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The spatial and temporal structure of the resonant fluid response in a narrow gap (the
so-called gap resonance) between two identical fixed boxes is investigated experimentally.
Transient wave groups are used to excite the gap resonance from different wave approach
directions. This shows a strong beating pattern and a very long duration, reflecting that
gap resonance is a multi-mode resonant and weakly damped phenomenon. For head sea
excitation the linear transfer function of the m=2 gap mode is as significant as that of
the m=1 mode. Gap resonance can be driven through different mechanisms, e.g. linear
excitation and a nonlinear frequency-doubling process. Significant wave group structure
is shown in the gap, and the group structure is more distinct in the case with frequency
doubling, so long wave, excitation. Then it is clearer visually that the groups originate
at the end of the gap, propagate along the gap and are then partially reflected from the
other end. The groups within the gap are very clear because the group velocity is close
to constant for the first few gap resonance modes, and much smaller than that for free
waves on the open sea. In contrast, the phase speed of waves in the gap is larger than
that for free waves outside. Only in the limit of short waves do the group velocity and
phase speed of the gap modes tend to those of deep-water free waves. The group and
phase speeds from these experiments match well the theoretical forms given by Molin
et al. (2002), albeit for a slightly different box cross-sectional shape.

Key words: Gap resonance; Wave propagation; Group velocity; Heading effect; Spatial
structure; Wave-structure interactions.

1. Introduction

In side-by-side scenarios, one vessel may be moored alongside another, creating a gap
that is very narrow relative to the principal dimensions of the two bodies. One practical
application might be an offloading operation between a floating liquefied natural gas
facility and an LNG carrier (Zhao et al. 2018). The fluid inside the narrow gap may
experience significant resonant response (gap resonance) when excited at particular wave
frequencies.

† Email address for correspondence: wenhua.zhao@uwa.edu.au
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Early pioneering studies (Molin 2001; Molin et al. 2002; Sun et al. 2010) have demon-
strated that gap resonances are standing waves in a gap, where the gap length is close
to an integer number of half wavelengths for each standing wave (or gap mode). The
gap resonances with different but close mode frequencies interfere in the gap, making the
resonance rather complex. Gap resonance is an interesting hydrodynamic phenomenon,
also in the sense that the narrow width makes it difficult for wave energy to ‘escape’ from
the gap, leading to large responses at resonance. In such a scenario, viscous damping
becomes relatively important as the radiation damping is small.

Various methods have been proposed in the frequency domain to consider the viscous
damping contribution to obtain reasonable agreement between potential flow calculations
and physical model test results in gap resonance. For instance, Huijsmans et al. (2001)
suppressed vertical motion in the gap completely by introducing a rigid lid, Newman
(2001) split the gap motion into generalized modes, allowing different damping rates for
each motion, and Chen (2005) introduced a dissipative damping term in the free surface
condition.

In addition to frequency-domain analysis, intensive time-domain simulations can be
conducted to account for viscous and nonlinear contributions. For instance, Kristiansen
& Faltinsen (2008) ran a fully nonlinear 2D numerical wavetank coupled with an inviscid
vortex tracking method, suggesting that flow separation is the main source of discrepancy
between linear potential theory and model tests. A model is then developed for the
estimation of viscous damping, based on small-amplitude harmonic flows through a slot
in a slatted screen (Faltinsen & Timokha 2015). Feng & Bai (2015) carried out fully
nonlinear numerical simulations and reported that nonlinearity may slightly increase the
resonant frequency, though with limited effect on the amplitude. Using a multi-phase
Navier-Stokes equation model, the flow field in the gap is examined in Feng et al. (2017)
with focus on vorticity.

Numerous studies have been made to improve the agreement between numerical
simulations and experimental data, by better understanding and modelling the damping.
It seems that the majority of the efforts have been focusing on the resonant elevations
at an individual location (e.g. the centre of a gap), while very few have considered the
spatio-temporal structure of enhanced surface elevation along the gap. How wave groups
propagate along the gap and how these couple into the gap resonant modes have not
been studied previously.

