply-typed case [START_REF] Melliès | Typed lambda-calculi with explicit substitutions may not terminate[END_REF] and is only confluent on so-called semi-closed terms [START_REF] Ríos | Contributions à l'étude des lambda-calculs avec substitutions explicites[END_REF]. The question of finding first-order rewrite systems that implement -reduction correctly (if in the -calculus, then in the given rewrite system, where is some fixed computable translation of -terms into the rewrite system), are confluent on open terms, and preserve strong normalization (if is strongly normalizing in the -calculus, then is strongly normalizing in the rewrite system) has long been open. This was first solved independently by Lang and David [START_REF] David | A -calculus with explicit weakening and explicit substitution[END_REF] and by Goguen and the author's SKInT [START_REF] Goguen | Sequent combinators: A Hilbert system for the lambda calculus[END_REF]. In particular, the calculus SKInT is confluent on open terms, enjoys a standardization property, terminates on simply-typed terms [START_REF] Goguen | Sequent combinators: A Hilbert system for the lambda calculus[END_REF], and preserves strong and weak normalization, as well as existence of head normal forms [START_REF] Goubault-Larrecq | Conjunctive types and SKInT[END_REF]. The only catch is that the standard translation of -terms to SKInT terms does not map full, call-by-name -reduction to legal reductions in SKInT. However if in Plotkin's call-by-value -calculus [START_REF] Plotkin | Call-by-name, call-by-value and the -calculus[END_REF], then in SKInT, and this can be used to define an alternative, more complex translation , obtained by composition with a translation which maps call-by-name reduction to call-by-value reduction. This results in a conservative embedding of call-by-name calculus inside SKInT. However, it can be rightly said that this is a bit of cheating, and that SKInT naturally encodes, through the translation, something in between call-by-value and call-by-name -reduction.

It has been argued [5] that this intermediate notion of reduction might in fact be an alternative definition of call-by-value, with better logical properties:

-SKInT reduction simulates, but is not Plotkin's call-by-value reduction. While SKInT implements call-by-value, it actually implements more. For instance, reduces to in SKInT, while is normal in Plotkin's call-by-value -calculus. So the notion of reduction in SKInT is naturally strictly in between Plotkin's call-by-value and call-by-name reduction.

-SKInT has good logical properties. SKInT arises as a language of proof terms, via the Curry-Howard isomorphism, for a natural logic. This logic, near-intuitionistic logic, is characterized by Kripke frames where the accessibility relation is a preorder, just like intuitionistic logic, except the set of worlds where atomic formulas hold are not restricted to be upper sets [START_REF] Goguen | Sequent combinators: A Hilbert system for the lambda calculus[END_REF]. Alternatively, this can be seen as a fragment of the modal logic S4, through the translation of (near-)intuitionistic implication as , where is intuitionistic or classical implication.

Note that Plotkin's call-by-value -calculus can be analyzed through Moggi's metalanguage [START_REF] Benton | Computational types from a logical perspective I[END_REF], which corresponds to intuitionistic lax logic. No first-order calculus implementing Moggi's meta-language is known.

We seek here to understand the notion of call-by-value reduction that SKInT offers by finding and studying a satisfactory notion of labeled reduction, such as those introduced in the -calculus by Hyland, Wadsworth and Lévy [START_REF] Hyland | A syntactic characterization of the equality in some models of thecalculus[END_REF][START_REF] Wadsworth | The relation between computational and denotation properties for Scott's -models of the lambda-calculus[END_REF][START_REF] Lévy | Réductions correctes et optimales dans le lambda calcul[END_REF]. There are a number of ways we can justify our choice of labels and our label calculus. We would have loved to explain our labels as abstract representations of paths, as in [START_REF] Asperti | Paths, computations and labels in the -calculus[END_REF]. However there are at least two difficulties here. The first is that paths are a way of connecting principal ports of operators to principal ports of applications, regardless of any call-by-value related concern. The second-and this is more complicated to explain-is that we cannot talk about paths in SKInT, rather we need to talk about (infinite) sequences of paths. This is related to the fact that a SKInT term does not just have one translation as aterm (see [START_REF] Goguen | Sequent combinators: A Hilbert system for the lambda calculus[END_REF]), but as many translations , one for each natural number [START_REF] Goguen | Sequent combinators: A Hilbert system for the lambda calculus[END_REF]. This implies in particular that our labels will be infinite sequences of Lévy labels.

