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Abstract. We quantify the agreement between permafrosttemperature conditions. In both cases, the provided local in-
distributions from PMIP2 (Paleoclimate Modeling Intercom- formation reduces the variability between climate models re-
parison Project) climate models and permafrost data. Wesults. This also confirms that a simple relationship between
evaluate the ability of several climate models to represenpermafrost and the air temperature only is not always suffi-
permafrost and assess the variability between their results. cient to represent local-scale permafrost.

Studying a heterogeneous variable such as permafrost im- Finally, we apply each method on a very different climate,
plies conducting analysis at a smaller spatial scale comparethe Last Glacial Maximum (LGM) time period, in order to
with climate models resolution. Our approach consists ofquantify the ability of climate models to represent LGM per-
applying statistical downscaling methods (SDMs) on large-mafrost. The prediction of the SDMs (GAM and ML-GAM)
or regional-scale atmospheric variables provided by climatgs not significantly in better agreement with LGM permafrost
models, leading to local-scale permafrost modelling. Amongdata than large-scale fields. At the LGM, both methods do
the SDMs, we first choose a transfer function approachnot reduce the variability between climate models results.
based on Generalized Additive Models (GAMS) to produceWe show that LGM permafrost distribution from climate
high-resolution climatology of air temperature at the surface.models strongly depends on large-scale air temperature at the
Then we define permafrost distribution over Eurasia by airsurface. LGM simulations from climate models lead to larger
temperature conditions. In a first validation step on presentlifferences with LGM data than in the CTRL period. These
climate (CTRL period), this method shows some limitations differences reduce the contribution of downscaling.
with non-systematic improvements in comparison with the
large-scale fields.

So, we develop an alternative method of statistical down-1  |ntroduction
scaling based on a Multinomial Logistic GAM (ML-GAM),
which directly predicts the occurrence probabilities of local- Permafrost reacts to climate chandgaftris et al, 2009
scale permafrost. The obtained permafrost distributions apwith critical feedbacksKhvorostyanov et al2008 Tarnocai
pear in a better agreement with CTRL data. In averageet al, 2009, especially on carbon storage and greenhouse
for the nine PMIP2 models, we measure a global agreegases emissionZimov et al, 2006 Beer, 2008. This is-
ment with CTRL permafrost data that is better when usingsue becomes an important subject of interest for the future,
ML-GAM than when applying the GAM method with air especially in Arctic regionsStendel and Christensg?002
Zhang et al.2008. Through these feedback processes, the
permafrost will likely play a significant role in climate and

Correspondence td5. Levavasseur in climate models responses to global change. Three main
BY (guillaume.levavasseur@lsce.ipsl.fr)  approaches exist to modelling permafrost:
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— Some land-models simulate permafrost propertiesin climate models. RCMs are often used in permafrost stud-
(Nicolsky et al, 2007 Koven et al, 2009 only from cli- ies. Stendel et al(2007) combined a RCM driven by global
mate data; but permafrost representation partly dependslimate outputs with a dynamical model of permafrost to
on the resolution of climate models, which cannot re- bridge the gap between GCMs and local-scale permafrost
flect the local-scale physical processes involved. data.Christensen and Kuhi§2000 derived permafrost from

. . RCM simulation using the “frost index” described originally

— A dynamical model of permafrost can be forced by cli- by Nelson and Outcalf1987. However, Salzmann et al.
mate_ conditions and_ computes the complex permafrostzoo-/) emphasized the need to use different RCMs to re-
physics and dynamicsRbmanovsky et al.1997) as  §,ce uncertainties and to perform sensitivity studies. Nev-
the mterap'uons with snow cover or hydrolloglcall Net- ertheless, RCMs are computationally very expensive. On the
work (Delisle et al, 2003. This method is mainly  gher hang, the statistical downscaling methods (SDMs) are
used to study mountain permafro&iyglielmin et al, |egq resource-intensive and represent an alternative to quickly
2003 or to focus on a small regiorMarchenko et al.  gpain high-resolution fields from several different climate
2008 because it needs large computing time and local-yqqels. Such an approach consists of using statistical re-
scale data about soil properties (vegetation, lithology,|ationships between large-scale variables and the local-scale
geology, etc.). variable of interest. For instance, in permafrost context,

— Near-surface permafrost can be derived from climaticANiSimov et al.(2003 used a stochastic model to map the
variables using simple conditions as Amisimov and thickness of the soil layer with annual freezing and thaw-

