Jean Goubault
email: goubault|verma@lsv.ens-cachan.fr

Larrecq Kumar

Neeraj Verma

Alternating Two-Way AC-Tree Automata

We explore the notion of alternating two-way tree automata modulo the theory of finitely many associative-commutative (AC) symbols, some of them with a unit (AC1). This was prompted by questions arising in cryptographic protocol verification, in particular in modeling group key agreement schemes based on Diffie-Hellman-like functions, where the emptiness question for intersections of such automata is fundamental. We show that the use of conditional push clauses, or of alternation, leads to undecidability, already in the case of one AC or AC1 symbol, with only functions of arity zero. On the other hand, emptiness is decidable in the general case of many function symbols, including many AC or AC1 symbols, provided push clauses are unconditional and intersection clauses are final. To this end, extensive use of refinements of resolution is made.

Introduction

Automata and in particular tree automata are ubiquitous in verification [START_REF] Comon | Tree automata techniques and applications[END_REF]. One particular area where they, or extensions thereof, have proved useful is cryptographic protocol verification [START_REF] Monniaux | Abstracting cryptographic protocols with tree automata[END_REF][START_REF] Genet | Rewriting for cryptographic protocol verification[END_REF][START_REF] Goubault-Larrecq | A method for automatic cryptographic protocol verification[END_REF][START_REF] Comon | Tree automata with one memory, set constraints and ping-pong protocols[END_REF], where they are used to represent inter alia the infinite sets of messages that a malicious Dolev-Yao intruder [START_REF] Dolev | On the security of public key protocols[END_REF] may build by repeatedly decrypting and encrypting from past traffic. (We give a more detailed example of this later.) For now, let us say that messages in such models are represented as first-order terms (a.k.a., trees): if and are messages, then the term denotes the result of encrypting with key . The equational theory of first-order terms is adequate for representing ideal cryptographic primitives, where only if and and where for any , in particular. It is sometimes interesting to have a richer set of cryptographic primitives that obey additional algebraic laws. For example, it has been proposed [START_REF] Goodrich | Implementation of an authenticated dictionary with skip lists and commutative hashing[END_REF] to use so-called commutative hash functions to implement dynamic authenticated dictionaries. Simply put, commutative hash functions are binary functions that are associative and commutative (AC), such that anybody can build from and , but noone can infer either or from only. Another example comes from Diffie-Hellman key agreement [START_REF] Diffie | New directions in cryptography[END_REF], where principal chooses a secret and sends to (where is a unary function symbol denoting some way of encapsulating the secret), chooses another secret and sends to , and both compute as their common key. It is required that any participant, whether honest or dishonest, can compute from , and from and , but no more. Concretely, is implemented as for well-chosen numbers and , and as multiplication: to get from , just raise the latter to mod . Note that has to be commutative for this to succeed. In general, extensions of this scheme to the important group key agreement problem, where a group of principals has to agree on a common key, unavailable to external eavesdroppers, and not created by any single principal in the group, as in the CLIQUES protocol suite [START_REF] Steiner | Key agreement in dynamic peer groups[END_REF], require to be both associative and commutative; multiplication mod certainly is.

If we are to extend the tree-automata based approaches to cryptographic protocol verification to such AC operators, we need suitably modified notions of automata recognizing terms modulo the theory of associativity and commutativity of : this is the topic of this paper. In addition, we shall see in Section 3 that cryptographic protocols are better represented through two-way tree automata, where transitions can not only construct but also destruct terms. We shall also see that the main security questions reduce to deciding emptiness of (intersections of) such automata.

Independently of cryptographic protocols, two-way automata modulo equational theories are interesting per se; the cases A and AC1 (AC with unit element) occur often, see below. We shall also investigate the alternating variants, as well as the cases with several AC or AC1 symbols, which are natural extensions.

Our import is a classification of alternating, two-way AC-tree automata, relative to the decidability of the emptiness, and in general the intersection-emptiness question: given finitely many alternating two-way AC-automata, is the intersection of their languages empty? We shall see that emptiness of alternating, two-way AC-automata is undecidable in general, but intersection-emptiness of two-way AC-automata with no alternation and only so-called standard push clauses is decidable. The decision algorithm is highly non-trivial, and rests partly on proof-theoretic tools.

The paper is organized as follows. In Section 2, we introduce a general clausal format for equational, alternating, two-way automata, possibly with equality constraints between brothers, and even a form of set constraints. Then, ordered resolution with splitting provides a streamlined decision procedure for the emptiness of such automata and the satisfiability of set constraints, in the non-equational case. This must have been known to a number of researchers, but we are not aware of this result in print. The rest of the paper deals with automata modulo AC, i.e., modulo the theory of finitely many AC symbols. We illustrate the relevance of this theory to the verification of cryptographic protocols in Section 3, using the example of group key agreement. This does not use alternation: this is fortunate, as emptiness is undecidable in the presence of alternation (Section 4), even with constant-only signatures, and just one AC symbol . We show that the constant-only cases not covered by the results of Section 4 have decidable intersection-emptiness problems in Section 5; in fact, the resulting AC-automata recognize exactly the semi-linear sets. Leaving the constant-only case, we show that the intersection-emptiness of AC-automata on several free, AC and AC1 symbols is decidable in Section 6, provided the equational push clauses are non-conditional. In particular, this covers the case of the group key agreement example of Section 3.

Related Work.