Outline.

We recapitulate what SKInT is, and how it relates to the -calculus, in Section 2. Instead of introducing SKInT labels as notations for paths, we use the fact that the correct notion of path should be the one of the -calculus, lifted to SKInT along the standard translation (see [START_REF] Goguen | Sequent combinators: A Hilbert system for the lambda calculus[END_REF]), and we reverseengineer -calculus labels to the sought after labels for SKInT. We explore this in Section 3, and show that using Hyland-Wadsworth labels, where contracting redexes consume finite resources, yield a terminating labeled variant of SKInT. This is as in the -calculus. To be fair, we use a modified, infinitely -expanded version of thecalculus with labels and an additional operator. We then produce a new proof of the fact that SKInT is confluent in Section 4. Reverse-engineering SKInT labels into call-by-value -calculus yields a slightly different notion of labels for the -calculus: whereas Hyland-Wadsworth labels generalize the finite developments theorem, ours generalize superdevelopments [START_REF] Klop | Combinatory reduction systems: Introduction and survey[END_REF]. This is shown in Section 5. We conclude in Section 6.

Preliminaries on SKInT

Recall that the syntax of the -calculus is [START_REF] Barendregt | The Lambda Calculus, Its Syntax and Semantics[END_REF]:

where ranges over an infinite set of so-called variables, and terms and that are -equivalent are considered equal; we denote -terms by , , . . . , and variables by , , , etc. We shall write for -equivalence; in the first-order calculi to come, will denote syntactic equality.

The basic computation rule is -reduction, the compatible closure of:

where denotes capture-avoiding substitution. The relation is the compatible closure of this relation, is the reflexive-transitive closure of the latter, and is its transitive closure. We shall use , , ambiguously in other calculi as well, taking care to make clear which is intended. Plotkin's rule for call-by-value -calculus [START_REF] Plotkin | Call-by-name, call-by-value and the -calculus[END_REF] is restricted to the cases where is a value, that is, a variable or a -abstraction.

The terms of SKInT, and of its companion calculus SKIn [START_REF] Goguen | Sequent combinators: A Hilbert system for the lambda calculus[END_REF], on the other hand, are defined by the grammar: where ranges over . This is an infinitary first-order language. The reduction rules of SKInT are shown in Figure 1, thus defining an infinite rewrite system. The semantical idea behind SKInT, or SKIn, will be made clear by stating an informal translation from SKInT (or SKIn) to the -calculus. Informally: So , , generalize Curry's combinators , and respectively. SKIn is defined as SKInT, except that rule is replaced by : ; conversely, SKInT is as SKIn, except that rule is restricted to the case . We can split SKInT in two: the set of all rules , , corresponds somehow to the actual -reduction rule of the -calculus, or more precisely to -reduction (the notion of reduction of), and we shall call this group of rules . All other rules essentially correspond to the propagation of substitutions in the -calculus, and we call the set of these rules . Similarly, is SKIn minus . It turns out that both and are confluent, but terminates while only normalizes weakly (even in a typed setting, see [START_REF] Goguen | Sequent combinators: A Hilbert system for the lambda calculus[END_REF]).

The natural translation from the -calculus to SKInT, resp. SKIn, is , defined in Figure 2. Whenever in the -calculus, in SKIn, but not in SKInT. Still, in SKInT as soon as in Plotkin's call-by-value -calculus. We shall refine this observation in Section 5.

Introducing SKInT labels

Recall the intuitive meaning of SKInT terms as -terms, e.g., . This can be made into a translation of SKInT to the -calculus. However, doing this maps SKInT reductions to -reductions involving both and (see e.g. Figure 2, Theorem 4.13, or Theorem 5.3 in [START_REF] Goguen | Sequent combinators: A Hilbert system for the lambda calculus[END_REF]), and labeled reduction does not mix well with -reduction. There is an easy way out: deal with infinitely -expanded terms instead, e.g., . We add a few gadgets like the infix binary operator (a technical device introduced in [START_REF] Goguen | Sequent combinators: A Hilbert system for the lambda calculus[END_REF], Theorem 4.13 to help in strong normalization proofs), and labels, which decorate -abstraction and variables, to be introduced next. Call a label structure any 4-tuple , where is a monoid. Let denote any infinite sequence of pairwise distinct variables , , . . . ; similarly, let denote any infinite sequence of (possibly identical) labels , , . . . Labeled variables are pairs of a variable and a label. This is extended to infinite sequences , defined by . The syntax of the -calculus is given by: Terms Bodies Argument lists where denotes the infinite sequence whose first element is , and whose remaining elements are those of . Note that -abstractions bind infinitely many variables at once, are decorated with a single label , and their bodies apply some head term to some infinite argument list .

