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Recent successful recovery techniques for rockets require that rockets maintain a vertical configuration with zero

vertical and lateral velocities; otherwise, landings may fail. To relax this requirement, a new active-arresting system

(inspired by the arresting gears used on aircraft carriers) is proposed herein to achieve a robust landing, even if the

rocket deviates from the target position or has notable residual velocities and inclinations. The system consists of four

deployable onboard hooks above the rocket’s center of mass, an on-ground apparatus containing four arresting

cables forming a square capture frame, and four buffer devices to actively catch and passively decelerate the landing

rocket. To catch the rocket, the capture frame was controlled by servo motors via a simple proportional–derivative

controller. After catching, the buffer devices generate decelerating forces to stop its motion. A flexible multibody

model of the proposed system was built to evaluate its robust performance under various combinations of multiple

uncertainties, such as noise measurement, time delay in the motor, initial conditions, and wind excitation. Using a

quasi-Monte Carlomethod, hundreds of deviated landing caseswere generated and simulated. The results confirmed

the robustness of the proposed system for achieving successful terminal landings.

Nomenclature

A = area of the arresting cable, m2

ap = proportional gain

ch = damping coefficient of the spring damper, �N ⋅ s�∕m
dh = width of a hook, m
E = modulus of the arresting cable, GPa
Ff = sliding friction, N

H = height of the supporting truss frame, m
hh = size of a hook, m

Jenginek
= moment of inertia of the rocket’s engine relative to

OXYZ (k � xx, yy), kg ⋅m2

Jenginezz = polar moment of inertia of the rocket’s engine relative
to OXYZ, kg ⋅m2

kh = stiffness coefficient of the spring damper, N∕m
Lc = length from the center of mass to the top of the rocket

stage, m
Lh = length from the origin ofOXYZ to the top of the rocket

stage, m
Lr = length of the rocket stage, m
lh = length of a hook, m

l0 = half-width of arresting area, m
l1 = half-width of capture area, m
mengine = mass of rocket’s engine, ton

mh = mass of a hook, kg
mw = mass of a counterweight, ton
Rp = radius of the active pulley, m

Rr = radius of the rocket stage, m
vpi

= reelout velocity of the active pulley i, m∕s
vwg = stationary wind speed, m∕s
α = transfer rate of the pulley group, dimensionless
β = the stiffness proportional to the Rayleigh damping

factor
θ = angle between the arresting cable and the horizontal

line in the simplified theoretical model, rad
θh = initial deployment angle between a hook and the

rocket stage, rad
θw = wind angle, rad
λwg = ratio of root mean square of gust speed with respect to

stationary wind speed, %
ρ = density of the arresting cable, kg∕m3

σr = root mean square of measurement noise, m
τ = time delay of servo motor, s
0 = differentiation with respect to dimensionless time

Subscripts

h = hook
p = active pulley
r = rocket stage
w = counterweight

I. Introduction

D EVELOPING reusable rockets is supposed to be a promising
technical path to reducing the cost of accessing and exploring

space [1–3]. To achieve this goal, more than a half-century ago,
scientists and engineers began exploring different decelerating and
landing techniques to recover rockets or their parts [1–4]. One of the
most successful attempts is the space shuttle program, which recov-
ered its orbiter and the two solid boosters. However, the space
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shuttle’s hard-landing technique demands testing and maintaining
the recovered parts, which increase rather than decrease launching
costs [5]. Nevertheless, an exciting vertical-recovery technique has
recently been demonstrated by both SpaceX and Blue Origin: two
space companies from the United States. By combining retropropul-
sion engines and landing legs to realize a soft landing, both compa-
nies have recovered and reused the first stages of their Falcon 9 [6]
and New Shepard [7] rockets, respectively. These successes not only
convinced people that space can be accessed in a more economically
feasible way than before, but they also encouraged scientists from
other countries to develop their own techniques for reusable rockets.
However, the precise and undamaged recovery of a rocket stage
remains an extremely demanding task.
There are mainly two steps toward recovering a rocket stage. The

first step is navigating the stage to a targeted landing place, and the next
step is a soft terminal landing. In the first navigation step, significant
achievements have been made by learning from various mature Mars
landing technologies accumulated over the past 50 years [8,9]. Now,
based on well-developed high-precision guidance technologies, the
guidance errors have been diminished from kilometers to meters with
nearly minimum fuel consumption [10–12]. In the second terminal-
landing step, the current vertical-recovery technique requires not only
advanced engines that are capable of multiple restarts and thrust
modulation within a large range [13–15] but also an accurate control
system to prevent the rocket from crashing [16,17].Moreover, the high
heat flux on the base plate [18] and the reconfigured aerodynamic
characteristics [17] during the touchdown phase require thermal pro-
tection for the structure and accurate landing [19].
In practice, managing a rocket to achieve a safe terminal landing

with landing legs is a very tough task. First of all, landing a rocket is a
one-shot process; and there are no second chances [16]. Second,
when a rocket touches down, it must be kept vertical with nearly zero
vertical or lateral velocities. At the same time, the engines must be
shut down. If the rocket is leaning, if its speed is too high, or if its
engines are shut down too late, then the landing legs might fail with
the potential risk of explosion. It is estimated that the vertical landing
speed must be less than 2 m∕s and the inclination angle must be less
than 5 deg to guarantee a successful landing [20,21]. According to a
video issued by SpaceX,‡‡more than five Falcon 9 rockets have failed
to land under these narrow constraints. These expensive failures have
led us to think about developing an alternative landing approach that
significantly expands the margin for a safe recovery, reduces the
strain on the engines and control system, and achieves a higher rate of
safe landings.
Currently, the field of aeronautics already offers a provenmeans of

achieving a robust landing: the arresting gear used on aircraft carriers
to recover airplanes within an incredibly short distance [22,23]. In a
typical design, several arresting cables are strung across the deck of
the carrier, and the pilot actively guides the plane to snag its tail hook
on one of the cables. Then, the braking mechanism connected to the
cable rapidly decelerates the airplane. This system is able to recover
airplanes of various weights and velocities. Moreover, the landing
planes are allowed to deviate from the orientation of the runway
centerline; therefore, an airplane that is partially out of control may
still be rescued by an arresting-cable system.
In this study, a novel terminal-landing technique is proposed to

recover reusable rockets. The basic concept is to turn the horizontal
arresting-cable systems on aircraft carriers into a vertical configura-
tion. Since there is no pilot in the rocket, the positions of the cables are
actively adjusted to catch the rocket. The proposed arresting system is
mounted on towers, which can be located on ground or ocean plat-
forms. This system offers the following three features: 1) capturing
rockets under deviations in their lateral landing positions, inclination
angles, lateral velocity, and angular velocity; 2) decelerating and
stopping rockets with residual velocities within a prescribed maxi-
mum distance, maximum acceleration, and maximum cable stress;
and 3) maintaining the recovered rocket in a vertical and stable
orientation after it has come to a stop.

The rest of this paper is organized as follows: Sec. II introduces the
overall design of the terminal-landing system; Sec. III establishes a
flexible multibody dynamic model of the proposed system; Sec. IV
provides simulation results and statistical results to verify the accuracy,
feasibility, and applicability of the proposed system; and Sec. V con-
cludeswith the pros and cons of the proposed terminal-landing device.

