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Abstract20

1. Seed banks are known to play a key role in plant metapopulations. How-21

ever, detecting seed banks remains challenging and requires intense monitoring22

efforts. Assessing the genuine effect of seed banks on plant metapopulation23

dynamics may offer a much easier while still biologically relevant way to over-24

come this issue.25

2. In this study, we developed a new metric : the Seed Bank Characteristic26

Event (SBCE) probability. Instead of detecting seed bank directly, the SBCE27

probability measures seed bank contribution to the observed metapopulation28

dynamics. Exploring seed bank parameters (colonization, germination and29

seed bank death probabilities, initial proportion of patches containing a seed30

bank), a wide range of monitoring durations (from 3 to 10 years) and number31

of patches in the metapopulation (from 10 to 1000 patches), we examined the32

conditions under which the SBCE probability is correctly estimated. To test33

the robustness of our approach, we further introduced false negatives, false34

positives or parameter heterogeneity between patches. Finally, we applied the35

SBCE probability method to the monitoring of tree bases plant species in36

Paris, France, to assess the applicability of the method to real-world datasets.37

We studied the influence of species traits and environmental characteristics,38

in order to increase understanding of plant metapopulation dynamics within39

an urban environment.40

3. Our results indicate that the SBCE probability is well estimated when enough41

monitoring years or number of patches are considered, and for rates of false42

negatives or false positives of up to 0.1. However, the SBCE probability43

estimation is not robust to colonization probability heterogeneity between44

patches. When we applied the SBCE probability method to the real monitor-45

ing dataset, we found a weak influence of the flowering months of the species46

and of the green space the closest to the metapopulation on SBCE probability47

estimates.48

4. The study suggests that the measurement of seed bank contribution is less49

data-demanding than assessment of seed bank presence. Applying the es-50
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timation method to the monitoring of tree bases plant species highlights a51

significant contribution of the seed bank to plant metapopulation dynamics52

in an urban environment, and illustrates how the method can be applied on53

real-world datasets.54

Keywords : Hidden Markov Model, metapopulation, plants, Propagule Rain model,55

seed bank, urban biodiversity, tree bases56
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Introduction57

An important issue in ecology and conservation biology is determining the mechanisms58

underlying persistence of plant or animal populations in fragmented landscapes (Fahrig,59

2003). In plants, the seed bank, i.e the spontaneous storage of seeds within the soil, plays60

a critical role in metapopulation and community dynamics (Fenner, 2017). However,61

assessing directly the presence of a seed bank, for instance by putting soil samples in62

germination chambers, and measuring its associated parameters is challenging. There-63

fore conceptual approaches and statistical tools allowing one to estimate these quantities64

using widespread data such as presence/absence data can prove very useful. One suitable65

conceptual framework for studying patchy environments is the metapopulation theory,66

first introduced in (Levins, 1969). A metapopulation is defined as a population living67

in a set of patches that can be colonized or go extinct, the regional persistence of the68

species resulting from a balance between local colonizations and extinctions (MacArthur69

& Wilson, 1967). Statistical tools have been developed to allow parameter inference for a70

broad range of metapopulation models (see e.g (Moilanen, 1999, 2004)), and were fruit-71

fully used in studies on insects (Hanski, 2011; Moilanen, Smith, & Hanski, 1998) or small72

mammals (Ozgul, Armitage, Blumstein, & Oli, 2006).73

As plants form populations with a strong spatial structure and can only move from one74

patch to another as propagules, metapopulation models appear at first as particularly75

suited to their study (Husband & Barrett, 1996). Yet classical metapopulation models do76

not account for seed banks, which are common in seed plants (Baskin & Baskin, 2014),77

potentially leading to erroneous estimates of extinction and colonization rates (Fréville,78

Choquet, Pradel, & Cheptou, 2013) and making these models generally irrelevant for79

studying plant metapopulation dynamics (Freckleton & Watkinson, 2002). New models80

taking into account the influence of a seed bank were developed recently (Fréville et al.,81

