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ABSTRACT

We present a method to constrain galaxy parameters directly from three-dimensional data cubes.
The algorithm compares directly the data with a parametric model mapped in x, y, λ coordinates. It
uses the spectral line-spread function (LSF) and the spatial point-spread function (PSF) to generate
a 3-dimensional kernel whose characteristics are instrument specific or user generated. The algorithm
returns the intrinsic modeled properties along with both an ‘intrinsic’ model data cube and the mod-
eled galaxy convolved with the 3D-kernel. The algorithm uses a Markov Chain Monte Carlo (MCMC)
approach with a nontraditional proposal distribution in order to efficiently probe the parameter space.
We demonstrate the robustness of the algorithm using 1728 mock galaxies and galaxies generated from
hydrodynamical simulations in various seeing conditions from 0.′′6 to 1.′′2. We find that the algorithm
can recover the morphological parameters (inclination, position angle) to within 10% and the kine-
matic parameters (maximum rotation velocity) to within 20%, irrespectively of the PSF in seeing
(up to 1.′′2) provided that the maximum signal-to-noise ratio (SNR) is greater than ∼ 3 pixel−1 and
that ratio of galaxy half-light radius to seeing radius is greater than about 1.5. One can use such an
algorithm to constrain simultaneously the kinematics and morphological parameters of (nonmerging)
galaxies observed in nonoptimal seeing conditions. The algorithm can also be used on adaptive-optics
(AO) data or on high-quality, high-S/N data to look for nonaxisymmetric structures in the residuals.

Subject headings: methods: data analysis — methods: numerical — techniques: imaging spectroscopy

1. INTRODUCTION

Thanks to several studies using optical or near-infrared
(NIR) integral field unit (IFU) spectroscopy of Hα emis-
sion from local and high-redshift (z > 1) galaxies
(Förster Schreiber et al. 2006; Law et al. 2007; van
Starkenburg et al. 2008; Cresci et al. 2009; Förster
Schreiber et al. 2009; Lemoine-Busserolle et al. 2010;
Law et al. 2012; Contini et al. 2012; Epinat et al. 2012;
Buitrago et al. 2014), our understanding of galaxy for-
mation has changed significantly in the past decade. For
instance, these surveys have shown that a significant sub-
set of high-redshift galaxies have a disklike morphology
and show organized rotation, with regular velocity fields.

In contrast to low-redshift studies (e.g. Bacon et al.
2001; Cappellari et al. 2011), high-redshift (1 . z . 2)
galaxies are observed at a spatial resolution that is sever-
aly limited by the seeing conditions owing to their small
apparent angular sizes. In order to overcome the low spa-
tial resolution, observations with adaptive-optics (AO)
are often required (Law et al. 2007, 2009; Genzel et al.
2008, 2011; Wright et al. 2007, 2009). However, observa-
tions with AO are expensive, with the additional instru-
mental costs, and add strong observational constraints
such as the additional exposure times required to com-
pensate for the loss in surface brightness (SB) sensitivity
(Law et al. 2006). Indeed, the SB limit for AO observa-
tions taken on smaller pixels is higher, leaving the cur-
rent state-of-the art observations to the objects with the
highest SBs.
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Given these challenges and the advancements in mul-
tiplexing IFU observations with the Very Large Tele-
scope (VLT) second-generation instruments like KMOS
(Sharples et al. 2006) and the Multi-unit Spectrograph
Explorer (MUSE; Bacon et al. 2006, 2015), it is impor-
tant to have tools that can give robust estimates on
the galaxy physical properties. In particular, KMOS
will bring large statistically significant samples of high-
redshift galaxies as it can observe 24 galaxies at a time,
but this facility will always lack an AO unit. This could
potentially be a serious limitation since the robustness
of the derived kinematic parameters may depend on the
quality of the atmospheric conditions (seeing can range
from 0.′′4 to >1.′′0 in the NIR).

In order to overcome these limitations, we present
a new tool named GalPaK3D (Galaxy Parameters and
Kinematics) 4 designed to be able to disentangle the
galaxy kinematics from resolution effects over a wide
range of conditions. This is not the first code to model
galaxy kinematics from 3D data (e.g. the TiRiFiC
package, which performs tilted ring model fits to three-
dimensional radio data; Józsa et al. 2007), but this code
performs disk model fits to three-dimensional IFU data
cubes, for the first time, 5, whereas all other modeling of
IFU-data so far have worked from the two-dimensional
velocity field (e.g. Cresci et al. 2009; Epinat et al. 2009;
Davies et al. 2011; Andersen & Bershady 2013; Davis
et al. 2013).

This paper is organized as follows: we describe the
GalPaK3D algorithm in Section 2. We present some test
case examples in Section 3. We present results from an

4 Available at http://galpak.irap.omp.eu/.
5 Law et al. (2012) made an attempt at 3D fitting, albeit not

self-consistently.
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extensive analysis of 1728 synthetic galaxies in Section 4,
where we discuss the impact of the accuracy in the point-
spread-function (PSF) characterization. In Section 5,
we present an analysis of data cubes generated from hy-
drodynamical simulations of isolated disks from Michel-
Dansac et al. (in prep.). We summarize this paper in
Section 6. Throughout, we use the following cosmological
parameters: H0 = 70 km s−1, ΩΛ = 0.7 and ΩM = 0.3.

2. THE GALPAK3D ALGORITHM

In this section we outline the algorithm principles,
which are designed to be able to determine galaxy
morphokinematic parameters from the three-dimensional
data cube directly. We discuss the merits of using the
parametric forward fit and its limitations.

2.1. A Parametric Galaxy Model in Three Dimensions

Traditionally, kinematic analyses use two-dimensional
maps generated by applying line-fitting codes to deter-
mine the line wavelength centroids and widths, which are
only considered to be reliable for spaxels with sufficiently
high signal-to-noise (S/N) ratios. This S/N condition is
easily met at low redshifts, but is harder to meet for
small, high-redshift galaxies. In principle, the choice to
work in 2D or 3D space is equivalent, but we will show
that our method can work in the regime (on the spax-
els) where the signal-to-noise ratio (SNR) per pixel (SNR
pixel−1) is not sufficient for line-fitting codes, which re-
quire a minimum SNR on all spaxels.

When the PSF FWHM can be characterized to suffi-
cient accuracy 6 (within 10% or 20%; see Section 4), one
can take its characteristics, together with the instrumen-
tal line-spread function (LSF), into consideration and re-
cover the intrinsic modeled galaxy parameters. The al-
gorithm uses the spectral LSF and the spatial PSF to
generate a three-dimensional kernel whose characteris-
tics are set for the given instrument (or a user-generated
instrument module).

While a full deconvolution of hyperspectral cubes
would be preferred, it is usually a challenge mathemati-
cally (a new method has been proposed recently by Vil-
leneuve & Carfantan 2014), and a forward convolution of
a parametric model offers a very useful alternative. This
forward convolution gives us the opportunity to estimate
intrinsic modeled kinematic parameters in a wider range
of seeing conditions, as illustrated in recent papers (see
Bouché et al. 2013; Péroux et al. 2014; Schroetter et al.
2015; Martin & Soto 2015, for first applications).

