Path Constraints from a Modal Logic Point of View
(Extended abstract)
Natasha Alechina, Stéphane Demri, Maarten de Rijke

To cite this version:
Natasha Alechina, Stéphane Demri, Maarten de Rijke. Path Constraints from a Modal Logic Point of View (Extended abstract). Proceedings of the 8th International Workshop on Knowledge Representation meets Databases KRDB 2001), Maurizio Lenzerini; Daniele Nardi; Werner Nutt; Dan Suciu, Sep 2001, Roma, Italy. hal-03202950

HAL Id: hal-03202950
https://hal.science/hal-03202950
Submitted on 20 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Path Constraints from a Modal Logic Point of View
(Extended abstract)

Natasha Alechina∗ Stéphane Demri† Maarten de Rijke‡

Abstract

We analyze several classes of path constraints for semistructured data in a uni-
fied framework and prove some decidability and complexity results for these con-
straints by embedding them in Propositional Dynamic Logic. While some of our
decidability results were known before, we believe that our improved complexity
bounds are new. Our proofs, based on techniques from modal logic, shed addi-
tional light on the reasons for previously known decidability and complexity
results.

1 Introduction

In recent years, a lot of interesting work has been done to extend database techniques
to semistructured collections of data, in particular the World Wide Web or fragments
of it; an overview of this work can be found in [1]. It is generally agreed that the appro-
priate data model for semistructured data is an edge-labeled graph. More specifically,
the web can be viewed as a set of objects linked by labeled edges; an object represents
a page, and the labeled edges represent hypertext links.

Query languages proposed for semistructured data and querying the web, such as
WebSQL, Lorel, and UnQL are similar in spirit if not in syntax, and include a form
of recursion (regular expressions). Making effective use of whatever information is
available about the format of data is obviously a very important issue. In the context
of the web, it is often useful to know that everything accessible by a given sequence
of links is cached, or available locally; or that the site reachable by a given sequence
of links is mirrored elsewhere, etc. To express such information, one can use so-called
path constraints, that is: statements about paths in the graph. It is reasonable to
expect that the language of constraints forms a well-behaved (preferably decidable)
sublanguage of the query language.

We build on results in [2, 9], and embed several classes of path constraints that
have been considered in the literature into a well-known modal logic. This embedding

∗School of Computer Science & IT, University of Nottingham, Nottingham, NG8 1BB, England.
E-mail: n.alechina@cs.nott.ac.uk
†LSV, ENS de Cachan, 61 av. Pdt Wilson, 94235 Cachan, France. Email: demri@lsv.ens-cachan.fr.
On leave from Lab. LEIBNIZ, Grenoble.
‡ILLC, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Nether-
lands. E-mail: mdr@science.uva.nl
establishes a number of things; it shows how various constraints relate to each other, it sheds light on the known decidability results, and it gives rise to new ones.

The paper is organized as follows. Section 2 provides background information on data models and query languages. Section 3 introduces several kinds of path constraints, and in Section 4 we introduce logical formalisms to capture such constraints. In Section 5 we state our complexity and decidability results. We conclude in Section 6.

2 Background

Semistructured data is often represented as an edge-labeled graph. In particular, the World Wide Web can be modeled as a graph where the vertices are uniquely identified by URLs and the labels are hypertext links between them [1]. An important special class of graphs are deterministic graphs. A graph is called deterministic if for every node \(u \) and label \(a \) there is at most one node \(v \) such that \(u \xrightarrow{a} v \) holds. In the case of the web (unlike the case of most object-oriented databases) it is reasonable to expect a graph to be deterministic.

In this paper, we will restrict attention to rooted connected graphs: that is, one of the nodes in the graph is designated as the root and every other node is accessible from the root by a directed path of edges. Intuitively, this is because we consider the web from the point of view of browsing, i.e., only the sites accessible from the current site (the root) really matter.

