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Abstract

Cities need to drastically reduce their energy con-
sumption in order to fight climate change. To help
them implement efficient energy saving measures, ur-
ban building energy models (UBEM) have been de-
veloped. A large amount of input data is required
to model buildings at an urban scale and that in-
formation is often missing. To overcome this lack
of model input data, data enrichment approaches
including archetypes and calibration processes have
been used, resulting in errors in the generated data
which are not always well quantified. The aim of
this paper is to develop a methodology of validation
for UBEM that takes into account a data enrichment
process. The proposed approach is to split the vali-
dation process into several parts based on UBEM use
cases. UBEM outputs and enriched data to be val-
idated are selected for each use case and the fitness
for purpose of the model is then verified against mea-
sured data. This validation method has been tested
on a specific use case: the prediction of yearly elec-
tricity and gas consumptions of dwellings aggregated
at the district scale. It has been applied to two dif-
ferent UBEM tools: Smart-E and Dimosim. Smart-E
uses its own hypothesis for data completion while a
specific tool, Qiriel, is used to infer missing data for
Dimosim. The simulation of one hundred districts
(90 000 dwellings) located in the French department
of Seine-et-Marne and the comparison to measured
data enabled to study the error distribution of both
UBEM tools. Further work should be led at smaller
spatial and time scales.

Introduction

With an urgent need to act against climate change,
more and more cities set ambitious environmental
targets. In order to achieve such goals, reducing en-
ergy consumption in buildings seems to be a keystone.
In France, for example, tertiary and residential sec-
tors represented 45% of the national final energy con-
sumption in 2015 (ADEME, 2015). To assist in lower-
ing these consumptions at the city scale, urban build-
ing energy models (UBEM) have been developed over
the last fifteen years (Reinhart and Cerezo Davila,

2016). UBEM compute the energy consumption of
every building in a district and take into account in-
teractions among them, like, for example, solar shad-
ing. The aim of UBEM is to provide cities with guid-
ance to reduce final energy consumption not only for
some specific buildings but also at the scale of a whole
district.
However, the benefits brought by UBEM are balanced
with certain challenges that may jeopardize their re-
liability.
A first challenge is the data enrichment process. It
is much more difficult to gather data required for the
simulation of one hundred buildings than for a single
one. Information is often missing and assumptions
must then be made. This practice of data enrich-
ment creates an error that is not yet well-quantified.
A second challenge is to take into account new phe-
nomena that appear at the district scale, like the phe-
nomenon of urban heat islands.
Finally, although a building energy model (BEM) has
to be precise for each building it simulates, this is not
necessarily the case for a UBEM. It may be acceptable
for a UBEM to be statistically correct at the scale of
a district but to be rather inaccurate at the scale of
a single building. The challenge is then to identify
the spatial and time scales on which the UBEM is
reliable.
A thorough validation process would enable to ver-
ify the reliability of UBEM and would give them
more credits as decision-support tools for cities. How-
ever, such validation process is not yet implemented
within the UBEM research community and is there-
fore needed.
The aim of this paper is to present a validation
methodology designed specifically for UBEM. This
methodology is described in the next section before
being applied to two UBEM tools in a second section.
Results obtained by the two UBEM tools throughout
the validation process are then being discussed.

Development of a validation methodol-
ogy for urban building energy models

Most UBEM stem from building energy models
(BEM). However, at the difference with the BEM,
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there is no consensus yet on their validation. In this
section, we review the existing validation attempts
that can be found in the literature and we draw a list
of requirements for a validation methodology. Then,
we describe a first proposal of validation methodology
based on UBEM use cases.

Existing attempts of validation

BEM validation

Building energy model can be seen as a cornerstone
of UBEM. Therefore it seems natural to look at the
existing validation process implemented for BEM.
A lot of research has been carried on BEM validation
among which were the BESTEST and the PASSYS
project.
In the BESTEST (Judkoff and Neymark, 2013), sev-
eral sets of perfectly described buildings are pro-
vided and inter-comparison of models are computed
on these well-known buildings. In addition, some em-
pirical validation has been proposed with measure-
ments on test cells.
Jensen (1995) gives a precise description of the
methodology developed within the PASSYS project.
The proposal is to split up the validation process into
two main parts: the validation of single processes and
the validation of the whole model. Jensen encourages
namely to use analytical verification for single process
validation and to use empirical validation for whole
model validation.
The validation of thermal models used within UBEM
through one of these two validation methods would
not suffice to consider a UBEM tool as properly val-
idated for several reasons:

� Additional physics and additional energy sys-
tems are modelled at the urban scale;

� An enrichment process is often used as a prior to
UBEM and needs to be validated as well;

� It may be acceptable for UBEM to be accurate
only at certain spatial scales, larger than the
building scale.

