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Abstract. We explore the notion of alternating two-way tree automata modulo
the theory of finitely many associative-commutative (AC) symbols, some of them
with a unit (AC1). This was prompted by questions arising in cryptographic
protocol verification, in particular in modeling group key agreement schemes
based on Diffie-Hellman-like functions, where the emptiness question for inter-
sections of such automata is fundamental. We show that the use of conditional
push clauses, or of alternation, leads to undecidability, already in the case of one
AC or AC1 symbol, with only functions of arity zero. On the other hand, empti-
ness is decidable in the general case of many function symbols, including many
AC or AC1 symbols, provided push clauses are unconditional and intersection
clauses are final. To this end, extensive use of refinements of resolution is made.

1 Introduction

Automata and in particular tree automata are ubiquitous in verification [9]. One particu-
lar area where they, or extensions thereof, have proved useful is cryptographic protocol
verification [33, 19, 22, 8], where they are used to represent inter alia the infinite sets of
messages that a malicious Dolev-Yao intruder [13] may build by repeatedly decrypting
and encrypting from past traffic. (We give a more detailed example of this later.) For
now, let us say that messages in such models are represented as first-order terms (a.k.a.,
trees): if and are messages, then the term denotes the result of encrypting

with key . The equational theory of first-order terms is adequate for representing
ideal cryptographic primitives, where only if and

and where for any , in particular.
It is sometimes interesting to have a richer set of cryptographic primitives that obey

additional algebraic laws. For example, it has been proposed [21] to use so-called com-
mutative hash functions to implement dynamic authenticated dictionaries. Simply put,
commutative hash functions are binary functions that are associative and commutative
(AC), such that anybody can build from and , but noone can infer either

or from only. Another example comes from Diffie-Hellman key agree-
ment [12], where principal chooses a secret and sends to (where is
a unary function symbol denoting some way of encapsulating the secret), chooses
another secret and sends to , and both compute as their com-
mon key. It is required that any participant, whether honest or dishonest, can compute
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from , and from and , but no more. Concretely,
is implemented as for well-chosen numbers and , and as multipli-
cation: to get from , just raise the
latter to mod . Note that has to be commutative for this to succeed. In general,
extensions of this scheme to the important group key agreement problem, where a group
of principals has to agree on a common key, unavailable to external eavesdroppers, and
not created by any single principal in the group, as in the CLIQUES protocol suite [41],
require to be both associative and commutative; multiplication mod certainly is.

If we are to extend the tree-automata based approaches to cryptographic protocol
verification to such AC operators, we need suitably modified notions of automata rec-
ognizing terms modulo the theory of associativity and commutativity of : this is the
topic of this paper. In addition, we shall see in Section 3 that cryptographic protocols
are better represented through two-way tree automata, where transitions can not only
construct but also destruct terms. We shall also see that the main security questions
reduce to deciding emptiness of (intersections of) such automata.

Independently of cryptographic protocols, two-way automata modulo equational
theories are interesting per se; the cases A and AC1 (AC with unit element)
occur often, see below. We shall also investigate the alternating variants, as well as the
cases with several AC or AC1 symbols, which are natural extensions.

Our import is a classification of alternating, two-way AC-tree automata, relative
to the decidability of the emptiness, and in general the intersection-emptiness ques-
tion: given finitely many alternating two-way AC-automata, is the intersection of their
languages empty? We shall see that emptiness of alternating, two-way AC-automata is
undecidable in general, but intersection-emptiness of two-way AC-automata with no al-
ternation and only so-called standard push clauses is decidable. The decision algorithm
is highly non-trivial, and rests partly on proof-theoretic tools.

The paper is organized as follows. In Section 2, we introduce a general clausal for-
mat for equational, alternating, two-way automata, possibly with equality constraints
between brothers, and even a form of set constraints. Then, ordered resolution with
splitting provides a streamlined decision procedure for the emptiness of such automata
and the satisfiability of set constraints, in the non-equational case. This must have been
known to a number of researchers, but we are not aware of this result in print. The rest of
the paper deals with automata modulo AC, i.e., modulo the theory of finitely many AC
symbols. We illustrate the relevance of this theory to the verification of cryptographic
protocols in Section 3, using the example of group key agreement. This does not use
alternation: this is fortunate, as emptiness is undecidable in the presence of alterna-
tion (Section 4), even with constant-only signatures, and just one AC symbol . We
show that the constant-only cases not covered by the results of Section 4 have decid-
able intersection-emptiness problems in Section 5; in fact, the resulting AC-automata
recognize exactly the semi-linear sets. Leaving the constant-only case, we show that
the intersection-emptiness of AC-automata on several free, AC and AC1 symbols is
decidable in Section 6, provided the equational push clauses are non-conditional. In
particular, this covers the case of the group key agreement example of Section 3.

Related Work. There is much literature on finite tree automata [9, 17]. Apart from the al-
ready cited use in cryptographic protocol verification, applications include approximat-
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ing reachability sets for rewrite systems [18], disunification and inductive reducibility
[30], unification under constraints [26], ground reducibility [10], automated inductive
theorem proving [5], fast tree matching [28], automated model building in first-order
logic [37], etc. These applications deal with automata on finite trees. We won’t deal
with automata on infinite trees [42], which are also fundamental, e.g. in temporal and
program logics [14].