Nelson(1997) or Renssen and Vandenberg2603. ipg (the “active-layer”). Among the many exﬁsting SDMs,
like “weather generators’Wilby et al, 1998 Wilks, 1999

For simplicity, we first assume that permafrost dependsor “weather typing” Zorita and von Stor¢h1999 Vrac and
solely on air temperature at the surface (or temperaturdNaveay 2007) methods, we choose in Se@&.to directly
at 2m above ground and hereafter referred to as “tempermodel these relationships by transfer functiodsth, 2002
ature”) with the relationship fronRenssen and Vanden- Vrac et al, 20073. To obtain a high-resolution permafrost
berghe(2003, presented in Sec? with the used permafrost index, we apply the conditions froiRenssen and Vanden-
databases. Applying these temperature conditions, we arberghe(2003 on downscaled temperatures using a Gener-
able to extract a permafrost index from climate models out-alized Additive Model (GAM —Vrac et al, 20073 Mar-
puts. In this article, we will assign the name “climate tin et al, 2011, allowing to quantify the agreement be-
model” indifferently to GCMs (Global Circulation Models) tween simulated high-resolution permafrost and local-scale
or EMICs (Earth System Models of Intermediate Complex- permafrost data. GAM is suitable for continuous variable
ity). In order to be able to simulate long time periods, the such as temperature. Studying permafrost, we are dealing
equations of atmospheric or oceanic dynamics are solvedvith discrete variable; hence, we need relationships between
on coarse spatial grids. Coarse scales cannot reflect the aiemperature and permafrost. So, we develop in Sea. al-
mospheric local evolutions. Permafrost is an heterogeneouternative SDM based on a Multinomial Logistic GAM (ML-
variable related to local-scale climate. Hence, downscalingsAM) that models directly the relationship between local-
methods, bringing local-scale information, are useful to com-scale permafrost and global-scale variables. In climatology,
pare permafrost data with global or regional results from cli- logistic models are often employed to predict wet or dry
mate models. Moreover, coarse resolutions generate a strordpy sequencesB(ishand et al.2003 Vrac et al, 2007h
variability from one model to another; for example, with Fealy and Sweeney®007 or vegetation types distribution
state-of-the-art climate models, the predictions of mean tem{Calef et al, 2005. Logistic models were also used in the
perature change for the next century range from 1.4t6@3.8 context of periglacial landforms prediction yewkowicz
for B2 scenario Meehl et al, 2007. Downscaling could and Ednie2004 or more recently byBrenning(2009. In
also reduce the variability between climate models results (oour case, ML-GAM produces a relationship between sev-
the inter-models variability), especially at CTRL period. In- eral continuous variables and the occurrence probabilities
deed, downscaling defines a model to reproduce calibratiomf each permafrost category. Applying logistic models on
data. Hence, different CTRL simulations associated with dif-a large region as the Eurasian continent allow us to build a
ferent downscaling models will both be close to calibration global/generic relationship between permafrost and several
data, reducing the differences between several downscalefdctors. For both approaches, a strong hypothesis is to con-
climate models. sider the climate as a steady-state and to assume that the near-
Downscaling is the action of generating climate variablessurface permafrost (hereafter referred to as “permafrost”) is
or characteristics at the local scale as a numerical zoom apn “pseudo-equilibrium” with it.
plied to climate models. On one hand, Regional Climate Also, climate modelling needs to determine the ability
Models (RCMs) represent the physical approach. They havef climate models in simulating past climates in compari-
a higher spatial resolution than climate models and can comson with data. In paleoclimatology, discrepancies appear
pute some sub-scale atmospheric processes, parameterizedtween large-scale climate models and data-proxies, the
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latter being intimately related to their close paleoenviron-currently debated. Moreover, since our estimate is based on
ment Gladstone et al.2005 Ramstein et a).2007 Otto- temperature there is no reason why the permafrost under the
Bliesner et al.2009. Downscaling may reduce these dif- ice-sheet shall be mainly driven by air temperature above the
ferences between climate models and data. Furthermore, ane-sheet.

important exercise is to evaluate the ability of the two statis-

tical models to represent the permafrost distribution of a very ) . . .

different climate. An application of these methods to the LastS Pownscaling with a Generalized Additive Model

Glacial Maximum (LGM) is discussed in Seé&. We work (GAM)

with a representative set of climate models from the Paleocli-

; : . To simulate a discrete variable such as permafrost, we first
mate Modeling Intercomparison Project (PMIPBjgconnot . . .
. : . . . decide to downscale the temperatures from different climate
et al, 2007ab), which provides climate simulations for the

preindustrial and LGM time periods models with the same approach by GAM ¥sac et al.