For the forward convolution, we need a parametric
model, and we focus here on a galaxy disk model for
emission-line surveys, but the algorithm is adaptable to
other situations. In order to construct a modeled galaxy
in the observational coordinate systems (x, y, λ), we start
by generating a three-dimensional galaxy model in a Eu-
clidian coordinate system (x, y, z), where the z-axis is
normal to the galaxy plane (x, y). We apply a radial flux
profile I(r), from one of the traditional Gaussian, expo-
nential, and de Vaucouleur choices as parameterized by
the Sérsic (1963) profile:

I(r) = Ie exp
(
−bn

[
(r/Re)1/n − 1

])
(1)

6 The PSF shape matters more than the level of accuracy on the
FWHM, as discussed in Section 4.4.

with n = 0.5, 1.0, and 4.0, respectively, where Re is the
effictive radius, ftot the total flux, and bn such that Re

is equivalent to the half-light radius R1/2, and Ie the SB
at Re. For n = 0.5, 1.0, and 4.0, the constant bn is
0.69, 1.68, and 7.67, respectively, from bn ' 1.9992n −
0.3271. The Sersic index n is kept fixed given the large
degeneracies it creates with other parameters, such as
the galaxy half-light radius. This degenaracy is due to
the fact that the SB profiles around Re are close to one
another fo n = 0.5, 1.0, or 4.0 as noted in Graham et al.
(2005).

To this two-dimensional disk model, we add a disk
thickness hz. We adopt a Gaussian luminosity distribu-
tion perpendicular to the plane, I(z) ∝ exp(−z2/2h2

z),
defining hz as the characteristic thickness of the disk.
GalPaK3D also allows the user to choose an exponen-
tial I(z) ∝ exp(−|z|/hz) or a sech2 distribution I(z) ∝
sech2(z/hz). We set the disk thickness to hz = 0.15R1/2

where R1/2 is the disk half-light radius. This choice cor-
responds to hz ∼ 1 kpc, typical of high-redshift edge-
on/chain galaxies (Elmegreen & Elmegreen 2006). At
this stage, we have a disk model in Euclidean coordi-
nates that accounts for the flux distribution only.

For the gas kinematics, we create three kinematic cubes
in the same spatial coordinate reference frame for the
velocities v = (Vx, Vy, Vz) assuming circular orbits. The
rotational velocity v(r) with a maximum rotation veloc-
ity Vmax can have several functional forms: it can be
an arctan velocity profile (e.g. Puech et al. 2008), an in-
verted exponential (Feng & Gallo 2011), or a hyperbolic
tanh profile (e.g. Andersen & Bershady 2013) :

v(r) =Vmax
2

π
arctan (r/rt) ‘arctan’ (2)

v(r) =Vmax [1− exp(r/rt)] ‘exp’ (3)

v(r) =Vmax tanh(r/rt) ‘tanh’ (4)

where r is the radius in the galaxy x, y plane, rt is the
turnover radius, and Vmax is the maximum circular ve-
locity. These choices are more extensively discussed in
Epinat et al. (2010), but it is worth noting that the ‘exp’
and hyperbolic rotation curves have a sharper transition
around the turnover radius. We stress that our parame-
ter Vmax is not the projected asymptotic velocity, but is
the true asymptotic velocity irrespective of the inclina-
tion.

Another option, called “mass,” assumes a constant
light-to-mass ratio and sets v(r) from the enclosed
light/mass I(< r) profile

v(r)∝
√
I(< r)

r
‘mass’ (5)

where r is the radius in the galaxy x, y plane and Vmax

normalizes the profile. This option has a rotation curve
that peaks at some radius (set by the half-light radius),
decreases at larger radii, and is to be preferred for nu-
clear disks or when there is no significant dark matter
component.

We then rotate the disk model around two axes ac-
cording to an inclination (i) and position angle (PA, an-
ticlockwise from y) and create a cube in x, y, and λ using
the three intermediate 2D maps: the flux map, the ve-
locity field, and the dispersion map (σtot). The flux map
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TABLE 1
Default Range on Each Parameter

Parameter Min Max

xc 1/3 Npixx 2/3 Npixx
yc 1/3 Npixy 2/3 Npixy
zc 1/3 Npixz 2/3 Npixz
Flux 0 3× Σi,j,k(vi,j,k)
R1/2 0.2 spaxel 4 ′′

Incl. (deg) 0 90
PA (deg) −180 180
rt 0.01 spaxel 1 ′′

Vmax(km s−1) -350 350
σo ( km s−1) 0 180

is obtained from the rotated flux cube summed along the
wavelength axis. The velocity field is obtained from the
flux-weighted mean Vz velocity cube. The total (line-of-
sight) velocity dispersion σtot is obtained from the sum
of three terms (added in quadrature). It includes (i) the
local isotropic velocity dispersion σd driven by the disk
self-gravity, which is σd(r)/hz = V (r)/r for a compact
“thick” or large “thin” disk (Genzel et al. 2008; Binney
& Tremaine 2008; Davies et al. 2011); (ii) a mixing term,
σm, arising from mixing the velocities along the line of
sight for a geometrically thick disk, which is obtained
from the flux-weighted variance of the cube Vz, and (iii)
an intrinsic dispersion (σo) —which is assumed to be
isotropic and constant spatially— to account for the fact
that high-redshift disks are dynamically hotter than the
self-gravity expectation. Indeed, this turbulence term σo
is often observed to be ' 50–80km s−1 in z > 1 disks
(Law et al. 2007, 2012; Genzel et al. 2008; Cresci et al.
2009; Förster Schreiber et al. 2009; Wright et al. 2009;
Epinat et al. 2010, 2012; Wisnioski et al. 2011) and thus
dominates the other two terms since the mixing term σm

is typically ∼15 km s−1 and the self-gravity term σd is
typically 10–30km s−1.

To summarize, the flux profile can be chosen to be ‘ex-
ponential’ (n = 1.0),‘gaussian’ (n = 0.5), and ‘de Vau-
couleur’ (n = 4.0); the velocity profile v(r) can be arctan
(“arctan”), inverted exponential (“exponential”), hyper-
bolic (“tanh”) or that of mass profile (“mass”); and the
local dispersion can be that of the thin or thick disk.
There are in total 10 free parameters 7 to be determined
from the data. The 10 parameters are the xc, yc, zc posi-
tions, the disk half-light radius R1/2, the total flux ftot,
the inclination i, position angle PA, the turnover radius
rt, the maximum circular velocity Vmax, and the one-
dimensional intrinsic dispersion σo . We will refer to the
last two (Vmax, σo) as kinematic parameters. Finally, the
simulated galaxy is convolved (in 3D) with the PSF and
the instrumental LSF specific for each instrument.8 The
3D convolution is performed using fast Fourier transform
(FFT) libraries.

2.2. The Markov Chain Monte Carlo (MCMC)
Algorithm

In order to determine the 10 free parameters on hy-
perspectral cubes, one needs an algorithm that is inde-
pendent of initial guesses on the parameters, that can

7 There are only nine free parameters when the “mass” profile
is used for v(r) since the turnover radius rt is irrelevant.

8 The user can choose a Gaussian PSF, a Moffat PSF. The PSF
can be circular or elliptical with a user-defined axis ratio b/a.

converge even in the presence of local minima, and that
can handle low S/N data. This is particularly difficult
for traditional minimization methods because the χ2 hy-
persurface is very flat (outside the shallow well near the
optimum parameters), and as a result the minimization
algorithm tends to not converge and be very susceptible
to local minima.

Here we use an algorithm to optimize the parameters
using Bayesian statistics with flat priors on bound inter-
vals for each of the parameters. The algorithm constructs
MCMCs with a Metropolis-Hasting (MH) sampler (Hast-
ings 1970). At each iteration we compute the new set of
parameters x̂i+1 from the last x̂i set with a proposal dis-
tribution P from which to draw:

x̂i+1 = x̂i + ĥ P (x̂i+1|x̂i), (6)

where the new set of parameters is accepted or rejected
as in any MH algorithm. The new proposal set of param-
eters xi+1 is then accepted or rejected according to the
posterior distribution, which amounts to the likelihood
L ∝ exp−χ2 in the considered case of flat priors on the
parameters. In other words, we assume that the pixels
are independent and that noise properties are Gaussian,
which is appropriate for optical/NIR data taken in the
background-limited regime, and the user can provide the
full variance cube. More appropriate likelihood functions
for low counts with Poisson noise can be found in Mighell
(1999).