Two-way automata, a.k.a. pushdown processes, where transitions may not only con-
struct but also destruct terms, are also classical. The relation with certain Horn sets was
pioneered in [16], and refined in e.g., [7]. Cartesian approximation is the key to define
upper approximations of various sets of ground atoms, e.g., success sets. This can be
adapted to the AC case, yielding formulae in the decidable class of Section 6; for lack of
space, details are left to the reader. Do not confuse pushdown processes with pushdown
automata [39], which recognize the strictly larger class of context-free tree languages.

The idea of generalizing tree automata to recognize languages of terms modulo
an equational theory is then natural, and a canonical choice of theory is that of one
associative-commutative (AC) symbol . This has been explored a number of times,
e.g., [11, 34, 29, 35]. While not all notions of AC-automata coincide, there is always
a common core. For example, the automata of [29] have additional sort restrictions,
but are also extended with a rich constraints language; if we forget about the lat-
ter, and dismiss the sort restrictions, we get exactly the languages recognized by the
non-alternating, non-two-way subclass of our automata. This subclass also coincides
with the regular AC-automata of [35]. In general, it is easy to check that in the non-
alternating, non-two-way case, our automata modulo are exactly the -closures of
the languages recognized by the same automaton modulo the empty theory; this is not
the case in [35], except for regular -automata on a linear theory . The paper [29]
establishes the standard properties of closure under intersection, union, complementa-
tion, and projection of the languages considered therein. For our two-way AC-automata,
we only establish these closure properties in the constant-only subcase. In the general
case, only the case of unions is trivial, and we concentrate on the difficult intersection-
emptiness problem, leaving closure properties to future work.

As a final note, we shall make extensive use of resolution theorem proving tech-
niques. A comprehensive reference is the handbook [38]. Using resolution techniques
to decide subclasses of first-order logic formulas was pioneered by Joyner [25], and
earlier by Maslov, see [15]. Standard refinements of resolution used in this area are hy-
perresolution and ordered refinements. Note that our decision algorithm of Section 6 is
not based on resolution only. In this respect, this work is similar to early work such as
[27], where resolution plus a number of other rules are used to decide the Gödel class.

Acknowledgments Thanks to H. Comon and L. Fribourg for many stimulating discus-
sions, to A. Finkel, S. Lasota, and to the anonymous referees at LICS and CSL for
helpful comments.

2 Alternating Two-Way -Automata

Fix a signature of function symbols, each coming with a fixed arity, and let be
an equational theory. Unless told otherwise, in this paper we assume that contains
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finitely many binary symbols , . . . , and is the theory stating that every ,
, is associative and commutative (AC). A trivial case is when is the empty

theory; in this case we shall retrieve the standard notion of alternating two-way tree
automata. We shall also be interested in the case where some symbols also have a
unit ; we say that is an AC1 symbol, then.

A (non-deterministic) -tree automaton
is a finite set of clauses of the form: (1)

where is an implication “ and . . . imply ”. Clauses (1) are
called pop clauses, or ordinary tree automata transitions. Intuitively, this reads as “if
is recognized at state , and . . . , and is recognized at state , then is
recognized at state ”. For a more detailed discussion why this really encodes automata,
see e.g. [23].Here we shall always assume that the variables , . . . , are distinct;
otherwise we get tree automata with equality constraints between brothers [4], which
pose no problem in the non-equational case but would definitely in the AC case.
An alternating -tree automaton in addi-
tion has intersection clauses of the form: (2)
When , this is called an -clause.
A two-way automaton may also include so-
called push clauses of the form:

(3)

where , . This intuitively means “if is
recognized at , and at , and . . . and at , then is recognized at ”. If

, call this a standard push clause; if , call this a conditional push clause.
People familiar with classical automata theory tend to be puzzled by this definition

of automata, and in particular by the fact that no definition of a run of a term against an
automaton is given; we invite the puzzled reader to check that positive hyper-resolution
derivations [6] (which are also unit derivations in the case of Horn clauses) are ex-
actly bottom-up runs [17]: for every ground term , the positive hyper-resolution
derivations of the unit clause are exactly the runs of that abut to state , against
the given tree automaton, considered bottom-up. On the other hand, negative hyper-
resolution derivations are exactly the top-down runs. The theory of resolution theorem
proving enables us to replace any complete deduction procedure (positive, negative
hyper-resolution) by any other complete procedure; it seems that ordered resolution is
the most powerful refinement of resolution in many practical cases.

A Tarskian interpretationmodulo is a tuple
where the domain of is a non-empty set, for every -ary function symbol , is
a function from to , and for every (unary) predicate symbol , is a subset of

. The interpretation of a term in an environment mapping variables to elements
of is , . It is required that
if and are equal modulo , then for every predicate , for every , if
and only if . The relation is defined on atoms and literals by

iff , iff ; let , where is a
clause, iff for every , there is some literal in such that ; let , where

is a set of clauses, iff for every . is unsatisfiable iff for no
Tarskian interpretation . We write to denote the condition “for every Tarskian
interpretation , if then ”.
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A Herbrand interpretation mod is a set of equivalence classes mod of ground
atoms built on . This is a special case of Tarskian interpretation, where is fixed to be
the set of all ground terms mod , and maps to the term :
then giving a collection of sets of terms mod for each (a Tarskian interpretation)
is equivalent to giving directly the set of all ground atoms mod that are true in (the
Herbrand interpretation).