' (200789 andMartin et al.(2011). Then we deduce permafrost
from the downscaled temperatures using a simple relation-
2  Permafrost: definition and data ship between permafrost and temperature. This methodology

is illustrated in Fig2 (left half).
Permafrost is defined as ground permanently at or befa@ O
for two or more consecutive yearBreénch 2007. Toval- 3.1 Temperature data and permafrost relationship

idate the statistical models for the control period (CTRL, . ) .
To calibrate a GAM, we need observations. The high-

hereafter refered to as “present”), we use geocryological ob : ; i
servations reviewed and grouped into one circum-artic per_resolutlon data used for the downscaling scheme are the grid-

mafrost map by the International Permafrost Associationd€d temperature climatology from the Climate Research Unit

(|PA) and the Frozen Ground Data Center (FGDBDWVI’] (CRU) databasel\(ew et al, 2003 For each grid-point the
et al, 1997). Most of compiled permafrost CTRL data are dataset counts twelve monthly means (from 1961 to 1990) at

observations between 1960 and 1980 drawn on differeng regular spatial resolution of 10.e. 1/6 degree in longitude
maps with different scales by several authors, elegin- and latitude) corresponding to the downscaling resolution.
bottom et al.(1993 and references therein. In a simi- Although the CRU climatology corresponds to the period of
lar way, LGM permafrost data correspond to a recent mapthe permafrost observations, the overall permafrost system is
of permafrost extent maximum in Europe and Asia around”Ot,i” equilib_rium wi.th present. climate. However, in the fol-
21 ky BP, combining different geological observations from lowing we will consider the climate as the steady-state and
different maps as described Wandenberghe et a(2008 assume that near-surface permafrost is in rough equilibrium
2011). The combined LGM maps are not always distinctive With it. _ o

in describing the permafrost categories, which could have [N order to obtain the permafrost limits from the down-
different definitions depending on the authors. Moreover, the>c@led temperatures, we derive a high-resolution permafrost
age of LGM permafrost indicators is often not precisely de-Ndex according to the assumption that permafrost depends
fined. Consequently, it is difficult to judge the accuracy of solely on temperature. Sgyeral relatlorjshlps exist in litera-
the final maps and we keep in mind these restrictions in oufUre (6.gNechaey1981 Huijzer and Isarin1997); the most

interpretation. Both datasets describe the spatial distributiorfMPloyed in climate modelling are the following conditions
of two main types of permafrosEtench 2007): from Renssen and Vandenberg{l?éO@ (expllcnly descrlbgd
in Vandenberghe et al004), which we will use and assign
— Continuous permafrost is a permanently frozen groundihe name “RV":

that covers more than 80 % of the sub-soil.
) ) — Continuous permafrost: Annual mean temperatdre
— Discontinuous permafrost covers between 30% and  _geC and Coldest month mean temperatidre-20°C.

80 % of sub-soil. The permanently frozen ground forms

in sheltered spots, with possible pockets of unfrozen — Discontinuous permafrost:—8°C < Annual mean
ground. temperatureg —4°C.

Consequently, our region of interest corresponds to theTo check the consistency of this assumption of permafrost
Eurasian continent with the Greenland ice-sheet approxibeing only related to temperature, Flgcompares the per-
mately from 65 W to 175 E and from 20N to 85° N (see = mafrost distribution obtained by applying these temperature
Fig. 1). We consider the Greenland ice-sheet in order to cal-conditions on CRU climatology, with the permafrost index
ibrate the statistical model with the widest possible presenfrom IPA/FGDC. The similarities between both representa-
temperature range for a downscaling in the LGM climate.tions are obvious and show a consistent relationship between
Nevertheless, for permafrost representation we mask the icghe two variables. Some differences exist in high moun-
sheets (Greenland and Fennoscandia for LGM), as the predain regions for the category or presence of permafrost. In-
ence of permafrost under an ice-sheet is not obvious and ideed, even if this isotherms combination is calibrated on
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Fig. 1. Permafrost comparison between CRU temperature climatology witliRémssen and Vandenberg{#)03 conditions and the
IPA/FGDC permafrost index. In the legend panel,“N” corresponds to “No permafrost”, “D” to “Discontinuous permafrost” and “C” to
“Continuous permafrost”. The highlighted categories with bold letters shows the agreement between both datasets.