The scaling vector ĥ in Equation 6 is derived from the
variance on the flat (uniform) prior distributions, whose
boundaries are adjustable (the default values are listed

in Table 1). The user may need to rescale the vector ĥ
in order to have acceptance rates between 20% and 50%.
Convergence is usually achieved in a few hundred to a
few thousand iterations, even though we typically let the
algorithm run for 15,000 iterations.

In principle, one has the freedom to use any proposal
distribution P (e.g. MacKay 2003). A Markov chain is
said to converge to a single invariant distribution (the
posterior probability) when the state of the chain per-
sits once it is reached and is said to be ergodic when the
probabilities xn converge to that invariant distribution
as n→∞, irrespectively of the initial parameters (Neal
1993).9 In addition, if the sampler satisfies the following
conditions P (x|x′) = P (x′|x), as we have used, the algo-
rithm reverts to the Metropolis method, which satisfies
the two conditions. In practice, however, one also needs
a distribution that probes the parameter space efficiently
in order to converge in a reasonable number of cpu hours,
regardless of the initial parameters.

A common proposal distribution is the uniform dis-
tribution that gives equal probabilities to all possible
values. The Gaussian proposal distribution P (x′|x) =
N (x, 1) is probably the most commonly used and is pop-
ular but has one major drawback: the Gaussian distri-
bution is rather narrow such that the algorithm becomes
sensitive to the initial conditions, making the time to
convergence to the optimum values very sensitive to the
initial guess. If the width of the proposal distribution is
small, the convergence is too slow/large, and when it is

9 Available at http://www.cs.toronto.edu/~radford/
res-mcmc.html.

http://www.cs.toronto.edu/~radford/res-mcmc.html
http://www.cs.toronto.edu/~radford/res-mcmc.html
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large (for convergence purposes), it will lead to low ac-
ceptance rate and poor efficiencies for convergence. To
remedy this problem, one could use a mixed distribution
with a Gaussian draw, say, 90% of the time and a uniform
draw 10% of the time, allowing the chain to escape from
a local minimum. Compared to the Gaussian proposal,
the mixed distribution has one additional parameter that
needs to be fine-tuned to the problem, such as the mixing
ratio.

A third option, as advocated by Szu & Hartley (1987),
is to use a draw from a Cauchy distribution that has
by definition longer wings (i.e. P is a Lorentzian profile
where P (x′|x) ∝ γ2/[γ2 + (x′ − x)2]). The Lorentzian
wings are important, allowing the chain to make large
jumps during the initial “burn-in” phase and ensuring
rapid convergence of the chain with no sensitivity to the
initial parameters. Another advantage of a Cauchy pro-
posal distribution is that it has only one parameter, γ,
compared to the mixed one.

We tested these various choices on simulated cubes and
found that the Cauchy proposal distribution converged
faster than the other methods and was least sensitive to
the initial parameters. In other words, with the Cauchy
nontraditional proposal distribution, a few hundred to a
few thousand steps of the MCMC are required to pass
the burn-in phase depending on the S/N of the data, and
it is the user’s responsibility to confirm that the MCMC
chain has converged. Thus, we typically run the chain
through 10,000 or 15,000 steps to robustly sample the
posterior probability distribution.

The “best-fit” values of the parameters are determined
from the posterior distributions. We use the median and
the standard deviation of the last fraction (default 60%)
of the MCMC chain to determine the ‘best-fit’ param-
eters and their errors, respectively. One can also use a
fraction (default 60%) of the MCMC chain around the
minimum χ2. The full MCMC chain is saved such that
the user can use his/her preferred technique.

The algorithm is implemented in Python and uses the
standard numpy and scipy libraires. In addition, it uses
the bottleneck 10 (Frigo & Johnson 2005) and FFTw 11

libraries (Frigo & Johnson 2012) in order to speed up
certain matrix operations and the PSF+LSF convolu-
tion, respectively. It requires FITS files as inputs. The
algorithm is modular so that the user can add specifica-
tions for other instruments. The online documentation
describes the syntax, and it takes about 2, 5, and 10 min-
utes on a laptop (at 2.1 GHz) to run 10,000 iterations on
a data cube with 303 pixels, 403 pixels, and 603 pixels,
respectively. In other words, the computation time scales
as t ∝ Npix log(Npix) where Npix is the number of pixels,
showing that the FFT calculation dominates.

3. HIGHLIGHT APPLICATIONS

3.1. Example on 2D data

Before applying the tool on 3D data, it is important
to validate the method on simpler data sets, such as
two-dimensional imaging data. We thus wrote a two-
dimensional version of the algorithm, GalFit2D, one that
does not include the kinematic, which is in essence sim-

10 Available at https://pypi.python.org/pypi/Bottleneck.
11 Available at https://pypi.python.org/pypi/pyFFTW.

ilar to other parametric algorithms (e.g. Simard 1998;
Peng et al. 2002), apart from the Bayesian approach.

Figure 1 shows a comparison between the derived mor-
phological parameters from two data sets of very dif-
ferent resolution. Panel (a) shows a Canada France
Hawaii Telescope (CFHT) I-band image of the z ∼
0.2 galaxy SDSSJ165931.92+023021.92 (Kacprzak et al.
2014). Panel (e) shows an r-band image of the galaxy
from the Sloan Digital Sky Survey (SDSS) at a spatial
resolution of 1.′′1. For each data set, we show the fit-
ted (convolved) model, the residual map, and the one-
dimentional SB profile. One sees that the intrinsic mod-
eled morphological parameters found from the SDSS
data (PSF FWHM=1.′′1) are in good agreement with the
higher-resolution data (PSF FWHM=0.′′7). Moreover,
the residuals in both data sets show the spiral arms and
a minor merger (or a large clump) in the southern part of
the galaxy, showing that a smooth axis-symmetric model
can be used to unveil asymmetric features.

3.2. Example on a mock cube

Figure 2 shows an example of a mock disk model with
a low SNR (SNR pixel−1 of 4 in the central pixel) drawn
from the set presented in § 4 and generated at 1.′′0 reso-
lution. The top, middle, and bottom rows show the flux
map, the velocity map, and the apparent velocity profile
Vz(r) across the major axis, respectively. From left to
right, the panel columns show the data, the convolved
model, the modeled disk (free from the PSF), and the
high-S/N high-resolution reference data (PSF=0.′′15 and
S/N=100). In the bottom panels, the solid red curves
correspond to the reference rotation curve (obtained from
the reference data set), and the triangles represent the
apparent rotation curve. These rotation curves show that
the recovered kinematics from the modeled disk (intrin-
sic or unconvolved model) shown in the third column is
in good agreement with the reference data (last column)
in spite of the low spatial resolution (1.′′0) and the low
SNR in the mock data set.

This synthetic data cube was generated with a flux
profile with Sersic index n = 1 and half-light radius
R1/2 = 0.′′5, corresponding to 2.5 MUSE/KMOS pixels),

an “arctan” velocity profile with Vmax = 200 km s−1, a
thick disk with a velocity dispersion σo = 80 km s−1, an
inclination i = 60◦, a PA= 130◦, and with instrumental
specifications for the new VLT MUSE instrument (0.′′2
pixel−1, 1.25Åpixel−1, LSF=2.14 pixels). The integrated
total flux is 10−16 erg s−1 cm−2, and the synthetic noise
per pixel is σ = 5× 10−20 erg s−1 cm−2 Å−1.