II. Overall Design of the Terminal-Landing System

Figure 1a shows the overall structure of the proposed original
arresting-cable system for the recovery of a reusable rocket stage.
The system has four supporting truss towers arranged in a square,
four guide rails connecting these towers, and four sliders moving
along the rails. Along the rails are four identical arresting-cable
subsystems. As schematically shown in Fig. 1b, each subsystem
has a single cable connecting two opposing sliders after passing
through several fixed passive pulleys, a fixed active pulley, and
several moving pulleys. If the active fixed pulley is rotated, one slider
can be moved along the guide rail and dragged by one cable of a
subsystem. The moving pulleys are connected to a buffer device that
consists of a counterweight and a friction brake. The recoverable
rocket itself is equipped with four hooks that are symmetrically
distributed above its center of mass.
It is assumed the rocket stage is navigated to a target position, within

the supporting truss frame. With the process of the stage decent, the
arresting cables are actively moved to catch the hooks. Once these
hooks are caught by the cables, the downwardmotion of the rocketwill
drag the buffer devices,which in turn generates decelerating forces that
slow the rocket. Because the hooks are located above the rocket’s
center ofmass, the resulting pendulummotion ensures that the rocket is
stable. In summary, the four arresting-cable subsystems, together with
the hooks, are designed to track, capture, decelerate, and maintain the
stability of the rocket during its landing phase.
In this design, the entire landing process can be separated into two

sequential phases: 1) the active-tracking/capturing phase, and 2) the
passive-decelerating phase. During the first phase, as shown in
Fig. 2a, the counterweights are locked by friction, and the servo
motors collectively reel in or reel out the cables to move the capture
frame enclosed by the pre-tensioned arresting cables (as shown in
purple); this is done to catch the rocket. Catching occurs when the
rocket falls to a designated height and ends when the hooks engage
with the arresting cables. In the second phase, as shown in Fig. 2b, all
motors are powered down and the hooks drag the arresting cables
downward, which in turn moves the counterweights upward and
results in frictional forces from the brakes. During this process, the
kinematic energy of the rocket is partially transferred into gravita-
tional energy of the counterweights and partially dissipated by the
friction of the brakes. Designing this landing device would require
two central tasks: creating a control algorithm for the motors in the
active-tracking/capturing phase, and designing the counterweights
and brakes of the buffer devices for the passive-deceleration phase.

A. Designing the Active-Tracking/Capturing Phase

Figure 3a shows the active-control system, which contains specific
hardware (i.e., laser-measuring instruments, filters, a calculation unit,
a controller, and four servo motors) and a proportional–differential
(PD) algorithm for controlling themotors to actively track and capture
the landing rocket. This control systemaims to ensure that 1) the center
of the capture frame coincides with the target landing position of the
rocket, 2) the bottom of the rocket goes through the hollow capture
frame, and 3) the hooks on the rocket catch the arresting cables.
In designing the PD algorithm, the center position of the capture

frame is needed. However, obtaining that information is not a straight-
forward task due to the fact that the frame is surrounded by flexible
cables. Fortunately, as shown in Fig. 3a, if the cables are sufficiently
pre-tensioned, then the position of the capture frame could be approxi-
mated by positions of the driven sliders. Therefore, the algorithm
alternately controls the center positions of the sliders, which were
selected as control variables in the form of d � �xs1 ; xs2 ; ys3 ; ys4 �⊤.
The effect of cable flexibility on the rocket capturing task is evaluated
in Sec. IV.

‡‡Data available online at https://www.youtube.com/watch?v=bvim4rs
NHkQ [retrieved at 5 August 2019].
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Next, the target landing position of the rocket is determined.

During the rocket stages’ decent, as shown in Fig. 3a, if the entire

rocket was above the top planeoxy, the target position of the rocket rt
was set to be a projection of the rocket’s bottom on plane oxy. If the
rocket crosses this plane, the target position was set to be the

intersection point between the central axis of the rocket and plane

oxy. Here, the positionvector of the head and the bottomof the rocket

are measured by a laser-measuring instrument in the arresting coor-

dinate system oxyz. The measured position vectors of the head and

bottom of the rocket are rmh and rmb , respectively. The real positions
are r0h and r

0
b, which differ from the measured value by the measure-

ment noises of δrh and δrb:

rmh � r0h � δrh;

rmb � r0b � δrb (1)

To eliminate measurement noises, filters based on a moving aver-

agemethodwere adopted; and themeasured positionswere filtered as

rh�t� � 0.3rmh �t − Δt� � 0.4rmh �t − 2Δt� � 0.3rmh �t − 3Δt� (2a)

rb�t� � 0.3rmb �t − Δt� � 0.4rmb �t − 2Δt� � 0.3rmb �t − 3Δt� (2b)

where rh � �xh; yh; zh�⊤ and rb � �xb; yb; zb�⊤, and Δt is the sam-

pling time period. The measured noises were assumed to be three-

dimensional isotropic and ergodic noises, and they have zero mean

values and nonzero root mean squares (RMSs) σr.
These filtered positions, rh and rb, were used to calculate the target

position of the rocket rt � �xt; yt; zt�⊤, depending on whether the

rocket was above or across the top plane oxy:

rt�

2
64
xb

yb

0

3
75; if zb≥0; rt�

2
66664
xb−

xb−xh
zb−zh

zb

yb−
yb−yh
zb−zh

zb

0

3
77775; if zb <0 (3)

Then, the control target variablewas set as dtarget � �xt; xt; yt; yt�⊤,
for which each component corresponds to the target displacement of
the sliders from one to four.
As shown in Fig. 3b, e � dtarget − d was used to denote the error

between the target and the controlled positions. The controlled reel-

out velocities of active pulleys or servo motors vcontrolP were designed

by a conventional PD-control algorithm:

vcontrolP � ape� _e (4)

where ap is the proportional gain with a positive constant value.

However, this simple PD-control law has a startup problem. At the
initial tracking time of t � 0 s, the capture frame was placed at the
center of the truss frame, and the target positions were distant from
the center. Therefore, the PD-control law required a large starting
value in terms of the pulley reelout velocity. Meanwhile, the pulley is
at rest before tracking so that there is a significant velocity disconti-
nuity at the beginning. To avoid this problem, a saturation function of

time κ�t� was multiplied to the original PD-control law vcontrolP to

generate a smooth control command for the reelout velocities of the
active pulley or servo motors, i.e.,

vsmooth
P � κ�t�vcontrolP (5)

where

a) Schematic of active-tracking/capturing phase

b) Control loop of active-tracking/capturing phase

Fig. 3 Design of the active-tracking/capturing control system.



κ�t� �
�
2t∕tc t < tc∕2
1 t ≥ tc∕2

(6)

and tc is the time duration of the active-tracking/capturing phase.
Continuously inputting the control command vsmooth

P into the servo

motors, themotors’ time-delay feature makes the real output velocity

vP�t� and displacement dP�t� differ from the inputted target, assum-
ing they satisfy the following discrete time-delay relationship [24]:

vP�t� � −dP�t� �
Z

t−τ

0

vsmooth
P �t̂� dt̂ (7)

where τ is the time-delay parameter. Additionally, the pre-tensioned

cables were wound tightly on the pulleys and are reeled in or out by

the motor; therefore, the reelout displacement of the active pulleys
was the same as the displacement of the sliders, namely, dP � d.
Each of the four servo motors has an angular-displacement sensor

mounted on its shaft, enabling it to obtain the positions of the four
sliders as well as the reelout displacement of the active pulleys. Thus,

the active-control system can be regarded as a closed control loop, as

shown in Fig. 3b.
The transfer functionG�s� from the error vector e to the real reelout

velocities of the active pulleyvP can be obtained by doing theLaplace
transform to Eqs. (4–7), which can be expressed as follows:

G�s� ≜ VP�s�
E�s� � �ap � s�e−τsK�s�

s� 1
(8)

where s is the Laplace variable; and VP�s�, E�s�, and K�s� are the
Laplace transforms of vp�t�, e�t�, and κ�t�. Based on this equation,

the effectiveness of the aforementioned designed control algorithm

on tracking the landing rocket was evaluated. The evaluation was
separated into two steps: τ � 0 and τ ≠ 0.