2013; Borgy, Reboud, Peyrard, Sabbadin, & Gaba, 2015). These models consider the seed82

bank state as an hidden state, which is not visible but which influences patch occupancy,83

and which can be estimated from patch occupancy data. In this article, we elaborated a84

new method to characterize seed bank contribution to metapopulation dynamics based85
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on the model introduced in (Pluntz et al., 2018). This model allows parameter infer-86

ence on a variant with a seed bank of a classical model, the Propagule Rain Model (or87

PRM) (Gotelli, 1991), in which patches are colonized or go extinct independently from88

each other, with the same colonization or extinction probability. However, a limit of89

the model proposed by (Pluntz et al., 2018) is that it would not be applicable in many90

real-world situations. It indeed requires either a long monitoring duration or several91

thousand patches to be monitored in order to accurately estimate all parameters (that92

is, germination, colonization and seed bank death probabilities). To overcome this prob-93

lem, we introduced in the present study a new metric more accurately estimated than94

the metapopulation parameters for identical monitoring duration and number of patches,95

providing information about the influence of the seed bank on plant population dynamics96

in real populations. Then, we used this metric with both theoretical and real metapopu-97

lation data. We called this metric the seed bank characteristic event probability (SBCE98

probability). As it only measures the contribution of the seed bank to the observed stand-99

ing vegetation dynamics, it is less informative than knowing all seed bank parameters,100

but the goal of this study was to show that it is accurate in more real-life situations.101

We performed analyses based on simulated presence/absence time series data, and on102

time series data in which we introduced some flaws commonly found in real datasets, in103

order to give bounds on the number of patches or of years of observation needed to fulfill104

different accuracy requirements. Our goal was to provide guidelines on how to design the105

data collection step.106

As a case study, we used the estimation method on annual floristic inventories of nat-107

ural and spontaneous flora carried out from 2009 to 2018 on 1324 tree bases located in108

Paris, France (the Paris 12 dataset). Indeed, the population of plants in urban tree109

bases is located inside an inhospitable matrix and has an high turnover, which makes110

metapopulation models particularly suited (Dornier, Pons, & Cheptou, 2011). Studies111

using presence/absence data for various species present in urban tree bases considered112

as metapopulations were already carried out, but to our knowledge none accounted for113

seed bank potential presence in tree bases (Omar et al., 2019; Dornier et al., 2011). We114
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also attempted to relate the contribution of the seed bank to the observed population115

dynamics to species traits and environmental characteristics. The results are intended to116

increase the understanding of population dynamics inside an urban environment.117

Overall, our study (i) gives insights on the importance of seed bank contribution to plant118

metapopulation dynamics within an urban environment, and (ii) provides a comprehen-119

sive framework to detect the effects of seed banks in plant metapopulations, which can120

be applied on a wide range of ecological systems, including but not restricted to urban121

environments.122

Material and methods123

Model used124

The model from (Pluntz et al., 2018) we used in this study is a variant of the Propagule125

Rain Model (PRM) (Gotelli, 1991). In the PRM, colonization and extinction probabilities126

do not depend on the current state of the metapopulation, and are constant over patches127

and time. A seed bank can be introduced using Hidden Markov Model (HMM) techniques128

(Cappé, Moulines, & Rydén, 2005; Rabiner, 1989). The seed bank contains the seeds that129

were just produced by standing vegetation of the focal patch or came from colonization130

events by the propagule rain, along with seeds produced by previous generations that131

did not germinate yet and are still alive. Since all plants originate from the seed bank132

of the patch they are in, the presence of plants at one time step means that the seed133

bank contained seeds just before germination could occur. Therefore metapopulation134

parameters can be estimated along with the presence/absence of seeds in the seed bank135

at each time-step.136

The model is characterized by these three parameters :137

• the joint probability of seed germination and of survival of seedlings until adulthood.138