The synthetic data cube is also displayed in Fig-
ure 3, which shows three one-dimensional spectra (a)
taken at the three locations labeled in the image
shown in panel (b). Panel (c) shows a 3D rep-
resentation of the data (blue) with the model over-
laid (red) made with the “visit” software;12 where the
light/dark areas corresponds to two cuts at fluxes of 6
and 8×10−20 erg s−1 cm−2 Å−1, i.e. an S/N pixel−1 of
1.2 and 1.8, respectively.

We ran the algorithm with 15,000 iterations, and Fig-
ure 4 shows the MCMC chains for the 10 free parameters
along with the χ2 evolution in the bottom panel. The

12 Available at http://visit.llnl.org/.

https://pypi.python.org/pypi/Bottleneck
https://pypi.python.org/pypi/pyFFTW
http://visit.llnl.org/
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Fig. 1.— Application of the two-dimensional version of the MCMC algorithm (‘GalFit2D’) on the z ∼ 0.2 SDSSJ165931.92+023021.9 with
mr =18.40 mag from Kacprzak et al. (2014). Similarly to GalPaK3D, Galfit2D performs a parametric fit with an MCMC algorithm using
set surface brightness profiles convolved with the seeing. The top row shows the result from archival CFHT I-band taken at a resolution
of 0.′′7. The bottom row shows the result from the SDSS r-band image that has a resolution of 1.′′1. Panels (a) and (e) show the data.
Using an exponential profile, panels (b) and (f) show the seeing-convolved model; (c) and (g) the residuals, i.e. data-model normalized to
the pixel noise σ, and (d) & (h) the one-dimensional SB profile. The recovered intrinsic disk scale length Rd is about 1” in both cases, in
spite of the different spatial resolution.

Fig. 2.— Example of the algorithm application on a disk model simulated with a seeing of 1.′′0 (FWHM) and a flux of 10−16 erg s−1 cm−2,
and an S/N pixel−1 of ∼4 at the brightest pixel. The top, middle, and bottom rows show the flux map, the velocity map, and the apparent
velocity profile Vz(r) across the major axis, respectively. From left to right, the panel columns show the data, the convolved model, the
modeled disk (free from the PSF), and the high-S/N high-resolution reference data (PSF=0.′′15 and SNR=100). In the bottom panels,
the solid red curves correspond to the reference case, the triangles represent the apparent rotation curve, and the dotted lines show the
apparent Vmax sin i. One sees that the velocity profile from the modeled disk (third column) is in good agreement with the reference data.
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Fig. 3.— For the synthetic data in Figure 2, we show three 1-
dimensional profiles (panels (a)) comparing the data (thin line)
and the model (thick line) taken at the location labeled “1,”, “2,”
and “3” in panel (b). Panel (c) shows a 3D representation of the
data (blue) with the model overlaid (red) where we used two flux
levels at 5×10−20 and 1.5×10−19 erg s−1 cm−2 Å−1. The cube
orientation is shown, where the wavelength axis is the z-direction.
(An interactive version of this figure is available in the published
online version)

values of the fitted parameters (and their errors) shown
by the black lines (gray lines) are computed from the
median (standard deviation) of the last 60% iterations
of the posterior distributions. The recovered parameters
are listed in Table 2 and show good agreement between
the input and recovered values.

TABLE 2
Comparison between the model input values and the

recovered values with 1 σ errors and confidence intervals
(CI) for the example shown in Figure 2.

Parameter Input Output [95% CI]

xc (pixel) 15 15.05±0.09 [14.87;15.24]
yc (pixel) 15 15.06±0.09 [14.89;15.23]
zc (pixel) 15 15.05±0.07 [14.92;15.19]
Flux (10−16) 1 1.06±0.03 [1.01;1.09]
R1/2 (arcsec) 0.82 0.85±0.04 [0.78;0.95]

Incl. (deg) 60 62±3 [58;68]
PA. (deg) 130 126±2 [123;130]
rt (pixel) 1.35 1.32±0.42 [0.8;2.47]
Vmax (km s−1) 200 202±22 [172;257]
σo (km s−1) 80 82±5 [73;90]

Figure 5 shows the joint distributions for the radius,
PA, inclination, maximum velocity, and dispersion pa-
rameters. The estimated parameters and their respective
1 σ error are shown as a solid line and dashed line, respec-
tively. This figure shows a clear covariance between the
turnover radius and the asymptotic velocity Vmax, and a
small covariance between the inclination and Vmax. The
users of GalPaK3D are strongly advised to confirm the
convergence of the parameters using diagnostics similar
to Figure 4 and to investigate possible covariance in the
parameters, as these tend to be data specific, using di-
agnostics similar to Figure 5.

4. TESTS WITH MOCK DATA CUBES

In order to characterize the performances and limita-
tions of the GalPaK3D algorithm statistically, we gen-
erated a set of 1728 cubes again with a MUSE configu-
ration over a grid of parameters listed in Table 3. The
synthetic cubes were generated with noise typical to a
1 hr exposure with MUSE corresponding to a pixel noise
of σ = 5 × 1020 erg s−1 cm−2 Å−1. We use a range of

TABLE 3
Range of parameters for the 1728 mock galaxies

Parameter Grid Values

Flux (10−17erg s−1 cm−2) 3, 6, 10, 30
Seeing (”) 0.6, 0.8, 1.0, 1.2
Redshift 0.6, 0.9, 1.2
R1/2 (kpc) 2.5, 5, and 7.5a

R1/2 (”) 0.′′3, 0.′′6, and 1.′′0b

Incl. (deg) 20, 40, 60, 80
PA (deg) 130
rt (”) 0.1–0.3c

Vmax (km s−1) 110, 200, 280
σo (km s−1) 20, 50, 80

aExact value to satisfy the size-velocity scaling relation (Dutton
et al. 2011).
bExact value will depend on the redshift.
cExact value to satisfy the scaling relation between the galaxy

size and the inner gradient (Amorisco & Bertin 2010) using rt =
Rd/1.8.
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inclinations i from 20◦ to 80◦. We use a range of disk
sizes, with half-light radii R1/2 = 0.′′3, 0.′′6, and 1.′′0 cor-
responding to a R1/2 of 2.5, 5, and 7.5 kpc, covering the
range of observed sizes at z ∼ 1 (e.g. Trujillo et al. 2006;
Williams et al. 2010; Dutton et al. 2011).

For each of the galaxy sizes, we use the Vmax-R1/2 scal-
ing relation (Equation 8 of Dutton et al. 2011) and its
redshift evolution (Equation 5 of Dutton et al. 2011) to
set the rotation kinematics (Vmax). In particular, the
sizes R1/2 = 2.5, 5, and 7.5 kpc correspond to Vmax val-

ues ranging from ∼ 100 to 250 km s−1. We use “arctan”
rotation curves to generate our mock data cubes, and
we have verified that our results remain the same with
“exponential” rotation curves.

We use the scaling relation between the turnover ra-
dius rt and the disk scale length Rd that exists for disk
galaxies (e.g. Figure 1 of Amorisco & Bertin 2010) to set
the turnover radius rt. In particular, we set rt to Rd/1.8
where the 1.8 factor 13 is determined empirically for the
arctan rotation curve to satisfy the linear correlation be-
tween the galaxy disk scale-length Rd = R1/2/1.68 and
RΩ, defined as the radius r where V (r) = 2/3 Vmax

(Amorisco & Bertin 2010).
For each of the galaxy sizes, the disk thickness is hz =

0.15R1/2, i.e. ranging from 0.4 to 1.3 kpc, bracketing
the average values of hz ∼ 1 kpc, found for high-redshift
edge-on/chain galaxies (Elmegreen & Elmegreen 2006).