AHerbrand modelmod of a set of clauses is a Herbrand model of every :
a Herbrand interpretation such that all ground instances of contain some atom in

or some negation of an atom not in . Every satisfiable Horn clause set, in particu-
lar every automaton, has a least Herbrand model mod : by standard arguments, any
intersection of Herbrand models is indeed still a Herbrand model mod .

The set of terms (mod ) recognized at state in , a.k.a. the language of
at , is the set of all terms such that is in the least Herbrand model of . We

say is empty in if and only if is empty, and similarly for other properties. It
is not hard to see that is empty in if and only if the set of clauses plus the query
clause is satisfiable, where denotes false. Indeed, if is empty then the
least Herbrand model of does not contain any ground atom of the form , hence
makes true. Conversely, if plus is satisfiable, then its least
Herbrand model does not contain any ground atom of the form . Since every model
of plus is also a model of , the least Herbrand model of is included
in that of plus , hence does not contain any ground atom of the form
either; so is empty in .

More generally, we may consider
non-Horn clauses (we won’t do this here).
Call a block any clause of the form: (4)

where the signs are either or (negation). Note that a block has at most one free
variable. Write e.g., for a block with free variable . Our clauses will be of two
forms: simple clauses are blocks (4), and complex clauses are of the form:

(5)

where are blocks, and . Note that and the variables ,
. . . , are the same for each in (5), and that all the free variables of the clause occur
in . Complex clauses include pop clauses and push clauses alike; simple
clauses include intersection clauses and query clauses .

It is arguably fair to call clauses (4) or (5) positive set constraints [3]. Indeed, in the
empty theory, the elementary set constraints:

where , , , . . . , are variables denoting unknown sets of terms, are notations for
the respective clauses:
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for all

Ordered resolution with (eager) splitting [15] terminates on clauses arising from al-
ternating two-way automata (modulo the empty theory), and more generally on clauses
of the form (4) and (5) , where the ordering is taken to be the size of atoms (exercise).
In general, any refinement of resolution that is complete via semantic trees (in the sense
of [25]) is still complete with eager splitting and subsumption. A clause subsumes
the clause iff for some substitution (read the inclusion mod ).

Splitting is a tableau rule. A tableau is a tree whose nodes are clause sets. Resolution
steps extend a branch by adding below the node a new node , where is a
resolvent of some clauses in . Splitting applies when contains a clause ,
where the subclauses share no free variable, and produces subbranches where this
clause is replaced by , . (Think of a tableau as a disjunction of branches.)
This is needed, e.g., resolving push and pop clauses on yields a split-
table clause in general. This is needed because ordered resolvents of simple and com-
plex clauses sometimes produce disjunctions of simple clauses, which can then be split
into simple clauses again. So ordered resolution with eager splitting only produces sim-
ple and complex clauses again. This terminates because there are only finitely many of
them—in fact, in non-deterministic (because of splitting) exponential time.

It is also easy to check that clauses (4) and (5) are exactly what is needed to write
a definitional clausal form [2] of skolemized formulas from the monadic class [1]. This
gives another proof that the monadic class is decidable, similar to [25]. In particular,
this decides positive set constraints, as noticed by [3]. Using splitting is more efficient
in practice than Joyner’s condensing rule [25].

The same technique can be used, at least in principle, to deal with sets of clauses
of the form (4) and (5) mod . For example, this works for positive set constraints on
sets of normalizing -terms mod -conversion, yielding a non-deterministic doubly
exponential-time algorithm for satisfiability [23]. It turns out that the situation with
AC-set constraints, and even alternating two-way AC-automata is more complex, and
rather different. In particular, in both the empty theory and the theory cases, ordered
resolution terminates, because only finitely many clauses can be generated: this yields
decidability. Our argument in the AC case will be more involved (Section 6).
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3 An Application in Cryptographic Protocol Verification

We give an example in the field of group key agreement schemes. To keep the exposition
short, we only mention salient features exhibiting the role of AC tree-automata.

Consider the initial key agreement protocol IKA.1 [41] (formerly known as GDH.2),
used to create an initial group key in the CLIQUES protocol suite. This works as fol-
lows; remember that we have a cryptographic hash function , and an AC operation
with unit , typically implemented by , being multiplication
and being . We also use a binary function , a constant to represent lists,
and abbreviate as . For
simplicity, assume we have 3 members in the group, , , .

First, IKA.1 starts with an so-called upflow phase: sends the pair ,
where is a fresh nonce; is modeled, as usual [33], as a new constant. Then
sends to , where is another fresh nonce (modeled as
another new constant ). This is possible due to our assumptions that anybody
can build from and from and .

Once this is done, starts the downflow phase, and broadcasts
, from which all members can compute the group key . ( is a

third fresh nonce created by .)
All possible interleaved executions of the protocol can be described using Horn

clauses mod AC1, and we claim that the resulting set of clauses is a two-way AC1-
automaton. (The difference between AC and AC1 is inessential, as we can encode one
into the other, see Corollary 4.) Let us write selected clauses from this set.