This parameter will be called germination probability, and denoted g, following the139

existing litterature.140
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• the colonization probability c of the patch by external seeds entering the seed bank.141

• the seed bank extinction probability conditional on the seed bank not having germi-142

nated d. This parameter is the probability that the seed bank will not survive until143

the next generation, assuming it has not germinated yet.144

The initial proportion p0 of patches containing a seed bank can be considered as an extra145

parameter of the model.146

The model evolves as follows : for each patch, if the seed bank is not empty, seeds can147

germinate with probability g. If they do, the plants will grow and produce seeds which148

will refill the seed bank. Otherwise, the seed bank can survive until the next generation149

with probability 1−d. New seeds can enter the seed bank during a colonization event with150

probability c independently of the presence of standing vegetation or seeds in any given151

patch (see figure 1). The main difference with the PRM model is that if the seed bank152

death probability d is strictly less than 1, then germination can be delayed. Hereafter,153

models for which d < 1 will be denoted as SB+ (Seed-Bank Plus) and those for which154

d = 1, corresponding to the classical PRM, will be denoted SB- (Seed-Bank Minus).155

The procedure for estimating parameters uses the Expectation-Maximization (EM) al-156

gorithm (Dempster, Laird, & Rubin, 1977) in order to find the best parameter fit (see157

details in (Pluntz et al., 2018)). We set the number of iterations in the algorithm to158

200 in order to ensure convergence of parameters. As the EM algorithm can converge159

to a local but non-global maximum, the choice of the initial conditions can affect the160

value returned by the algorithm. We preliminary checked with simulated datasets that161

convergence of the EM algorithm to a non-global maximum was rather unlikely (results162

not shown).163

The algorithm was first used to get theoretical results on the performances of the SBCE164

estimation method. We simulated datasets for different parameter values for g, c, d and165

p0 and applied the SBCE estimation method on these simulated datasets in order to iden-166

tify conditions under which the SBCE probability offers reliable estimates using a set of167

performance criteria. Then, we used the estimation method on a real monitoring dataset,168

the Paris 12 dataset (see below). Due to the structure of this dataset, we implemented a169
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variant of the estimation method supporting one year of missing data.170

Criterium for seed bank identification : SBCE probability171

Seed Bank Characteristic Event (SBCE) probability, denoted PSBCE, is defined as the172

probability for standing flora to produce seeds that (1) will stay in the seed bank during173

more than one year (without germinating nor dying), and (2) will germinate before new174

seeds come from an external source. In other words, PSBCE is the probability that175

standing flora in a given patch at a given time-step contributes with delay to population176

dynamics, and that this contribution is not hidden by colonization events happening in177

between. This probability can be computed knowing g, c and d. Denoting SBt the event178

during t years, the seed bank does not germinate, nor receive new seeds from external179

source, nor dies, then :180

PSBCE =
∑
t≥1

P(SBt) × g

= g ×
∑
t≥1

P(SB1)t

= g ×
∑
t≥1

[(1 − g)(1 − c)(1 − d)]t

= g × (1 − g)(1 − c)(1 − d)
1 − (1 − g)(1 − c)(1 − d)

SBCE probability can be interpreted as a measure of seed bank contribution to metapop-181

ulation dynamics : it takes into account that some parameter values, e.g high colonization182

or seed bank extinction probabilities, make it hard for delayed germination events to be183

observed. As a result it cannot be used per se to conclude to seed bank presence or184

absence, but is a proxy of seed bank contribution to the metapopulation dynamics. A185

consequence is that low SBCE probability does not mean that there is no seed bank,186

since a high colonization probability yields comparable effects.187

Hereafter, we will consider the effect of the seed bank to be :188

• weak if SBCE probability is lower than 0.05189
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• medium if SBCE probability is in the interval [0.05, 0.10]190