First, assuming τ � 0, then the theoretical solution of the active-

control system for t < tc∕2 is as follows:

d � dtarget�1 − e−�ap∕tc�t2� (9)

Hence, the relative error is

���� e

dtarget

���� � e−�ap∕tc�t2 (10)

This response asymptotically converges to zero as long as ap is

positive. The larger the proportional gain of ap, the quicker the

converged result will be obtained. To obtain a fast convergence, such

as letting the relative error be less than e−5 at t � tc∕2, Eq. (10) says
that the gain ap can be selected as

ap ≥ 20∕tc (11)

Second, a case of τ � 0.1 s ≠ 0 was evaluated. The other param-

eters of the case are the RMS of the measurement noises of

σr � 0.1 m, the duration of the active-tracking/capturing phase of

tc � 10 s, ap � 2, and e � 17. Figure 4 compares the performance

of the control system with and without the saturation function, using
slider 1 and pulley 1 as examples. It could be conjectured that the
saturation function reduces the maximum reelout velocity of the
motor at the initial time.

B. Designing the Passive-Decelerating Phase

Just before one of hooks touches an arresting cable, the engines on
the rocket need to be shut down and the servo motors powered off.
Then, the passive-decelerating phase begins. As illustrated in Fig. 5,
the falling rocket drags all four buffer devices, and its mechanical
energy is transferred to the counterweights and dissipated as heat
from braking friction. Therefore, the central task of designing the
decelerating phase is to select the mass of the counterweightmw and
the friction force Ff based on the following analysis of the dynamic

process.
For a rough design estimate, a reference condition was adopted to

analyze the dynamic process of the passive-deceleration phase. It was
assumed that the deformation of the cables was negligible, the rocket
was landing vertically at the center of top plane oxy, and all of the
buffer devices worked identically. In this case, the entire system had
only one degree of freedom, and can therefore be characterized by a
generalized coordinate, the angle θ between the arresting cable, and
the horizontal line, as shown in Fig. 5. Kinematically, if the rocket
moves downward from top plane oxy by distance z � l0 tan θ, where
l0 is half the length of the supporting truss. The counterweights are
correspondingly raised up by the following equation:

w � αl0�sec θ − 1� � α

� ���������������
z2 � l20

q
− l0

�
(12)

where α is the constant transfer rate of the moving pulley group.
Energywise, the variation of the system’s mechanical energy equals
the work done by the frictional forces. This yields the equation of
motion for the decelerating process, which is expressed as

1

2
mrv

2
0 �mrgz �

1

2
mr _z

2 � 1

2
�4mw� _w2 � 4�mwg� Ff�w (13)

Here, mr is the mass of the rocket, v0 is the rocket’s initial vertical
velocity when z � 0, g is the standard gravitational acceleration,

a) Displacement response of slider 1 b) Reelout velocity of active pulley 1

Fig. 4 Controlling results of the slider’s displacement and motor’s reelout velocity with and without the saturation function κ�t�.

Fig. 5 Schematic of the quarter-model of the arresting-cable system.



and a dot over a symbol represents a differentiation with respect to
time t.
To make the analysis clearer and more concise, all quantities were

nondimensionalized and denoted by a bar over the symbols. Here, the

reference values of lengthwere chosen as l0, of time as
����������
l0∕g

p
, and of

mass asmr. Thus, quantities of velocity were normalized by
�������
gl0

p
, of

acceleration by g, and of force bymrg. Then, the equation of motion
[Eq. (13)] could be reformulated into another dimensionless form as

�v20
2
� �z � �z 02

2
� �mt

α2
�w 02

2
�

�Ft

α
�w (14)

where the prime symbol indicates a differentiation with respect to

dimensionless time �t ≜ t∕
����������
l0∕g

p
, and

�mt ≜ 4α2 �mw; �Ft ≜ 4α� �mw � �Ff� (15)

were introduced to simplify the expression. In addition,

�w � α�sec θ − 1�; �z � tan θ (16)

To obtain an explicit expression for the velocity of the rocket, the
kinematic expressions of Eq. (16) were differentiated with respect to
the dimensionless time �t. Also, �u 0, �z 0, and θ 0 are related as

�w 0 � α sin θ �z 0; θ 0 � �z 0cos2θ (17)

Substituting Eqs. (16) and (17) into Eq. (14) directly links the
velocity of the rocket with the generalized coordinate θ:

�z 02 � 2

1� �mtsin
2θ

"
�v20
2
� tan θ − �Ft�sec θ − 1�

#
(18)

Equation (18) implies that the dimensionless velocity is com-

pletely determined by two design parameters: namely, �mt and �Ft.
Their selection fulfills the following three requirements:
1) The rocket is stopped within an allowed dimensionless dis-

tance �zm.
2) The maximum acceleration of the landing rocket is less than an

accepted dimensionless value �am.
3) Themaximum tension in the cables is smaller than a dimension-

less tension �Tm to leave a sufficient margin for the cable strength.
The proposed arresting system was designed for a rocket mass of

mass mr � 25 ton and a residual vertical velocity of v0 � 20 m∕s.
Geometrically, the chosenhalf-length of the truss framewas l0 � 25 m,
and the rocket was fully stopped when its displacement reached the
maximum of zm � 10 m. For this system, the corresponding dimen-

sionless parameters are �v0 � v0∕
�������
gl0

p � 20∕
��������������������
9.81 × 25

p � 1.28
and θm � arctan�10∕25� � 0.38 rad. Substituting the preceding

parameters and �z 0 � 0 into Eq. (18) yields a requirement on �Ft:

�Ft �
�v20∕2� tan θm
sec θm − 1

� 1.282∕2� tan 0.38

sec 0.38–1
� 15.86 (19)

To obtain the acceleration value of the rocket, differentiating
Eq. (18) with respect to the dimensionless time �t and making use of
the relationships of Eqs. (17) and (19) yield the following:

�z 0 0 � 1 − �Ft sin θ

1� �mtsin
2θ

−
�mt sin�2θ�cos2θ
�1� �mtsin

2θ�2
�
�v20
2
� tan θ − �Ft�sec θ − 1�

�
(20)

Since both �v0 and �Ft are given, the maximum acceleration of
the rocket only depends on the parameter �mt. Figure 6 gives the
j�z 0 0jmax– �mt curve as a red solid line; it is not a monotonic function.
Setting �am � 4 and then demanding j�z 0 0jmax ≤ �am require

�mt ≥ 1.55 (21)

To obtain the tension in the arresting cables, Newton’s second law

was applied to the rocket’s vertical direction, yielding

mr �z � mrg − 8T sin θ (22)

This equation can be nondimensionalized as

�T � 1

8 sin θ
�1 − �z 0 0� (23)

Aswith the dimensionless acceleration of the rocket, themaximum

cable tension only depends on the parameter �mt. Figure 6 shows the
�Tmax– �mt curve as a blue dashed line.

Fig. 6 The relationship between j �z 0 0jmax, �Tmax, and �mt.

Table 1 Physical parameters of
the proposed terminal-landing system

Item Value

Rocket stage

Rr 2.00 m

Lr 40.00 m

Lc 30.00 m

mengine 12.50 tons

Jenginezz 2.50 × 104 kg ⋅m2

Jenginexx � Jengineyy 4.16 × 103 kg ⋅m2

EA 2.63 × 109 N

ρA 501.40 kg∕m
EJ 5.24 × 109 N∕m

Hook

mh 45.00 kg

lh 3.50 m

hh 1.00 m

θh π∕3 rad

dh 0.15 m

kh 1.50 × 105 N∕m
ch 4.00 × 105 �N ⋅ s�∕m
Lh 20.00 m

Arresting-cable system

H ≥ 30.00 m

2l0 50.00 m

2l1 7.00 m

EA 2.64 × 108 N

ρA 9.80 kg∕m
Rp 0.10 m

mw 0.92 ton

Ff 3.13 × 105 N

α 3



Here, the arresting cable is the same type as that is used in aircraft
carriers. Its radius was 20 mm, and the allowed stress was 800 MPa
such that �Tm � 800 × π × 202∕�25 × 103 × 9.81� � 4.1. Therefore,

requiring �Tmax ≤ �Tm requires

�mt ≤ 10.2 (24)

In fulfilling the requirements of Eqs. (21) and (24), �mt was set to
two since this design is concerned more with cable tension than the
acceleration of the rocket. Then, the mass of the counterweight mw

and the frictional force Ff were determined by the transfer rate α
according to Eq. (15).
The design and structural parameters of the system are listed in

Table 1. The center ofmass of the landing rocket was generally below
the geometric center, and a 12.5 ton landing rocket mounted by an
engine of 12.5 ton at its bottom was selected as the object of this
study. For simplicity, the mass of the rocket’s thin-walled structure
was uniformly distributed along the axial direction.