We used fluxes for an [OII] (λ3727) emission line,
expected to lie in the MUSE spectral range at red-
shifts between 0.6 and 1.2, with integrated fluxes from
3 × 10−17 erg s−1 cm−2 to 3 × 10−16 erg s−1 cm−2 cor-
responding to the range of observed values (e.g. Ba-
con et al. 2015; Comparat et al. 2015, and references
therein). We use a constant noise value per pixel of σ =
5×10−20 erg s−1 cm−2 Å−1, in order to simulate the noise
level of a 1 hr exposure, but we stress that the algorithm
accepts variance/noise cubes to account for pixel-to-pixel
noise variations. In addition, we generated cubes with
very high S/N (S/N=100, flux= 3× 10−15 erg s−1 cm−2)
and with a seeing typical of AO conditions, with a PSF
FWHM of 0.′′15. These will serve as reference data sets.

4.1. Surface Brightness and Signal-to-noise Ratio

One could imagine that the S/N in the recovered pa-
rameters be a function of the average S/N pixel−1, or the
apparent SB since the observed central SB scales directly
with the SNR in the central pixel. But clearly the com-
pactness of the object with respect to the seeing plays
a large role (as discussed in Driver et al. 2005; Epinat
et al. 2010). Very compact objects (compared to the
beam or the PSF) have high SB by definition (and high
S/N pixel−1), but the morphology and/or kinematic in-
formation may be lost owing to the beam smearing. On
the other hand, very extended objects have low surface
brightness (and low S/N pixel−1), but have many pixels
in the outer regions (with low S/N), where most of the
information on the galaxy is located and not affected by
the beam.

Before illustrating this point, it is important to define

13 For ‘exponential’ rotation curves, one should set rt to Rd×0.9
in order to satisfy the scaling relation; for ‘tanh’ rotation curves,
one should set rt to Rd × 1.25.

commonly used terms such as the SB of galaxies. From
any light profile I(r) such as given by Equation 1, there
are many ways to define galaxy SB, such as Ie the SB at
the effective radius Re, Io the intrinsic SB at the central
pixel, Ao the observed SB at the central pixel, and SB1/2

the average SB within the intrinsic half-light radius R1/2:

SB1/2,conv ≡
0.5Ftot

πR2
1/2,conv

. (7)

where Ftot is the galaxy total flux. A related quantity to
Equation 7 is the observed SB, defined as :

SB1/2,obs ≡
0.5Ftot

S1/2,obs
(8)

where Ftot is the galaxy total flux and S1/2,obs the galaxy
apparent area given by ≡ πa b where a and b are the
observed major and minor semiaxes, respectively, of the
galaxy. The relations between these various definitions
are described in the appendix.

To illustrate the point made at the beginning of this
section, we show in Figure 6(a) the relative errors δp/p ≡
(pfit − pin)/pin on some of the estimated parameters for
our mock data cubes generated in Section 4 as a function
of central SB, SB1/2,obs (defined in Equation 8). Each
row shows the relative errors for the maximum circular
velocity Vmax, the size R1/2, the PA, and inclination i
from top to bottom, respectively. The crosses, squares
and circles represent the three subsamples with sizes ∼
2.5, 5, and 7.5 kpc, respectively. One sees that the errors
in the morphological parameters (size, PA, inclination)
do increase toward low SBs, but the threshold point at
which the relative errors reach ∼100% depends on the
galaxy size, represented by the symbols. This illustrates
the well-known fact that very extended objects have low
surface brightness (and low S/N pixel−1) but have many
pixels in the outer regions that contain useful informa-
tion.

As argued at the beginning of this section and demon-
strated in Figure 6, SB alone might not be sufficient to
determine the S/N in the fitted parameters, but the com-
pactness of the galaxy with respect to the beam also plays
an important role. In Figure 6(b), we show the relative
error δp/p with respect to the observed SB1/2,obs times
the size-to-PSF ratio (R1/2/RPSF)α. The symbols cor-
respond to galaxy subsamples with various sizes as in
Figure 6(a). The index α was found to be empirically
∼ 1 in order to have the relative errors for each of the
subsamples follow a similar trend and may differ sightly
for each of the parameters p. In fact, we find that α
is approximately 0.8, 1.2, and 1.4 for the size, PA, and
inclination parameter, respectively.

These empirical results can be explained by the follow-
ing arguments. The apparent SB within the half-light ra-
dius SB1/2,conv (Equation 7) and the observed SB1/2,obs

(Equation 8) are proportional to the SB (or S/N) of the
central pixel, Ao, as shown in the Appendix (Equation 8).
In the case of no PSF convolution, Refregier et al. (2012)
showed that (their Equation 12) the relative error σ(a)/a
on morphological parameters (its major-axis a) scales in-
versely to the central Io where Io is the intrinsic central
SB (Equation 1–2). In the presence of a PSF convolution,
Equation 16 of Refregier et al. (2012) —which applies
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here— shows that the relative errors on the major-axis
a scale as

σ(a)

a
∝A−1

o (1 +R2
PSF/R

2
1/2). (9)

where RPSF is the radius of the PSF (RPSF ≡ FWHM/2)
and R1/2 the intrinsic half-light radius.

In our cases, for high-redshift galaxies, the ratio
RPSF/R1/2 is ' 1.0 and after performing a Taylor ex-
pansion around RPSF/R1/2 ∼ (1 − x) with x ≡ (R1/2 −
RPSF)/R1/2 and |x| << 1, one finds that the factor (1 +

R2
PSF/R

2
1/2) is approximately∼ 2 (1−x) ∼ 2 RPSF/R1/2.

Hence, Equation 9 on the errors in the major-axis a be-
comes in the regime where RPSF/R1/2 ' 1.0:

σ(a)

a
∝
(
R1/2

RPSF
Ao

)−1

∝
(
R1/2

RPSF
SB1/2,obs

)−1

, (10)

which shows that the quality of the estimated morpho-
logical parameters will depend on both the pixel S/N
(or SB) and the galaxy compactness with respect to the
beam, R1/2RPSF, as shown in Figure 6(b)

In both Figure 6(a) and 6(b), the gray solid lines show
the expected behavior for the morphological parameters
(Equation 10) and one sees that they agree better with
the mock data in the right panels for the morpholog-
ical parameters. This shows that the Refregier et al.
(2012) formalism describes the relative errors on the mor-
phological parameters (size, PA, and inclination) rela-
tively well, as a first approximation. We note that Equa-
tion 10 is only an approximation to Equation 9 when
R1/2/RPSF ' 1 and that there might be other dependen-
cies for the other morphological parameters, namely, for
the PA and for the inclination. Here we refer the reader
to Table 1 of Refregier et al. (2012) and their Appendix
for further details; it is beyond the scope of this paper to
present a full 3D derivation of the Refregier et al. (2012)
formalism.

Contrary to the morphological parameters, the errors
in the kinematic parameter Vmax show strong positive
(negative) biases in the smallest (largest) mock galaxies,
represented by the crosses (circles) respectively in the top
panel of Figure 6(b). The positive bias for for the most
compact galaxies (crosses) with respect to the beam can
be understood because the Vmax information is located
mostly in the outer parts of the galaxy, where the S/N
is too low. The negative bias for the largest galaxies (1”
in R1/2) at low SB is likely due to the spatial cut of our
mock cubes being too small.

We will return to the reliability of Vmax in section 4.3
and now turn to a more detailed discussion on the reli-
ability of the parameters (size, inclination, disk velocity
dispersion, and Vmax). While we used an arctan rotation
curve, we note that the following results were found to be
identical when we used an ‘exponential’ rotation curve.

4.2. Reliability of morphological parameters

We have shown in the previous section with Figure 6
that the relative errors on the half-light radius follow
appoximately the expectation from the Refregier et al.

(2012) formalism. Here we investigate whether the rela-
tive errors depend on some of the other parameters, such
as inclination, seeing, and size.