To model communication, take the standard Dolev-Yao approach [13]: every mes-
sage sent is received by the intruder, every message received is from the intruder. For
every configuration reachable in an interleaved run of , , , create a fresh
unary predicate symbol , such that holds if and only if the intruder can de-
duce from the set of messages it has got from analyzing all communications before

was reached. Depending on the actual intruder model, one or several of the following
clauses have to be written for each configuration :

Intruder knows (6)
Intruder can exponentiate (7)
Intruder knows the empty list (8)
Intruder can build lists (9)
Intruder can read heads (10)
Intruder can read tails (11)

Starting from an initial configuration , for which we assume that some predicate
has been defined—by some AC1-tree automaton—, execution may proceed by letting

send its upflow message to , letting the whole system progress to some new
configuration :

Intruder gets ’s message (12)
Intruder remembers past messages (13)

Again, (13) is optional. Including it means the intruder will be able to replay old mes-
sages. Excluding it as well as clauses (6)–(11) (with ) means the intruder acts as
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a mere eavesdropper: if we make sure that no clause is given with head (no message
is known to the intruder initially), this is the pure eavesdropper model, where for every

, holds of at most one message, which is the last message sent by some honest
principal—a one-place buffer. Including all clauses (13) and (6)–(11) (with )
is the standard choice in Dolev-Yao models, where the intruder can replay, decompose
and build messages at will.
Let us write what happens when
the next action is sending
its own message to : (14)

(with possibly an extra clause if we wish to state that the intruder
remembers past messages.) In other words, reads the message from by query-
ing the intruder through , then builds , which it sends the
intruder in the new configuration .

The downflow message from
gives rise to the clause: (15)

Now the secrecy requirement on, say, ’s view of the group key is that

(16)

Indeed, ’s view of the group key is , where the message broadcasted by
is , i.e., where holds (reminder: if this message is not forged,

then ). Clause (16) states that this view was not known to the
intruder in any configuration , , or .

There are many other possible interleavings, which we do not mention. As we have
said, our purpose here is not to actually verify this protocol, but to illustrate the appli-
cation of AC and AC1-tree automata on a concrete example. All clauses but a few are
automata clauses. E.g., clauses (8), (9) are pop clauses, clauses (10) and (11) are stan-
dard push clauses. Clause (13) is an -clause. The remaining ones can be rewritten in
the form of automata clauses by introducing auxiliary states, a.k.a., predicate symbols.
For example, (6) can be rewritten as two pop clauses, and ,
where is fresh. Clause (7) can be rewritten with both pop and push clauses:

where and are fresh. In general, any clause with linear left-hand and right-hand
sides can be rewritten this way. The only clauses that cannot are (14) and (16). We can
rewrite the latter as

where , , , are fresh and the last clause tests the intersection of languages
defined by , , . . . , . While this last clause can be encoded using intersec-
tion and query clauses, it is really of a special form which will have its importance in
Section 6 (final intersection clauses).

Clause (14) is more problematic, since it is not right-linear. The clauses
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are actually equivalent in the Dolev-Yao model (where sending lists of elements or
sending each element separately has the same net effect) and in the pure eavesdropper
model (where any recognizes at most one value anyway). As these clauses are both
left and right-linear, we can transform them to push and pop automata clauses.

As we shall see, the resulting set of clauses falls into the decidable case of Section 6.
In particular it avoids intersection clauses that are not final. The curious reader might
want to know that the secrecy property fails, i.e., the empty clause is derivable from the
above clauses, alternatively the intersection of states , , . . . , is not empty,
i.e., there is an attack, in all models except the pure eavesdropper case [31]. Note that
IKA.1 was indeed designed so as to be resistant only to pure eavesdroppers.

4 Undecidability Results

Modulo AC or AC1, we have the following undecidability results.
First, Lemma 1 shows the power of conditional push clauses, which allow us to

simulate two-counter machines [32]. For this we do not even need intersection clauses.
We get an undecidable problem even without intersection clauses. —i.e., with non-
deterministic automata.

Lemma 1. Every r.e. set is effectively representable as the language , where
is a non-deterministic two-way AC (resp. AC1) automaton with one AC (resp. AC1)

symbol and two constants. In particular, emptiness is undecidable for this class.

Proof. For every r.e. set , there is a two-counter machine (with counters , )
such that accepts, starting with and . It then suffices to encode
configurations of that lead to acceptance using two-way AC (resp. AC1) automata.
This is done by encoding the values of the registers by terms
(or by terms in the AC1 case). Recall that a two-counter machine [32] is
a finite labeled transition system with an initial state , a final (acceptance) state ,
and transitions where may be Inc , Dec or Zero , . Inc
increments , Dec checks whether is , and if so decrements , and Zero

checks whether .
A configuration of the machine is a triple where is a state,

are the values of and respectively. This configuration is encoded as the ground
atom , where , and for each , is
( summands). This if for the AC case; in the AC1 case, we would code

; this is left to the reader.
Introduce the following clauses, where , , , and , and

are predicate symbols distinct from all states: ( recognizes just ),
( recognizes ), and

( recognizes all , ),
( recognizes all , ). We translate the machine as follows:

1. Acceptance: .
2. , Inc : .
3. , Dec : .
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4. , Zero :

where is a fresh predicate, one for each .