There is much literature on finite tree automata [START_REF] Comon | Tree automata techniques and applications[END_REF][START_REF] Gécseg | Tree languages[END_REF]. Apart from the already cited use in cryptographic protocol verification, applications include approximat-ing reachability sets for rewrite systems [START_REF] Genet | Decidable approximations of sets of descendants and sets of normal forms[END_REF], disunification and inductive reducibility [START_REF] Lugiez | Tree automata help one to solve equational formulae in ACtheories[END_REF], unification under constraints [START_REF] Kaji | Solving a unification problem under constrained substitutions using tree automata[END_REF], ground reducibility [START_REF] Comon | Ground reducibility is EXPTIME-complete[END_REF], automated inductive theorem proving [START_REF] Bouhoula | Automata-driven automated induction[END_REF], fast tree matching [START_REF] Li | Pattern matching in trees[END_REF], automated model building in first-order logic [START_REF] Peltier | Tree automata and automated model building[END_REF], etc. These applications deal with automata on finite trees. We won't deal with automata on infinite trees [START_REF] Thomas | Automata on infinite objects[END_REF], which are also fundamental, e.g. in temporal and program logics [START_REF] Emerson | The complexity of tree automata and logics of programs (extended abstract)[END_REF].

Two-way automata, a.k.a. pushdown processes, where transitions may not only construct but also destruct terms, are also classical. The relation with certain Horn sets was pioneered in [START_REF] Frühwirth | Logic programs as types for logic programs[END_REF], and refined in e.g., [START_REF] Charatonik | Set-based analysis of reactive infinite-state systems[END_REF]. Cartesian approximation is the key to define upper approximations of various sets of ground atoms, e.g., success sets. This can be adapted to the AC case, yielding formulae in the decidable class of Section 6; for lack of space, details are left to the reader. Do not confuse pushdown processes with pushdown automata [START_REF] Schimpf | Tree pushdown automata[END_REF], which recognize the strictly larger class of context-free tree languages.

The idea of generalizing tree automata to recognize languages of terms modulo an equational theory is then natural, and a canonical choice of theory is that of one associative-commutative (AC) symbol . This has been explored a number of times, e.g., [START_REF] Courcelle | On recognizable sets and tree automata[END_REF][START_REF] Niehren | Feature automata and recognizable sets of feature trees[END_REF][START_REF] Lugiez | A good class of tree automata. Application to inductive theorem proving[END_REF][START_REF] Ohsaki | Beyond regularity: Equational tree automata for associative and commutative theories[END_REF]. While not all notions of AC-automata coincide, there is always a common core. For example, the automata of [START_REF] Lugiez | A good class of tree automata. Application to inductive theorem proving[END_REF] have additional sort restrictions, but are also extended with a rich constraints language; if we forget about the latter, and dismiss the sort restrictions, we get exactly the languages recognized by the non-alternating, non-two-way subclass of our automata. This subclass also coincides with the regular AC-automata of [START_REF] Ohsaki | Beyond regularity: Equational tree automata for associative and commutative theories[END_REF]. In general, it is easy to check that in the nonalternating, non-two-way case, our automata modulo are exactly the -closures of the languages recognized by the same automaton modulo the empty theory; this is not the case in [START_REF] Ohsaki | Beyond regularity: Equational tree automata for associative and commutative theories[END_REF], except for regular -automata on a linear theory . The paper [START_REF] Lugiez | A good class of tree automata. Application to inductive theorem proving[END_REF] establishes the standard properties of closure under intersection, union, complementation, and projection of the languages considered therein. For our two-way AC-automata, we only establish these closure properties in the constant-only subcase. In the general case, only the case of unions is trivial, and we concentrate on the difficult intersectionemptiness problem, leaving closure properties to future work.

As a final note, we shall make extensive use of resolution theorem proving techniques. A comprehensive reference is the handbook [START_REF]Handbook of Automated Reasoning[END_REF]. Using resolution techniques to decide subclasses of first-order logic formulas was pioneered by Joyner [START_REF] Joyner | Resolution strategies as decision procedures[END_REF], and earlier by Maslov, see [START_REF] Fermüller | Resolution Decision Procedures, chapter 25[END_REF]. Standard refinements of resolution used in this area are hyperresolution and ordered refinements. Note that our decision algorithm of Section 6 is not based on resolution only. In this respect, this work is similar to early work such as [START_REF] Kallick | A decision procedure based on the resolution method[END_REF], where resolution plus a number of other rules are used to decide the Gödel class.

Acknowledgments Thanks to H. Comon and L. Fribourg for many stimulating discussions, to A. Finkel, S. Lasota, and to the anonymous referees at LICS and CSL for helpful comments.

Alternating Two-Way -Automata

Fix a signature of function symbols, each coming with a fixed arity, and let be an equational theory. Unless told otherwise, in this paper we assume that contains finitely many binary symbols , . . . , and is the theory stating that every , , is associative and commutative (AC). A trivial case is when is the empty theory; in this case we shall retrieve the standard notion of alternating two-way tree automata. We shall also be interested in the case where some symbols also have a unit ; we say that is an AC1 symbol, then.

A (non-deterministic) -tree automaton is a finite set of clauses of the form:

(

) 1
where is an implication " and . . . imply ". Clauses (1) are called pop clauses, or ordinary tree automata transitions. Intuitively, this reads as "if is recognized at state , and . . . , and is recognized at state , then is recognized at state ". For a more detailed discussion why this really encodes automata, see e.g. [START_REF] Goubault-Larrecq | Higher-order positive set constraints[END_REF].Here we shall always assume that the variables , . . . , are distinct; otherwise we get tree automata with equality constraints between brothers [START_REF] Bogaert | Equality and disequality constraints on direct subterms in tree automata[END_REF], which pose no problem in the non-equational case but would definitely in the AC case. An alternating -tree automaton in addition has intersection clauses of the form:

(2)

When

, this is called an -clause. A two-way automaton may also include socalled push clauses of the form: [START_REF] Bachmair | Set constraints are the monadic class[END_REF] where , . This intuitively means "if is recognized at , and at , and . . . and at , then is recognized at ". If , call this a standard push clause; if , call this a conditional push clause. People familiar with classical automata theory tend to be puzzled by this definition of automata, and in particular by the fact that no definition of a run of a term against an automaton is given; we invite the puzzled reader to check that positive hyper-resolution derivations [START_REF] Chang | Symbolic Logic and Mechanical Theorem Proving[END_REF] (which are also unit derivations in the case of Horn clauses) are exactly bottom-up runs [START_REF] Gécseg | Tree languages[END_REF]: for every ground term , the positive hyper-resolution derivations of the unit clause are exactly the runs of that abut to state , against the given tree automaton, considered bottom-up. On the other hand, negative hyperresolution derivations are exactly the top-down runs. The theory of resolution theorem proving enables us to replace any complete deduction procedure (positive, negative hyper-resolution) by any other complete procedure; it seems that ordered resolution is the most powerful refinement of resolution in many practical cases.