However, some principles from these methodologies
should be used as guidance for the development of a
UBEM validation methodology. For example, sepa-
rating single process validation and the whole model
validation as advised by Jensen (1995) is of great in-
terest for UBEM as well. Furthermore, in the same
idea as the PASSYS project, the aim of the present
work is to develop a validation methodology rather
than validating a single tool.
Regarding validation attempts on UBEM, two ap-
proaches have been observed so far: comparative val-
idation and empirical validation.

Comparative validation

Inter-model comparison has started within two inter-
national research projects, the IEA Annex 60 (Wet-
ter, 2017) and the IBPSA Project 1 (Saelens et al.,
2019) which is still ongoing. In both projects, the

taken approach is quite similar to the BESTEST
(Judkoff and Neymark, 2013). A synthetic district
has been designed to serve as a District Energy Sim-
ulation Test (DESTEST). Several UBEM tools are
being tested on this DESTEST and their results are
compared. This setup enables to control all the sim-
ulation parameters and thus proceed with the sin-
gle process validation as advocated by Jensen (1995).
However, since the district used is not real, it is not
possible to compare the obtained results with mea-
sured data nor to test the enrichment process used
by each UBEM tool.

Empirical validation

The aim of empirical validation is to ensure that
UBEM tools represent the real-life urban projects
accurately. However, such process is made difficult
due to a lack of data at district and urban scales.
Some examples can be found in the literature like
in Sokol et al. (2017) or in Fonseca and Schlueter
(2015). These attempts give a first idea of UBEM per-
formances on real projects. However, datasets used
in these validation processes are rarely publicly avail-
able thus preventing other research teams from going
through the same validation process. Furthermore,
there is no agreement so far on the metrics to be
used to measure the error on UBEM outputs. This
prevent the reader from comparing results obtained
in different papers.
Nonetheless, some requirements can be drawn from
these existing attempts of UBEM validation.

Requirements for a UBEM validation methodology

Some lessons can be learned from this brief literature
review and it can be summarized as follows. A valida-
tion methodology dedicated to UBEM should comply
with the following requirements:

� Specifying the spatial and time scales on which
a given UBEM tool is reliable;

� Defining metrics to properly measure the
UBEMs accuracy throughout the validation pro-
cess;

� Identifying the error generated by the model set-
ting;

� Ensuring applicability and replicability of the
methodology in different contexts (country,
building sector etc.);

� Proposing test cases to apply the developed val-
idation method.

A first proposal of methodology is presented hereafter
based on these requisites.

A validation method based on UBEM’s use
cases

The methodology developed here offers to inventory
UBEMs use cases and to identify, for each use case,
critical UBEM outputs. The aim is to verify that
the outputs of interest for each use case are accu-
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rate enough to provide a real aid to the decision-
maker. Such outputs of interest are called key per-
formance indicators (KPI) in the rest of the paper.
Once use cases and KPI have been identified, valida-
tion datasets are used in order to study, for each use
case, the error distribution on the KPI. This method-
ology is described in Figure 1.
In an ideal case, several batches of measured data
would be available, enabling to obtain an error dis-
tribution for each KPI of each use case and UBEM
tool. The main idea behind this search for an er-
ror distribution is to provide the UBEM user with a
confidence interval on the KPI, depending on the use
case. UBEM use cases and corresponding KPI for
validation were identified through a literature review
that is not presented in this paper. Although, the
main use cases are listed below:

� Development of renewable energies at the district
scale;

� Energy flexibility;

� Performance measurements and verification;

� Buildings retrofitting;

� Study of the urban heat island effects and its
impact on indoor comfort;

� Future energy use;

� Urban energy planning.