The rule below shows that behaves essentially like , so we might be tempted by just writing instead of . In fact, doing so would also allow us to define a label calculus for SKIn, too, but then termination of labeled reduction à la Hyland-Wadsworth (Theorem 2 in the case of SKInT) would be lost. By the way, translations using only work for SKInT, not for SKIn, so instead of dismissing as a technical artifact, we take it seriously as an indication of what the specificities of call by value should be. Labels act on -terms on the right by:

(Acting on the right means that , and . This is easily checked.)

This allows us to define a notion of substitution of infinitely many variables by infinitely many terms in the argument list in in a mostly obvious way:

(if for all) (if for some)
where in the case, for all and no is free in , and where is defined by . It is easy to check that is an argument list again. The -terms are defined up to infinite -equivalence, which allows for the replacement of infinitely many bound variables by at once. This allows us to make substitution total modulo . We shall always reason modulo infiniteequivalence without saying so explicitly.

The top label of is defined by: For each label , let be the infinite list of labels whose sole element is . Define labeled reduction on the -calculus by the rules:

The important rule is . Note the similarity with Lévy labeled reduction . The differences are that, first, infinitely many variables are replaced by infinitely many terms in one step, and second and most importantly, the labeling of the whole reduct by simply disappears. The reason is that redexes are never created upwards in the -calculus: by syntactic restrictions, the right-hand side is a body, and can therefore never be applied to any argument list. A distinguishing feature of labeled reduction in the -calculus is that if labeledreduction is restricted to labels with at most nested underlinings, with fixed, then every such -bounded labeled reduction terminates (local strong normalization [START_REF] Barendregt | The Lambda Calculus, Its Syntax and Semantics[END_REF]). We shall prove this for in Section 3.2, and then for labeled SKInT in Section 3.3. Now, provided we ignore labels, there is a translation of SKInT into that preserves reduction; this is basically the translation of [START_REF] Goguen | Sequent combinators: A Hilbert system for the lambda calculus[END_REF], Figure 8. This translation is as follows, where we have not yet indicated labels. We take the convention that associates on the right, so denotes if , if . We also use the abbreviation for the sequence , and similarly for :

(Let us stress that this is yet provisional; the real translation will be given in Figure 3.) Let us now reverse-engineer labels for SKInT, so that labeled SKInT-reduction maps to -reduction. The translation above gives a view of each SKInT term as a map from an infinite sequence of -terms to some -term. Labels should allow us to trace each element of through reductions in . This invites us to define SKInT labels as infinite sequences of labels, one for each . Let therefore be the set of all infinite sequences of labels in . Let be the sequence of all labels , and be the sequence of all labels , . This defines a new label structure . Given this, we would like to define an action of on SKInT (or rather, labeled SKInT) terms mapping to . The natural way to trace each through reductions in is by considering , where denotes the infinite sequence The action should allow us to do this tracing job in SKInT, in other words should be exactly the same as . This will be Lemma 2.

The Definition of SKInT Labels

It turns out that a simple way to do this is to add SKInT labels to free variables and to the constants only. We therefore get the following modified syntax for labeled SKInT terms:

Define the action of on labeled SKInT terms (on the left) by: where:

This is indeed an action:

Lemma 1 (Action). For every labeled SKInT term , ; for every , .

Proof. Easy structural induction on .

We can now formally define the translation, including all needed labels. This requires has a right zero , i.e., for every . We can always adjoin one freely to if there is none already in . See Figure 3. We take as an abbreviation of ; single variables denote , and in argument lists stands for . Lemma 2. For every labeled SKInT term , for every , for every argument list , .

Proof. By structural induction on .

(by induction hypothesis) (by definition of) .

If , (by induction hypothesis) (by definition of) .