III. Dynamical Simulation Model

Although the design process described in the previous section
assumed the rocket to be descending vertically with zero lateral
velocity and along the center of the supporting truss, these assump-
tions are not needed for the proposed system. In particular, when the
rocket deviates from these working conditions (i.e., it is off center
from the truss frame, it is tilted, or it is moving sideways), then its
dynamics are much too complex to be computed analytically. There-
fore, a dynamical simulation model was built to evaluate the landing
performance of the proposed arresting-cable system under different
landing conditions.

A. Governing Equations of the System

The model was based on a multibody approach, as shown in Fig. 7.
The truss structure, guide rails, pulleys, and sliders are all simplified as
massless rigid bodies because they are not important to the dynamic
process. For each buffer device, the counterweight was considered as a
point mass, and the brake was replaced by a stick-slip friction force.

To consider the elastic vibration and small deformation of the rocket,
the rocketwasmodeledby lumped rigidbodies connectedbymassless-
beam elements [25]. The rigid hooks were hinged to the rocket and
were also connected to the rocket by springs and dampers. The
arresting cables were meshed with variable-length cable elements
based on an arbitrary Lagrangian–Euler (ALE) description, and the
contacts between the hooks and cables were accounted for with Hertz
contact forces [26,27]. The control of the active-tracking/capturing

phase was integrated into the dynamic equation of the system in the
form of state space. The details are presented in the following sub-
sections. In summary, the governing equations of the arresting-cable
system and the landing rocket form a set of differential algebraic
equations (DAEs) [28]:

8>>>>>><
>>>>>>:

M�q� �q�Φ⊤
q λ −Q�q; _q; t� � 0

Φ�q; _q; vP; t� � 0

e � e�q; t�
_x � Ax� Be

vP � Cx�De

(25)

Here, q is the generalized coordinate vector of the system; M�q� is
the mass matrix of the system; Q�q; _q; t� is the generalized force
vector of the forces applied to the system;Φ�q; _q; vP; t� is the vector
of the kinematic and geometric constraints; Φq is the gradient of

Φ with respect to q; λ is the corresponding Lagrange multiplier;

fA;B;C;Dg are the state-space matrices of the controller; x is the
state variables; and e and vP are the control input and output of the
controller, respectively. The whole systemmodel was built using our
laboratory’s in-house multibody code, and the obtained DAEs were
numerically integrated through an index-3 backward differentiation
formula.

B. Modeling the Arresting Cables

The main difficulty in modeling the proposed recovery system is
overcoming the problem of efficiency in modeling flexible arresting
cables with a large displacement, as well as the moving points of

a) Model during active-tracking/capturing phase b) Model during passive-decelerating phase

Fig. 7 Simulation model of the active arresting-cable system.



contacts between the hooks and cables. The traditional finite element

modeling method, based on the Lagrange formulation, meshes

the cable as a fixed grid of constant-length elements and calculates

the contact force between these cable elements and the hooks.

For contact detections, this method demands that the size of the

cable elements that are potentially contacting with the hooks is much

smaller than the hooks’ radius. Therefore, very fine elements are

necessary to mesh the cables if a large portion of them might make

contact. This fact significantly increases the calculation scale and

time.
To substantially improve the calculation efficiency, a new model-

ing method was established to handle the cables and their contact

with the hooks. As shown in Fig. 7a, the basic idea was to dynami-

cally adjust the cable meshes to guarantee that only a few elements

contact the hooks and that these cable elements be finely meshed

while the others are roughlymeshed. Thus, the number of elements is

notably reduced and the contact detections are focused on a limited

range, thus accelerating the calculation. Technically speaking, this

meshing was implemented by combining a kind of variable-length

cable element and a length-adjusting algorithm.

1. Variable-Length Cable Elements

As shown in Fig. 8a, to vary the length of an element, the gener-

alized coordinates of a cable nodeq1 contain not only the global nodal
position r1 but also a material coordinate s1 or

q1 � �r⊤1 ; s1�⊤ (26)

Taking the simplest two-node straight element as an example, its

generalized coordinates are

qe � �r⊤1 ; s1; r⊤2 s2�⊤ (27)

where subscripts 1 and 2 represent the node numbers. The element

length Le � s2 − s1 is variable, which is in sharp contrast to the

traditional fixed length cable element. Since the material coordinate

of the node is variable, this cable element is actually based on anALE

description [29,30] and is called an ALE element; and the corre-

sponding nodes are called ALE nodes.
The internal point position of the element was linearly interpolated

as follows:

r�s; t� � Nr�s�qr�t�;
qr � �r⊤1 ; r⊤2 �⊤;
Nr � ��1 − ξ�∕2I3; �1� ξ�∕2I3� (28)

where Nr is the shape function matrix, I3 is the identity matrix of

order 3, and ξ � �2s − s1 − s2�∕�s2 − s1� is a dimensionless

material coordinate.
For an infinitely small cable segment with length ds around the

material coordinate s ∈ �s1; s2�, the elastic forceFe, external force f ,
and inertial force−ρA�r are balanced, where ρA is the mass density of

the cable per arc length. Therefore, the following integration of the

virtual work is zero:

δW �
Z

s2

s1

δr⊤�f � Fe − ρA�r� ds � 0 (29)

Taking the second time derivatives of Eq. (28) and substituting the

obtained result into Eq. (29) yield the governing equation of the cable

element:

Me �qe � Qs �QE �Qf (30)

where

Me�
s2−s1

2

Z
1

−1
ρAN⊤Ndξ

Qs�−
s2−s1

2

Z
1

−1
ρAN⊤ �rsdξ;

QE�−
s2−s1

2

Z
1

−1

��
∂ϵ
∂qe

�⊤
EA�kϵ�β_ϵ�

�
dξ;

Qf�
s2−s1

2

Z
1

−1
N⊤f dξ;

N�
�
Nr

∂Nr

∂s1
qr

∂Nr

∂s2
qr

�
; ϵ�1

2

�
∂r⊤

∂s
∂r
∂s

−1

�
; k�

�
1 ϵ≥0;

0 ϵ<0
;

�rs�2

�
∂Nr

∂s1
_s1�

∂Nr

∂s2
_s2

�
_qr�

 
∂2Nr

∂s21
_s21�2

∂2Nr

∂s1∂s2
_s1 _s2�

∂2Nr

∂s22
_s22

!
qr

(31)

where Me is the generalized mass matrix of the element, Qs is the

inertial force vector caused by the mass flow, Qf is the generalized

external force vector,QE includes the generalized elastic and damp-

ing forces, ϵ is the axial Green strain, k represents the cable can resist
only tension and not compression, and β is the stiffness proportional
to the Rayleigh damping factor.
The cables in the four subsystems are adopted using the same

modeling method and the same number of elements. Each arresting

cable is modeled by n1 ALE elements, and the transfer cable is

modeled by n2 ALE elements. There are 4n1 � 4n2 ALE elements

in the proposed system.

2. Mesh-Adjusting Algorithm

As shown in Fig. 7, all the cables in the terminal-landing system

were meshed with the aforementioned variable-length cable ele-

ments, and the mesh was dynamically adjusted to ensure that only

a few predefined elements have the potential to be in contact with the

rocket hooks.
As for the mesh, let us take a single arresting cable as an example

(indicated in red in Figs. 7 and 8b). This cable was separated into

several segments by key points along its length, including its two

ends, the points coinciding with the pulleys (ignoring the radius), and

the intersection points with the adjacent orthogonal arresting cables.

