Epitaxial growth of honeycomb-like stanene on Au(111)
Wenhui Pang, Kazuki Nishino, Tsuyoshi Ogikubo, Masaaki Araidai, Masashi Nakatake, Guy Le Lay, Junji Yuhara

To cite this version:

HAL Id: hal-03202614
https://hal.science/hal-03202614
Submitted on 20 Apr 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Epitaxial growth of honeycomb-like stanene on Au(111)

Wenhui Pang\(^a\), Kazuki Nishino\(^a\), Tsuyoshi Ogikubo\(^a\), Masaaki Araidai\(^a,b,c\), Masashi Nakatake\(^d\), Guy Le Lay\(^e\), Junji Yuhara\(^a,⁎\)

\(^a\) Department of Energy Engineering, Nagoya University, Nagoya 464-8603, Japan
\(^b\) Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
\(^c\) Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8601, Japan
\(^d\) Aichi Synchrotron Radiation Center, Aichi Science & Technology Foundation, Seto, Aichi 489-0965, Japan
\(^e\) Aix-Marseille Université, CNRS, PIIM UMR 7345, 13397 Marseille Cedex, France

Abstract

Stanene, which is predicted to be a quantum spin Hall topological insulator with tunable topological state, seems to be the most promising candidate of the post-graphene elemental two-dimensional (2D) materials. Here, we prepared epitaxial honeycomb-like stanene on gold (111) substrates and investigated its superstructure by Low Energy Electron Diffraction and Scanning Tunneling Microscopy. Angle-Resolved PhotoEmission Spectroscopy was applied to explore the electronic structures, further confirmed by first principles calculations. The stanene-like sheet forms a nearly planar structure on the Au(111) surface with a “2×√3” superstructure in large surface areas. Core-level spectroscopy reveals that the stanene-like sheet lays almost directly on the Au(111) surface. This is consistent with DFT calculations of the atomic structure. A characteristic 2D band with parabolic dispersion is observed.

1. Introduction

The success of graphene has driven extensive attention to other two-dimensional (2D) materials, due to outstanding properties, such as topological insulating character [1], Quantum Spin Hall (QSH) effect [2,3], and enhanced thermoelectricity [4]. Unfortunately, however, most available materials with such properties are until now often based on multi-component materials with different sublattices or complex alloys. These are still challenging to fabricate in terms of large-scale production. Among various post-graphene elemental 2D materials [5], one of them, stanene, the tin-based analog, attracted special attention due to its Dirac cone-like energy dispersion and large spin-orbit strength, permitting to envision exciting emerging properties. Typically, it has been predicted that stanene with a large gap 2D QSH state can enable dissipationless electric conduction at room temperature (RT) [6–8]. Several theoretical and experimental efforts have been carried out on stanene [9–11], e.g., stanene with a 0.44 eV band gap, has been grown on InSb(111) recently [12].

The first realization of a highly buckled stanene-like overlayer has been achieved on a Bi2Te3 topological insulator substrate [13]. Then further researches have been devoted to exploring the distinct electronic properties of stanene formed on different substrates, such as semiconducting InSb(111), SiC(0001) and MoS2 [11,14,15], semimetals Sb(111) [16], and metallic Ag(111) [17], Cu(111) [18]; for interesting reviews, see Refs. [19] and [20]. Searching for alternative substrate materials, recent theoretical works especially predicted interesting
possibilities with the Au(111) surface [21], while density functional theory (DFT) calculations indicate that low-buckled stanene is more stable than highly buckled stanene [3].

A few groups have studied the growth of tin on gold (111) surfaces by different methods [22–27]. However, the experimental realization of stanene remains challenging. To the best of our knowledge planar honeycomb-like tin with a “2x√3” superstructure on the Au(111) surface, as will be shown here, has never been reported; hence, we will describe its realization and properties in this paper.

This novel tin overlayer features a low-buckled lattice with even-tually three Sn atoms per unit cell arranged in a honeycomb-like structure, as derived from scanning tunneling microscopy (STM), low-energy electron diffraction (LEED) and synchrotron radiation core-level spectroscopy (CLS), along with DFT calculations of the atomic geometry. The electronic properties were explored by angle-resolved photoemission spectroscopy (ARPES), and compared to DFT band structure calculations.

2. Experiment and calculations

We performed our experiments in two different ultra-high vacuum vessels. The first one at Nagoya University, is equipped with a LEED apparatus operating with a LaB$_6$ filament and a UHV Omicron STM-1 system. The second one used for the CLS and ARPES experiments, is at the Aichi synchrotron radiation center. It hosts a MCP-LEED system and a hemispherical analyzer with a 200 mm radius (MB Scientific AB A-1) and wide-angle electron lens. Both vessels consist of a preparation chamber and an analysis chamber with base pressure lower than 10^{-10} mbar.