A Tarskian interpretation modulo is a tuple where the domain of is a non-empty set, for every -ary function symbol , is a function from to , and for every (unary) predicate symbol , is a subset of . The interpretation of a term in an environment mapping variables to elements of is , . It is required that if and are equal modulo , then for every predicate , for every , if and only if

. The relation is defined on atoms and literals by iff , iff ; let , where is a clause, iff for every , there is some literal in such that ; let , where is a set of clauses, iff for every . is unsatisfiable iff for no Tarskian interpretation . We write to denote the condition "for every Tarskian interpretation , if then ".

A Herbrand interpretation mod is a set of equivalence classes mod of ground atoms built on . This is a special case of Tarskian interpretation, where is fixed to be the set of all ground terms mod , and maps to the term : then giving a collection of sets of terms mod for each (a Tarskian interpretation) is equivalent to giving directly the set of all ground atoms mod that are true in (the Herbrand interpretation).

A Herbrand model mod of a set of clauses is a Herbrand model of every : a Herbrand interpretation such that all ground instances of contain some atom in or some negation of an atom not in . Every satisfiable Horn clause set, in particular every automaton, has a least Herbrand model mod : by standard arguments, any intersection of Herbrand models is indeed still a Herbrand model mod .

The set of terms (mod) recognized at state in , a.k.a. the language of at , is the set of all terms such that is in the least Herbrand model of . We say is empty in if and only if is empty, and similarly for other properties. It is not hard to see that is empty in if and only if the set of clauses plus the query clause is satisfiable, where denotes false. Indeed, if is empty then the least Herbrand model of does not contain any ground atom of the form , hence makes true. Conversely, if plus is satisfiable, then its least Herbrand model does not contain any ground atom of the form . Since every model of plus is also a model of , the least Herbrand model of is included in that of plus , hence does not contain any ground atom of the form either; so is empty in .

More generally, we may consider non-Horn clauses (we won't do this here). Call a block any clause of the form: [START_REF] Bogaert | Equality and disequality constraints on direct subterms in tree automata[END_REF] where the signs are either or (negation). Note that a block has at most one free variable. Write e.g., for a block with free variable . Our clauses will be of two forms: simple clauses are blocks (4), and complex clauses are of the form: [START_REF] Bouhoula | Automata-driven automated induction[END_REF] where are blocks, and . Note that and the variables , . . . , are the same for each in [START_REF] Bouhoula | Automata-driven automated induction[END_REF], and that all the free variables of the clause occur in . Complex clauses include pop clauses and push clauses alike; simple clauses include intersection clauses and query clauses . It is arguably fair to call clauses (4) or (5) positive set constraints [START_REF] Bachmair | Set constraints are the monadic class[END_REF]. Indeed, in the empty theory, the elementary set constraints: where , , , . . . , are variables denoting unknown sets of terms, are notations for the respective clauses: for all Ordered resolution with (eager) splitting [START_REF] Fermüller | Resolution Decision Procedures, chapter 25[END_REF] terminates on clauses arising from alternating two-way automata (modulo the empty theory), and more generally on clauses of the form (4) and (5) , where the ordering is taken to be the size of atoms (exercise). In general, any refinement of resolution that is complete via semantic trees (in the sense of [START_REF] Joyner | Resolution strategies as decision procedures[END_REF]) is still complete with eager splitting and subsumption. A clause subsumes the clause iff for some substitution (read the inclusion mod).

Splitting is a tableau rule. A tableau is a tree whose nodes are clause sets. Resolution steps extend a branch by adding below the node a new node , where is a resolvent of some clauses in . Splitting applies when contains a clause , where the subclauses share no free variable, and produces subbranches where this clause is replaced by , . (Think of a tableau as a disjunction of branches.) This is needed, e.g., resolving push and pop clauses on yields a splittable clause in general. This is needed because ordered resolvents of simple and complex clauses sometimes produce disjunctions of simple clauses, which can then be split into simple clauses again. So ordered resolution with eager splitting only produces simple and complex clauses again. This terminates because there are only finitely many of them-in fact, in non-deterministic (because of splitting) exponential time.

It is also easy to check that clauses (4) and (5) are exactly what is needed to write a definitional clausal form [START_REF] Baaz | Normal Form Transformations[END_REF] of skolemized formulas from the monadic class [START_REF] Ackermann | Solvable Cases of the Decision Problem[END_REF]. This gives another proof that the monadic class is decidable, similar to [START_REF] Joyner | Resolution strategies as decision procedures[END_REF]. In particular, this decides positive set constraints, as noticed by [START_REF] Bachmair | Set constraints are the monadic class[END_REF]. Using splitting is more efficient in practice than Joyner's condensing rule [START_REF] Joyner | Resolution strategies as decision procedures[END_REF].

The same technique can be used, at least in principle, to deal with sets of clauses of the form (4) and (5) mod . For example, this works for positive set constraints on sets of normalizing -terms mod -conversion, yielding a non-deterministic doubly exponential-time algorithm for satisfiability [START_REF] Goubault-Larrecq | Higher-order positive set constraints[END_REF]. It turns out that the situation with AC-set constraints, and even alternating two-way AC-automata is more complex, and rather different. In particular, in both the empty theory and the theory cases, ordered resolution terminates, because only finitely many clauses can be generated: this yields decidability. Our argument in the AC case will be more involved (Section 6).