For each key point, a cable node was assigned; these are called

boundary nodes, and they are marked as solid black dots. Any cable

segment surrounded by two boundary nodes was divided into a

b) Mesh-adjusting constrainta) A typical two-node ALE cable element

Fig. 8 Simulation model of the ALE cable element.



number of elements by uniformly distributing internal nodes, marked

as hollow black dots.
The positions of the mesh nodes were adjusted and determined by

introducing the following three kinds of constraint equations into the

model. First, if a boundary node is at the end of a cable, located on a

slider, then its position is the same as that of the slider and its material

coordinate is a constant since there is no material flow. The equation

is expressed as follows:

Φ1 �
"
rnode − rslider

snode − s0node

#
� 0 (32)

where s0node is a constant for the material coordinate of the node at the

initial time.
Second, if a boundary node coincides with a pulley or an inter-

section point, then its position rnode equals the corresponding pulley’s
or point’s position rp; and the constraints relate only to position

[31,32] or are expressed as

Φ2 � rnode − rp � 0 (33)

Third, consider a cable segment bounded by two boundary nodes,

b1 and b2, whose material coordinates are sb1 and sb2 . The segment

was meshed into N elements by N − 1 internal nodes, and the

material coordinates of these internal nodes were distributed to

equally split the length of the segment. Then, the material coordinate

si of the ith node, numbered from the boundary node b1, was
determined to be

Φ3i � si − �sb1 � �sb2 − sb1�i∕N; � � 0 (34)

where i � 1; 2; : : : ; N − 1. The number N is set to be large for

the cable segments that contact the hooks and small for the other

segments [33].

C. Flexible Model of a Landing Rocket

Since the rocket’s propellant was nearly exhausted in the terminal-

landing phase, its structures were modeled as a flexible multibody

model in which a cluster of lumped rigid bodies was connected by

massless-beam elements [25] and the hooks and engines (as well as

the counterweights and sliders) were modeled by the rigid bodies and

constraints.

1. Rigid Bodies

As shown in Fig. 9, the generalized coordinates of a rigid body i in
quaternion representation are

qi � �r⊤i ; θ⊤i �⊤ (35)

where ri are the position coordinates of the center of mass of the rigid

body i; and θi � �θ0i ; θ1i ; θ2i ; θ3i �⊤ are the orientation quaternion

parameters of the ith rigid body, which satisfies θ⊤i θi � 1.
Taking the first time derivatives of Eq. (35), calculating the kinetic

energy of the ith rigid body Ti � 1∕2 _q⊤i Mi _qi, and substituting the

obtained result into the second kind of Lagrangian equation in

analytical mechanics yield the following governing equation of the

ith rigid body:

Mi �qi � Qq �Qf (36)

Here, Qq � − _Mi _qi � �∂Ti∕∂qi�⊤ is the generalized inertial force

vector, and Qf � Hif is the generalized external force vector.

In addition,

Mi �
"
miI3×3 0

0 4G⊤
i JiGi

#
; Hi �

"
I3×3 03×4

04×3 2GT
i

#
(37)

Gi �

2
664
−θ1i θ0i θ3i −θ2i
−θ2i −θ3i θ0i θ1i

−θ3i θ2i −θ1i θ0i

3
775 (38)

where Ji is the inertial tensor of the ith rigid body.
The external force vector f was determined by a combination of

gravity, the massless-beam force, aerodynamics, the spring-damper

force, the contact force, and the friction of different rigid bodies in

this system as follows:

f �

8>><
>>:
fgrav � fbeam � faero � f sprdmp �rocket�
fgrav � fcontact � f aero � f sprdmp �hook�
fgrav � f friction �counterweight�

(39)

This will be discussed in detail in the next subsection. The rocket

was clustered by nb rigid bodies and connected by nb − 1 massless-

beam elements. The four hooks, the four sliders, and the four counter-

weights were all modeled as rigid bodies and were constrained to

only one degree of freedom, as described in the following. Thus, there

are nb � 12 rigid bodies in this system.

2. Constraints of Rigid Bodies

In the arresting-cable system, the hooks on the rocket were

designed to only rotate relative the hinged pins, whereas the counter-

weights and sliders can only slide along the slideway and guide rails.

These constraints were modeled by a set of algebraic constraint

equations.
For a revolute constraint between the rocket and a hook, revolution

was only allowed around the z axis of the two objects, as shown in the
upper dotted box of Fig. 7a; and the constraint equations are given as

follows:

Φ4 �

2
664
r1 − r2

z⊤1 x2

z⊤1 y2

3
775 � 0 (40)

where r1 � �x1; y1; z1� and r2 � �x2; y2; z2� are center positions of the
relatively two revolute bodies, and x1, y1, z1 and x2, y2, z2 are

orientation axes of the two bodies.
For a translational constraint between a counterweight and a slide-

way, movement was only allowed along the z axis of two objects, as
shown in the bottom dotted box of Fig. 7a, and the constraint

equations are given as follows:Fig. 9 Simulation model of the rocket.



Φ5 �

2
666666664

x1 − x2

y1 − y2

z⊤1 x2

z⊤1 y2

x⊤1 y2

3
777777775

� 0 (41)

where subscripts 1 and 2 represent the two sliding bodies.

D. Loads

The forces exerted on the system will be presented as generalized

forces in the system’s governing equations in Eqs. (30) and (36).

There are six types of forces: 1) the gravitational force modeled as a

constant force; 2) the massless-beam force between two rigid bodies

in the rocket modeled in the form of a force matrix [25]; 3) the spring

damper between the hooks and the rocket modeled using a linear

function of relative displacement and velocity between the hooks and

the rocket; 4) the stick-slip friction on the counterweightmodeled as a

unified form of a sticking state and a sliding state based on the

Coulomb friction law [34]; 5) the contacts on cables and hooks;

and 6) the aerodynamic force on the cables and the rocket along with

the cable or beam elements. More details on the latter two types are

described in the following two sections:

1. Modeling Contacts on Cables and Hooks

The geometry of the rocket and hooks is shown in Fig. 1c. Using

Hertz contact theory, the contact force between the hook and the

arresting-cable element is

fcontact � fnn� fττ (42)

where n is the unit normal vector of the contact surface, τ is the

corresponding unit tangential vector, fn is the normal collision force,

and fτ is the tangential friction force. Collision forces are exerted on
the nodes of the cable element. More details regarding these forces

can be found in the Appendix.

2. Modeling Aerodynamic Forces

Both the descending rocket and the cables of the arresting-cable

system are affected bywind excitation, which consists of steadywind

and gust. Then, steady wind speed can be represented by the mean

wind speed vws. The gust speed vwg can be described by a normal

stationary randomprocesswith zeromean and the nonzeroRMS σwg,
which is obtained by the mean wind velocity vws multiplied by a

fluctuation intensity λwg (i.e., σwg � λwgvws). The wind direction is

represented by the clockwise angle θw with respect to the north. In

summary, thewind field is determined by three parameters: the mean

wind speed vws, the fluctuation intensity λwg, and the wind angle θw.
As shown in Fig. 10, the velocity of an arbitrary point M of the

cable or rocket relative to the wind, in the local coordinate system

omxmymzm, can be expressed as

�v � Am
a �vM � vw� (43)

where vM is the velocity of an arbitrary point M in the arresting
coordinate system oxyz, Am

a is the transformation matrix from the
arresting coordinate system oxyz to the local coordinate system
omxmymzm, and vw is thewind speed consisting of steadywind speed
vws and gust speed vwg (i.e., vw � vws � vwg).
The aerodynamic force on an arbitrary pointM of the rocket-beam

element or cable element in the arresting coordinate system oxyz can
be obtained as follows:

faero�x; t� � Aa
m

2
664

−CD�x; t�Srefqa�x; t�
CN�x; t�Srefqa�x; t�αa�x; t�
−CN�x; t�Srefqa�x; t�βa�x; t�

3
775 (44)

whereCD�x; t� andCN�x; t� are the drag and lift coefficients obtained
from the wind-tunnel test, and Sref is the reference area. The angle of
attack αa�x; t�, sideslip angle βa�x; t�, and dynamic pressure qa�x; t�
of point M in the local coordinate system omxmymzm can be
expressed as

αa � arctan

�
�vy
�vx

�
; βa � arcsin

�
�vz
k �vk

�
; qa � 1

2
ρa�k �vk�2

(45)

where ρa is the atmospheric density at the current flight altitude. The
drag forces are applied on the cables in the sameway they are applied
on the rocket.