After sputtering the Au(111) surfaces by 700 eV Ar$^+$ ions at RT, an annealing at around 600 °C was performed. Temperatures were monitored with a radiation thermometer and a type K thermocouple fixed on the base plate of the sample holder. After annealing, Auger electron spectroscopy (AES) was performed at RT to check for surface cleanliness. Then the LEED patterns showed sharp reconstruction spots of the well-known Au(111)22x√3 herringbone clean superstructure.

Tin was deposited onto the Au(111) surfaces at RT in either UHV vessel with a deposition rate of approximately 0.13 monolayer (ML) min$^{-1}$ (the rate was measured by using a quartz crystal monitor). The atomic density of a Au(111) plane is 1.391×10^{15} atoms cm$^{-2}$; we use this value to define 1 ML Sn coverage. The deposition rate had been calibrated by Rutherford backscattering spectroscopy (RBS); the methodology has been published in Refs. [28] and [29]. The amount of deposited Sn is 0.6 ML; errors are less than 10% in mentioned coverage ratios.

In each vessel, the LEED and STM observations were performed at RT. Sharp LEED patterns were obtained with 46–70 eV primary beam energies. All STM images were acquired with W tips. The CL and ARPES spectra were recorded at about 10 K, as the gold specimen was mounted on a liquid-helium-cooled cryostat with 4-axis pulse motor control.

The DFT calculations were performed by the QuantumATK [30], in which wave functions are expressed by the linear combination of pseudo atomic orbitals. The interactions between ionic core and valence electrons were described by ONCV-type pseudopotentials of the PseudoDojo project [31,32] and PBE-type exchange-correlation energy functional was also employed [33]. The lateral size of the Au(111) simulation cell was (a,b) = (5.768, 4.995) in
unit of Å; periodic boundary conditions were imposed along both directions. In the c di-
rection, one side of the Au(111) slab consisting of 14 atomic layers was coupled to the semi-infinite
Au(111) electrode as the boundary condi-
tion by the Green’s function technique [34], and the
opposite side had a vacuum region of 15 Å. The atomic configuration except for three layers
close to the electrode was relaxed until the forces acting on atoms be-
came smaller than 10 meV/Å. The cutoff energy for space discretization was taken to be 2721.14 eV. The Brillouin
zone of the unit cell was sampled with a 5x6x1 Γ-center k-point grid.

3. Results and discussion

In order to study the growth of tin on the Au(111) surface, at first LEED and STM observations
have been carried out. Fig. 1(a) and (b) show the LEED pattern and STM images of the well
characterized Au (111)22x√3 herringbone reconstruction [35]. Terraces are separated by
atomic steps 0.23 nm in height, as shown by the AB profile in Fig. 1(b) and (f).

![LEED and STM images](image)

Fig. 1. (a) LEED pattern of the pristine Au(111) surface (55 eV). (b) large-scale STM image of
the bare Au(111) surface showing the herringbone superstructure (Us = 1.0 V, I = 0.2 A). (c)
and (d) LEED pattern (55 eV) and the large-scale STM image (Us = 1.0 V, I = 0.2nA) of 0.6
ML Sn deposited onto the Au(111) surface at RT. (e) Simulated LEED pattern of the “2x√3”
superstructure. (f) and (g) Sectional profiles along the A-B and C-D lines in (b) and (d). (h)
Growth model of tin on the Au(111) surface.

The LEED pattern and the large scale STM image (100 nm x 100 nm) of the 0.60 Sn ML on
the Au(111) surface are displayed in the Fig. 1(c) and (d). After deposition, the LEED patterns
exhibit the characteristic diffraction pattern of the “2x√3” super- structure, which is simulated
in Fig. 1(e) with three symmetry equivalent domains. Along the[11̅0] and[112̅] directions the
new lattice constants b1 and b2 are expanded/reduced with respect to commen-
surate 2a1 and √3a2 values of the unreconstructed Au(111)1x1 sur-
face, that is |b1| = 1.1x√3|a1| and

$$
\begin{bmatrix}
1.9 & 0.0 \\
0.0 & 2.2 \\
1.1 & 2.2
\end{bmatrix}
$$

structure matrix being
This is why we name the superstructure as “2\(\times\sqrt{3}\)”, since it is in reality incommensurate. This may be related to the uniaxial compression of the gold surface atoms along the [11\(\bar{1}\)0] direction [35].