Let us now reverse-engineer how labels should be handled in SKInT reduction. Let us look at the -redex :

(

by . Now it is easy to see that the latter equals exactly By Lemma 2, this is exactly , where denotes occurrences of . The reduction rules of the labeled SKInT calculus follow by the same token. See Figure 4. Proof. This is similar to the proof of Theorem 4.13 in [START_REF] Goguen | Sequent combinators: A Hilbert system for the lambda calculus[END_REF], so let us proceed quickly. First, observe that if and differ only at position , and (

) for every labeled SKInT term : this is by structural induction on . (This is where the use of is crucial: it allows us to keep in the term .) This allows us to prove the Lemma by induction on the depth of the contracted redex in , and handles the inductive case. The only remaining cases are the base cases, when itself is the contracted redex. The case of rule has been dealt with above. The other rules are easy but boring computations.

Local Strong Normalization of

The purpose of this section is to show that by limiting nestings of underlinings in -reduction to some fixed bound , all reductions terminate. Equivalently, let be the label structure where with its natural ordering, is , the unit is , and is defined by . Adjoin a zero: this is traditionally written (to be consistent with common usage, then, we let). That is, we shall prove: Theorem 1. Fix . On the labeled structure , every -reduction where in rule is finite.

First three lemmas that hold in any labeled structure, with the general or the restricted rule.

Lemma 4. If are terms then .

Proof. Easy structural induction on . Observe that this works in the case of because -redexes are not terms, but bodies.

Lemma 5. For every term , .

Lemma 6. If in , then either:

(i)
for some body such that , or (ii)

for some , and with .

Proof. First observe that: (a) if then by a shorter rewrite sequence. This is an easy induction on the length of the given rewrite: the given rewrite cannot be empty, so consider the first redex. If the first reduction occurs in or in , appeal to the induction hypothesis; if instead we reduce by , this is clear; if and the first reduction is by , then by induction hypothesis there is an even shorter rewrite from to , then from to by induction hypothesis again.

Then: (b) if then for some such that . This is by structural induction on . Indeed, if this is by at the top then and , so take . The cases of at the top, or where reduction does not occur at the top of terms are immediate.

Therefore: (c) if then for some such that . We now prove the Lemma by induction on the length of the given reduction from to . If then this is trivial; notice in particular that cannot be of the form . So let . If is of the form , so by (a) with and , rewrites to by a rewrite of length at most , whence we conclude by induction. If is of the form (with the same , using infinite -renaming), then since all rewrites in occur in the body , in particular and (i) holds. If is of the form for some variable , then first must be some , -otherwise cannot rewrite to -and

. By (c) with and , for some such that ; in particular for some such that , so (ii) holds.

We now imitate van Daalen's proof of termination of the labeled -calculus [START_REF] Barendregt | The Lambda Calculus, Its Syntax and Semantics[END_REF] . Since rewrites in at least one step to the latter body, i.e., the latter is less than in , the induction hypothesis applies again, so . But the latter is (by Lemma 5) . This is in , rewrites to (by (c), and using together with Lemma 4), contradicting (a). Or:

(ii)
for some , and with . Observing that top labels of terms are preserved during reduction, , so . But then . Since by (b), , so the induction hypothesis applies: is in , contradicting (a).

Since argument lists contain only finitely many terms that are not variables, by induction terms contain only finitely many redexes. In particular the tree of all possible rewrites from a given term is finitely-branching. By König's Lemma, therefore, any term in has a longest rewrite: let be its length.

(as the -calculus; we borrow the phrase from [START_REF] Barendregt | The Lambda Calculus, Its Syntax and Semantics[END_REF]), in the sense that any finite family of finite SKInT rewrites can be embedded in a confluent and terminating subcalculus, namely labeled SKInT where rule is restricted to , for some fixed . Finally, we have shown that the labeled SKInT calculus implements correctly a liberalized version of the standard rule of labeled reduction, only for Plotkin's call-byvalue reduction. This liberalization allows one to copy labels on the outside of terms without any underlining (without any consumption of resources), while still remaining locally strongly normalizing.

From another perspective, this modified labeled reduction rule defines a liberalized notion of redex family [START_REF] Lévy | Réductions correctes et optimales dans le lambda calcul[END_REF], where families are larger: redexes created upwards by some -abstraction are put in the same family as all initial redexes having the same -abstraction in functional position. We conjecture that sharing implementations of SKInT should provide optimal implementations, in a sense close to Lévy: all redexes in an extended family should be contracted at once.

Fig. 1 .Fig. 2 .

 12 Fig. 1. SKInT reduction rules (for every

Fig. 3 .

 3 Fig. 3. Translation of labeled SKInT terms to -terms

Fig. 4 .Lemma 3 .