E. Time-Domain State-Space Model of the Active-Tracking/Capturing

Algorithm

In the multibody dynamic model of the proposed system, the real
positionvector of the head and the bottomof the rocket, r0h and r

0
b, can

be obtained by the position coordinates of the rigid bodies at the two
ends of the flexible rocket model. The measured errors are modeled
by thewhite noise with zero mean values and nonzero RMS σr. After
filtering by Eq. (2) with the sampling time period Δt and conversion
by Eq. (3), the target vector of the active-control system can be
obtained as a function of the generalized coordinates of the system
q, i.e., dtarget � dtarget�q; t�. Similarly, the control vector can be
obtained by the position coordinates of the rigid bodies correspond-
ing to the sliders, i.e., d � d�q; t�. Therefore, the error vector
was e � e�q; t�.
The real control variables were the reelout velocities of the active

pulleys as the actuator, i.e., vP . The active-control system was
introduced into the multibody model in the form of state space by
converting the transfer function [Eq. (8)] to the state space:�

_x � Ax� Be
vP � Cx�De

(46)

where x is the state variables, and fA;B;C;Dg are state-space
matrices.
When an active pulley reels in or out, it changes the length of the

wound cable. This effect was modeled by constraining the material
coordinate velocity of the corresponding ALE node:

Φ6i � _si − vpi
� 0 (47)

where i � 1; 2; 3; 4 represents the ith active pulley; and vpi
and _si

denote the reelout velocity and thematerial coordinate velocity of the
active pulley i and the corresponding ALE node i, respectively. With
this constraint equation and the preceding state–space equations, the
major effect of the active-control system is formulated.

F. Validation of the Dynamic Modeling Method

To validate the aforementioned proposed modeling method, a
numerical model was constructed with the parameters listed in
Table 1, and an idealworking case inwhich the rocket lands verticallyFig. 10 The angle of attack αa and sideslip angle βa at point P.



along the center of the truss frame was simulated. In this case, the
analytical solution, detailed in Sec. II.B, has already been obtained in
Eqs. (20) and (23), assuming that the cables did not stretch. However,
the cables have a certain amount of flexibility, which should affect the
dynamics of deceleration.
Figure 11a shows several time snapshots of the landing process;

and Figs. 11b–11e compare the analytical results (drawn in black
solid lines) with the results of the numerical model (drawn in black
dashed lines). Overall, the two results agree closely, suggesting the
correctness of the numerical model. Also, it is not surprising to find
that the simulation results oscillate around the analytical results due
to the flexibility of the cables.

IV. Robust Landing Performance of the
Arresting-Cable System

The proposed arresting-cable system was designed to both catch
and decelerate rockets, even if they deviate from the ideal landing
condition. In other words, a rocket is allowed to have residual linear
and angular velocities, a landing position that deviates from the
center of the truss frame, and an attitude that may depart from the
vertical.
To quantify the deviations of a descending rocket, a local coordinate

system OXYZ was attached to it. As shown in Fig. 1c, the XY plane
passes through the four top points of the deployed hooks and Z is the

rotation axis. Referring to the truss-frame coordinate system oxyz, the
x and y positions aswell as the threevelocities of pointO, togetherwith

the attitude and angular velocities ofOXYZ, were adopted to describe
the rocket deviations. For attitude, rocket coordinate system OXYZ
was obtained by rotating the reference coordinate system oxyz with
respect to a unit vector n � �n1; n2; n3�⊤ by an angle θ ∈ �−π; π�.
Defining the rotation vector θ ≜ θn � �θx; θy; θz�⊤, its first two com-

ponents (θx and θy) represent the inclination angles of the rocket,

for which θz represents the rolling angle. The angular velocity is

ω � �ωx;ωy;ωz�⊤. Since the vertical landing velocity margin of the

rocket was given as 20 m∕s, there are 10 uncertain parameters to

describe the deviations of the rocket states, as listed in the first five

rows of Table 2.
Except for the deviation of the rocket states, noises from the

measurement, and the time delay of the motor system, the wind

excitations will also affect the terminal-landing performance of the

proposed arresting-cable system. To quantify them, five additional

uncertain parameters were introduced, as stated in the previous

sections: measurement noise by the standard deviation σr, the time

delay by τ in Sec. II.A, the steady wind by the stationary velocity vws,
the wind angle θw, and the lateral gust fluctuating intensity λwg.
Together with the 10 state deviation variables for the rocket, there

were a total of 15 uncertain parameters in the simulated dynamic

system, which are indicated by the dark red boxes in Fig. 12.
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Fig. 11 Performance of the decelerating process: a) snapshots of the simulated solutions, and b–e) comparisons of the numerical and analytical solutions.

Table 2 Deviation ranges of the uncertain parameters of the simulated system

Numbers Parameters Range [min max] Distribution Description

1–2 �rx; ry�, m � rmin rmax � Halton Lateral position deviation

3–4 �vx; vy�, m∕s � vmin vmax � Halton Lateral velocity deviation

5–6 �θx; θy�, deg � θmin
i θmax

i � Halton Inclination angle deviation

7 θz, deg � θmin
r θmax

r � Halton Roll angle deviation

8–10 �ωx;ωy;ωz�, deg ∕s �ωmin ωmax � Halton Angular velocity deviation

11 θw, deg � 0 θmax
w � Halton Deviation of wind angle

12 vws, m∕s � 0 vmax
ws � Halton Stationary wind speed deviation

13 λwg, % � λmin
wg λmax

wg � Halton Fluctuation intensity deviation of gust

14 τ, s � 0 τmax � Halton Time delay

15 σr, m � 0 σmax
r � Halton RMS of measurement noise

https://arc.aiaa.org/action/showImage?doi=10.2514/1.A34646&iName=master.img-006.jpg&w=87&h=53
https://arc.aiaa.org/action/showImage?doi=10.2514/1.A34646&iName=master.img-007.jpg&w=87&h=53
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The robust evaluations for the proposed arresting-cable system
will be sequentially conducted for the two working phases. For the
active-tracking/capturing phase, the initial state deviation ranges of
the rocket for simulation are listed in Table 3, and simulations were
used to validate the system’s capacity to capture the landing rocket
and expand the range of landing state deviation. For the passive-
decelerating phase, the initial state deviation ranges of the rocket
were the captured state ranges obtained from the first active-tracking
phase. The process of the entire two-phase simulation is shown in
Fig. 12; and the transition between the active-tracking/capturing
phase and the passive-decelerating phasewas triggered by the contact
force and the heights of the hooks.
To comprehensively evaluate the performance of the proposed

system, three scenarios corresponding to three maximal steady wind
speeds were studied, as listed in Table 4. For each scenario, a random
quasi Monte Carlo method [35–37] was adopted to generate 100
cases to assess whether the designed system can capture and decel-
erate the rockets with the uncertain parameters listed in Table 2. To
achieve the fast convergence of multidimensional random variables,

the Halton sequence [38,39], provided by the haltonset function in

MATLAB 2017a, was used to generate low-discrepancy and quasi-

random sequences in the multidimensional virtual space by deter-

ministic combinations of uncertain parameters.