An Application in Cryptographic Protocol Verification

We give an example in the field of group key agreement schemes. To keep the exposition short, we only mention salient features exhibiting the role of AC tree-automata.

Consider the initial key agreement protocol IKA.1 [START_REF] Steiner | Key agreement in dynamic peer groups[END_REF] (formerly known as GDH.2), used to create an initial group key in the CLIQUES protocol suite. This works as follows; remember that we have a cryptographic hash function , and an AC operation with unit , typically implemented by , being multiplication and being . We also use a binary function , a constant to represent lists, and abbreviate as . For simplicity, assume we have 3 members in the group, , , . First, IKA.1 starts with an so-called upflow phase: sends the pair , where is a fresh nonce; is modeled, as usual [START_REF] Monniaux | Abstracting cryptographic protocols with tree automata[END_REF], as a new constant. Then sends to , where is another fresh nonce (modeled as another new constant

). This is possible due to our assumptions that anybody can build from and from and . Once this is done, starts the downflow phase, and broadcasts , from which all members can compute the group key . (is a third fresh nonce created by .) All possible interleaved executions of the protocol can be described using Horn clauses mod AC1, and we claim that the resulting set of clauses is a two-way AC1automaton. (The difference between AC and AC1 is inessential, as we can encode one into the other, see Corollary 4.) Let us write selected clauses from this set.

To model communication, take the standard Dolev-Yao approach [START_REF] Dolev | On the security of public key protocols[END_REF]: every message sent is received by the intruder, every message received is from the intruder. For every configuration reachable in an interleaved run of , , , create a fresh unary predicate symbol , such that holds if and only if the intruder can deduce from the set of messages it has got from analyzing all communications before was reached. Depending on the actual intruder model, one or several of the following clauses have to be written for each configuration :

Intruder knows [START_REF] Chang | Symbolic Logic and Mechanical Theorem Proving[END_REF] Intruder can exponentiate [START_REF] Charatonik | Set-based analysis of reactive infinite-state systems[END_REF] Intruder knows the empty list [START_REF] Comon | Tree automata with one memory, set constraints and ping-pong protocols[END_REF] Intruder can build lists [START_REF] Comon | Tree automata techniques and applications[END_REF] Intruder can read heads [START_REF] Comon | Ground reducibility is EXPTIME-complete[END_REF] Intruder can read tails [START_REF] Courcelle | On recognizable sets and tree automata[END_REF] Starting from an initial configuration , for which we assume that some predicate has been defined-by some AC1-tree automaton-, execution may proceed by letting send its upflow message to , letting the whole system progress to some new configuration : Intruder gets 's message [START_REF] Diffie | New directions in cryptography[END_REF] Intruder remembers past messages [START_REF] Dolev | On the security of public key protocols[END_REF] Again, (13) is optional. Including it means the intruder will be able to replay old messages. Excluding it as well as clauses (6)-(11) (with) means the intruder acts as a mere eavesdropper: if we make sure that no clause is given with head (no message is known to the intruder initially), this is the pure eavesdropper model, where for every , holds of at most one message, which is the last message sent by some honest principal-a one-place buffer. Including all clauses (13) and (6)-(11) (with) is the standard choice in Dolev-Yao models, where the intruder can replay, decompose and build messages at will. Let us write what happens when the next action is sending its own message to : [START_REF] Emerson | The complexity of tree automata and logics of programs (extended abstract)[END_REF] (with possibly an extra clause if we wish to state that the intruder remembers past messages.) In other words, reads the message from by querying the intruder through , then builds , which it sends the intruder in the new configuration .

The downflow message from

gives rise to the clause: [START_REF] Fermüller | Resolution Decision Procedures, chapter 25[END_REF] Now the secrecy requirement on, say, 's view of the group key is that (16) Indeed, 's view of the group key is , where the message broadcasted by is , i.e., where holds (reminder: if this message is not forged, then

). Clause [START_REF] Frühwirth | Logic programs as types for logic programs[END_REF] states that this view was not known to the intruder in any configuration , , or .

There are many other possible interleavings, which we do not mention. As we have said, our purpose here is not to actually verify this protocol, but to illustrate the application of AC and AC1-tree automata on a concrete example. All clauses but a few are automata clauses. E.g., clauses (8), (9) are pop clauses, clauses (10) and (11) are standard push clauses. Clause (13) is an -clause. The remaining ones can be rewritten in the form of automata clauses by introducing auxiliary states, a.k.a., predicate symbols. For example, (6) can be rewritten as two pop clauses, and , where is fresh. Clause (7) can be rewritten with both pop and push clauses:

where and are fresh. In general, any clause with linear left-hand and right-hand sides can be rewritten this way. The only clauses that cannot are (14) and (16). We can rewrite the latter as where , , , are fresh and the last clause tests the intersection of languages defined by , , . . . , . While this last clause can be encoded using intersection and query clauses, it is really of a special form which will have its importance in Section 6 (final intersection clauses).

Clause (14) is more problematic, since it is not right-linear. The clauses are actually equivalent in the Dolev-Yao model (where sending lists of elements or sending each element separately has the same net effect) and in the pure eavesdropper model (where any recognizes at most one value anyway). As these clauses are both left and right-linear, we can transform them to push and pop automata clauses.

As we shall see, the resulting set of clauses falls into the decidable case of Section 6. In particular it avoids intersection clauses that are not final. The curious reader might want to know that the secrecy property fails, i.e., the empty clause is derivable from the above clauses, alternatively the intersection of states , , . . . , is not empty, i.e., there is an attack, in all models except the pure eavesdropper case [START_REF] Millen | CAPSL and muCAPSL[END_REF]. Note that IKA.1 was indeed designed so as to be resistant only to pure eavesdroppers.