Future works should properly define metrics for each
use case and for each KPI in order to measure the
error on the KPI accurately.
A drawback brought by the proposed validation
methodology is the need for large validation datasets
when such datasets are often hard to find. For ex-
ample, if the aim of the study is an error distribution
at the district scale at least hundred districts with
measured data would be needed to obtain this distri-
bution. To tackle this issue, it is proposed to start the
validation process with use cases for which additional
data are available. Then, we could study in what
extend such use cases could give some bounds for
the error distribution of use cases with less validation
data. For instance, if the annual energy consump-
tion of a building is accurate, it does say something
about its annual load profile. Furthermore, more and
more energy disclosure laws are being implemented
in western countries, giving the opportunity to access
large buildings energy consumptions databases. Ex-
amples of these energy disclosure laws can be found
in France but also in other countries like in the USA
(Kontokosta and Tull, 2017).

Application of the proposed methodol-
ogy to two UBEM tools

Validation framework

A first use case was chosen to apply and test the pro-
posed validation methodology. This use case can be
described as territorial energy diagnosis. It consists
in being able to give an accurate outlook of a district

energy consumption. In this study, the annual elec-
tricity and gas consumptions of residential buildings
were studied at the district scale. This use case may
be seen as a preliminary study for other use cases
since a first step for UBEM is to provide accurate
representation of existing consumptions before evalu-
ating different scenarios like the retrofitting of build-
ings or the development of renewable energies. The
choice of this use case was also driven by the publicly
available datasets.
This use case was applied on the French department
of Seine-et-Marne at the scale of the IRIS. The IRIS
is an administrative division of the French territory.
Each IRIS gathers around 2000 inhabitants. All resi-
dential buildings located in about a hundred of IRIS
were simulated over a year and their annual elec-
tricity and gas consumptions aggregated at the IRIS
scale were compared to measured data. Simulations
were completed with two different UBEM tools, Di-
mosim (Riederer et al., 2015) and Smart-E (Berthou
et al., 2015), both relying on automated data enrich-
ment processes, and results were compared. This case
study deals only with the residential sector since less
databases are available for the simulation of the ter-
tiary sector in France. Datasets used for the simula-
tion and for the validation are presented hereafter.

Simulation datasets

Three databases were used for simulation:

� BD TOPO® (IGN, 2019) This database pro-
vides a map of the whole French territory where
each building is described by a footprint and a
height. Additional information is also given per
building such as:

– Building function (residential, commercial,
etc.)

– Construction year
– Number of floors
– Number of dwellings

Though the footprint and the height are given for
every building, the additional information is not
always available. This additional information is
obtained through a joint between tax record files
and the map. Information is missing when the
joint has not been successful. The BD TOPO®
is not publicly available yet but it can be granted
for free for any research project. It should be-
come completely public by 2022.

� PHEBUS (Conseil National de l’Information
Statistique, 2013): This database is built upon
a survey completed in 2013 for 5000 households
and for each household, their appliances and
their energy bills were reported. Following this
first step, energy performance audits were com-
pleted in 2000 out of these 5000 households.

� Fichiers Détails logements (FDL) (INSEE,
2016): This database originates from the pop-
ulation census. Each row corresponds to 1 to
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Figure 1: Proposed validation methodology

5 dwellings with identical properties. The pre-
cise location of these dwellings is unknown but
the zipcode of the IRIS where they are located
is provided on each row. Information contained
in this database includes:

– Dwelling’s number of occupants;
– Socio-professional status of the household;
– Surface category of the dwelling;
– Type of dwelling (individual housing or col-

lective housing);
– Construction year of the building;
– Main heating energy;
– Main heating system type (centralized or

decentralized).

Validation dataset

The validation dataset employed for this use case is
the Données Locales de l’Energie database (SDES,
2020). This database originates from a French law for
the ecological transition that makes compulsory for
energy suppliers to disclose annual energy consump-
tions data aggregated at the IRIS scale and detailed
by sector. Annual electricity and gas consumption of
the residential sector are thus available at the IRIS
scale. These data are publicly-available and are up-
dated every year. The related disclosure law was re-
cently amended compelling energy suppliers to pub-
lish energy consumption data at the building scale,
given some privacy threshold for the residential sec-
tor. These datasets requires some preprocessing but
are of great interest for the validation of UBEM.