the present climate, the temperature is not the only critewhere e is the residual or errorfg is the interceptk is

rion to model permafrost: for example, snow cover, soil the k" predictor andh is the number of predictors arids

and vegetation types have key roles for mountain permafrosthe grid-cell. To use GAM, we need to define the distri-
(Guglielmin et al, 2003 French 2007). Nevertheless, to a bution family of the explained variable. For simplicity, we
first order, deriving permafrost from temperature will be the assume that temperature has a Gaussian distribution, which

base assumption of this study. implies a zero-mean Gaussian ereofHastie and Tibshi-
_ - rani, 1990. Then, we define the nonlinear functions as cu-
3.2 Generalized Additive Model bic regression splines (piecewise by third degree polynomi-

. - . als). Finally any SDM needs a calibration/projection proce-
We first use a statistical model applied¥sac et al. (20073 dure. The calibration is the fitting process of the splines on

to downscale climatological variables and based on the Gen; - ; : :
eralized Additive Modelgs (GAMSs) as precisely studied in this present climate. Afterward, we project on a dn‘fergnt cl!mate
: L to predict a temperature climatology in each grid-point of
co_ntext _byMartln etal.(201]). GAM modgls stat|st|ca! e our region. Initially, the calibration step takes into account
lationships between local-scale observations (Caghedic- o 15 months of the climatology (annual calibration). To
tand) gnd Iargel- scale variables (callpetdictors), gen_erally . be evaluated in fair conditions, the statistical model requires
from f|eIQS of (;I|mate models. The large-scale predictors will independent samples between the calibration and projection
be descrlbed_ln SecB__Z.l_ . steps. Using climatology data does not satisfy this condition
More prec_lsely, this kind .Of stat|s_t|cal model re_presents on present climate with an annual calibration and does not al-
the expectation of the explained vanabrie(the-predmtand., low a classical cross-validation. As a workaround, we adapt a
temperatu_r_e in our case) by a sum of nqnlmear f.uncyons‘cross-validation" procedure which consists of a calibration
(f)’. conditionally on the predictorX (Hastie and Tibshi- on 11 months and a projection on the remaining month. With
rani, 1990: a rotation of this month, we are able to project a local-scale

& climatology for any month.
E(Yi| X h=1.2)=Bo+ ) fiXi) +e, 1) ¥ Y
=1

Clim. Past, 7, 12251246 2011 www.clim-past.net/7/1225/2011/
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Predictors:
- Air Surface Temperature (TAS),

- Diffusive COntinentliaty (DCO),
- Advective COntinentality (ACO),
- Topography.

A4

A4

Predictand: Generalized Multinomial Predictand:
Local-scale Additive Logistic Local-scale

temperature =/ Model Models permafrost
(CRU) (GAM) (ML-GAM) (IPA/FGDC)

Downscaled
temperatures

B e T

High-resolution
permafrost

Fig. 2. Schema of the two downscaling procedures.

In this paper, we only use GAM as a “tool” and we do  Only one “physical” predictor is used and corresponds to
not directly discuss the behavior of the statistical model; forthe air temperature at the surface. This variable is extracted
more details we refer the readentoac et al.(20073; Martin from present and LGM simulations from climate models bi-
et al. (2011). We perform this analysis within the statistical linearly interpolated at 10resolution in order to produce
programming environment RR(Development Core Team more spatial variability. If the interpolation may have an im-

2009 and its “mgcv” packagewood 2006. pact on the downscaling, we do not discuss this point in this
study. Moreover, the preindustrial simulations from PMIP2
3.2.1 Explanatory variables (predictors) do not correspond to the 1961-1990 period of CRU data par-