Figure 7 shows the relative errors (pfit − pin)/pin for
several key parameters p. The bottom (top) row shows
the result for the size parameters R1/2 (inclination i),
respectively, as a function of seeing, redshift, inclination,
and size-to-psf ratio R1/2/RPSF. The black curves with
increasing thickness correspond to subsamples with dif-
ferent SB levels (labeled) where the zero point (dotted
line) has been offset for clarity purposes. The data points
represent the median, and the size of the error bars rep-
resent the standard deviation for each of the subsamples,
where we have typically ∼ 100 mock cubes per bin. We
note that the median standard deviations on the param-
eters (from the posterior distributions) tend to be within
20% of these binned standard deviations.

From this figure, one sees that the GalPaK3D algorithm
recovers the intrinsic half-light radius R1/2 irrespectively
of seeing, redshift, and/or intrinsic size. Note that the
relative errors with respect to size-to-seeing ratio at a
fixed SB follow roughly the expectation from Equation 9,
where the factor 1 + (RPSF/R1/2)2 saturates to unity in
our regime with R1/2/RPSF ∼ 1 to 2.5. These results are

not affected by the choice of the SB profile (Sersic n).14

From the top row in Figure 7, one sees that the input
inclination is recovered except at the two smallest fluxes
and for the more face-on cases. The reason that the
algorithm can recover the inclination well is that the al-
gorithm breaks the traditional degeneracy between Vmax

and i using the SB profile (i.e. the axis ratio b/a) whereas
traditional methods fitting the kinematics on velocity
fields have a strong degeneracy between Vmax and the
inclination i.

4.3. Reliability of kinematic parameters

Figure 8 shows the relative errors δp/p ≡ (pfit−pin)/pin

for the parameters Vmax (top row) and disk dispersion
σo (bottom row) as a function of seeing, σo, inclina-
tion, and size-to-PSF ratio R1/2/RPSF. The curves as
a function of redshift are not shown, because the relative
errors do not depend on this parameter as in Figure 7.
The black curves with increasing thickness correspond to
subsamples with different SB levels (labeled) where the
zero point (dotted line) has been offset for clarity pur-
poses. The data points represent the median, and the
size of the error bars represents the standard deviation
for each of the subsamples, as in Figure 7.

Figure 8(top) shows that the GalPaK3D algorithm re-
covers the maximum velocity Vmax irrespectively of see-
ing, disk dispersion, and redshift (now shown) provided
that the galaxy is not too compact. For small galaxies
with R1/2/RPSF less than 1.5, the figure shows that it
is increasingly difficult to estimate the correct values for
the most compact galaxies, with large uncertainties and
significant overestimations of this parameter. This re-
sult was already pointed out in Epinat et al. (2010, their
Figure 13) using 2D kinematic models. Epinat et al.
(2010) also noted that using a simple flat rotation curve
to model the disk, the maximum velocity Vmax can be

14 A curve-of-growth analysis on the two-dimensional flux map
can sometimes yield a constraint on the Sersic index n and a more
accurate determination of the intrinsic half-light radius (R1/2).
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Fig. 6.— Relative errors on the estimated parameters δp/p, defined as (pfit − pin)/pin. Each row shows δp/p for the maximum circular
velocity Vmax, the size R1/2, the PA, and inclindation i from top to bottom, respectively. The crosses, squares, and circles represent the

three subsamples with sizes ∼ 2.5, 5, and 7.5 kpc, respectively (Table 3). The relative errors in for the morphological parameters (size,
PA, inclination) are binned. Left(a): Relative errors as a function of central surface brightness SB1/2,obs in erg/s/cm2/arcsec2. Right(b):

Relative error as a function of central SB, SB1/2,obs, times (R1/2/RPSF)α, where R1/2 is the galaxy intrinsic half-light radius and RPSF

the PSF half-light radius. We found, empirically (see text), that α is approximately 0.8, 1.2, and 1.4 for the size, PA, and inclination
parameter, respectively. These values are close to the expectation of −1.0 of Equation 10 (gray lines) derived for morphological parameters
in imaging data by Refregier et al. (2012). The relative error in Vmax does not follow the expected relation and is subject to strong
systematics for the smallest and largest mock galaxies (crosses). This is due to Vmax being constrained in the outer parts of the galaxy,
where the S/N is thus not sufficient for the compact galaxies or where the mock cube is too small for the largest galaxies.

recovered with an accuracy better than 25%, even when
R1/2/RPSF is less than about ∼ 2.

Figure 8(bottom) shows the GalPaK3D algorithm re-
covers the disk dispersion irrespectively of seeing and red-
shift (not shown). Given the instrumental resolution of
MUSE used here (R ' 130 km/s), small dispersions are
more difficult to recover. We note that the local disper-
sion is rather sensitive to the instrument LSF FWHM, as
one might expect. The user can specify more than one
type of LSF (Gaussian or Moffat), and a user-provided
vector can be specified if the parametric LSF is not suf-
ficient to describe the instrument LSF.

4.4. A note regarding the PSF accuracy

One could argue that our results are driven by the fact
that we use the exact same PSF (in 3D) as the one used
to generate these modeled galaxies. To test the relia-
bility of the algorithm in more realistic situations, when
the PSF FWHM is not known accurately, we ran the al-
gorithm on the same set of data cubes with a random
component added to the FWHM of the PSF given by a
normal distribution with σ = 0.1, corresponding to un-
certainties in the FWHM of ∼ 20%. We found that the
accuracy of the spatial kernel (PSF) has little impact on
the recovered parameters. On the other hand, we find
that the shape of the PSF is more critical especially for
the morphological parameter such as the axis ratio b/a
(or the inclination). We note that sophisticated tools ex-
ist to determine the PSF from faint stars in data cubes
such as the algorithm of Villeneuve et al. (2011).

To conclude this section, our algorithm is able to re-
cover the morphological and kinematic parameters from
synthetic data cubes over a wide range of seeing condi-
tions provided that the galaxy is not too compact and
has a sufficiently high SB. Thus, for galaxies to be ob-
served with MUSE in the wide-field mode in 1 hr ex-
posure and no AO, we find that the algorithm should
perform well provided that the SB is greater than a
few ×10−17 erg s−1 cm−2 arcsec−2 and as long as the
the size-to-seeing ratio R1/2/RPSF is larger than 1.5 (or
R1/2/FWHM > 0.75).

5. APPLICATION ON HYDRODYNAMICAL SIMULATIONS

In the previous section we validated the algorithm on
synthetic or mock data, which have by definition no de-
fects, i.e. are perfectly regular and symmetric. In order
to validate the algorithm on more realistic data, we now
analyze the performance of the algorithm on data cubes
created from simulated galaxies generated from a hydro-
dynamical simulation (Michel-Dansac et al., in prep.).
This is intended to validate the algorithm in the pres-
ence of systematic deviations from the disk model.

5.1. From Hydrodynamical Simulations to Data cCubes

The simulation used in this work comes from a set of
cosmological zoom simulations, each targeting the evo-
lution until redshift 1 of a single halo and its large-scale
environment. The full sample of simulations is presented
in details in Michel-Dansac et al., in prep. Here we focus
on one output of one simulation to complement the test
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erg s−1 cm−2 arcsec−2 respectively, where the zero point (dotted line) has been offset for clarity purposes. SB is the surface brightness
within the observed half-light radius SB1/2,obs times the seeing-to-size ratio R1/2/RPSF, as in Figure 6. The data points represent the

median, and the size of the error bars represent the standard deviation for each of the subsample. One sees that the GalPaK3D algorithm
recovers the morphological parameters irrespectively of seeing, redshift, and/or intrinsic size.

cases from section 4 with a more realistic, intermediate
redshift, star-forming disk galaxy.