Let be the set of clauses as above. It is easy to check, first, that, if is
a configuration of that leads to acceptance, i.e., to some configuration ,
then is deducible from by unit resolution; second, that all unit clauses de-
ducible from by unit resolution are of the form , ,
( ), ( ), or , where leads to acceptance in

, or (resp. ), where , and (resp.
) leads to acceptance in .

Assuming without loss of generality that the only transition out of is Zero ,
it follows that is in the least Herbrand model of iff and
leads to acceptance in , iff and .

This uses conditional push clauses in an essential way. We shall see in later sections that,
on the opposite, standard push clauses can be effectively removed from AC-automata.
Another problem stems from intersection clauses:

Lemma 2. Every r.e. set is effectively representable as the language , where
is an alternating AC (resp. AC1) automaton with one AC (resp. AC1) symbol and four
constants. In particular, emptiness is undecidable for this class.

Proof. We use an encoding similar to [24]. —except that the direction of computation is
reversed, as in Lemma 1 (otherwise we would only get the second part of the Lemma).
Again we encode two-counter machines. However, content of register is coded as
any term , with , and . In the sequel, write this
term . Incrementing will be done by incrementing , while decrementing
will be achieved by incrementing . The encoding is not one-to-one: the same value

may be coded by several terms . We take care of this by requiring that any
predicate meant to recognize recognizes every representative of it.

Introduce the following clauses, where , , , , , . . . , are pred-
icate symbols distinct from all states, and :

recognizes:
just

,
,

,
,

,
,

,
,

Also, with each state , associate two fresh predicate symbols and , distinct
from each other, from every state, and from every predicate introduced above. Add
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the intersection clauses for ; recognizes every
configuration recognized by such that is not zero. We translate the machine as
follows:

1. Acceptance: .
2. , Inc : .
3. , Dec : .
4. , Zero : .

The rest of the proof is as for Lemma 1.

By a remark in [24], three constants actually suffice for this Lemma.
Note also that even without intersection clauses and conditional push clauses, but

provided we allow for non-Horn clauses, satisfiability is again undecidable. Indeed,
replace the intersection clauses with the two clauses

and , with fresh.

5 Deciding The Constant-Only Case

We warm up by solving the case of one AC symbol , and finitely many constants
symbols , . . . , —the so-called constant-only case. This will turn out to be the core
of the general problem in Section 6.

Because of the negative results of Section 4, we must restrict the format of clauses.
Without loss of generality we may assume that we use clauses of the following form:

(17)
(18)
(19)

(20)
(21)
(22)

where and are distinct variables, and is a closed term. Clauses (17) are pop clauses,
(18) base clauses, (19) -clauses, (20) standard push clauses, (21) final intersection
clauses, or query clauses when , and (22) test clauses.

Definition 1. AnAC -automaton is a finite set of pop clauses (17), of base clauses (18),
and of -clauses (19).

By standard marking techniques, it is decidable whether any given state of an AC -
automaton is empty in . Things get more complex in the presence of final inter-
section clauses. First, note that ground terms in the constant-only case are finite linear
combinations , with and : equivalently, non-zero -
tuples of natural numbers. Recall that a set of -tuples of natural numbers is linear if
and only if it can be written where is taken
componentwise, and is a finite subset of . A semi-linear set is a finite
union of linear sets. The semi-linear sets are exactly the sets definable in Presburger
arithmetic [20]. Also, the commutative image of any context-free language is semi-
linear, and in fact effectively so: this is Parikh’s Theorem [36]. Now observe that if we
read clauses (17), (18), (19) modulo associativity (A) instead of mod AC, what we get
is exactly a context-free grammar: (17) is usually written , (18) is ,
(19) is . Call a set AC -recognizable iff it is for some AC -automaton

. Then:
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Lemma 3 (Parikh). For every AC -automaton , is an effective semi-linear
set. The AC -recognizable sets are the semi-linear sets of non-zero tuples of integers.

The results of Section 4 imply that sets recognized by AC-automata with conditional
push clauses or even just intersection transitions are in general not semi-linear. Nonethe-
less, any finite intersection of semi-linear sets is semi-linear, so:

Lemma 4. The satisfiability of sets of clauses (17), (18), (19), (21), (22) is decidable.

Proof. Let be all non-test, non-final intersection clauses in the given set ,
be the final intersection clauses in , and be the test

clauses in . By Lemma 3 the languages and are effectively semi-
linear. Then is unsatisfiable iff for some , , or for some
, , which is effectively decidable.

In passing, the connection between automata mod A and context-free grammars shows
that the emptiness problem for A-automata with one final intersection clause is unde-
cidable, even without push clauses. This is by reduction from the emptiness problem for
intersection of context-free languages. In particular, A-recognizable sets are not closed
under intersection.

The AC case is tamer. By Lemma 4, AC -recognizable languages are closed under
intersection, union, complementation, and projection.

We shall spend the rest of this section proving that satisfiability is also decidable
in the presence of standard push clauses (20). First, this is the case provided we don’t
ask for emptiness of intersections, i.e., if clauses (21) are restricted to query clauses
( ). This is Lemma 5 below.

Definition 2 (Two-way AC). A two-way AC -automaton is a finite set of pop clauses
(17), of base clauses (18), of -clauses (19), and of standard push clauses (20).