Languages for querying semistructured data use so-called path queries. These have emerged as an important class of browsing-style queries, and in their simplest version they are of the form ‘find all objects reachable by paths whose edge labels form a regular expression over some given alphabet of labels.’

Definition 1 Let \(L \) be a countable set of edge labels. A label \(l \in L \), an empty path \(\epsilon \) and a wildcard \(\# \) are path expressions. If \(p_1 \) and \(p_2 \) are path expressions, then so are \(p_1 ; p_2 \) (sequential composition), \(p_1 + p_2 \) (union), and \(p^* \) (finite iteration). A simple path is a path expression with no occurrence of \(\# \), \(* \) and \(+ \).

3 Path Constraints

In the absence of information about the format of data, evaluating queries with regular expressions can be very inefficient. A natural way to express useful information about the data represented as a graph is to impose constraints on possible paths in the graph, such as ‘all objects reachable by a path \(p \) are also reachable by a path \(q \),’ where \(p \) and \(q \) are sequences of labels, possibly involving regular expressions. Examples of constraints which may be useful for query optimization in the context of the web are constraints saying that everything accessible by such-and-such sequence of labels is also accessible locally; that the answer to such-and-such query is cached; that such-and-such site is mirrored elsewhere, and so on. All these examples can be expressed by means of path inclusion constraints as defined in [2] (see below).
The motivation of the work in [9] is more database-related. One important difference between the constraints considered in [2] and those studied in [9] is that the former correspond to unary properties and are evaluated relative to a node; the latter are closed sentences and can be evaluated anywhere and don’t have to mention the root. Another difference is that the former can contain regular expressions, while the latter are strictly first-order definable.

Definition 2 Let \(p \) and \(q \) be two path expressions. A path inclusion constraint is a statement of the form \(p \subseteq_f q \). A path inclusion constraint \(p \subseteq_f q \) is true at a node \(x \) if every node \(y \) reachable from \(x \) by a path whose labels form a word described by \(p \) (i.e., a \(p \)-path), is reachable from \(x \) by a path whose labels form a word described by \(q \) (i.e., a \(q \)-path). See Figure 1 (a).

The path inclusion constraints defined above are sometimes referred to as forward constraints. In [9], backward constraints are introduced. We generalize their definition for a language containing regular expressions.

Definition 3 Let \(p \) and \(q \) be two path expressions. A backward path constraint \(p \subseteq_b q \) is true at a node \(x \) if for every \(y \) reachable from \(x \) by a \(p \)-path, it is possible to come back to \(x \) by a \(q \)-path. See Figure 1 (b).

Notice that a backward constraint can be rewritten as an inclusion constraint, and vice versa, by rewriting the regular expressions involved in the presence of the inverse operator.

A path constraint (notation: \(p \subseteq q \)) is either a path inclusion constraint or a backward constraint. The next class of constraints is a generalization of path constraints as defined in [9] for a language containing regular expressions:

Definition 4 Let \(p \) and \(q \) be two path expressions. A lollipop path constraint is an expression of the form \(r \rightsquigarrow p \subseteq q \). A lollipop path constraint \(r \rightsquigarrow p \subseteq q \) is true at a node \(x \) if at every node \(y \) reachable from \(x \) by an \(r \)-path, the path constraint \(p \subseteq q \) holds. See Figure 1 (c).

Obviously, a path inclusion constraint \(p \subseteq_f q \) is a lollipop path constraint \(r \rightsquigarrow p \subseteq_f q \) with \(r = \epsilon \).
4 Reasoning about Path Constraints

Now that we have formulated path constraints, we take a closer look at reasoning tasks involving them. These include checking whether a certain constraint holds or whether a certain set of constraints is consistent or implies another constraint. To determine the computational costs of these tasks, we recast them as model checking, satisfiability checking, and implication checking tasks in some logic. Which logic (or logics) should we use? Many formalisms have been proposed for reasoning about graphs. As we will see below, many decidable classes of constraints are definable in suitable modal logics, while constraints that lack a modal flavor (such as the ones studied in [9]) are generally undecidable. Rather than the presence or absence of regular expressions or even the need for two vs. three variables to express a constraint, the ‘modal flavor’ of constraints seems to be important — by this we mean the fact that modal formulas can only express local properties and the fact that the quantification implicit in modal formulas is ‘guarded’ [3].