The simulations have been run with the Adaptative
Mesh Refinement code RAMSES (Teyssier 2002) using the
standard zoom-in resimulation technique to model a disk
galaxy in a cosmological context. Each simulation has
periodic boundaries and nested levels of refinement in
a zoom region around the targeted halo, in both DM
and gas. The refinement strategy is based on the quasi-
Lagrangian approach. The simulation zooms in a dark
matter halo inside a 20 h−1 Mpc comoving box, achieving
a maximum resolution of ∼ 200 pc. The virial mass of
the dark matter halo is approximately 3 × 1011M� at
z = 1, sampled with roughly 600, 000 particles.

The simulation implements standard prescriptions for
various physical processes crucial for galaxy formation:
star formation, metal enrichment, and kinetic feedback
due to Type II supernovae (Dubois & Teyssier 2008);
metal advection, metallicity- and density-dependent
cooling; and UV heating due to cosmological ionizing
background (see Few et al. 2012, for more details on sim-
ilar simulations but focusing on z = 0 Milky-Way-type
galaxies).

The simulated galaxy is a typical z = 1 star-forming

galaxy with M? = 3×1010M� and a gas fraction of 0.33.
The galaxy exhibits a disk morphology with spiral arms
as seen in Figure 9 (top right panel).

From the output of the hydro-simulation, we generated
a data cube with the Spectrograph for INtegral Field Ob-
servations in the Near Infrared (SINFONI) instrumental
resolution and pixel size (0.′′125 pixel−1 and 2 Å pixel−1)
using the star formation rate (SFR) and metallicity in-
formation in each cell. To construct the mock data cube,
the simulated galaxy is artificially placed at z = 1.3
(λc ' 1.5µm for Hα) and rotated with an inclination
of 60◦. Star-forming cells are selected by computing the
mass of young stars inside each cell of the galaxy. Then,
we convert this star formation rate into Hα flux using the
Kennicutt (1998) calibration. For each cell, we also com-
pute the flux in the [N ii] line from the values of the Hα
flux and the oxygen abundance following the calibration
given by Pérez-Montero et al. (2009). For each spatial
element or spaxel, we sum the contribution (to the spec-
trum) of each cell along the line-of-sight. Each contri-
bution has its own line of sight velocity, which blueshifts
or redshifts the lines. The line width in the spectrum is
then due to the sum or integral over the cells, which is
then convolved with the instrumental profile.
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Fig. 8.— Relative error δp/p —defined as (pfit − pin)/pin— for the kinematic parameters Vmax (top) and σo (bottom) as a function
of seeing, disk dispersion σo, inclination i, and size-to-PSF R1/2/RPSF (from left to right). The curves as a function of redshift are not

shown because the relative errors do not depend on this parameter as in Figure 7. For the Vmax parameter, the black (red) curves show the
results when R1/2/RPSF is less (greater) than 1.5, respectively. One sees that the GalPaK3D algorithm recovers the kinematic parameters

irrespectively of seeing and redshift, provided that the galaxy is not too compact with R1/2/RPSF larger than 1.5.

We generated seeing-convolved cubes with seeing of
0.′′50, 0.′′65, 0.′′80, 1.′′0 and 1.′′2 (corresponding to typi-
cal values in the NIR with SINFONI) and 0.′′15 (cor-
responding to adaptive optic assisted observations) and
added noise corresponding to a given max S/N pixel−1.
Cubes generated with a SNR equal to 100 and a seeing
of 0.′′15 are used as reference cubes. The final cube size is
28× 28× 30 (in x, y, λ directions), but we also produce
another set of cubes of size 28× 28× 200 pixels to allow
sufficient wavelength baseline for our custom line-fitting
algorithm that was used to produce the 2D velocity maps
shown in Figure 9.

5.2. Application of the algorithm

Figure 9 shows the results of the GalPaK3D algorithm
for a seeing of 0.′′8 and a minimum SNR pixel−1 of 3 in
the brightest pixel. As in Figure 2, the top, middle, and
bottom rows show the flux map, the velocity map and
the apparent velocity profile Vz(r) across the major axis,
respectively. From left to right, the panel columns show
the data, the convolved model, the modeled disk (free
from the PSF), and the high-SNR high-resolution refer-
ence data (PSF=0.′′15 and SNR=100). In the bottom
panels, the solid red curves correspond to the reference

rotation curve (obtained from the reference data set),
and the triangles represent the apparent rotation curve.
By comparing the two, one sees that the algorithm is
able to recover the kinematics (third column) in a regime
where traditional 2D methods (left most column) tend to
be noisier. In other words, the recovered kinematics from
the modeled disk (intrinsic or unconvolved model) shown
in the third column is in good agreement with the ref-
erence data (last column) in spite of the lower spatial
resolution (0.′′8) and the lower S/N in the data set.

We ran the GalPaK3D algorithm on the data cubes,
setting the rotation curve v(r) to an“ arctan” profile and
setting the Sersic index n to 1.0.15 From the cube with
a S/N of 100, the inclination found by the GalPaK3D

algorithm is 58◦ ± 2◦, and the half-light radius R1/2 is
∼ 3.4±0.1 kpc (or ∼ 0.′′4), and its asymptotic maximum
velocity Vmax is ∼ 215 ± 10 km s−1, placing it close to
the z ∼ 1.5 size-velocity relation of Dutton et al. (2011).
The asymptotic maximum velocity is close to the one ex-
tracted directly from the simulation, which is 235 km s−1.

15 We also ran the algorithm with “gaussian” profiles with n =
0.5 leading to very similar results.
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Fig. 9.— Application of the MCMC algorithm on a disk galaxy generated with the AMR code RAMSES (Teyssier 2002) and ‘observed’
with a seeing of 0.′′8 (FWHM). The maximum SNR is ∼3 in the brightest pixel. The top, middle, and bottom rows show the flux map,
the velocity map and the apparent velocity profile Vz(r) across the major axis, respectively. From left to right, the panel columns show
the data, the convolved model, the modeled disk (free from the PSF), and the high-S/N high-resolution reference data (PSF=0.′′15 and
S/N=100). In the bottom panels, the solid red curves correspond to the reference case, the triangles represent the apparent rotation curve,
and the dotted lines show the apparent maximum line-of-sight velocity Vmax sin i. One sees that the the velocity profile from the modeled
disk (third column) is in good agreement with the reference data (solid line) at 0.′′15 resolution.

We repeated the exercise on this simulated galaxy vary-
ing the luminosity (SFR in our case) where the noise
level is set for a given exposure time corresponding to
a 2 hr integration with the SINFONI instrument. Fig-
ure 10 shows the maximum signal to noise per pixel (solid
lines) as a function of the seeing FHWM for five fixed
SFRs, 5, 10, 15, 30, and 60 M� yr−1, respectively. The
green region shows the parameter space where the algo-
rithm is able to recover the kinematics parameters within
20%, from the value determined in the high-S/N cube.
The yellow region shows the parameter space where the
algorithm is marginally able to recover the kinematics
parameters, i.e. within 20%–40% The red region shows
the parameter space where the algorithm is unable to re-
cover the kinematics parameter, where the relative error
is larger than 40%. This plot shows that the kinematic
parameters can be well estimated irrespectively of seeing,
provided that the SNR is above a critical value (3 in this
case). Consequently, when the PSF FWHM is slightly
below the original scientific goal, the optimal observing
strategy is to integrate longer.