A. Dynamics of a Deviated Landing Case

To provide an overview of the system’s dynamic behaviors, a

random landing case with all 15 nonzero deviations was simulated

and analyzed in the sequential active-tracking/capturing and passive-

decelerating phases. The detailed parameters of this case are

x�13m, y�13m, vx�vy�0.5m, θx�θy�5 deg, θz�25 deg,

ωx�ωy�ωz�0.1 deg∕s, τ � 0.1 s, σr � 0.1 m, θw � 90 deg,

and λwg � 10% in scenario I (i.e., vws � 5 m∕s, h � 200 m,

tc � 10 s, and aP � 2).
As shown in Fig. 13a, assume a rocket descends freely from a point

over the truss frame at t1. At the same time, the capture frame, driven by

the active-control system, begins to track the target point of the rocket.

Then, at t2, the center of the capture frame, indicated by the positions of

the sliders, coincides with the target point of the rocket as shown in

Figs. 13b and 14a, which satisfies the design of Eq. (11). Until t3, the
hooks engage the arresting cables with the nonzero contact force as

shown in Fig. 14c, and the passive-decelerating phase takes over the

active-tracking/capturing phase. Then, the rocket moves downward,

and its kinetic energy is partially transferred into thegravitational energy

of the counterweights and partially dissipated by the friction of the

brakes.At t4, the vertical velocities of the rocket and counterweights are
zero. After this moment, the counterweights are stationary and the

rocket moves toward the center until it is stationary and stable at t5.
In addition, Figs. 13b and 14a show that, in the passive-decelerating

phase, if a rocket was captured with a deviated state, the asymmetrical

forces generated from the four arresting cables could gradually correct

the position of the rocket to the center of arresting planeoxy. Similarly,
Fig. 14b shows the roll angle also approaches a stable value. These

results imply that the system has an automatic-correction capability

similar to the arresting gears for aircraft carriers [33]. More details

regarding the dynamic process of this deviated case can be found in

Supplemental Video S1.
A successful terminal landing requires the success of both the first

active-tracking/capturing phase and the second passive-decelerating
phase. There are two criteria to judge the success of the first active

phase. The first is that the locus error kek between the center of the

capture frame and the target point of the rocket (as shown in Fig. 13b)

approaches zero, indicating a good tracking performance. The sec-

ond is that the contact forces between the four hooks and the arresting

cables are nonzero (as shown in Fig. 14c), indicating the frame

captured the rocket.
For the second passive phase, there are three criteria to judge its

success. First, the maximum arresting distance is less than 10 m;

namely, jzmaxj < 10 m, as shown in Fig. 14d. Second, the maximum

Fig. 12 Topology diagram of the dynamics and control loop of the system.

Table 3 The deviation ranges of the
rocket’s terminal-guidance states

Numbers Parameters Min Max

1–2 �rx; ry�, m −13.0 13.0

3–4 �vx; vy�, m∕s −0.1 0.1

5–6 �θx; θy�, deg −5.0 5.0

7 θz, deg −25.0 25.0

8–9 �ωx;ωy�, deg ∕s −0.1 0.1

10 ωz, deg ∕s −0.1 0.1

Table 4 Description of three scenarios for robustness evaluation

Three scenarios for
active-tracking/
capturing phase

Three scenarios for passive-
decelerating phase

Parameter I II III I II III

vmax
ws , m∕s 5 10 20 5 10 20

h, m 200 120 100 —— —— ——

tc, s 10 6 5 —— —— ——

aP 2 5 6 —— —— ——

Wind excitation θmax
w � 360 deg, λmin

wg � 10%, λmax
wg � 20%

Rocket initial states
Terminal-guidance
states in Table 3

Captured states in Table 8

Time delay τmax � 0.1 s —— —— ——

Measurement noise σmax
r � 0.1 m —— —— ——



arresting acceleration is less than 5 g; namely, jamaxj < 5 g where

g � 9.80 m∕s2, as shown in Fig. 14e. Third, themaximum arresting-

cable stress is less than 800 MPa; namely, jσmaxj < 800 MPa,

as shown in Fig. 14f. These criteria were used in the subsequent

performance evaluations to judgewhether the terminal landings were

successful.

a) Snapshots of tracking/capturing and decelerating phases b) The trajectories of target and capture frame

Fig. 13 Snapshots and trajectories of a deviated landing case.

a) The positions of the target and the sliders

d) Arresting distance of the rocket on origin O

b) Rotation vector of the rocket

e) Arresting acceleration of the rocket

f) Stress of the arresting cable

c) Magnitude contact forces on the hooks

Fig. 14 Dynamic behaviors of a deviated landing case.



B. Robust Performance of the Active-Tracking/Capturing Phase

Although the arresting-cable system is expected to be able to

retrieve rockets that deviate from the ideal landing condition, this

capability has its limits. To evaluate this capability, 300 simulations

(100 cases for each scenario in Table 4) under the 15 uncertain

parameters in Table 2 were carried out. The ranges of the initial

rocket states in the simulations were the ranges of the terminal-

guidance states in Table 3. The process from the rocket reaching

the terminal-guidance point to the rocket being stopped and stabilized

was simulated.

As shown in Figs. 15a–17a, the black points represent the position

deviation; and the red, green, and blue arrows represent the velocity,

angle, and angular velocity deviationvectors, respectively. The upper

and lower yellow areas indicate the terminal-guidance point range
and the available capture area in plane oxyz, respectively. The lines
between the two areas indicate the trajectories of the rockets of 100

shooting cases for each scenario.
The robustness of the active-tracking/capturing phase was evalu-

ated by the capability of expanding the states of the rocket from the

terminal-guidance states to the captured state. This capability can be

described by the extension from the upper area to the lower area in

Figs. 15a–17a and the extension of the deviation range from Table 3

to Table 5. In addition, the lateral velocity deviation and angular

velocity deviation of the rocket increased with the increasing wind

speed. The tracking errors kek (indicated in Fig. 13b) are shown in

Figs. 15b–17b for three scenarios. In all 300 cases, the center of the

b) Tracking/capturing error for 100 shooting cases, scenario Ia)  States and trajectories of the rocket, scenario I 

Fig. 15 State deviations, trajectories, and tracking errors in scenario I.

b) Tracking/capturing error for 100 shooting cases, scenario II a)  States and trajectories of the rocket, scenario II

Fig. 16 State deviations, trajectories, and tracking/capturing errors in scenario II.

https://arc.aiaa.org/action/showImage?doi=10.2514/1.A34646&iName=master.img-026.jpg&w=62&h=59
https://arc.aiaa.org/action/showImage?doi=10.2514/1.A34646&iName=master.img-026.jpg&w=62&h=59
https://arc.aiaa.org/action/showImage?doi=10.2514/1.A34646&iName=master.img-026.jpg&w=62&h=59
https://arc.aiaa.org/action/showImage?doi=10.2514/1.A34646&iName=master.img-026.jpg&w=62&h=59
https://arc.aiaa.org/action/showImage?doi=10.2514/1.A34646&iName=master.img-037.jpg&w=64&h=87
https://arc.aiaa.org/action/showImage?doi=10.2514/1.A34646&iName=master.img-037.jpg&w=64&h=87
https://arc.aiaa.org/action/showImage?doi=10.2514/1.A34646&iName=master.img-037.jpg&w=64&h=87


capture frame coincides with the target point of the rocket at design
moment tc∕2 (i.e., 5, 3, and 2.5 s for scenarios I, II, and III, respec-
tively). The tracking errors are small enough that all the hooks
engaged with the arresting cables. According to the success criteria
of the active-tracking/capturing phase, all 300 cases successfully
captured the rockets.

After the rockets were captured, the landing process entered into

the passive-decelerating phase, and the dynamic behaviors of the

rockets and arresting cables are shown in Figs. 18–20, corresponding

to the three scenarios. Then, the three parameters (i.e., the maximum

buffering distance jzmaxj, the maximum acceleration of rocket amax,

and the maximum stress of the cables σmax) in Table 6 verify that all

3 × 100 cases were successfully stopped because they met the three

b) Tracking/capturing error for 100 shooting cases, senario IIIa)  States and trajectories of the rocket, scenario III

Fig. 17 State deviations, trajectories, and tracking errors in scenario III.