In light of the above, we carried out a series of experiments (using the same set-
up as in Zhao et al. (2017)) to investigate the group dynamics and wave propagation
of the resonant responses in a narrow gap. The gap resonance is excited by focused
transient wave groups from different headings. A brief description of the experimental
set-up follows in §2. The gap resonance phenomenon driven through a linear process is
discussed in detail in §3. The evolution of the gap resonance is briefly discussed, and the
linear transfer functions, with multiple peaks corresponding to various gap modes, are
reported in §3.2. The temporal and spatial structure of the gap resonance is demonstrated
more clearly in §4 through nonlinear excitation - a frequency-doubling process. Some new
observations on the phase speed and group velocity of components related to the gap
resonance modes are given in §5. We show that the group velocity within the gap drops
to one twentieth of the phase speed close to the lowest gap mode, significantly different
to that for deep-water free waves. Finally, some conclusions are drawn at the end of this
study.
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Figure 1. (Colour online) Experimental set-up: (a) sketch (not to scale) of the fixed boxes in
different heading excitations, with the red symbols showing the locations of the wave probes;
(b) a snapshot of the fixed box hull (yellow) rigidly connected to the gantry (blue) in the wave
basin. The end of the narrow gap is marked by two vertical green lines.

2. Experimental set-up

The experiments were conducted in the Deepwater Wave Basin at Shanghai Jiao Tong
University. The basin is 50 m long, 40 m wide and the water depth was set to 10 m. To
focus on the gap responses and to simplify the study, we selected two identical rectangular
boxes to represent a side-by-side moored two-body system. Each model is 3.333 m long,
0.425 m high, 0.767 m wide and the gap width between them is 0.067 m. The vessel
models have round corners at both bilges, each with a radius of 0.083 m running along
the full length, as shown in figure 1.

During the model tests, the two boxes are fixed to a gantry which provided enough
stiffness to hold them rigidly in place. Each box was immersed to a draft of 0.185 m. As
shown in figure 1, there are seven wave gauges (WG) 1 and 7, 2 and 6, 3 and 5 being
symmetric in pairs about the gap centre, and WG4 being central in the gap. A more
detailed description was reported in a previous study (Zhao et al. 2017).

Rather than generating random waves in the tank, requiring long duration runs, we
used transient focused wave groups as the incident waves. Prior to the experiments, a
series of transient wave groups were generated in the absence of the model, based on a
hypothetical Gaussian spectrum (representative of swells) given by

Sη(f) =
H2
s

16

1

δ
√

2π
exp[− (f − fp)2

2δ2
], (2.1)

where Hs refers to an assumed significant wave height, fp the peak frequency of the
spectrum and δ=0.0775 Hz.

Two sets of transient wave groups were generated (see details in Appendix A): one of
them has a spectral peak frequency fp = fm=1=1.02 Hz (where fm=1 is the frequency of
the mode with one half-wavelength along the gap in this experiment) and the other fp =
1
2fm=1. The two wave group tests drive the gap resonance through different processes -
the former (fp = fm=1) by a simpler linear process and the latter (fp = 1

2fm=1) through
a more complex nonlinear (frequency-doubling) process. The target maximum surface
elevation for the incident wave packet for both sets was 50 mm in the lab. The wave
paddle signals which generated these wave groups were stored and repeated with the
model in place producing the data analysed in the following sections. The calibration of
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the wave probes and the high accuracy of the measurements have been demonstrated in
the appendix of Zhao et al. (2017) for similar tests, and thus we do not repeat this here.