Undecidability Results

Modulo AC or AC1, we have the following undecidability results.

First, Lemma 1 shows the power of conditional push clauses, which allow us to simulate two-counter machines [START_REF] Minsky | Recursive unsolvability of Post's problem of "tag" and other topics in the theory of Turing machines[END_REF]. For this we do not even need intersection clauses. We get an undecidable problem even without intersection clauses. -i.e., with nondeterministic automata.

Lemma 1. Every r.e. set is effectively representable as the language

, where is a non-deterministic two-way AC (resp. AC1) automaton with one AC (resp. AC1) symbol and two constants. In particular, emptiness is undecidable for this class.

Proof. For every r.e. set , there is a two-counter machine (with counters ,) such that accepts, starting with and . It then suffices to encode configurations of that lead to acceptance using two-way AC (resp. AC1) automata. This is done by encoding the values of the registers by terms (or by terms in the AC1 case). Recall that a two-counter machine [START_REF] Minsky | Recursive unsolvability of Post's problem of "tag" and other topics in the theory of Turing machines[END_REF] is a finite labeled transition system with an initial state , a final (acceptance) state , and transitions where may be Inc , Dec or Zero , . Inc increments , Dec checks whether is , and if so decrements , and Zero checks whether . A configuration of the machine is a triple where is a state, are the values of and respectively. This configuration is encoded as the ground atom , where , and for each , is (summands). This if for the AC case; in the AC1 case, we would code ; this is left to the reader. Introduce the following clauses, where , , , and , and are predicate symbols distinct from all states: (recognizes just), (

). We translate the machine as follows:

1. Acceptance: .

, Dec : .

Lemma 3 (Parikh).

For every AC -automaton , is an effective semi-linear set. The AC -recognizable sets are the semi-linear sets of non-zero tuples of integers.

The results of Section 4 imply that sets recognized by AC-automata with conditional push clauses or even just intersection transitions are in general not semi-linear. Nonetheless, any finite intersection of semi-linear sets is semi-linear, so: Lemma 4. The satisfiability of sets of clauses [START_REF] Gécseg | Tree languages[END_REF], [START_REF] Genet | Decidable approximations of sets of descendants and sets of normal forms[END_REF], [START_REF] Genet | Rewriting for cryptographic protocol verification[END_REF], [START_REF] Goodrich | Implementation of an authenticated dictionary with skip lists and commutative hashing[END_REF], [START_REF] Goubault-Larrecq | A method for automatic cryptographic protocol verification[END_REF] is decidable.

Proof. Let be all non-test, non-final intersection clauses in the given set , be the final intersection clauses in , and be the test clauses in . By Lemma 3 the languages and are effectively semilinear. Then is unsatisfiable iff for some , , or for some , , which is effectively decidable.

In passing, the connection between automata mod A and context-free grammars shows that the emptiness problem for A-automata with one final intersection clause is undecidable, even without push clauses. This is by reduction from the emptiness problem for intersection of context-free languages. In particular, A-recognizable sets are not closed under intersection. The AC case is tamer. By Lemma 4, AC -recognizable languages are closed under intersection, union, complementation, and projection.

We shall spend the rest of this section proving that satisfiability is also decidable in the presence of standard push clauses [START_REF] Ginsburg | Semigroups, Presburger formulas and languages[END_REF]. First, this is the case provided we don't ask for emptiness of intersections, i.e., if clauses [START_REF] Goodrich | Implementation of an authenticated dictionary with skip lists and commutative hashing[END_REF] are restricted to query clauses (). This is Lemma 5 below.

Definition 2 (Two-way AC).

A two-way AC -automaton is a finite set of pop clauses [START_REF] Gécseg | Tree languages[END_REF], of base clauses [START_REF] Genet | Decidable approximations of sets of descendants and sets of normal forms[END_REF], of -clauses [START_REF] Genet | Rewriting for cryptographic protocol verification[END_REF], and of standard push clauses [START_REF] Ginsburg | Semigroups, Presburger formulas and languages[END_REF].

For any ground term , its length is . Write (" plus things") the term , where , . . . , are variables that occur nowhere else,

. Let where occurs nowhere else.

Lemma 5. The satisfiability of sets of clauses [START_REF] Gécseg | Tree languages[END_REF], [START_REF] Genet | Decidable approximations of sets of descendants and sets of normal forms[END_REF], [START_REF] Genet | Rewriting for cryptographic protocol verification[END_REF], [START_REF] Ginsburg | Semigroups, Presburger formulas and languages[END_REF], [START_REF] Goubault-Larrecq | A method for automatic cryptographic protocol verification[END_REF], and query clauses [START_REF] Goodrich | Implementation of an authenticated dictionary with skip lists and commutative hashing[END_REF] with , is decidable. In particular, the following problems are decidable: 1. whether is empty, and 2. whether the ground term is in , where is a two-way AC -automaton.