For any ground term , its length is . Write (“ plus
things”) the term , where , . . . , are variables that occur nowhere
else, . Let where occurs nowhere else.

Lemma 5. The satisfiability of sets of clauses (17), (18), (19), (20), (22), and query
clauses (21) with , is decidable.

In particular, the following problems are decidable: 1. whether is empty,
and 2. whether the ground term is in , where is a two-way AC -automaton.

Proof. The second part of the Lemma follows from the first part by adding one query
clause (problem 1.), or one test clause (problem 2.) to . Let

, . . . , be the test clauses in the given set of clauses. Define
iff for some ground term , iff or . We use negative

hyperresolution with eager splitting and forward subsumption, which is a sound and
complete resolution strategy. We need to generalize the format of query and test clauses
to:

(23) (24)
where , for some , . The case of a query clause is

12



(23) when , that of a test clause is (24) when , . Negative
hyperresolution is the binary resolution rule, where one premise is constrained to be a
negative clause. We claim that: the only negative clauses we shall ever have are of
the form (23) and (24). Note that factoring is not needed, because all our clauses are
Horn (see e.g., [15], Definition 4.1). We prove claim by induction on the length of a
negative hyperresolution derivation with splitting. Resolving a clause (23) or (24) with
a clause (18), if possible at all, yields the empty clause. Resolving against (19) or (20)
again yields a clause (23) or (24). It remains to examine the two cases where we resolve
against a pop clause (17), say .

Case 1: with a clause (23), say . Close examination of all the AC-
most general unifiers between and show that they all map to
and to , where and (unless , where

), and that every such substitution is
thus obtained. So the resolvents are of the form with

. Then, these split as two clauses of the form (23).
Case 2: with a clause (24), say with for some , .

The binary resolvents are of the form with ,
, or with (unless ,

where ), or with (unless
, where ). There are finitely many such resolvents, and they all split

as two clauses of the form (23) or (24). This finishes to prove .
We now show that negative hyperresolution with splitting and forward subsumption

terminates. Otherwise, there is an infinite branch, containing an infinite sequence of
clauses (23) or (24) since there are only finitely many other clauses. So there is an
infinite subsequence of clauses , , with the same predicate ,
or , , with the same and the same . (In the latter case, this
is because there are only finitely many with for some .) Since is a well-
ordering on , there are two indices such that . Then the th clause in
the subsequence subsumes the th, which is impossible.

Call a two-way AC -automaton normal iff no state of is empty. Lemma 5
allows us to compute empty states; then we may safely remove all clauses with an
empty state in their body. Therefore:

Lemma 6. There is an effective procedure transforming any two-way AC -automaton
into a normal one , such that for every non-empty state of , .

Call a state in bounded iff is finite; equivalently, if there is an upper
bound on the lengths of terms recognized at in . Call unbounded otherwise.

Lemma 7. The set of bounded states, in any given normal two-way AC -automaton
, is effectively computable. Moreover, for every we can effectively compute

upper bounds on , .

Proof. Let be any set of predicate symbols (states) in . We build a system of
inequality constraints on the set of variables , as follows. For each clause
in , generate false if the head predicate (on the left of ) is in but some predicate
in the body (on the right) is not in ; generate true if the head predicate is not in ;
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otherwise, all predicates are in , and for each clause:
of the form (17), generate ;
of the form (18), generate ;
of the form (19), generate ;
of the form (20), generate .

Finally, generate for each . If every is bounded and every
is unbounded, and is the maximal length of terms recognized at in (this
exists because no state is empty in ), then all inequalities in are satisfied. Con-
versely, if is satisfied, then every is bounded, and any satisfying valuation
maps to an upper bound on the lengths of terms recognized at in ; this is by
induction of the lengths of unit resolution derivations of . So the set of bounded
states is the unique maximal set such that the system of inequalities above is satis-
fiable. This can be built by enumerating all subsets of states and taking the largest
for which is satisfiable. Satisfiability of can be decided by, e.g., Section 6 of
[40].

Let . The projection on of a set of terms is
. This may include the (fictitious) empty sum . To remain in the

realm of AC-terms, write . A state is bounded on (in ) iff
is bounded. The bounded support of is the maximal

such that is bounded on . We may compute automata recognizing projections
; that is not an AC-term merely complicates the statement of the Lemma:

Lemma 8. There is an effective procedure that, given a finite set of constants, given
any two-way AC -automaton , produces another such that
for every in (we write as ), and computes the set of all predicates in
such that .

Proof. The idea is to replace every base clause with by —except
we do not have a zero. Instead, let be the smallest set of states such that: (a) if

contains a base clause with , then ; (b) if contains an -
clause with , then ; and (c) if contains a pop clause

with , then . This is easily computable.
Now build by generating:

for each pop clause of , this clause, plus
if , plus if ;

for each base clause with , this clause, otherwise none;
for each or push clause, this clause.

By induction on the length of a unit resolution derivation of from ,
it is easy to show that either and , or and

is derivable in . Conversely, by induction on a proof of —
using rules (a), (b), (c)—it is clear that ; and by induction on the length
of a unit resolution derivation of in , is derivable in for some
(in the case of -clauses generated from pop clauses of , this is because, for every

, since , in particular is not empty); in particular, if
is recognized at in , then is indeed the projection of some term

recognized at in .