3. Gap resonance driven via a linear process

This section presents the gap response driven through a linear process, i.e. by the
transient wave groups (see Appendix A) with peak frequency of fp = fm=1 for the
underlying spectrum. In the absence of the model, these wave groups were generated
with the waves focusing at the location of the central gauge WG4 (see figure 1). Without
moving WG4, the same wave paddle signals were repeated when the model was installed
in the tank. The heading direction of the model was adjusted in the tests, so that the
wave groups approach the model from different directions, i.e. achieving beam sea and
head sea conditions.

The gap resonances were excited in both beam and head seas using the same undis-
turbed incident wave surface elevations. Time histories were measured at the location of
WG4 (the centre of the gap) in the absence of the model (undisturbed incident waves,
marked as η) and at the seven gauge locations with the model in place (response, marked
as ϕ). A decomposition of the temporal structure of the transient gap resonant behaviour
at an individual location has been reported in our previous study (Zhao et al. 2017). Here,
we focus on the spatial evolution of the gap resonance harmonics along the gap, with
new phenomena being observed in terms of the group dynamics within the gap.

3.1. Temporal and spatial evolution of the gap resonance along the gap

In this analysis, a set of four focused wave groups are generated using the same paddle
signal, but with each Fourier component shifted by a relative phase of 0◦, 180◦, 90◦ or
270◦, respectively. These four wave groups correspond to a crest focus, a trough focus
and up- and down-crossings, all with the same linear envelope. These four-phase wave
group signals can be used to extract the first four harmonic components, i.e. η1, η2+, η3+

and η4+, which refer to the terms with frequencies around ω, 2ω, 3ω and 4ω, respectively.
The extracted harmonics are associated with the Stokes-type expansion for non-linear
waves. It should be noted that the second-order difference frequency signal η2−, arising
from the interaction of pairs of linear components, is combined with the η4+ signal in
this methodology, but it is straightforward to separate these through a simple frequency
filter as these two terms cover quite different frequency ranges. The same idea holds
for the corresponding gap resonant responses, and so we can separate the first four gap
resonance harmonics ϕ1, ϕ2+, ϕ3+ and ϕ4+. For the sake of space, we do not repeat
the four-phase decomposition theory here, but details can be found in Fitzgerald et al.
(2014) and Zhao et al. (2017).

The first four harmonics of the gap resonance in beam sea excitation are extracted
through the four-phase decomposition method. As the higher harmonic components of
the gap resonance beyond the second are quite small in this test, we only show the first
(ϕ1) and the second-order difference frequency (ϕ2−) and sum frequency (ϕ2+) signals.
Figure 2 shows the harmonics of the surface elevations measured by the seven wave gauges
in the gap. Strong gap resonant responses are excited as shown by the linear components
(ϕ1) in figure 2. This is because the frequency range of the linear components of the
input group contains frequencies corresponding to the first few gap resonant modes. The
time when the undisturbed wave component crests focused at the location of the central
gauge has been set as t=0 s. As shown in figure 2, the incident transient wave group
(η1) only lasts about 6 s after the focal time, while the gap responses last for much
longer and show strong beating patterns. The beating pattern of the gap resonance time
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Figure 2. Harmonic components of the gap resonance in beam sea excitation, where undisturbed
waves approach the gap from broadside on (see figure 1). The central red symbols refer to
the location of the wave gauges along the gap. ϕ1 (black curve), ϕ2− (blue curve) and ϕ2+

(red curve) represent the linear component, second-order difference frequency and second-order
sum frequency terms of the gap resonance, respectively. Only the linear component (η1) of the
incident wave group is shown, as the high harmonics are negligible. Note the different vertical
scales of the subplots.

history is a result of the interference of the different modes set up in the gap, each of
which simply decays exponentially in time once the incident wave group has passed by.
The second-order difference frequency and sum frequency signals, which are simply the
bound wave harmonics of the linear response, are much smaller compared to the linear
components. It is interesting to see that the second-order difference frequency term is as
significant as the sum frequency term for the gap resonance phenomenon.