• strong if SBCE probability is higher than 0.10.191

These thresholds were defined arbitrarily using values taken by the SBCE probability in192

situations where the observed effects of the seed bank can be considered weak, strong or193

intermediate. Continuous values taken by the SBCE probability for parameter values in194

table 1 are presented in Supplementary Information (A.1). An estimator of SBCE proba-195

bility must satisfy two requirements so that it can accurately show seed bank contribution196

to metapopulation dynamics. First, the estimated SBCE probability must be accurately197

estimated for datasets generated with a SB+ model. We considered the estimation was198

correct if the root-mean-square error (RMSE) on SBCE probability estimation was lower199

than the threshold of 0.14 used in (Pluntz et al., 2018). Then, it must avoid, as much as200

possible, identification of medium or strong seed bank effects in datasets generated with201

a SB- model, for which PSBCE = 0. In this article, the rate of false identification of a202

medium to strong seed bank effect in a model without seed bank (SB-), denoted pfalseSB203

thereafter, is deemed satisfying if it is below 0.05.204

In order to assess the performance of the criterium, we investigated the sensibility of205

PSBCE estimation to c, g, d and p0 by building 24 distinct parameter sets combining a206

broad range of values for these parameters (16 corresponding to SB+ models, and 8 to207

SB- models, see table 1). Each parameter set was used to generate 30 datasets for each208

of the 4 monitoring durations and 8 numbers of patches listed in table 1. We chose to209

consider durations of at most 20 years and at most 1000 patches.210

We computed the estimated SBCE pobability by performing parameter fits of c, g, d211

and p0 on the simulated datasets. The accuracy of the SBCE probability estimation was212

tested separately for each SB+ parameter set, time duration and number of patches by213

computing the RMSE. We determined the minimal number of patches needed to sat-214

isfy a RMSE threshold of 0.14 (as in (Pluntz et al., 2018)). For SB- parameter sets, as215

PSBCE = 0, we instead computed pfalseSB for each combination of monitoring duration216

and number of patches.217

The performance of the criterium were compared to the one of a criterium comparing218
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the AIC of parameter fits with or without a constraint on d (i.e, comparing the AIC219

of parameter fits on a SB+ and a SB- model). The AIC-based criterium was deemed220

satisfying if it was able to identify the correct model at least 25 times out of 30 (i.e, 83%221

of correct assignations).222

Testing SBCE estimation robustness223

Before applying the parameter estimation method to real data, we tested the algorithm224

robustness to several flaws commonly found in real datasets : false negatives, false posi-225

tives and parameter heterogeneity.226

Parameter heterogeneity was only studied for colonization probability by assuming that227

a proportion of patches has a colonization probability equal to 0. Details of the protocols228

are provided in Supporting Information (A.2).229

Applying SBCE probability to real-world monitoring data230

The real dataset used in this study to apply the SBCE probability, Paris 12, consists of231

floristic inventories of 1324 tree bases located in Paris 12th administrative district, car-232

ried out annually between 2009 and 2018. Natural and spontaneous flora was inventoried233

exhaustively over the entire period, except in 2013, when a limited number of species234

were tracked. For those species that were not monitored in 2013, we used the missing235

data variant of the model for the year 2013. The taxonomic reference is the French Flora236

Reference TAXREF v8.0 (Gargominy et al., 2014). See Supporting Information (B.1) or237

(Omar, Al Sayed, Barré, Halwani, & Machon, 2018) for information about nomenclature238

and the species and streets monitored.239

For almost every species, a high proportion of patches were never occupied from 2009240

to 2018. We interpreted this as being due to colonization heterogeneity, and considered241

that patches which were never colonized had a colonization probability equal to 0. Since242

the germination and seed bank death probabilities cannot be estimated for a group of243

patches that were never occupied, we removed these patches from the analysis.244

We considered that the tree bases present in different streets represented distinct metapop-245
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ulations. Moreover, we considered that the metapopulation parameters could be different246

from one species to another, and for a given species, from one street (i.e one metapop-247

ulation) to another. Each pair of species and street was analyzed separately, and was248

retained only if the species was observed at least once in more than 20 distinct tree bases249

of the street (the size of a street ranged from 31 to 186 tree bases). For each pair, seed250

bank contribution was assessed under the hypothesis that the species’ patch occupancy251

dynamics followed the Propagule Rain Model. Parameter estimation for SB+ model was252

carried out using the missing data variant when the species was not inventoried in 2013.253