Table 5 Deviation ranges of the rockets’ captured states
after the active-tracking/capturing phase

Scenario I Scenario II Scenario III

Numbers Parameters Min Max Min Max Min Max

1–2 �rx; ry�, m −16.84 16.94 −15.90 16.27 −15.70 16.97

3–4 �vx; vy�, m∕s −0.97 0.74 −1.43 1.09 −1.86 1.59

5–6 �θx; θy�, deg −15.72 15.90 −12.89 12.70 −14.44 15.26

7 θz, deg −26.06 23.42 −25.59 23.14 −25.41 23.67

8–9 �ωx;ωy�, deg ∕s −2.37 3.02 −4.07 4.77 −5.82 5.98

10 ωz, deg ∕s −0.22 0.19 −0.34 0.63 −0.49 0.46

a) The time history of the buffering distance after the rocket was captured for 100 shooting cases,  scenario I

b) The time history of the acceleration of the rocket after being captured for 100 shooting cases,  scenario I

c) The time history of the maximum stress on the cables  after the rocket was captured for 100 shooting cases,  scenario I 

Fig. 18 Dynamic behaviors of the rocket and arresting cables after the rocket was captured in scenario I.
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success criteria. The landing success of the proposed system includes

the success of the active-tracking/capturing phase and the passive-

decelerating phase. The success rates of statistical simulation cases

are shown in Table 7 for the three scenarios and validate the robust-

ness of the proposed system under various combinations of multiple

uncertainties.

C. Robust Performance of the Passive-Decelerating Phase

To verify the robust capability of the proposed system at the

passive-decelerating phase, decelerating processes were simulated

for various different initial conditions when the rocket was arrested

by the capture frame. The ranges of these initial conditions covered

the final states of the rockets when the first active-tracking phase

ended, as shown in Table 4. The expanded ranges, shown in Table 8,

were selected to initiate 100 quasi Monte Carlo simulation cases for

each of the three scenarios so that a total of 300 cases were simulated.

The initial conditions of these 100 different cases are shown in
Fig. 21a.
For these 300 examples, the statistical results of the three criteria

parameters (i.e., the maximum buffering distance jzmaxj, the maxi-
mum acceleration of the rocket amax, and the maximum stress of the
cables σmax) are shown in Table 9. The simulated results show that
these three parameters all meet the success criteria of the passive-
decelerating phase; therefore, the rocket can be successfully landed.
The arresting-cable system can achieve robust deceleration with
different landing states of rockets.
In addition, the distributions of the three criteria in the arresting

plane oxyz are shown in Figs. 21b–21d, respectively. For the maxi-
mum buffering distances kzmaxk, its maximum value appears in the
case of central capturing and, the farther away from the center of the
arresting area, the smaller its value was. Thus, the height of the truss
frame can be designed to refer to themaximum buffering distances in
the central landing case. The maximum accelerations of the rocket

ct 5ct � 10ct �

a) The time history of the buffering distance after the rocket was captured for 100 shooting cases,  scenario III

b) The time history of the acceleration of the rocket after being captured for 100 shooting cases,  scenario III

c) The time history of the maximum stress on the cables  after the rocket was captured for 100 shooting cases,  scenario III

 Scenario III, 100 shooting cases

 Scenario III, 100 shooting cases

 Scenario III, 100 shooting cases
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Fig. 20 Dynamic behaviors of the rocket and arresting cables after the rocket was captured in scenario III.

a) The time history of the buffering distance after the rocket was captured for 100 shooting cases,  scenario II

b) The time history of the acceleration of the rocket after being captured for 100 shooting cases,  scenario II

c) The time history of the maximum stress on the cables  after the rocket was captured for 100 shooting cases,  scenario II 

Fig. 19 Dynamic behaviors of the rocket and arresting cables after the rocket was captured in scenario II.



amax and maximum stress of the cables σmax were not highly corre-
lated to the captured position deviation. The effects of the wind upon
the buffering performance of the system were negligible. The results
also supported the robustness of the proposed system.

V. Conclusions

In this study, a robust terminal-landing system was proposed to
safely land rockets under various deviations from ideal landing
conditions, including uncertainties in the system parameters, wind
excitation, and initial states. The system consists of two parts: one on
board and one on ground. The onboard system consists of four hooks
on the rocket designed to catch the on-ground arresting cables. The
on-ground system consists of an active-arresting-cable system com-
prising four movable arresting cables forming a capture frame and
four buffer devices; it is responsible for actively catching the hooks
and then decelerating the rocket.
A flexible multibody model was built to evaluate the interaction

dynamics between the landing rocket and the arresting-cable system.
Based on this model, quasiMonte Carlo simulations confirmed that a
rocket can be safely landed even if its landing state deviates from the
ideal landing state. The proposed system does not need additional
complex onboard equipment other than retractable hooks. The
advantages of the proposed system include a potentially higher

Table 6 The decelerating capability of the arresting-cable system under the rocket initial states in Table 5

Scenario I Scenario II Scenario III

Numbers Parameters Min Max Mean Min Max Mean Min Max Mean

1 jzmaxj, m 7.96 9.63 9.16 7.96 9.63 9.16 8.25 9.59 9.12

2 amax, 9.8 m∕s2 3.58 4.71 4.05 3.58 4.71 4.04 3.51 4.88 4.21

3 σmax, MPa 505.11 617.98 563.52 524.64 604.12 563.72 534.74 615.33 564.60

Table 7 Statistics of the quasi Monte Carlo cases

Numbers Scenario I Scenario II Scenario III

Simulation cases 100 100 100
Successfully captured cases 100 100 100
Successfully stopped cases 100 100 100
Success rate, % 100 100 100

Table 8 The deviation ranges of the rocket’s
captured states for the passive-decelerating phase

Numbers Parameters Min Max

1-2 �rx; ry�, m −17.0 17.0

1–2 �vx; vy�, m∕s −2.0 2.0

3–4 �θx; θy�, deg −16.0 16.0

5–6 θz, deg −26.0 26.0

7 �ωx;ωy�, deg ∕s −6.0 6.0

10 ωz, deg ∕s −0.6 0.6

b) Maximum arresting distances of 3×100 cases

d) Maximum stresses of 3×100 casesc) Maximum accelerations of 3×100 cases

a) The state deviations of the rocket when captured

Fig. 21 Performance of the decelerating phase in the 3 × 100 landing cases of the quasi Monte Carlo simulations.



success rate for vertical landings and less propellant usage for land-
ings, since the system can manage a higher terminal vertical-landing
velocity. Another potential advantage is the acceptance of greater
wind excitation.

Appendix: Formulation of the Contact Force Between the
Hook and the Arresting Cable

The expression for a normal collision force is as follows:

fn � kδe � c_δ

where δ is the penetration depth of the collision point; _δ is the change
rate of this penetration depth; k is the stiffness coefficient; c is the
damping coefficient of the collision; and e is the index of the non-
linear collision force, which is related to the shape of the contact
surface.
The tangential frictional force is calculated based on a modified

Coulomb’s frictional force, and it is given by

fτ � μ�v�fn
Here, the friction coefficient μ is expressed as

μ�v� �

8>><
>>:
−sign�v� ⋅ μd jvj > vd

sign�v�STEP�jvj; vd; μd; vs; μs� vs ≤ jvj ≤ vd

STEP�v;−vs;−μs; vs; μs� −vs < v < vs

where v is the relative tangential velocity of the two contacting
bodies; vs and vd are the static and dynamic friction transition
velocities, respectively; and μs and μd are the corresponding static
and dynamic friction coefficients. The sign�v� function extracts the
sign of the velocity v. The STEP function is a second-order derivation
continuous function defined as follows:

STEP�t; t0; h0; t1; h1� �

8>><
>>:
h0 t ≤ t0

h0 � aη2�3 − 2η� t0 < t < t1

h1 t ≥ t1

with a � h1 − h0, η � �t − t0�∕�t1 − t0�.
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