The combination of the measured signals from the seven wave gauges provides impor-
tant information on the spatial structure of the resonances in the gap. At the excitation
stage, i.e. around t=0 s, the signal pulse at the two ends of the gap (WG1 and WG7)
is small, but they seem to propagate from the ends towards the centre of the gap and
induce large response including large set up (blue curve in figure 2) when they meet
at the centre of the gap. Then the wave groups seem to continue propagating towards
the ends and some of them are reflected back to the gap. This process continues until
the waves disappear due to dissipation and radiation. This phenomenon is more clearly
demonstrated in the next section where the gap resonance is excited through frequency
doubling, a nonlinear process.

When the waves (the same as in figure 2) approach the gap from a head sea, so along
the gap from one end to the other, the gap signals show locally very different structure
compared to the beam sea condition. As shown in figure 3, it is clear that the wave
group propagates from one end to the other, with some energy loss. When it approaches
the far end, part of the wave system is reflected and propagates back along the gap in
the opposite direction. The process continues until all the wave energy in the gap is lost
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Figure 3. Same as in figure 2, but the gap resonance is driven by head sea excitation, where
undisturbed waves propagate along the gap from one end (WG1) towards the other (WG7), as
presented in Zhao et al. (2017).

through dissipation and radiation. It is interesting to see that the largest gap response
occurs at the entry area of the gap in the head sea, rather than at the centre of the gap as
for the beam sea case. It is worth noting that only odd gap resonance modes are strongly
excited for beam sea excitation due to the symmetry of the experimental set-up, whereas
both even and odd modes are excited for the head sea excitation where the longitudinal
symmetry of the gap response is lost.

We stress that much of the published analysis of gap resonance has concentrated on
regular wave excitation. There the group structure in the gap would be regarded as a
starting transient during the build-up of steady state oscillation. The only previous study
of gap dynamics by wave groups that we know is by Eatock Taylor et al. (2008) which
shows comparable travelling groups in the gap, there computationally using potential
flow calculations, here experimentally.

3.2. Response Amplitude Operators of the gap resonance and mode shapes

To provide further information on the resonant modes in the gap, we look at the
response amplitude operators (RAOs). As an important design parameter, the RAO is
the linear transfer function (in the frequency domain) between the input wave signal and
the corresponding responses. Molin et al. (2009) provided the RAOs of gap resonances
at different heading sea excitations with gap width of 12 cm and 31 cm (at model scale),
for comparable scaled models. Here, we provide RAOs for a similar set-up but with a
narrower gap (6.67 cm) with multiple wave gauge locations along the gap, to complement
Molin et al.’s results and to facilitate the analysis of this study.

The RAOs are determined based on the experimental data through the formula
|H(ω)| =

√
SO/SI , where SO is the power spectrum of the linear component of the

gap response and SI the power spectrum of the linear incident wave component. Both
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Figure 4. Experimentally-determined RAOs in beam sea excitation. The smooth curves are
fitted based on cubic interpolation. The mode shapes are demonstrated around the corresponding
RAO peaks. Note only odd modes of the gap resonance are excitated here as a result of the
symmetrical set-up.

linear components are extracted through the four-phase decomposition methodology. It
is worth mentioning that there is a cross term, assumed to be a (3,1) term - so cubic in
amplitude, embedded in the first harmonic component. This cross term has the linear
frequency, but a high-order dependence on the wave amplitude, and thus it is negligible
for weakly nonlinear waves.

The RAOs obtained in a beam sea are shown in figure 4, with the symbols being
the experimental data and curves being numerical fits to these experimental values. The
mode shapes, each being close to an integer number of half wavelengths along the gap
length, are demonstrated in the figure with the little diagrams next to each spectral peak
of the RAOs. The range of frequencies covered by the first few odd gap resonance modes
is quite compact, i.e. m= 1 to 7 modes are covered in a narrow frequency range from
1.0 to 1.4 Hz. It is not a surprise that the RAOs measured by WG4 (the centre of the
gap) exhibit the largest values, and those measured at WG2 are very similar to those
measured at WG6, which is a reflection of the symmetric set-up in the beam sea condition.
The experimentally-determined frequencies of the gap resonance modes match well those
calculated by the potential flow diffraction code DIFFRACT (Sun et al. 2010), without
consideration of any viscous damping. This was demonstrated in Zhao et al. (2017) and
we do not repeat the results here.