We then tested whether the estimated SBCE probability was affected by the nature of the254

closest green space (see (Omar et al., 2019)), the seed dispersal mechanism, the flowering255

months (extracted from the database of the collaborative network of French botanists256

"Tela botanica" (http://www.tela-botanica.org), the releasing height of the seeds and the257

seed weight (mean value obtained from the LEDA database (Kleyer et al., 2008)). Be-258

cause almost all species flower in summer months (June, July and August) and due to259

high correlation in flowering for consecutive months, we limited the flowering period data260

to two binary variables : early flowering (months of March, April or May) and late flow-261

ering (September or October). We used mixed-effect linear regression model with SBCE262

probability as the response variable, species and street identity as random factors, the263

greenspace the closest to the street among 4 (one park, one footpath, railways and the264

Seine river) and the dispersal mechanism (anemochorous, autochorous, barochorous or265

epizoochorous) as fixed qualitative variables, the releasing height of the seeds and the seed266

weight as fixed quantitative variables and the early and late flowering as binary variables,267

assuming a Gaussian distribution. We checked whether the requirements of independence268

of residuals, normality of residuals and homogeneity of variances were met. The model269

was implemented with the lmer function of the lme4 R package (Bates, Mächler, Bolker,270

& Walker, 2014). Besides the above regression model, we also performed repeatability271

analyses to provide an overview of the variation of the germination probability and SBCE272

probability among streets and among species. The repeatability analysis was based on273

1000 parametric bootstraps as implemented in the rptR package of R (Stoffel, Nakagawa,274
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& Schielzeth, 2017). The statistical significance of the repeatability of each metric was275

tested by a likelihood ratio test comparing the model fit of a model including a grouping276

factor (here, the species or the street) and one excluding it.277

Results278

Criterium for seed bank identification279

For each monitoring duration, we could find a number of patches ensuring the cri-280

terium fulfillment (RMSE < 0.14 on SBCE probability estimation for SB+ models, and281

pfalseSB < 0.05 for SB- models). No such number of patches could be found for the282

criterium comparing AIC of parameter fits on a model with or without seed bank, which283

is not based on SBCE probability (see Supporting Information (A.3)).284

Overall, the minimal number of patches required decreased from 500 for a monitoring285

lasting 3 years to 30 for a monitoring lasting 20 years, and was higher for SB+ models286

than for SB- models. Complete results can be found in Supporting Information (A.1).287

Testing SBCE estimation robustness288

Overall, the introduction of false negatives, false positives or heterogeneous colonization289

increased RMSE on SBCE probability estimation for SB+ models, and pfalseSB for SB-290

models.291

For SB+ models, for all the false positive or false negative rates considered, the RMSE292

almost always stayed below the 0.14 threshold. The introduction of heterogeneous col-293

onization by making some patches not colonizable led to the threshold being quickly294

exceeded, except for 500 patches and 3 years of monitoring.295

For SB- models, when we introduced false negatives or false positives, increasing the296

monitoring duration or the number of patches led to a decrease of pfalseSB (albeit less297

marked for a false negative rate of 0.2), and the 0.05 threshold could be met for a suffi-298

cient monitoring duration or number of patches, except for a false negative rate of 0.2 (see299

table 3). Conversely, when we introduced heterogeneous colonization (i.e, when we set300
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the colonization probability of some patches to 0), increasing the number of patches had301

no marked effect, and increasing the monitoring duration actually made pfalseSB increase,302

reaching values of up to 0.5. This effect was particularly marked when considering only303

the false identification rate of a strong (instead of a medium to strong) seed bank effect.304