Proof. The second part of the Lemma follows from the first part by adding one query clause (problem 1.), or one test clause (problem 2.) to . Let , . . . , be the test clauses in the given set of clauses. Define iff for some ground term , iff or . We use negative hyperresolution with eager splitting and forward subsumption, which is a sound and complete resolution strategy. We need to generalize the format of query and test clauses to:

(23) (24)
where , for some , . The case of a query clause is [START_REF] Goubault-Larrecq | Higher-order positive set constraints[END_REF] when , that of a test clause is (24) when , . Negative hyperresolution is the binary resolution rule, where one premise is constrained to be a negative clause. We claim that:

the only negative clauses we shall ever have are of the form (23) and [START_REF] Ibarra | Counter machines and verification problems[END_REF]. Note that factoring is not needed, because all our clauses are Horn (see e.g., [START_REF] Fermüller | Resolution Decision Procedures, chapter 25[END_REF], Definition 4.1). We prove claim by induction on the length of a negative hyperresolution derivation with splitting. Resolving a clause [START_REF] Goubault-Larrecq | Higher-order positive set constraints[END_REF] or [START_REF] Ibarra | Counter machines and verification problems[END_REF] with a clause [START_REF] Genet | Decidable approximations of sets of descendants and sets of normal forms[END_REF], if possible at all, yields the empty clause. Resolving against [START_REF] Genet | Rewriting for cryptographic protocol verification[END_REF] or [START_REF] Ginsburg | Semigroups, Presburger formulas and languages[END_REF] again yields a clause [START_REF] Goubault-Larrecq | Higher-order positive set constraints[END_REF] or [START_REF] Ibarra | Counter machines and verification problems[END_REF]. It remains to examine the two cases where we resolve against a pop clause (17), say . Case 1: with a clause [START_REF] Goubault-Larrecq | Higher-order positive set constraints[END_REF]). There are finitely many such resolvents, and they all split as two clauses of the form [START_REF] Goubault-Larrecq | Higher-order positive set constraints[END_REF] or [START_REF] Ibarra | Counter machines and verification problems[END_REF]. This finishes to prove . We now show that negative hyperresolution with splitting and forward subsumption terminates. Otherwise, there is an infinite branch, containing an infinite sequence of clauses [START_REF] Goubault-Larrecq | Higher-order positive set constraints[END_REF] or [START_REF] Ibarra | Counter machines and verification problems[END_REF] since there are only finitely many other clauses. So there is an infinite subsequence of clauses , , with the same predicate , or , , with the same and the same . (In the latter case, this is because there are only finitely many with for some .) Since is a wellordering on , there are two indices such that . Then the th clause in the subsequence subsumes the th, which is impossible.

Call a two-way AC -automaton

normal iff no state of is empty. Lemma 5 allows us to compute empty states; then we may safely remove all clauses with an empty state in their body. Therefore: Lemma 6. There is an effective procedure transforming any two-way AC -automaton into a normal one , such that for every non-empty state of , .

Call a state in bounded iff is finite; equivalently, if there is an upper bound on the lengths of terms recognized at in . Call unbounded otherwise. Note that standard push clauses are the special case of general transitions where and ; and that pop clauses are the special case , .

Proof. Most of it is standard and boring verification. The difficult cases are at the bottom-right of the array. The trans./ final case works as follows: taking the notations of (26) and (25), we compute the mgus of (from the former) with

. By the side-conditions on and since must be maximal, is not a variable, so is headed by . For unification to succeed, then, . On the other hand any mgu will map every free variable of and of , . . . , to -sums of fresh variables. The resulting resolvent is then a disjunction of terms built on variables and alone. This always splits in final clauses and final intersection clauses (for those variable s that do not occur in non-variable s).

Instead of dealing with the other cases, we deal with the technically trickiest, the trans./ trans. case. Again by maximality considerations, . For simplicity, write just instead of . Without loss of generality, we resolve: A question spurred by the cryptographic protocol-related motivations in the introduction is: although conditional push clauses [START_REF] Bachmair | Set constraints are the monadic class[END_REF] where is AC lead to undecidability, do we get a decidable class when additionally in (3)? This is still open. We let the reader check that Petri nets are easily encoded in AC -automata with such conditional push clauses; hence the latter recognize strictly more sets than the semi-linear sets, so the techniques of Section 5 don't adapt to this case. These automata would be useful, e.g. in modeling the A-GDH.2 protocol, the authenticated version of IKA.1 mentioned in Section 3, which requires conditional push clauses.

 For each clause in , generate false if the head predicate (on the left of) is in but some predicate in the body (on the right) is not in ; generate true if the head predicate is not in ;

	Lemma 7. The set , is effectively computable. Moreover, for every of bounded states, in any given normal two-way AC -automaton we can effectively compute upper bounds on , . Proof. Let be any set of predicate symbols (states) in . We build a system of inequality constraints on the set of variables , free final final inter. trans. final free push , free push final inter. free pop free final/ free pop free final/ final inter. final inter. free final free final final inter. trans. final final inter. final inter, final trans. trans., final inter., , final. final inter., final final provided the free function symbols in each clause coincide. provided Fig. 1. What resolution with splitting generates Lemma 9. The possible resolvents between clauses considered above are as summa-rized in Figure 1. denotes no possible resolvent, means this generates clauses of kind or clauses of kind , means this generates disjunctions of variable-disjoint clauses of kind , . . . , ; abbreviates . (Some entries are not filled because of symmetry.) trans. abbreviates "general transition", as follows. free push free pop final abbreviates "general final clause", and so on.

Partially supported by the ACI VERNAM, the RNTL project EVA and the ACI jeunes chercheurs "Sécurité informatique,

4.

, Zero :

where is a fresh predicate, one for each .

Let be the set of clauses as above. It is easy to check, first, that, if is a configuration of that leads to acceptance, i.e., to some configuration , then is deducible from by unit resolution; second, that all unit clauses deducible from by unit resolution are of the form , , (), (), or , where leads to acceptance in , or (resp.

), where , and (resp.) leads to acceptance in . Assuming without loss of generality that the only transition out of is Zero , it follows that is in the least Herbrand model of iff and leads to acceptance in , iff and .

This uses conditional push clauses in an essential way. shall see in later sections that, on the opposite, standard push clauses can be effectively removed from AC-automata. Another problem stems from intersection clauses:

Lemma 2. Every r.e. set is effectively representable as the language , where is an alternating AC (resp. AC1) automaton with one AC (resp. AC1) symbol and four constants. In particular, emptiness is undecidable for this class.