By analogy, the gap resonance RAOs in head sea excitation are obtained and shown
in figure 5. Compared to the beam sea excitation, an obvious difference in the head sea
condition is that even gap resonance modes are also driven due to the asymmetry of the
excitation. While the RAOs measured at WG2 and WG6 are very similar in beam sea
conditions, they are different in the head sea case as shown in figure 5. In particular WG2
shows deeper troughs either side of the m=2 and m=6 modal peaks. Our linear potential
flow calculation shows similar behaviour, though with much larger amplitudes as we do
not include any viscous damping. This is not shown here. It is worth mentioning that the
locations of WG2 and WG6 are close to nodes for the m=4 mode, and thus there is no
significant m=4 mode response. The peak RAO value at the frequency of the m=2 mode
in the head sea is comparable to those for the m=1 mode in both beam and head sea
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Figure 5. Same as in figure 4, but for head sea excitation. Note that even gap modes are also
excited due to the asymmetry of the excitation. The location of WG2 and WG6 is close to a
node for the m = 4 mode.

excitation. The frequency of the m=2 gap mode is very close to that of the m=1 mode,
which indicates that both the first two gap resonance modes are likely to be excited to
comparable level in a given sea state.

Another interesting phenomenon is that the RAOs at the frequency of the m=1 mode
in the head sea excitation are slightly smaller compared to those in the beam sea, while all
the other modes are slightly larger. This is consistent with the radiation patterns: linear
potental flow calculations show that the m=1 mode radiates most strongly perpendicular
to the gap, while the higher modes radiate more energy along the gap direction (Wang
et al. 2019).

4. Gap resonance driven nonlinearly – a frequency-doubling process

In the section above, we discussed the time histories and the RAOs of the resonant
responses along the gap under different heading excitations. These gap resonances are
driven through a linear process, i.e. the frequency range of the linear incident wave
components contains the frequencies of the gap modes, leading to resonant responses. One
may note that the m=1 mode frequency is fm=1=1.02 Hz at lab scale. This corresponds
to a period of 7.6 s in the field at a scaling of 1:60. Therefore, we may suppose long
period swells at 15.2 s might drive gap resonance through a frequency-doubling process;
clearly this is of practical interest for open sea applications of side-by-side operations. We
therefore look at the gap resonance excited by wave groups whose underlying spectral
peak frequency is half the m=1 mode frequency.

4.1. Spectral demonstration of the frequency-doubling excitation

Model tests are conducted using the same set-up as in the linear case. To facilitate the
analysis, we plot the spectrum of the undisturbed incident waves in figure 6, together
with the corresponding gap resonance spectra under different heading excitations. All
the signals in the figure were measured by the central gauge WG4 which was in place
throughout the whole test programme.

As shown in figure 6, the spectral peak of the undisturbed incident wave group (black
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Figure 6. Amplitude spectra of the undisturbed waves η (black dotted curve) and corresponding
gap resonances ϕ (solid curves in blue for the beam sea excitation and in red for the head sea
case) measured at the centre of the gap (WG4).

dotted curve) is half the m=1 mode frequency. The most striking observation from figure
6 is that the resonant responses in the gap are significant from 1.0 to 1.4 Hz, where
there is very little incident wave energy. The m=1 mode response at the centre of the
gap (WG4) seems to be significantly affected by the heading conditions. As noted in the
previous section, each mode radiates in a different, rather directional, manner but the
second-order excitation is more directional (e.g. cross terms between frequency pairs)
than the linear excitation.