Thus, we translate constraints into formulas of a flavor of Propositional Dynamic Logic (PDL, [16]) and reformulate reasoning tasks for constraints as reasoning tasks within this flavor of PDL. The language of PDL has two kinds of primitive symbols: propositional symbols and atomic transitions. Propositional symbols stand for properties that are true or false of a node in a graph; we only need three propositional symbols: ⊤ (tautology), ⊥ (falsum), and root (to denote the root of the graph). Atomic transitions are used to label edges; we include a distinguished label id to denote the diagonal relation. Compound transition terms correspond to path expressions and are built from atomic ones using ;, + and ∗.

In addition to these traditional ingredients of PDL, we add a wildcard # and a converse operator (˘) (also written as (˘)−1): # is a transition term, and if t is a transition term, then so is ˘t (the labels of t in reverse order). PDL with converse is called converse PDL (CPDL). We obtain CPDL with nominals by extending CPDL with special propositional symbols, called nominals, that are true of at most one node in a graph; our symbol root is an example of a nominal.

Definition 5 (PDLpath) We now define the legal formulas of PDLpath. Relational terms are typically denoted by t, atomic terms by a, and formulas are typically denoted by φ:

\[
t ::= \ id \mid a \mid \# \mid t + t \mid t \mid t^* \mid ˘t \\
φ ::= \ ⊤ \mid ⊥ \mid root \mid ˘φ \mid φ \land φ \mid ⟨t⟩φ \mid [t]φ.
\]

A formula ⟨t⟩φ is read as ‘after some transition t, φ holds,’ or, more precisely, as ‘there is a sequence of labels which forms a word in a regular language defined by t and it leads to a node where φ holds.’ Dually, [t]φ is definable as ˘⟨t⟩˘φ and means ‘after every transition t, φ holds,’ that is: ‘if labels of a path form a word in t, then at the end of the path φ holds’.

To give an example, ⟨a^⟩˘(˘b)⊤ means that after 0 or finitely many a links one can reach a node which has no outgoing links labeled b.
Definition 6 (Semantics) PDLpath is interpreted on structures of the form $G = (V, rt, \{ R_a : a \in L \})$, where $rt \in V$ is the root and, for every label a, R_a is a binary relation on V. These relations represent the edges of the semistructured data viewed as an edge-labeled graph. Sometimes, we restrict ourselves to so-called deterministic structures; these are structures $(V, rt, \{ R_a : a \in L \})$ that satisfy the following condition, for all states $u, v, w \in V$ and edge labels $a \in L$: if $uR_av \land uR_aw$ then $v = w$.

We now define truth of a formula ϕ at a node w in a structure G (notation: $G, w \models \phi$). For atomic propositional symbols, \top is true at all nodes, \bot is false at all nodes, and root is true only at the root of the graph. Further, $\neg \phi$ is true if ϕ is false, and $\phi \land \psi$ is true if both ϕ and ψ are true. For modalities, we need first to define transition relations $tr(t)$ on $V \times V$ corresponding to the transition terms t:

$$tr(a) = R_a, \text{ for } a \in L$$
$$tr(\#) = \bigcup_{a \in L} R_a$$
$$tr(id) = \{ (u, u) : u \in V \}$$
$$tr(t_1 \cup t_2) = tr(t_1) \cup tr(t_2)$$
$$tr(t_1 \cap t_2) = \{ (u, v) : \exists z (tr(t_1)(u, z) \land tr(t_2)(z, v)) \}$$

We say that v is accessible from u by a transition t if $(u, v) \in tr(t)$. Then, for modal formulas, $\langle t \rangle \phi$ is true at a node u if there exists a node v accessible from u by t such that ϕ is true at v. Dually, $[t] \phi$ is true at u if for every v accessible from u by t, ϕ is true.