Two different UBEMs, one validation process

The proposed validation method aims to be appli-
cable to a large range of UBEM. Two first UBEM
tools were used here to test this method: Dimosim

(Riederer et al., 2015) and Smart-E (Berthou et al.,
2015). These tools are very different from each other.
A first difference comes from the data enrichment pro-
cess. Smart-E uses internal hypotheses to complete
missing data while Dimosim is coupled with a tool de-
signed for the enrichment process: Qiriel (Ansanay-
Alex et al., 2016).
A second difference comes from the datasets used as
inputs data and as parameters. Dimosim takes as
input data the geometry of the buildings retrieved
from BD TOPO® and then tries to assess thermal
properties and household characteristics thanks to
PHEBUS and FDL. Conversely, Smart-E takes as in-
put data the description of households provided by
FDL that includes the surface of the dwellings but
not the geometry of the buildings and then tries to
allocate façade areas and roof areas thanks to BD
TOPO®. BD TOPO® and FDL both give infor-
mation on dwellings but since FDL comes from the
census, it is anonymized to prevent identifying the
households and the buildings. Therefore, the link be-
tween these two databases is not straightforward and
assumptions must be made. Furthermore, informa-
tion provided by these databases is not always consis-
tent. For example, the number of dwellings recorded
in BD TOPO® and FDL is different.
A third difference is the number of thermal zones de-
fined for the simulation. Several thermal zones per
building can be defined in Dimosim but for the sake
of simplicity only one thermal zone per building was
used in this case. Smart-E uses two thermal zones
per dwelling by default, one for the heated space and
one for the non heated space.
Booth et al. (2012) identified the most influential pa-
rameters on housing stock modelling uncertainties.
The mean value of these parameters distributions
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used for each UBEM tool in this study are summa-
rized in Table 1. These values are the average on
all the simulated dwellings weighted by the dwellings
surfaces. These mean values have been displayed to
illustrate the difference of parameterization between
the two tools. For example, the share of dwellings
heated with gas and the share of dwellings heated
with electricity vary from an IRIS to another and are
often slightly different between Dimosim and Smart-
E due to different enrichment processes.

Table 1: Influential parameters on results uncertainty

Parameters Dimosim Smart-E
Fraction of space heated 100 % 77 %
Heating temperature set-
point (C)

19.6 19.6

Share of dwellings with
gas as heating energy

48.3 % 50.6%

Share of dwellings with
electricity as heating en-
ergy

38.2 % 35.7 %

Efficiency of electric
heaters

1.0 1.0

Efficiency of gas boilers 0.78 0.69
Window U-value
(W/m2K)

3.21 2.69

Wall U-value (W/m2K) 0.96 1.38
Window-to-wall ratio 0.25 0.15
Air-change rate (including
infiltrations and ventila-
tion) (vol/h)

0.6 0.52

Number of simulated
dwellings

89876 93717

Average surface per
dwelling (m2)

105 92

Results & Discussion
KPI and metrics

The proposed methodology was tested on 93 IRIS
(around 90000 dwellings), all located in the French
department of Seine-et-Marne. The studied KPI in
this case were the annual electricity and gas con-
sumptions at the IRIS scale but also the annual ther-
mosensitivity for gas and electricity at the IRIS scale.
The thermosensitivity is defined as the increase of
electricity or gas consumption due to the decrease
of the outdoor temperature. Its estimation for each
tool was done following the methodology provided
with the DLE (ENEDIS et al., 2018). Measured data
were available in the DLE for each of these KPI and
for each IRIS. The error on annual consumption and
thermosensitivity was measured through a percentage
of error (PE) defined in Equation 1.

PEX =
XSimulated −Xmeasured

Xmeasured
· 100 (1)

The results are presented in Figures 2 and 4.