4.2. Temporal and spatial structure of the gap resonance: frequency doubling

Instead of focusing on the single wave gauge signal at the centre of the gap, this section
presents the time histories measured by wave gauges along the gap, to better understand
the temporal and spatial structure of the resonant responses in the gap.

Four-phase wave group tests are also conducted for each heading condition, so as to ex-
tract the harmonic components of the gap resonance. Using the four-phase decomposition
methodology, we obtain the first four harmonics of the gap resonance, where the higher
harmonics are quite small except that the second harmonic is now as important as the
linear component. Figure 7 shows the first two harmonics of the gap resonance measured
at the seven wave gauges, where the gap resonances are driven nonlinearly in a beam sea.
The linear response time histories (left of figure 7) are uniform along the gap and are
excited simultaneously. In this case, the frequency components of the linear responses are
well below the gap resonance frequencies, and thus the long incident waves just pass the
gap without exciting resonances. The frequency range of the second harmonics in this
case covers the frequencies of the gap modes, and thus drive significant gap resonances.
One can see clearly that the waves as a group propagate from the two ends of the gap
towards the centre, meet at the centre, then propagate towards the ends, where there
is some reflection back to the gap and some radiation to the far field. Indicative blue
arrow lines are added on top of the second harmonic signals (in figure 7) to highlight the
process.

Figure 8 shows the first two harmonics of the surface elevations in the gap under
head sea excitation. As for the beam sea excitation, the frequency components of the
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Figure 7. Spatial and temporal evolution of the gap resonance harmonics driven in beam
sea condition through a frequency-doubling process, where the peak spectral frequency of the
undisturbed waves is fp = 1

2
fm=1. The blue lines with arrows on top of the second harmonic

signal are used to indicate the propagation of the waves in the gap. The red symbols represent
the locations of the seven wave gauges in the gap. t = 0 refers to the time when the undisturbed
incident waves focus.

Figure 8. Same as in figure 7, but for head sea excitation where incident waves pass through
the gap from upwave (WG1) to downwave end (WG7).
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m 1 2 3 4 5 6 7 8 9

fm(Hz) 1.025 1.071 1.123 1.178 1.238 1.300 1.362 1.426 1.491

km(m−1) 0.943 1.885 2.828 3.770 4.713 5.655 6.598 7.541 8.483

Table 1. Wavenumbers and frequencies of the first nine gap modes.

linear responses (ϕ1) are well away from the gap resonance frequencies, and thus no
resonance is excited. In contrast to the beam sea condition, the linear response here
decreases significantly from the upwave to downwave end, which we have found to be
entirely consistent with potential flow theory (without additional damping). It is found
that the linear response propagates from one end (WG1) of the gap to the other (WG7)
at the same speed as the undisturbed incident waves (deep-water free waves). The
second harmonic signal (ϕ2+) in figure 8 is obviously not a bound component to the
linear response, as it travels much more slowly than the linear component. This leads
to a separation between the gap resonance time histories and the incident wave fields,
facilitating the analysis of the group structure in the gap. The phase speed and group
velocity derived for components in the gap are discussed in detail in the following section.

5. Phase speed and group velocity of the gap resonance modes

As demonstrated in the previous sections, the gap responses show a strong group
structure which propagates along the gap. To explore this phenomenon, we look at the
characteristics of the phase speed and group velocity associated with the gap resonance
modes and compare these to the behaviour of open sea deep-water waves. The frequencies
(ωm = 2πfm) are taken from the experiments and the wavenumbers of the first nine gap
resonance modes are calculated as km = 2π/(2L/m), where m refers to the mth gap
mode and L=3.333 m is the length of the gap. The values are listed in Table 1. Here,
we have assumed the gap resonance modes have nodes exactly at the ends of the gap -
this is only approximately correct but simplifies the analysis here without losing much
accuracy, as the end corrections will be O(gap width) � gap length.