Consequently, no combination of number of years of observation and number of patches305

monitored fullfilled the accuracy requirements, even for a proportion of non-colonizable306

patches of 0.05.307

Complete results can be found in Supporting Information (A.4).308

Applying SBCE probability to real-world monitoring data309

The analysis highlighted a high variability of SBCE probabilities, both between species310

and within species. A medium to strong seed bank effect was detected in at least one311

street for most species. We further investigated the reason for this variation looking312

at estimates of the germination probability g. Germination probabilities were gener-313

ally fairly low, most of the time below 0.5, no matter the species or the street. The314

repeatability analysis indicated that the germination and SBCE probabilities were very315

consistent between streets for a given species (repeatability R = 0.595 ± 0.07 for ger-316

mination and R = 0.38 ± 0.08 for SBCE, p-value < 10−4 for both repeatabilities). In317

contrast, repeatabilities of these probabilities between species for a given street were low318

(R = 0.058±0.03, p-value= 7×10−4 for germination and R = 0.058±0.04, p-value= 0.003319

for SBCE). Overall, these results suggest that both germination and SBCE probabilities320

primarily depend on species rather than location. Results are summarized in figures 2321

and 3. Estimations of SBCE and germination probabilities for each pair of species and322

street (i.e, each metapopulation) analysed can be found in Supporting Information (B.2).323

According to the regression model, none of our explaining variables was significantly324

correlated with the SBCE probability (see detailed regression results in Supporting In-325

formation (B.2)). However, the type of the nearest green space and the flowering period326

exhibited marginally significant effects : late flowering and being closest to the park were327

associated with higher SBCE probability (figure 3).328
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Discussion329

In this paper, we propose a new metric, the seed bank characteristic event probability330

(SBCE) providing information on the contribution of the seed bank to the observed331

standing vegetation dynamics in plant metapopulations. Our results indicated that the332

SBCE performs well in a wide range of situations and provided evidence of a significant333

contribution of the seed bank to plant metapopulation dynamics in an urban environment.334

In biology, as in other disciplines, it is sometimes more practical and straightforward335

to make inferences about a process within a system by observing the effects of that336

process on the system rather than the process itself. This approach is central to the337

study of metapopulations, where a process such as dispersal is often studied indirectly by338

examining its consequences in terms of genetic structuring or recolonization dynamics.339

This idea is also at the core of the analytical framework recently developed (Fréville et340

al., 2013; Borgy et al., 2015) to study seed banks, which are very difficult to detect on a341

large scale, but whose consequences in terms of plant metapopulation dynamics can be342

crucial (Fenner, 2017).343

Theoretical analysis344

Our analysis indicates that the SBCE approach is relevant to evaluate the contribution345

of a potential seed bank to the dynamics of a metapopulation in which patches are in-346

dependent, i.e., in which the colonization or extinction of a patch does not depend on347

the presence of the species in the other patches, even when the number of monitored348

patches and monitoring duration are limited. In particular, we showed that for limited349

monitoring durations and number of patches, the SBCE probability provides more precise350

predictions than model identification methods using AIC and based on estimates of the351

germination probability g, the colonization probability c and the seed bank death prob-352

ability d. This could be expected, since even though the SBCE probability is computed353

using g, c and d, it depends mostly on g, which according to (Pluntz et al., 2018) is well354

estimated. Conversely, model estimation methods depend more on estimates of d, which355
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is more difficult to estimate. For a sufficient but still achievable number of patches or of356

years of observations, the SBCE probability was well estimated when seed bank existed357

and correctly reflected the absence of a seed bank otherwise (see Supporting Informa-358

tion (A.1)). As this metric measures the contribution of the seed bank to the global359

metapopulation dynamics, it gives information on whether the seed bank is essential to360

the observed dynamics. However, it is not suited for getting estimates of the seed bank361

parameters, namely probabilities of germination and survival of seeds (but see (Pluntz et362

al., 2018)).363

Our work highlights that false negatives or false positives in standing vegetation detection364

and heterogeneous colonization have contrasted impacts on the estimation of the SBCE365

probability. On the one hand, for models without seed bank, increasing false positive rate366

or false negative rate lead to an increase of the rate of false identification of a medium to367

strong seed bank effect pfalseSB . The presence of false positives can be mitigated by mon-368

itoring more patches over a longer duration, while the presence of false negatives can be369

mitigated only when the false negative rate is not too high. This implies that monitoring370

methods reducing the false negative rate may increase the accuracy of the SBCE prob-371

ability estimate, even if they are traded-off by an increase of the rate of false positives.372