In the background-limited regime, the S/N per pixel
scales as ∝ √texp, where texp is the exposure time. Given
that the total flux of a circular extended source is Fobs ∼
Ao πσ

2 where σ2 = (R2
1/2 +R2

PSF)/1.172, the SNR in the

central pixel (i.e. the central SBc, or Ao) will scale as

SNR(Ao)∝
Ao texp r

2
pix√

SBsky texp r2
pix

∝
√
texp[

R2
PSF +R2

1/2

]rpix (11)

where RPSF the PSF radius, and R1/2 the object half-
light and rpix the pixel size in arcseconds, such that a
change of 0.′′2 in the PSF FWHM (from 0.′′8 to 1.′′0) cor-
responds to a fraction change of 15% in S/N for a galaxy
of size R1/2 = 0.′′6, and accordingly 30% more exposure
time would be required to reach the same S/N.

6. CONCLUSIONS

In this paper we presented an algorithm to constrain
kinematic parameters of high-redshift disks directly from
3-dimensional data cubes. The algorithm uses a para-
metric model and the knowledge of the 3-dimensional
kernel to return a 3D modeled galaxy and a data cube
convolved with the 3D kernel. The parameters are es-
timated using an MCMC approach with nontraditional
sampling distributions in order to efficiently probe the
parameter space.

In summary,

1. the 2D version of the algorithm is used on an SDSS
r-band image of a z ∼ 0.2 galaxy (Figure 1) taken
at 1.′′1 resolution. We find that the morphology
is well recovered compared to a higher-resolution
(0.′′7) CFHT image;

2. using a set of 1728 mock data cubes, Figure 6 shows
that the accuracy on the recovered parameters de-
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Fig. 10.— S/N pixel−1 as a function of seeing (FWHM) for our
SINFONI data cube simulated for a 2 hr exposure time. The lines
correspond to a given SFR at z = 1.3 from SFR=5 to 60 M� yr−1.
The simulated cubes (generated from the hydrodynamical simula-
tion) can be reasonably well fitted by our algorithm provided that
the S/N pixel−1 (at the central region) is greater than 3, irrespec-
tively of seeing. This diagram applies to galaxies with inclinations
around ∼ 60◦.

pends on the product of the central SB, SB1/2,obs

times the size-to-seeing ratio (R1/2/RPSF)∼1, fol-
lowing approximately the analytical expectation of
Refregier et al. (2012);

3. from this set of mock data cubes, the morphological
parameters do not depend on seeing, redshift, or
the size-to-seeing ratio (Figure 7);

4. from this set of mock data cubes, the robustness of
the algorithm in recovering the kinematics parame-
ters is also independent of seeing and redshift, pro-
vided that the ratio between the galaxy half-light
radius and the PSF radius (R1/2/RPSF) is larger
than 1.5 (Figure 8);

5. we also find that the accuracy in the recovered pa-
rameters does not depend on the FWHM accuracy,
but depends more critically on the shape of the
PSF, except for the disk dispersion σo, which de-
pends critically on the instrument LSF;

6. using a simulated disk galaxy from the hydro-
simulation of Michel-Dansec et al., which contains
asymmetric deviations, we found that the kine-
matic parameters can be well estimated irrespec-
tively of seeing, provided that the SNR is above
a critical value (3 in this case; Figure 10). Con-
sequently, when the PSF FWHM is slightly above
the original scientific goal (1.′′0 instead of 0.′′8) the
optimal strategy is to integrate 30% longer (Equa-
tion 11) for a galaxy of size R1/2 = 0.′′6.

In conclusion, the GalPaK3D algorithm can provide
reliable constraints on galaxy size, inclination, and kine-
matics over a wide range of seeing and of S/N. However,
the algorithm should not be used blindly, and we stress
that users of GalPaK3D are strongly advised (1) to look
at the convergence of the parameters (as in Figure 4);
(2) to investigate possible covariance in the parameters
(as in Figure 5), as these are rather data specific; and (3)
to adjust the MCMC algorithm to ensure an acceptance
rate between 30% and 50%, as discussed in the online
documentation 16.

Recent applications of the GalPaK3D algorithm can
be found in Péroux et al. (2013); Bouché et al. (2013);
Schroetter et al. (2015), and Bolatto et al. (2015), which
illustrate the potential in using a global 3D fitting tech-
nique.
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APPENDIX

SURFACE BRIGHTNESSES

For extended sources with total flux Ftot and exponential profiles, i.e. SB(r) ≡ I(r), one can define several measures
of SBs. We have the following:

1. The central SB Io which is

Io =
Ftot

2πR2
d

(1)

in the case of an exponential flux profile I(r) = Io exp(−r/Rd) since Ftot = Io2πR2
d, where the half-light radius

R1/2 = 1.68 Rd. In the case of a Gaussian flux profile I(r) = Io exp(−r2/2σ2), it is

Io =
Ftot

2πσ2
(2)

where the half-light radius R1/2 = 1.17σ.

2. The average SB within the half-light SB1/2:

SB1/2 =
0.5 Ftot

πR2
1/2

∝ Io, (3)

where R1/2 is the true or intrinsic half-light radius (R1/2 = 1.68 Rd).

3. The central pixel SB, SBc:

SBc = Ao (4)

where the observed SB profile Fobs(r) is the convolution of I(r) with the PSF G(r), i.e. Fobs(r) '
Ao exp(−r2/2σ2) where now σ contains the contributions from the intrinsic profile and from the PSF via
(1.17σ)2 = R2

1/2 +R2
PSF (= R2

1/2,conv). RPSF is the radius of the PSF (RPSF ≡ FWHM/2).

4. The apparent central SB within the half-light radius R1/2,conv, SB1/2,conv:

SB1/2,conv =
0.5 Ftot

πR2
1/2,conv

' 0.5 Ftot

π(R2
1/2 +R2

PSF)
(5)

where R1/2,conv is the convolved half-light radius.
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5. the observed central surface brightness within the observed galaxy surface area S1/2,obs, SB1/2,obs:

SB1/2,obs =
0.5 Ftot

S1/2,obs
=

0.5 Ftot

πab
(6)

where a and b are the observed major and minor axis, respectively.

The first three (Equations 1–3) are not observable but can be derived from the total flux Ftot and from the galaxy’ s
intrinsic size Rd or R1/2. On the other hand, the other two (Equations 4–5) are directly observable.

Naturally, the galaxy apparent area S1/2,obs is πa b or πa2 (b/a); thus, the face-on SB1/2,conv (Equation 5) and

observed SB1/2,obs (Equation 6) are related to one another via the axis ratio b/a.17

From these definitions, we now derive relationships between these variants of SB and begin by noting that, typically
for intermediate galaxies, the seeing radius RPSF and the galaxy half-light radius R1/2 are of the same order, i.e.
RPSF/R1/2 ∼ 1. Hence, one can write RPSF/R1/2 ∼ (1− x) with x ≡ (R1/2 −RPSF)/R1/2 and |x| << 1.

Since the total flux Ftot = 2π σ2 Ao is also 2π R2
d Io, we have

2π R2
d Io =Ao 2π

R2
1/2 +R2

PSF

2 ln(2)

Io'Ao
1.682

ln(2)

RPSF

R1/2
, (7)

which relates the observed S/N in the central pixel Ao to the intrinsic central SB Io.
The average central surface brightness SB1/2,conv within R1/2,conv is

SB1/2,conv =
0.5 Ftot

πR2
1/2

1

1 + (RPSF/R1/2)2

' 0.5 Ftot

πR2
1/2

1

2
(1 + x)

'0.25 SB1/2 ×
R1/2

RPSF
∝ Io ×

R1/2

RPSF
(8)

'0.5
Ao

ln(2)

which shows that the observed central SB, SB1/2,obs, directly maps onto the S/N in the central pixel.

17 Generally speaking, a ≡ R1/2,conv ' (R2
1/2

+ R2
PSF)0.5 and

b ' (R2
1/2

cos2(i) +R2
PSF)0.5.
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