A Padé approximant polynomial curve is used to fit the relationship between the
frequencies and the wavenumbers of the first nine gap resonance modes, as shown in
figure 9. The fitted curve (black dotted line) is then used to provide the phase speed
(cp = ω/k) and group velocity (cg = ∂ω/∂k, so the slope of the fitted curve) against
wavenumber for the gap resonance modes. The group velocity of the gap resonance modes
is about 0.35 m/s for the first few and most important modes (see the solid red curve
in figure 9). Simply assuming the group velocity of each wave component is around 0.35
m/s, it will take just less than 7 s for wave energy to propagate the distance of 2.43 m
from WG1 to WG7. This is consistent with the experimental observations of the group
propagation, e.g. figure 8 for the head sea excitation. It is worth emphasizing that the
linear response in the gap (the black curves in figure 8, which are not resonant modes)
travels the same distance within only about 1.7 s, at the same speed (around 1.4 m/s)
as that of deep-water free waves.

As shown in figure 9, the phase speed (solid blue curve) of the gap resonance modes
decreases with wavenumber, but group velocity (solid red curve) increases slowly with
wavenumber which is the opposite trend to free waves on the open sea (dashed curves).
It is worth noting that the group velocity associated with the gap modes is remarkably
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for the first nine gap modes, referring to the left vertical axis. All the remaining curves refer
to the right vertical axis. The solid blue and red curves are experimentally-determined phase
speed and group velocity in the gap. The dotted blue and red curves cp(f) and cg(f) are for
deep-water free waves, while the dashed curves cp(M) and cg(M) are calcuated based on the
potential flow model in Molin et al. (2002). Note the different vertical scales.

small. The very slow variation of group velocity against wavenumber implies that there
is little dispersion when a wave packet propagates along the gap. This explains why the
observed group structure remains so clear along the gap, e.g. as shown by the second
harmonic responses (the red curves) in figures 7 and 8. The phase speed (cp) is much
larger than the group velocity (cg) in the gap. One consequence of this is that each
wave component travels forwards through the group, until it reaches the front of the
group, where it disappears. The group structure is then sustained by new waves that are
continuously formed at the ‘tail’ of the group.

One can see in figure 9 that the group velocity of the gap modes tends to be half the
phase speed for very short waves. This is not surprising, as very short waves can hardly
‘feel’ the gap and thus behave in a similar way to deep-water free waves. It would be
more interesting to explore the phase speed and group velocity of gap resonant modes for
very long waves, so very long gap. To achieve this, we look at the relationship between
the frequency ω and the wavenumber k for waves in the gap through a theoretical model.
Based on linear potential flow theory, Molin et al. (2002) derived the dispersion equation
for waves propagating in an infinitely long and rectilinear channel with width b and draft
h, which is formed by barge-like structures with infinite length and beam. The dispersion
relationship can be approximated as

ω2 ' gk 1 + J̃0 tanh kh

J̃0 + tanh kh
, (5.1)

where J̃0(kb) = 1 − 2
πkb (1 −

∫ 1

0
exp (−kb/

√
1− u2)du). The group velocity (∂ω/∂k) is

obtained as

cg =
g

2ω
[
1 + J̃0 tanh kh

J̃0 + tanh kh
− kbJ̃ ′0 + kh(1− J̃2

0 )

(J̃0 cosh kh+ sinh kh)2
], (5.2)

where J̃ ′0(χ) = dJ̃0
dχ = 1

χ (1− J̃0(χ))− 2
πχ

∫ 1

0
exp(−χ/

√
1−u2)√

1−u2
du.
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The phase speed and group velocity based on Molin’s approximation are compared with
the experimentally-determined values in figure 9. The agreement is reasonably good,
given that no end correction is applied for the gap modes in the experimental results
and that the box models in the experiments have round bilges. Molin’s approximation
behaves very similarly to deep-water free waves for large wavenumbers, and the group
velocity converges to half the phase speed. The most striking observation is that the
phase speed increases continuously as wavenumber decreases, while the group velocity
decreases very slowly, leading to increasing deviation, e.g. the phase speed reaches up to
20 times the group velocity. An intuitive explanation of the very slow group velocity of the
gap resonances may be related to the fluid kinematics in the effectively unbounded flow
field underneath the model. It is also interesting to see that the group velocity increases
significantly (without bound) when the wavenumber becomes small enough.