On the other hand, with strongly heterogeneous colonization (e.g., in the special case in373

which a fraction of patches can never be colonized), the SBCE probability cannot be well374

estimated, no matter the monitoring duration or the number of patches. Therefore it375

is crucial to identify heterogeneous colonization situations, whose impact on estimation376

accuracy cannot be mitigated by improving the monitoring effort. Other statistical meth-377

ods can be used in order to identify heterogeneous colonization cases, allowing to treat378

the case where colonization probabilities are heterogeneous but potentially all non-zero,379

for instance using mixture models (Robin, 2018). However these methods are far more380

computationally intensive than the simple one we used. The consistency of estimates of381

the probability of germination g between streets for most species in the Paris 12 dataset382

suggests that the method we introduced is still efficient.383

The fact that increasing the number of patches can mitigate the impact of false negatives384
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or false positives suggests that the method may be used on data coming from citizen385

science programs, for which the number of patches monitored can be very large. Recent386

empirical results on citizen science programs showed that, with a standardized proto-387

col and good training methods, error rates in datasets can reach values lower than 0.05388

(Fuccillo, Crimmins, de Rivera, & Elder, 2015; Ratnieks et al., 2016), which makes these389

programs compatible with our SBCE approach.390

The Paris 12 dataset391

The analysis performed on the Paris 12 dataset of plants present in tree bases in Paris392

showed that 55 % of the pairs of species and streets analysed exhibited a medium to strong393

seed bank effect, suggesting that seed banks have a key influence on plant metapopulation394

dynamics in this type of urban environment. Moreover, estimates of both germination395

probability g and SBCE probability are consistent between streets for a given species,396

but they are not consistent from one species to another for a given street. Besides, the397

spatial variation of SBCE estimates among streets is weakly related to which green space398

is the closest to the street. Explaining this pattern is difficult, as it may results from the399

green space characteristics, from the design of the tree bases or the tree-base management400

performed by the green space services of the city of Paris. Most estimates of g are low,401

below 0.5 or even 0.3, which means that either germination per se is low, either survival of402

seedlings until adulthood is low. Potential explanations are a strong competition between403

species, or a removal of plants before seed production by gardeners.404

Our analysis does not uncover any influence of the dispersal mechanism on the SBCE405

probability. This result is in line with the findings of (Omar et al., 2018), who showed406

that the distribution of species in Paris tree bases was not correlated to the dispersal407

mechanism nor to the weight of the seeds, and hypothetised that this was partly due to408

human activity spreading all seeds no matter the weight or the dispersal device (Sukopp,409

2004; Von der Lippe & Kowarik, 2007).410

Our study also highlights a weak influence of the flowering period on the SBCE proba-411

bility. Species whose flowering period starts early (before May) exhibited a higher mean412
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estimated SBCE probability than those whose flowering period starts later. One possi-413

ble interpretation is that plant species that flower early are more detectable than those414

flowering late, so they are more likely to be removed by gardeners, which affects the415

probability of survival of seedlings until adulthood and the colonization probability.416

The applicability of the SBCE probability on the Paris 12 dataset has some limitations.417

First, according to our theoretical analysis, estimations of the SBCE probability for a418

monitoring duration of 10 years is expected to be accurate if at least 100 tree base sare419

considered, and more in case of false negatives or false positives. As streets in our dataset420

have between 30 and 150 tree bases and as some tree bases were removed from analysis421

to avoid issues related to heterogeneous colonization, small errors on SBCE probability422

estimates have to be expected, and particularly a slight overestimation of SBCE proba-423

bilities when no seed bank is present (i.e when SBCE probability is equal to 0).424