Proof. We use an encoding similar to [START_REF] Ibarra | Counter machines and verification problems[END_REF]. -except that the direction of computation is reversed, as in Lemma 1 (otherwise we would only get the second part of the Lemma). Again we encode two-counter machines. However, content of register is coded as any term , with , and . In the sequel, write this term . Incrementing will be done by incrementing , while decrementing will be achieved by incrementing . The encoding is not one-to-one: the same value may be coded by several terms . We take care of this by requiring that any predicate meant to recognize recognizes every representative of it. The rest of the proof is as for Lemma 1.

By a remark in [START_REF] Ibarra | Counter machines and verification problems[END_REF], three constants actually suffice for this Lemma. Note also that even without intersection clauses and conditional push clauses, but provided we for non-Horn clauses, satisfiability is again undecidable. Indeed, replace the intersection clauses with the two clauses and , with fresh.

Deciding The Constant-Only Case

We warm up by solving the case of one AC symbol , and finitely many constants symbols , . . . , -the so-called constant-only case. This will turn out to be the core of the general problem in Section 6. Because of the negative results of Section 4, we must restrict the format of clauses. Without loss of generality we may assume that we use clauses of the following form: [START_REF] Goubault-Larrecq | A method for automatic cryptographic protocol verification[END_REF] where and are distinct variables, and is a closed term. Clauses [START_REF] Gécseg | Tree languages[END_REF] Definition 1. An AC -automaton is a finite set of pop clauses [START_REF] Gécseg | Tree languages[END_REF], of base clauses [START_REF] Genet | Decidable approximations of sets of descendants and sets of normal forms[END_REF], and of -clauses [START_REF] Genet | Rewriting for cryptographic protocol verification[END_REF].

By standard marking techniques, it is decidable whether any given state of an ACautomaton is empty in . Things get more complex in the presence of final intersection clauses. First, note that ground terms in the constant-only case are finite linear combinations , with and : equivalently, non-zerotuples of natural numbers. Recall that a set of -tuples of natural numbers is linear if and only if it can be written where is taken componentwise, and is a finite subset of . A semi-linear set is a finite union of linear sets. The semi-linear sets are exactly the sets definable in Presburger arithmetic [START_REF] Ginsburg | Semigroups, Presburger formulas and languages[END_REF]. Also, the commutative image of any context-free language is semilinear, and in fact effectively so: this is Parikh's Theorem [START_REF] Parikh | On context-free languages[END_REF]. Now observe that if we read clauses [START_REF] Gécseg | Tree languages[END_REF], [START_REF] Genet | Decidable approximations of sets of descendants and sets of normal forms[END_REF], [START_REF] Genet | Rewriting for cryptographic protocol verification[END_REF] to an upper bound on the lengths of terms recognized at in ; this is by induction of the lengths of unit resolution derivations of . So the set of bounded states is the unique maximal set such that the system of inequalities above is satisfiable. This can be built by enumerating all subsets of states and taking the largest for which is satisfiable. Satisfiability of can be decided by, e.g., Section 6 of [START_REF] Shostak | Deciding linear inequalities by computing loop residues[END_REF].

Let

. The projection on of a set of terms is . This may include the (fictitious) empty sum . To remain in the realm of AC-terms, write

. A state is bounded on (in) iff is bounded. The bounded support of is the maximal such that is on . We may compute automata recognizing projections ; that is not an AC-term merely complicates the statement of the Lemma: Lemma 8. There is an effective procedure that, given a finite set of constants, given any two-way AC -automaton , produces another such that for every in (we write as), and computes the set of all predicates in such that .

Proof. ; and by induction on the length of a unit resolution derivation of in , is derivable in for some (in the case of -clauses generated from pop clauses of , this is because, for every , since , in particular is not empty); in particular, if is recognized at in , then is indeed the projection of some term recognized at in . By starting from , and adding constants while is bounded, using Lemma 7 and Lemma 8, we get: Corollary 1. There is an effective procedure that, given a normal two-way automaton , computes the bounded support of each state of .

From all this we finally deduce:

There is an effective procedure transforming any two-way AC -automaton into a AC -automaton such that for every in , .

Proof In particular, for every two-way AC -automaton , is an effective semilinear set. So the languages of two-way AC -automata are closed under intersection, union, complementation and projection. Also, by Theorem 1 and Lemma 4:

Corollary 2. The satisfiability of sets of clauses of the form (17)-(22) is decidable.

This was the main result of this section. Later, we shall need the following corollary: Corollary 3. Given a set of clauses of the form (17)- [START_REF] Goodrich | Implementation of an authenticated dictionary with skip lists and commutative hashing[END_REF], and a disjunction of blocks, where the s are pairwise distinct, it is decidable whether .

Proof. Equivalently, whether . Let be . Skolemize by creating new constants , . . . , . Then iff union the clauses , , , is unsatisfiable, where is the sign opposite to . We conclude by Corollary 2.

Note that is entailment in Tarskian semantics, where terms take their values in some arbitrary non-empty domain (see [START_REF] Chang | Symbolic Logic and Mechanical Theorem Proving[END_REF]). This is required because skolemization is valid in Tarskian, not Herbrand semantics. Tarskian entailment implies Herbrand entailment, because Herbrand interpretations are special cases of interpretations in the sense of Tarski, but not conversely.

Deciding The General Case

We turn to deciding emptiness of AC-automata with push clauses, based on unrestricted signatures containing binary symbols , . . . , that are AC. Call the other function symbols in free. Zero-ary function symbols are constants. Considering the undecidability results of Section 4, the largest class of AC-automata for which we can reasonably hope to decide the emptiness problem is as follows.

Definition 3 (Two-Way AC).