6. Conclusions

Focusing on the group dynamics of the resonant responses of the fluid in a narrow gap,
a series of experiments is conducted. Two identical vessel models forming the narrow
gaps are fixed in the wave basin during the tests. Transient wave groups are used to
drive the gap resonant responses and the fixed models are rotated to achieve different
wave approach directions. Seven wave gauges are deployed in the gap, which allows for
the investigation of both the temporal and spatial structure of the gap resonance and the
corresponding phase speed and group velocity. Some interesting phenomena are observed.

Experimentally-determined linear transfer functions of the water surface resonance
along a narrow gap are provided. Only the odd gap modes are observed at the gap centre
as a result of the symmetrical set-up in beam sea tests, while both odd and even gap
modes are driven once the symmetry is broken (e.g. in head sea excitation).

How readily each gap mode can be excited is related to how well it radiates energy as
free-surface waves outwards once the mode is excited. So this is sensitive to the approach
heading of the wave as each mode radiates in a different, rather directional, manner.
The m=2 gap mode linear transfer function (in head sea excitation) is observed to be
as significant as that of the m=1 gap mode. This suggests that the m=2 mode may
play a significant role in the relative yaw motion of two floating vessels, which needs
further investigation with freely floating models. In contrast, the m=1 mode will not
affect relative yaw of the vessels but it might couple with relative sway, so variation of
the gap width with the two vessels remaining parallel along the gap.

The group velocity associated with the gap resonance modes does not vary much
between different gap modes. This leads to the strong group structure of the resonant
waves when propagating along the gap. These groups show rather smaller frequency
dispersion than deep-water free waves. The most striking observation is that the group
velocity of the resonant modes is very small. In contrast, the phase speed is large in
particular for the first dominant gap modes, larger than for free waves of comparable
frequencies.

It should be noted that the two vessel models are fixed during the model tests, and
hence we have tackled a pure diffraction problem. However, the tests with the model
fixed facilitate the understanding of the group dynamics of gap resonances and the
observations drawn from the experiments are insightful. Further studies are needed
to investigate the effects of gap resonance on floating structures, where the head sea
excitation may see more relative sway and yaw motions between the two vessels.
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The first author is grateful for the DECRA fellowship (Grant No. DE190101296) awarded
by the Australian Research Council.

Appendix A

Focused transient wave groups are adopted to excite the gap resonance in this study.
These are generated based on the NewWave theory (Jonathan & Taylor 1997), where the
wave surface profile (in time) at the focus point is given by

ηNW =
α

σ2

N∑
n=1

S(fn)∆fRe[ei2πfnt], (A 1)

where kn and fn are the wavenumber and frequency of the spectral components and the
variance σ2 =

∑N
n=1 S(fn)∆f .

This NewWave profile (ηNW ) is the most probable shape in time of an extreme crest
event in a linear random Gaussian sea state. One can see that the structure of ηNW

is defined by the shape of the energy spectrum S(fn). The most probable maximum
elevation α is set by the largest 1 in N linear crest in a random sea state from the
Rayleigh distribution, as derived below (Newman 1977). The normalised probability
density function for the wave amplitude in a narrow-banded sea state is given as

P (ζ) = ζe−ζ
2/2, (A 2)

where ζ = α/σ is the normalised amplitude. The peak of the probability density function,
which is the most probable extreme wave in N samples, can be approximated as:

α =
√

2σ2 log(N). (A 3)

One can see that the most probable maximum α defines the amplitude of the NewWave
profile ηNW .
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