A PDLpath formula ϕ is true on a structure (edge-labeled rooted graph) G if it is true at the root of G. A lollipop path constraint $r \leadsto p \subseteq q$ is true on a structure G (in symbols $G \models r \leadsto p \subseteq q$) if $r \leadsto p \subseteq q$ is true at the root of G.

Definition 7 (Reasoning Tasks) The model checking problem is to decide, given a structure G and a formula ϕ, whether ϕ is true on G. The satisfiability problem for PDLpath is to determine, given a PDLpath formula ϕ, whether there is a structure G such that ϕ is true at the root of G. The implication problem for path inclusion constraints is to determine, given constraints ϕ_1, \ldots, ϕ_n and ϕ, whether it the case that for all structure G, $G \models \phi_1, \ldots, G \models \phi_n$ imply $G \models \phi$?

The implication problem for other classes of constraints can be defined accordingly. Below we reduce the implication problem to the satisfiability problem; see Theorem 11.

5 Complexity and Decidability Results

5.1 The Model Checking Problem

Given a formula ϕ, define $|\phi|$, the length of ϕ, as the number of symbols in ϕ. Given a structure $G = (V, rt, \{ R_a : a \in L \})$ with a finite domain V and a finite set of atomic edge labels L, define $|G|$, the size of G, to be the sum of the number of states in V and the number of pairs in $\bigcup \{ R_a : a \in L \}$.

The model checking problem for PDLpath is no more expensive than for PDL:
Theorem 8 There is an algorithm that, given a finite (deterministic or non-deterministic) graph G, a node w of G, and a PDL\text{path} formula ϕ, determines, in time $O(|G| \times |\phi|)$ whether $G, w \models \phi$.

The proof of Theorem 8 is a slight variant of the proof of the fact that model-checking for PDL is in time $O(|G| \times |\phi|)$. This follows from the fact that model-checking for the alternation-free modal μ-calculus is in linear-time (see e.g. [11]).

5.2 The Satisfiability Checking Problem

The satisfiability problem for PDL\text{path} on non-deterministic graphs can be proved to be decidable by a reduction to the decidability of converse PDL with nominals.

Theorem 9 On non-deterministic graphs, the satisfiability problem for PDL\text{path} is decidable.

Proof. We show that the satisfiability problem for PDL\text{path} can be reduced to the satisfiability problem for CPDL with nominals. Given a PDL\text{path} formula ϕ which uses labels $\{l_1, \ldots, l_n\}$ and possibly $\#$, we construct a CPDL formula ϕ' by replacing $\langle \# \rangle$ with $\langle l_1 + \cdots + l_{n+1} \rangle$ in ϕ, and we show that ϕ is satisfiable iff $\text{root} \land \phi'$ is. In the case when L is finite, $\#$ is only replaced by the finite union of labels from L (details are omitted here).

To begin with, observe that if in a model M all edge labels are in the set $\{l_1, \ldots, l_k\}$, then $\langle \# \rangle$ is equivalent to $\langle l_1 + \cdots + l_k \rangle$. Suppose $M, u \models \phi$. Let M' be obtained from M by replacing all labels not in $\{l_1, \ldots, l_n\}$ by l_{n+1}. Then, $M', u \models \phi$. By our observation $M', u \models \phi'$. For the converse, assume that $M, u \models \phi'$. Let M' be obtained from M by deleting all edges labeled by modalities not in $\{l_1, \ldots, l_{n+1}\}$. It is easy to see that $M', u \models \phi'$. In M', $\langle \# \rangle$ is definable as a union of $\{l_1, \ldots, l_{n+1}\}$, hence on M', ϕ' and ϕ are equivalent and we obtain $M', u \models \phi$.

Now, to complete the proof, we obtain the decidability of PDL\text{path} from the decidability of CPDL with nominals [12, Theorem 49].