In Fig. 1(d), the smooth terraces no longer show any signature of the herringbone reconstruction and no 3D islands are observed. Locally, bare Au(111) is recognized as black holes. These terraces are separated by steps with a uniform height of 0.23 nm as shown in Fig. 1(g), indicating a Au(111) step below the tin overlayer. Clearly the Sn atoms form an adlayer wetting the Au(111) surface; the overlayer film is uniform over hundred nanometers with just some second layer patches, as displayed in Fig. 1(h).

The high-resolution STM image displayed in Fig. 2(a) reveals the atomic arrangement of the “2\(\times\sqrt{3}\)” superstructure. It points to two different local arrangements, namely chain-like within the yellow rectangles and honeycomb-like (hexagonal motifs are aligned only in one direction) within the black squares, as illustrated in Fig. 2(b) and (e), respectively, with possibly three equivalent orientations. In the black square areas, the protrusions appear denser than in the yellow rectangle ones, where they look like zigzag chains.

Fig. 2. (a) High-resolution STM image of the Sn covered Au(111) surface (0.6 ML; Us = 0.3 V, I = 0.2nA). (b) and (c) Top and side views of the zigzag chain-like (2\(\times\sqrt{3}\)) approximant structure. (e) and (f) Top and side views of the honeycomb-like (2\(\times\sqrt{3}\)) approximant structure. Yellow and gray balls denote Au and Sn atoms, respectively. Yellow and black squares indicate the (2\(\times\sqrt{3}\)) unit cell. (d) and (g) are the simulated STM images for the zigzag chain-like and honeycomb-like structures, respectively.
Assuming commensurate \((2\times\sqrt{3})\) cells, representing approximants, we propose two atomic models differing in tin coverage ratios, respectively 0.5 ML and 0.75 ML, as shown in Fig. 2(b), (c), (e) and (f). This allows us to perform DFT calculations of the relaxed structures - where all Sn atoms have just a slight preference (by 0.03/0.02 eV) for hcp hollow sites compared to fcc ones-, and to simulate their corresponding STM images (Fig. 2(d) and (g)). As clearly seen, they show zigzag chains with two Sn atoms, labelled 1 and 2 per \((2\times\sqrt{3})\) cell, having the same environment, and a honeycomb-like structure with three Sn atoms labelled 1, 2 and 3 per cell, where atom 2 has a different environment, in excellent agreement with the STM observations. As both zigzag chain-like and honeycomb-like arrangements are observed, indicating local Sn adatom density fluctuations at the 0.6 ML coverage, clearly both structures are energetically stable, which is confirmed in our DFT calculations where the difference is less than 0.05 eV.

Fig. 3. The core level spectra of Au 4f and Sn 4d measured at 10 K and taken at \(h\nu = 135\) eV and 75 eV, respectively. (a) Au 4f\(7/2\) for a clean bare Au(111) single crystal, (b) and (c) Au 4f\(7/2\) and Sn 4d of stanene on Au(111) surface. The orange circle line is the fit line, and the black line is the experiment’s data.
As shown in Fig. 3, we further performed high-resolution synchrotron radiation core-level (CL) spectroscopy of the shallow Sn 4d and Au 4f CL's in highly surface sensitive conditions. A spectrum recorded from the clean Au(111) surface fitted with two components (bulk: B at 84.02 eV binding energy (BE) and surface: S at 83.69 eV BE ones), in excellent agreement with the literature [36]) is shown in Fig. 3(a). After the deposition of 0.6 ML Sn giving the “2x√3” superstructure, the corresponding Au 4f7/2 photoemission spectrum is presented in Fig. 3(b). The S surface component has vanished, but new components, located at the higher binding energy side of the bulk component, have appeared. There are three components labelled C1, C2 and C3 at 84.29, 84.57 and 84.78 eV BEs, respectively. The bulk component B has markedly decreased, which is the expected behavior for a substrate core-level peak. Component C3 may be related to Au atoms that diffuse through the Sn layer forming the Au-Sn alloy [26]. We relate components C1 and C2 to the interface top Au(111) layer beneath Sn atoms, either in the chain-like or the honeycomb-like local arrangements.

As for the corresponding Sn 4d broad spectrum, displayed in Fig. 3(c), we fit it with three distinct components, S1, S2, and S3, respectively at 24.31 (Sn 4d5/2), 24.01 and 24.50 eV BEs. The S3 component is of comparable intensity and appears at the same binding energy as for the Au-Sn alloy investigated in ref. 26, hence, it is in correspondence with C3 discussed above. The main component S2 is about twice the intensity of S1, indicating high and low Sn coverages, respectively. Therefore, we relate components S1 and S2 to the chain-like and the honeycomb-like local arrangements, respectively. This is in correspondence to the previous C1 and C2 Au 4f7/2 components in the interface region.