A non-alternating standard-two-way AC-automaton on is a finite set of clauses of one of the following forms:

free pop clauses [START_REF] Ackermann | Solvable Cases of the Decision Problem[END_REF] where is a free symbol, pop clauses , free push clauses (3) (possibly conditional) with , --clauses [START_REF] Genet | Rewriting for cryptographic protocol verification[END_REF], standard push clauses [START_REF] Ginsburg | Semigroups, Presburger formulas and languages[END_REF].

We do allow conditional push clauses on free function symbols, while push clauses must be standard on AC symbols. To cope with intersection-emptiness, we add final intersection clauses [START_REF] Goodrich | Implementation of an authenticated dictionary with skip lists and commutative hashing[END_REF] to non-alternating standard-two-way AC-automata.

Note the additional restriction on free push clauses. This is required for technical purposes: otherwise the free push/free pop entry in Figure 1 below would be wrong. More precisely, if we did not require this, it would be possible to emulate intersection clauses by creating one pop clause and one push clause (provided is both are equivalent), leading to undecidability.

We base our study on ordered resolution, where the literals resolved upon in each premise must be maximal with respect to some stable ordering , with eager splitting. Specifically, let denote the size of , and define if and only if for every ground substitution . Ordered resolution with eager splitting is complete, but does not yield a terminating decision algorithm straight out of the box. However we take it as a starting point. First examine the shape of possible resolvents generated in an ordered resolution derivation. Since our clauses are Horn, we don't need factoring.

The first kind of clauses that crop up are the general transitions:

(

where , the s are pairwise distinct, , and if then . The notations and extend the unsubscripted notations by using for . Then we also get general final clauses: [START_REF] Kaji | Solving a unification problem under constrained substitutions using tree automata[END_REF] where , . . . , are terms built on variables and the sole function symbol , and if some is a variable , then is free in some non-variable term . Finally, we shall get free final clauses the negative complex clauses [START_REF] Bouhoula | Automata-driven automated induction[END_REF] where is a free function.

We may assume that , otherwise the argument of , , is smaller than , so is not maximal-unless , but then the side-condition of transitions requires . The most general unifiers of with map to , to if and to otherwise, where ranges over the non-empty subsets of , and the integers , are such that , with whenever ; here the s are fresh pairwise distinct variables. The corresponding resolvent is The terms , , split out of this as final intersection clauses. What remains is a general transition, unless , is a singleton , and , where we get an -clause.

Consider a refutation of some non-alternating standard-two-way AC-automaton with final intersection clauses by ordered resolution and splitting, from a set of clauses ; assume minimal size. Recall this is a tableau proof, organized as a tree of clause sets. Then every (split part of a) resolvent is either the empty clause or is used later on in the refutation. Call general transitions and general final clauses the uncontrollable clauses: all the others are finitely many by construction; call them controllable. If contains an uncontrollable clause, then since only contains controllable clauses, there are two controllable clauses whose resolvent splits as a disjunction of clauses, at least one of which is uncontrollable. Looking at Figure 1, uncontrollable clauses in some premise of the resolution rule only yield uncontrollable clauses again (based on the same AC function symbol), or or final intersection clauses. In a refutation, all branches are closed; also, every uncontrollable clause is used, and the empty clause is controllable; so working our way downwards along each branch (think of a tableau as expanding downwards) we produce sequences of uncontrollable clauses on the same symbol that eventually contribute some or final intersection clause , on each branch . Collect s as a disjunction . Working our way upwards now, again we only find uncontrollable clauses on the same function symbol , until we reach , final intersection clauses, or standard push clauses, or pop clauses (we stop there even though the latter two are uncontrollable by our definition). These clauses form a subset of for some node of the tableau, where denotes the subset of consisting of and final intersection clauses, as well as standard push clauses and pop clauses (with the same). On the other hand, is by construction a logical consequence of . Corollary 3 provides an effective way of deciding this. (Please note that this works precisely because is a consequence of in Tarskian semantics, not just in Herbrand semantics. See the remark after Corollary 3.) Also, up to condensing, there are only finitely many disjunctions .

So we may instead infer the s using the following effective deduction rule: if

where is the current node (clause set) on the current branch, the s are pairwise distinct up to renaming, and each is either an -clause or a final intersection clause. (Read this rule just like the resolution rule: the conclusion has to be added to the current set of clauses.) Corollary 3 provides an effective way of checking the logical consequence required above. Theorem 2. Call restricted ordered resolution the rule where ordered resolvents are only retained if they are disjunctions of variable-disjoint controllable clauses, standard push clauses and pop clauses. Then restricted ordered resolution with splitting and rule (27) is sound, complete, and terminates on non-alternating standard-two-way AC-automata with final intersection clauses.

In particular, the emptiness of the intersection of languages defined by non-alternating standard-two-way AC-automata is decidable.

Proof. Soundness is obvious. For completeness, repeat the argument above, this time taking a minimal tableau proof using restricted ordered resolution with splitting and [START_REF] Kallick | A decision procedure based on the resolution method[END_REF]. Termination follows from the fact that there are only finitely many controllable, standard push clauses and pop clauses on a given signature.

By making some symbols be AC1, with respective units , we get so-called standard-two-way mixed AC/AC1-automata: Corollary 4. The emptiness of the intersection of languages defined by standard-twoway mixed AC/AC1-automata is decidable.

Proof. Build a new non-alternating standard-two-way AC (not mixed)-automaton from by replacing each pop clause where is AC1, by the clauses , plus and (understand the latter as splitting into one -clause and a free push clause on each); and each push clause by plus the -clause . We leave it as an easy exercise to show that if is derivable from , then is derivable in ; and conversely, if is derivable in then for some obtained from by using the equations , is derivable in .

Conclusion

We have classified alternating two-way mixed AC/AC1-automata according to the decidability of the intersection-emptiness question. Essentially, alternation or conditional push clauses lead to undecidability. On the other hand we were able to give a decision algorithm for standard-two-way mixed AC/AC1-automata without alternation, and with only standard push clauses on equational symbols.