By itself Theorem 9 does not imply an analogous result for deterministic graphs which remains an open problem to date. However, if the set of edge labels L is finite, deterministic CPDL with nominals is decidable only if on deterministic graphs, the satisfiability problem for PDL\text{path} is decidable.

In the non-deterministic case, we can actually do better than Theorem 9, and obtain matching lower and upper bounds for the complexity of the satisfiability problem for PDL\text{path}.

Theorem 10 On non-deterministic graphs, the satisfiability problem for PDL\text{path} is EXPTIME-complete whenever $|L| \geq 1$.

The EXPTIME upper bound is a corollary of the EXPTIME-completeness of CPDL with nominals [12, page 98]. As to the lower bound, the proof (omitted here) is by reducing the global satisfiability problem for the standard modal logic K (known to be EXPTIME-hard, see e.g., [10, 17]) to PDL\text{path}-satisfiability restricted to the
modal connectives $\langle a_0 \rangle$ and $\langle a_0^{-1} \rangle$. To do so, we can take advantage of the spy-point technique from [6] and adapt the proof of [4, Theorem 2]. The only difficulty is to use the spy-point technique and simultaneously encode the proposition letters.

As a corollary to the proof of Theorem 10, the minimal tense logic augmented with a single nominal but without proposition letters also has an EXPTIME-hard satisfiability problem.

5.3 The Implication Problem

Our next aim is to obtain sharp complexity results for implication problems for constraints. We start by considering non-deterministic graphs, and the first step is to show the following.

Theorem 11 On non-deterministic graphs, the implication problem for path inclusion constraints is decidable in exponential time, while it is at least PSPACE-hard whenever $|L| \geq 2$.

The EXPTIME upper bound is from Theorem 10 and the fact that the path inclusion $p \subseteq_f q$ can simply be translated as $[p] \langle \bar{q} \rangle root$. As to the PSPACE lower bound, the proof (omitted here) is by reducing the inclusion problem for regular expressions over a binary alphabet [18, Theorem 2.12(c)]. Theorem 11 is an improvement over an earlier result by Abiteboul and Vianu [2, Theorem 3.2], who only provide an EXPSPACE upper bound (actually a NEXPTIME upper bound). By [2, Theorem 3.3], the implication problem restricted to premisses with simple path expressions is PSPACE-complete.

For backward path constraints one can obtain results similar to those for path inclusion constraints.

Theorem 12 On non-deterministic graphs, the implication problem for backward constraints is decidable in exponential time, while it is at least PSPACE-hard whenever $|L| \geq 2$.

The proof of Theorem 12 is similar to the proof of Theorem 11 by using the translation of the backward path constraint $p \subseteq_b q$ into $[p] \langle q \rangle root$.

We now restrict attention to deterministic graphs, which makes a substantial difference. The results known so far (see [8]) are: all path constraints without regular expressions (including lollipop path constraints) are decidable on deterministic graphs. Lollipop path constraints that do contain regular expressions are undecidable. Below we consider the case of constraints with regular expressions.

By using the previous correspondences between path constraints and PDLpath formulae, one can easily show the following result.

Lemma 13

1. On deterministic graphs, the implication problem for path inclusion constraints is reducible to the satisfiability problem for PDLpath on deterministic graphs.
2. On deterministic graphs, the implication problem for backward constraints is reducible to the satisfiability problem for PDL_{path} without converse on deterministic graphs.

As a consequence, since DPDL with nominals is known to be decidable in exponential time [15, 21], we get the following result.

Theorem 14 On deterministic graphs, the implication problem for backward constraints for finite sets of labels L is decidable in exponential time.

The latter result provides a partial positive answer to the last open question from [8]. However, it is open whether on deterministic graphs, the implication problem (for path inclusion constraints) is decidable. Similarly, the decidability of the implication problem for backward constraints (without restrictions on L) is open.