We have further investigated the electronic band structure of the “2x√3” phase by ARPES measurements at a photon energy of 70 eV. The corresponding data are shown in Fig. 4. A scheme of the Au(111) and “2x√3” surface Brillouin zones is shown in Fig. 4(a). One notices that because of the expansion and compression mentioned above, the “2x√3” surface Brillouin zone is nearly a square, that is the Γ-X-Sn and Γ-Y-Sn distances are practically the same. The clean Au(111) surface exhibits the well-known Rashba spin splitting of the Shockley surface-state (S) around the Γ point, shown in Fig. 4 (b). With 0.6 Sn ML (S) has vanished, and a new parabolic surface electronic band is observed in Fig. 4 (c) and (d). We note that no signature of a Au-Sn alloy, i.e., typical Λ-shape bands around the Γ point, is present [25]. The effective mass m* is calculated to be 0.41mₑ, where mₑ is the electron rest mass, which is significantly higher than for that of the bare Au(111) Shockley surface state (0.28mₑ). The Fermi velocity is estimated to be 1.4×10^6 m/s.
Fig. 4. ARPES dispersion at $h\nu = 70$ eV, measured at 10 K. (a) Scheme of the Au (111) surface Brillouin zone in black and of the “2×$\sqrt{3}$” Sn phase in red. (b) Shockley surface state of the clean Au(111) surface along the $M^-\text{Au}-\Gamma^-\text{M}^-$ Au direction. (c) and (d) electronic band structures of the “2×$\sqrt{3}$” stanene-like phase on the Au(111), measured along the $M^-\text{Au}^-\text{X}^-\text{Sn}^-\text{X}^-\text{Sn}^-\Gamma^-\text{M}^-$ Au and $K^-\text{Au}^-\text{Y}^-\text{Sn}^-\Gamma^-\text{Y}^-\text{Sn}^-\text{K}^-\text{Au}$ directions.

We have compared these experimental results to DFT calculations for the two commensurate (2×$\sqrt{3}$) approximant phases in Fig. 5. The surface band structure of the clean unreconstructed Au(111)1x1
surface is displayed in Fig. 5(a) in the range corresponding to $X-\Gamma-X$, revealing the (S) state, but significantly upward shifted. Fig. 5(b) and (c) show the calculated dispersions along $X-\Gamma-X$ for the Sn related bands of the $(2\times\sqrt{3})$ phases at 0.5 and 0.75 Sn ML, respectively. However, there is no clear correspondence with the experimental dispersion in Fig. 4(c), except possibly for the calculation shown in Fig. 5(c) for the 0.75 ML coverage, i.e., for the honeycomb-like structure, or, in other words, the stanene-like structure, if we consider a likely up-shift. Hence, the stanene-like structure is more favorable in our experimental conditions, although, indeed, the DFT calculations for the commensurate $(2\times\sqrt{3})$ approximant phase are just indicative.

Fig. 5. (a) The calculated surface band structures along the $X-\Gamma-X$ interval for bare Au(111)1×1 surface. (b) The Sn-related band structure for the chain-like phase at 0.5 ML Sn coverage. (c) The Sn-related band structure for the stanene-like phase at 0.75 ML Sn coverage.

Both experimental and theoretical parabolic dispersions clearly differ from the cone-like one expected for free-standing stanene, which is no surprise since, for one, the stanene-like Sn overlayer is not purely honeycomb, and, for two, is interacting with the Au(111) substrate.
However, we stress that the structural flatness of the stanene-like phase is likely to drive a large QSH effect, possibly even at RT [16].

4. Conclusion

In conclusion, the tin sheet forms a nearly planar structure on the Au(111) surface with a “2x√3” superstructure in large surface areas, identified by LEED patterns and STM images. In addition, based on experimental results, we proposed zigzag chain and honeycomb-like structures characterized by STM observations and DFT calculations. Meanwhile, the core-level spectra of Sn deposited onto the Au(111) surface reveal that a structurally flat stanene-like sheet lays almost directly on Au(111) surface. Both experimental and theoretical band structures favor a stanene-like honeycomb structure with three Sn atoms per unit cell.

Acknowledgments

The authors are grateful to Nagoya University Synchrotron Radiation Research Center for financial support for ARPES measurements, which were conducted at BL7U of Aichi Synchrotron Radiation Center, Aichi Science & Technology Foundation. JY acknowledges financial support from Nagoya University thanks to an “Eminent Foreign Scientist” Invitation Award in 2015-2016 and 2019-2020, as well as an Invitational Fellowship for Research in Japan by the Japan Society for the Promotion of Science (JSPS) in 2017. M.A. is partly supported by JSPS KAKENHI Grant Number 19H04541. The computation in this work has been done in part using the facilities at the Information Technology Center, Nagoya University.

References