14



By starting from , and adding constants while is bounded,
using Lemma 7 and Lemma 8, we get:

Corollary 1. There is an effective procedure that, given a normal two-way automaton
, computes the bounded support of each state of .

From all this we finally deduce:

Theorem 1. There is an effective procedure transforming any two-way AC -automaton
into a AC -automaton such that for every in , .

Proof. By Lemma 6 we may assume that is normal. Using Corollary 1, for each push
clauses compute the bounded support of in . By definition the
terms recognized at are of the form where there are only
finitely many values for the first summand, and where the s, , have unbounded
values. If , is bounded. Enumerate the sums (except

) that are less than some element of w.r.t. , using Lemma 5, and produce an
AC-automaton built on fresh states, recognizing this set at say . Then replace the
push clause by the clause .

If is unbounded, then enumerate the sums (except ) by enumer-
ating the elements of , using Lemma 8 and Lemma 5, and produce an
AC-automaton recognizing this set at , built on fresh states. Similarly, produce
an AC-automaton recognizing all (non-zero) terms (with arbi-
trary) at , again built on fresh states. Then replace the push clause
by the clauses , plus , plus if

(the latter is decidable by Lemma 8).

In particular, for every two-way AC -automaton , is an effective semi-
linear set. So the languages of two-way AC -automata are closed under intersection,
union, complementation and projection. Also, by Theorem 1 and Lemma 4:

Corollary 2. The satisfiability of sets of clauses of the form (17)–(22) is decidable.

This was the main result of this section. Later, we shall need the following corollary:

Corollary 3. Given a set of clauses of the form (17)–(21), and a disjunction
of blocks, where the s are pairwise distinct, it is decidable

whether .

Proof. Equivalently, whether . Let
be . Skolemize by creating new constants , . . . ,

. Then iff union the clauses , , , is
unsatisfiable, where is the sign opposite to . We conclude by Corollary 2.

Note that is entailment in Tarskian semantics, where terms take their values in
some arbitrary non-empty domain (see [6]). This is required because skolemization
is valid in Tarskian, not Herbrand semantics. Tarskian entailment implies Herbrand en-
tailment, because Herbrand interpretations are special cases of interpretations in the
sense of Tarski, but not conversely.
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6 Deciding The General Case

We turn to deciding emptiness of AC-automata with push clauses, based on unrestricted
signatures containing binary symbols , . . . , that are AC. Call the other func-
tion symbols in free. Zero-ary function symbols are constants. Considering the un-
decidability results of Section 4, the largest class of AC-automata for which we can
reasonably hope to decide the emptiness problem is as follows.

Definition 3 (Two-Way AC). A non-alternating standard-two-way AC-automaton
on is a finite set of clauses of one of the following forms:

– free pop clauses (1) where is a free symbol,
– pop clauses ,
– free push clauses (3) (possibly conditional) with ,
– -clauses (19),
– standard push clauses (20).

We do allow conditional push clauses on free function symbols, while push clauses
must be standard on AC symbols. To cope with intersection-emptiness, we add final
intersection clauses (21) to non-alternating standard-two-way AC-automata.

Note the additional restriction on free push clauses. This is required
for technical purposes: otherwise the free push/free pop entry in Figure 1 below would
be wrong. More precisely, if we did not require this, it would be possible to emulate
intersection clauses by creating one pop clause

and one push clause (provided is fresh, both are
equivalent), leading to undecidability.

We base our study on ordered resolution, where the literals resolved upon in each
premise must be maximal with respect to some stable ordering , with eager splitting.
Specifically, let denote the size of , and define if and only if
for every ground substitution . Ordered resolution with eager splitting is complete, but
does not yield a terminating decision algorithm straight out of the box. However we
take it as a starting point. First examine the shape of possible resolvents generated in an
ordered resolution derivation. Since our clauses are Horn, we don’t need factoring.

The first kind of clauses that crop up are the general transitions:

(25)

where , the s are pairwise distinct, , and if then .
The notations and extend the unsubscripted notations by using for .

Then we also get general final clauses:

(26)

where , . . . , are terms built on variables and the sole function symbol , and if
some is a variable , then is free in some non-variable term .

Finally, we shall get free final clauses the negative complex clauses (5) where is
a free function.
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free push free pop free final final inter. trans. final
free push , free push

final inter.
free pop free final/ free pop free final/

final inter. final inter.
free final free final

final inter. trans. final
final inter. final inter,

final
trans. trans., final inter.,

, final.
final inter.,

final
final

provided the free function symbols in each clause coincide.
provided

Fig. 1.What resolution with splitting generates

Lemma 9. The possible resolvents between clauses considered above are as summa-
rized in Figure 1. denotes no possible resolvent, means this generates clauses
of kind or clauses of kind , means this generates disjunctions of
variable-disjoint clauses of kind , . . . , ; abbreviates . (Some entries
are not filled because of symmetry.) trans. abbreviates “general transition”,
final abbreviates “general final clause”, and so on.

Note that standard push clauses are the special case of general transitions where
and ; and that pop clauses are the special case , .

Proof. Most of it is standard and boring verification. The difficult cases are at the
bottom-right of the array.