 43 Fig. 4. Labeled SKInT reduction rules (for every)

Lemma 8. If and are in

, then so is .

Proof. Easy induction on ordered in the lexicographic product of on , the subterm ordering on terms, and on again. Notice that implies . The only subtle case is when rewrites by at the top: then . Since and , the induction hypothesis applies, therefore . Since and , by the induction hypothesis again .

Lemma 9. If is in

, then is in .

Proof. By structural induction on the term , using Lemma 8 in case is headed by .

Lemma 10. If is in and is in , then is in .

Proof. Otherwise there is an infinite rewrite starting from . Since and are in and contains only finitely many non-variable entries, it must be that , and is not in . Since , , so by Lemma 9

. Since , and therefore also is , by Lemma 7

, a contradiction.

Theorem 1 follows: every term, body or argument list is in , by structural induction on . If is a labeled variable, this is obvious; this is an easy appeal to the induction hypothesis if is a labeled -abstraction; this is by Lemma 8 if is headed by , and by Lemma 10 if is a body.

Local Strong Normalization for SKInT

The strong normalization result for lifts immediately to SKInT:

Theorem 2. Fix . On the labeled structure , every SKInT-reduction where in rule is finite.

Proof. By Lemma 3 (in particular, see [START_REF] Abadi | Explicit substitutions[END_REF]) and Theorem 1.

Note that we do not need a zero (i.e.,) here: we only needed it to work out the translation to the -calculus.

Confluence

Theorem 2 can be used, much as in then -calculus, to give an alternative proof of confluence of SKInT. Confluence was proved by a method of parallel reductions in [START_REF] Goguen | Sequent combinators: A Hilbert system for the lambda calculus[END_REF].

Labels in the -Calculus and Superdevelopments

Let the labeled -terms be defined in the standard way:

The construction is now a term forming operation, not a meta-notation for an action on -terms.

Extend the translation of Figure 2 to labeled -terms as follows:

Lemma 12. For every labeled SKInT term , .

Proof. Easy structural induction on .

Unlabeled SKInT has the property that , which looks like saying that SKInT implements full call-by-name -reduction. However this only implies that . The latter does not always rewrite to , however it does so when is a value in the sense of Plotkin. Similar properties hold here (define substitution in labeled SKInT so that , , the other clauses being obvious; in particular): ; otherwise . The other cases are straightforward. Claim 4 is by structural induction on , using Claim 3 when is a -abstraction, and Lemma 14 when is of the form . Proof. By structural induction on . The only interesting case is when is itself the redex . Then, letting , (by Lemma 12) (by Lemma 13) (by Lemma 15, Claim 4, and Lemma 14) .

In particular:

Theorem 5. Fix . On the labeled structure , every labeled reduction where in rule is finite.

Proof. By Theorem 2 and Theorem 4.

The case , in particular, yields a call-by-value form of notion of superdevelopments, as introduced by Aczel in 1978 (see [START_REF] Klop | Combinatory reduction systems: Introduction and survey[END_REF], Section 13.2), where not just residuals of initial redexes can be contracted, but also all redexes created upwards.

We do not know whether Theorem 5 holds also for general, call-by-namereduction. Proof arguments such as given in [START_REF] Barendregt | The Lambda Calculus, Its Syntax and Semantics[END_REF], 14.1.10 and 14.1.11 in particular do not go through with this relaxed notion of labeled reduction. Neither does the -translation of [START_REF] Goguen | Sequent combinators: A Hilbert system for the lambda calculus[END_REF] or any other translation that we know of from call-by-name to call-by-value seem to help.

Conclusion

We have introduced a notion of labeled reduction for the SKInT-calculus, a first-order calculus that implements call-by-value -reduction naturally. This notion is more complex than in the -calculus, and is based on infinite lists of Lévy labels. This arises naturally from a translation to an infinitely -expanded version of the -calculus, the -calculus. While this may look like a trick, this should rather be taken as a way of lifting a yet undefined notion of paths [START_REF] Asperti | Paths, computations and labels in the -calculus[END_REF] in the -calculus to SKInT. The operator of , which was originally a mere technical device, appears in this context as an essential additional construct in defining call-by-value in path-based calculi. We plan to explore this issue in the future.

SKInT labels also allow us to reprove that SKInT is confluent, which was somewhat to be expected. However, Theorem 2 shows more: SKInT is locally strongly normalizing