On deterministic graphs, the implication problem with lollipop constraints of the form $r \sim p \subseteq f q$ is undecidable even if L contains only two labels [8]. However, in the lollipop constraints used in the proof the operator $*$ occurs in r, and this is used to encode the word problem.

6 Conclusions

We have given new and transparent decidability proofs for the path inclusion constraints proposed in [2] for optimizing queries on semistructured data, mostly in the context of the web. We have obtained sharp upper and lower bounds that are better than previously known ones (Theorems 11 and 12). Table 1 summarizes the complexity and (un-) decidability results for the logics considered in this paper.

Some of our decidability results were obtained by re-using the results of [12]. In fact, there are many areas in computer science in which describing and reasoning about finite graphs is a key issue. There exists a large body of work in e.g., feature structures [23], process algebra [19], or knowledge representation [13] which can be usefully applied in database theory. But there are differences in the kind of questions asked and in the emphasis in descriptions of linguistic structures, processes, or knowledge on the one hand, and in descriptions of database schemas on the other hand, which makes the present application interesting and non-trivial.

Our modal logic perspective on path constraints moves many decidability and complexity issues for semistructured data into the realm of PDL-like logics. Here are just some of the many interesting open problems:

1. Complexity of the implication problem (we know PSPACE-hardness and the EXPTIME upper bound).

2. Decidability of the implication problem for forward constraints on deterministic graphs.

3. Decidability of PDL_{path} on deterministic graphs; decidability of PDL with converse and determinism is a long-standing open problem [24].
Model checking problem

<table>
<thead>
<tr>
<th>Logic</th>
<th>non-deterministic graphs</th>
<th>deterministic graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDL</td>
<td>$O(</td>
<td>G</td>
</tr>
<tr>
<td>PDL$_{path}$</td>
<td>$O(</td>
<td>G</td>
</tr>
</tbody>
</table>

Satisfiability problem

<table>
<thead>
<tr>
<th>Logic</th>
<th>non-deterministic graphs</th>
<th>deterministic graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDL</td>
<td>EXPTIME-complete [14, 22]</td>
<td>EXPTIME-complete [20, 5]</td>
</tr>
<tr>
<td>CPDL</td>
<td>EXPTIME-complete [14, 22]</td>
<td>EXPTIME-complete [25]</td>
</tr>
<tr>
<td>CPDL with nominals</td>
<td>EXPTIME-complete [12, 4]</td>
<td>open</td>
</tr>
<tr>
<td>PDL$_{path}$</td>
<td>EXPTIME-complete; this paper, Theorem 10</td>
<td>open</td>
</tr>
</tbody>
</table>

Implication problem

<table>
<thead>
<tr>
<th>Constraint</th>
<th>non-deterministic graphs</th>
<th>deterministic graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>inclusion constraints</td>
<td>PSPACE-hard, in EXPTIME; this paper, Theorem 11</td>
<td>open</td>
</tr>
<tr>
<td>backward constraints</td>
<td>PSPACE-hard, in EXPTIME; this paper, Theorem 12</td>
<td>in EXPTIME (with finite L); this paper, Theorem 14</td>
</tr>
<tr>
<td>lollipop constraints</td>
<td>undecidable</td>
<td>undecidable</td>
</tr>
<tr>
<td></td>
<td>[9, Theorem 3.1]</td>
<td>[8, Theorem 6.1]</td>
</tr>
</tbody>
</table>

Table 1: A summary of the complexity and decidability results for the logics considered in this paper.

Acknowledgments. We are grateful to Peter Buneman, Neil Immerman, Achim Jung, Brian Logan, Ulrike Sattler and Alan Sexton for useful comments. This research was supported by the British Council/NWO UK-Dutch Joint Scientific Research Programme under grant JRP548. Maarten de Rijke was also supported by the Spinoza project ‘Logic in Action’ and by grants from the Netherlands Organization for Scientific Research (NWO), under project numbers 612-13-001, 365-20-005, 612.069.006, 612.000.106, and 220-80-001.

References