Second, we assumed that tree bases’ dynamics are independent of each other (i.e., no425

colonization from one patch to another). As a result, we did not consider the alternative426

hypothesis of Levins metapopulation model (Levins, 1969) with a seed bank. In this427

model, colonization events do not bring seeds from a propagule rain, but from neigh-428

bouring patches. Therefore, colonization probability is not the same for all patches,429

and depends on the state of the metapopulation. An estimation method for this model430

exists (Le Coz, Cheptou, & Peyrard, 2019), but uses abundance data instead of pres-431

ence/absence data, and would need to be adapted to handle missing data. Moreover, the432

fact that we recovered results previously documented with a different approach and the433

consistency of g estimates for a given species between streets suggests that the assump-434

tion of independent patches was correct.435

Our results show that measuring seed bank contribution to plant metapopulation dynam-436

ics is less data-demanding than assessing seed bank presence, while being robust to the437

presence of false negatives or false positives. Our method can be applied to a wide range438

of urban and non-urban metapopulations, and can be used on datasets collected using cit-439

izen science in order to increase substantially the understanding of plant metapopulation440

dynamics.441
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Figure 1: Graphical representation of the variant with seed bank of the Propagule Rain
Model. White arrows indicate transitions that always occur, while black arrows indicate
transitions that only occur with a fixed probability.

Parameter and notation SB+ model SB- model
Colonization probability (c) 0.3, 0.7 0.3, 0.7
Germination probability (g) 0.3, 0.7 0.3, 0.7

Seed bank death probability (d) 0.2, 0.6 1
Initial proportion of seeds (p0) 0.3, 0.7 0.3, 0.7

Years of observation 3, 5, 10, 20 3, 5, 10, 20
Number of patches 10, 30, 50, 100, 200, 500, 800, 1000 10, 30, 50, 100, 200, 500, 800, 1000

Table 1: Parameter sets and test conditions used for testing the seed bank identification
criterium.
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(a) SBCE probability estimates
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(b) Germination probability estimates

Figure 2: (a) Distribution of SBCE probability estimates for species present in at least
20 tree bases of at least 3 different streets. (b) Distribution of germination probability
estimates for species present in at least 20 tree bases of at least 3 different streets.
Species flowering early are indicated in turquoise, and species flowering late in white.
Species whose flowering period could not be found on Tela Botanica are not indicated.
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Monitoring duration 3 years 5 years 10 years 20 years
Model SB+ SB- SB+ SB- SB+ SB- SB+ SB-

Minimal number of patches 500 200 200 100 100 100 30 30

Table 2: Minimal number of patches needed to achieve RMSE < 0.14 on SBCE probability
estimation for SB+ models, and pfalseSB < 0.05 for SB- models, depending on monitoring
duration.

Monitoring duration 3 years 5 years 10 years 20 years
False negative rate Number of patches

0 500 200 100 30
0.05 1000 500 500 200
0.1 X 1000 500 500
0.2 X X X X

False positive rate Number of patches
0 500 200 100 30

0.05 X 1000 500 100
0.1 X X 500 500
0.2 X X X 800

Table 3: Minimal number of patches needed to satisfy both RMSE < 0.14 on SBCE
probability estimation for SB+ models and pfalseSB < 0.05, after having introduced false
negatives or false positives in the dataset, for different monitoring durations and rates of
false negatives or false positives. The symbol X means that criterium satisfaction could
not be met.
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(b) Influence of flowering early

Figure 3: (a) Distribution of SBCE probability estimates in streets classified by the nature
of the closest green space (see Supplementary information (B.1) for green spaces names).
(b) Distribution of SBCE probabitity estimates for species with early flowering period
(March, April or May), compared to those with late flowering period.
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