Analysing the error distribution with respect
to input data

The error distribution obtained with Dimosim on
annual consumptions is shifted toward the positive
values, meaning that Dimosim mainly overestimates
the electricity and gas consumptions. Conversely,
Smart-E tends to underestimate these consumptions.
In absolute values, Dimosim seems to generate a
greater error than Smart-E on this particular use
case. This performance gap could come from the fact
that Smart-E is calibrated in order to fit national elec-
tricity consumptions while there is no similar process
in Dimosim.
Regarding the error on the thermosensitivity, it seems
that Dimosim also overestimates this phenomenon for
both gas and electricity. An hypothesis is then that
Dimosim overestimates the heating needs in general.
When comparing inputs parameters between Smart-
E and Dimosim, the fraction of space heated looks
like a good candidate to help reducing this error. In
order to confirm this hypothesis, simulations should
be run again with a different space-heated ratio and
results should then be compared.
When taking a closer look at the error generated by
Smart-E, the error on the electrical thermosensitivity
seems surprisingly high compare to the error on the
annual electricity consumption. In order to get a bet-
ter understanding of all these error distributions and
to try to explain phenomenon like the one observed
on the thermosensitivity for Smart-E, an analysis of
the correlation between the error and a large set of
inputs parameters have been completed.
Correlations were estimated through the Pearson cor-
relation coefficient. This coefficient is defined in equa-
tion 2 for two variable X and Y, where cov(X,Y) is
the covariance of X and Y, σX is the standard de-
viation of X and σY is the standard deviation of Y.
A coefficient of 1 indicates a linear relationship be-
tween variables while a coefficient close to 0 indicates
that there is no linear relationship (but a non-linear
relationship is still possible between variables).

ρX,Y =
cov(X,Y )

σX · σY
(2)

Coefficient correlations between the percentage of
error on annual gas and electricity consumptions, gas
thermosensitivity and electrical thermosensitivity
and inputs parameters are presented in Figure 3.

In general, the obtained coefficients are quite low,
most of them being below 0.5 in absolute value. It is
then difficult to draw influential parameters from this
study. However, some trends can be identified. Thus,
the two UBEM tools seem to behave quite differently
in terms of error. Smart-E presents a coefficient of
0.64 between the percentage of error on the gas con-
sumption and the one on the electricity consumption
but such correlation does not appear for Dimosim.
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Figure 2: Annual measured and simulated consumptions of gas and electricity

Figure 3: Correlation coefficients between the error and several input parameters

Furthermore, the higher coefficients can be found for
Smart-E between the percentages of error (gas and

electricity) and the window and wall U-values. In
Dimosim, a relatively high correlation is observed be-
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Figure 4: Percentage of error on annual energy consumptions and on thermosensitivity

tween the percentage of error on electricity and the
share of dwellings using electricity as heating energy.
Finally, a mild correlation between Dimosim and
Smart-E errors was identified as well, questioning the
quality of databases used for simulation and valida-
tion and the error they might bring in.
Thus, this analysis enabled to identify levers to re-
duce the overall error of both tools.
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Conclusion

A methodology of validation designed specifically for
UBEM was presented in this paper. This method
aims to verify that UBEM are accurate enough to
provide a real aid in the decision-making process. To
do so, the validation procedure is broken down based
on UBEM use cases and error distributions are stud-
ied for KPI of each use cases.
This method was tested with two first UBEM tools on
a French test case. The analysis of the obtained error
distributions enabled to identify weaknesses of both
UBEM tools and hence improve their performances.
The development of this methodology is still ongoing
and future work should be carried on UBEM outputs
at smaller spatial and time scales. The error analysis
and the identification of critical inputs parameters in
the output error generation should also be strengthen.
Lastly, an important step would be to verify the ap-
plicability of the methods to a large range of UBEM
tools. Since the available datasets for simulation in-
fluence greatly the enrichment process and UBEM
behaviour in general, it would be of great interest
to apply this methodology in other countries than
France and with other UBEM tools as well. The au-
thors would then be very interested in collaborating
with other research teams on this topic.
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d’énergie.

Sokol, J., C. Cerezo Davila, and C. F. Reinhart
(2017). Validation of a Bayesian-based method for
defining residential archetypes in urban building
energy models. Energy and Buildings.

Wetter, M. (2017). New Generation Computational
Tools for Building & Community Energy Systems
Annex 60 Final Report. Technical report, Interna-
tional Energy Agency.


	Comparative validation
	Empirical validation
	Simulation datasets
	Validation dataset