The trans./ final case works as follows: taking the notations of (26) and (25),
we compute the mgus of (from the former) with . By the side-conditions
on and since must be maximal, is not a variable, so is headed by . For
unification to succeed, then, . On the other hand any mgu will map every free
variable of and of , . . . , to -sums of fresh variables. The resulting resolvent
is then a disjunction of terms built on variables and alone. This always splits in
final clauses and final intersection clauses (for those variable s that do not occur in
non-variable s).

Instead of dealing with the other cases, we deal with the technically trickiest, the
trans./ trans. case. Again by maximality considerations, . For simplicity,

write just instead of . Without loss of generality, we resolve:
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We may assume that , otherwise the argument of , , is smaller than
, so is not maximal—unless , but then the side-condition of transitions

requires . The most general unifiers of with map
to , to if and to otherwise, where ranges over
the non-empty subsets of , and the integers , are such that

, with whenever ; here the s are fresh pairwise distinct
variables. The corresponding resolvent is

The terms , , split out of this as final intersection clauses. What remains
is a general transition, unless , is a singleton , and , where
we get an -clause.

Consider a refutation of some non-alternating standard-two-way AC-automaton
with final intersection clauses by ordered resolution and splitting, from a set of clauses

; assume minimal size. Recall this is a tableau proof, organized as a tree of clause
sets. Then every (split part of a) resolvent is either the empty clause or is used later on
in the refutation. Call general transitions and general final clauses the uncontrol-
lable clauses: all the others are finitely many by construction; call them controllable.
If contains an uncontrollable clause, then since only contains controllable clauses,
there are two controllable clauses whose resolvent splits as a disjunction of clauses,
at least one of which is uncontrollable. Looking at Figure 1, uncontrollable clauses in
some premise of the resolution rule only yield uncontrollable clauses again (based on
the same AC function symbol ), or or final intersection clauses. In a refutation, all
branches are closed; also, every uncontrollable clause is used, and the empty clause is
controllable; so working our way downwards along each branch (think of a tableau as
expanding downwards) we produce sequences of uncontrollable clauses on the same
symbol that eventually contribute some or final intersection clause , on each
branch . Collect s as a disjunction . Working our way upwards now, again
we only find uncontrollable clauses on the same function symbol , until we reach ,
final intersection clauses, or standard push clauses, or pop clauses (we stop there
even though the latter two are uncontrollable by our definition). These clauses form a
subset of for some node of the tableau, where denotes the subset
of consisting of and final intersection clauses, as well as standard push clauses
and pop clauses (with the same ). On the other hand, is by construction a
logical consequence of . Corollary 3 provides an effective way of deciding this.
(Please note that this works precisely because is a consequence of in
Tarskian semantics, not just in Herbrand semantics. See the remark after Corollary 3.)
Also, up to condensing, there are only finitely many disjunctions .

So we may instead infer the s using the following effective deduction rule:
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if
(27)

where is the current node (clause set) on the current branch, the s are pair-
wise distinct up to renaming, and each is either an -clause or a final intersection
clause. (Read this rule just like the resolution rule: the conclusion has to be added to the
current set of clauses.) Corollary 3 provides an effective way of checking the logical
consequence required above.

Theorem 2. Call restricted ordered resolution the rule where ordered resolvents are
only retained if they are disjunctions of variable-disjoint controllable clauses, standard

push clauses and pop clauses. Then restricted ordered resolution with splitting
and rule (27) is sound, complete, and terminates on non-alternating standard-two-way
AC-automata with final intersection clauses.

In particular, the emptiness of the intersection of languages defined by non-alternating
standard-two-way AC-automata is decidable.

Proof. Soundness is obvious. For completeness, repeat the argument above, this time
taking a minimal tableau proof using restricted ordered resolution with splitting and
(27). Termination follows from the fact that there are only finitely many controllable,
standard push clauses and pop clauses on a given signature.

By making some symbols be AC1, with respective units , we get so-called
standard-two-way mixed AC/AC1-automata:

Corollary 4. The emptiness of the intersection of languages defined by standard-two-
way mixed AC/AC1-automata is decidable.

Proof. Build a new non-alternating standard-two-way AC (not mixed)-automaton
from by replacing each pop clause where is AC1,
by the clauses , plus and

(understand the latter as splitting into one -clause and a free push clause
on each); and each push clause by
plus the -clause . We leave it as an easy exercise to show that if is
derivable from , then is derivable in ; and conversely, if is derivable in
then for some obtained from by using the equations , is derivable
in .

7 Conclusion

We have classified alternating two-way mixed AC/AC1-automata according to the de-
cidability of the intersection-emptiness question. Essentially, alternation or conditional
push clauses lead to undecidability. On the other hand we were able to give a decision
algorithm for standard-two-way mixed AC/AC1-automata without alternation, and with
only standard push clauses on equational symbols.
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A question spurred by the cryptographic protocol-related motivations in the intro-
duction is: although conditional push clauses (3) where is AC lead to undecidability,
do we get a decidable class when additionally in (3)? This is still
open. We let the reader check that Petri nets are easily encoded in AC -automata with
such conditional push clauses; hence the latter recognize strictly more sets than the
semi-linear sets, so the techniques of Section 5 don’t adapt to this case. These automata
would be useful, e.g. in modeling the A-GDH.2 protocol, the authenticated version of
IKA.1 mentioned in Section 3, which requires conditional push clauses.
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