ticularly in terms of CQ concentration. To account for this
Previous studies frorivrac et al.(20079 andMartin et al.  effect and to have a more relevant calibration, we lift cli-
(2017 lead us to select four informative predictors for tem- mate models temperatures (preindustrial values) into the cur-
perature downscaling, fully described in their studies. Noterent (1961-1990) climate before calibration: we compare the
that we only downscale on the continents because CRU datglobal mean temperature from each climate model and CRU
are only defined on land grid-points. Most of the predictors data (grid by grid) and add the difference in each grid-point.
are computed from a representative set of coupled ocearkor LGM period, we do not assume any temporal shift of the
atmosphere simulations provided by the Paleoclimate Mod-simulations. Consequently, we do not apply a similar cor-
eling Intercomparison Project (PMIP2) using state-of-the-artrection on LGM temperatures and we consider LGM near-
climate models. The required LGM outputs for Séctead  surface permafrost in equilibrium with LGM climate.
us to work with nine of them listed in Table 1. The explana-
tory variables may be divided into two groups: the “physi-
cal” predictors and the “geographical” ones. The “physical” The “geographical” predictors are the topography and two
predictors are directly extracted from climate models outputscontinentality indices. The surface elevation from climate
and depend on climate dynamics. The “geographical” pre-models depends on the resolution and does not account for
dictors provide information to the large- vs. local-scale rela-small orographic structures. To take into account the effect
tionships that are robust and stable with time. of high-resolution topography, we use the high-resolution

www.clim-past.net/7/1225/2011/ Clim. Past, 7, 122846 2011



1230 G. Levavasseur et al.: Statistical downscaling applied to permafrost distribution

Table 1. PMIP2 models references (resolutions are in LOMAT)

N°  Model Resolution  Laboratory References

1 CCsSM 128x 64 National Center of Atmospheric Research (NCAR), USA  Collins et al.(2001))

2 CNRM 128x 64 Centre National de Recherche Scientifique (CNRM) Salas-Mlia et al.(2005

3 LOVECLIM 64 x 32  Universié Catholique de Louvain Driesschaert et a{2007)
Goosse et al2010 ; in review

4 ECHAM5 96x 48 Max Planck Institute for Meteorology (MPIM) Roeckner et al2003

5 FGOALS 128x 60 State Key Laboratory of Numerical Modeling for Atmospheri&onggiang et al(2002 2004

Sciences and Geophysical Fluid Dynamics (LASG)

6 HadCM3 96x 73 Hadley Centre Gordon et al(2000
Pope et al(2000

7 IPSL-CM4 96 x 72  Institut Pierre Simon Laplace Marti et al. (2009

8 MIROC3.2.2 128x 64 Center for Climate System Research, University of Tokyo Hasumi and Emor{2004)

9 MIROC3.2 128x 64 Center for Climate System Research, University of Tokyo Hasumi and Emor{2004)

gridded dataset, ETOP®2from the National Geophysical comparison with CTRL permafrost data and to highlight the
Data Center (NGDC) which gathers several topographic andnfluence of downscaling on permafrost modelling, we com-
bathymetric sources from satellite data and relief modelspare permafrost distributions deduced from interpolated and
(Amante and Eakin2008. We build the LGM topography from downscaled temperatures for each climate model. We
from ETOPO2 adding in each grid-point a value correspond-will assign the name “GAM-RV” for the procedure of apply-
ing to the difference between LGM and present orographying the RV conditions on temperatures downscaled by GAM.
This difference is calculated with the elevation provided by In the following, we only discuss the results from two rep-
present and LGM simulations of the ice-sheet model GRISLIresentative models: on the one side ECHAMS is heavily in-
(Peyaud et a].2007) to account for the ice-sheet elevation fluenced by GAM-RV downscaling and shows the best re-
and subsidence, and the sea-level changes. The first contsults on CTRL period. One the other side, IPSL-CM4 is the
nentality index is the “diffusive” continentality (DCO). DCO coldest climate model leading to good downscaling results
is between 0 and 100 % and can be attributed to the shorten LGM for this method.

est distance to the ocean, 0 being at the ocean edge and 100Figures3a and4a compare permafrost extents from inter-
being very remote from any ocean corresponding to a purelypolated temperatures (respectively for ECHAM5 and IPSL-
continental air parcel. The physical interpretation is the ef-CM4) when applying the RV conditions to derive permafrost,
fect of coastal atmospheric circulation on temperature. DCOwith the permafrost distribution from IPA/FGDC. The two
does not depend on time and is only affected by sea-levemaps reveal several differences between climate models and
change (or land-sea distribution). The second continentalityCTRL permafrost data at high latitudes and in mountain re-
index is the “advective” continentality (ACO). ACO is some- gions, especially in Himalayas for ECHAMS5 and in east-
what similar to DCO albeit being modulated by the large- ern Siberia for IPSL-CM4. Both permafrost distributions
scale wind intensities and directions from climate models andare driven by the latitudinal gradient of large-scale temper-
represents an index of the continentalization of air masses. lature. Even if IPSL-CM4 has a higher resolution (Table

is based on the hypothesis that an air parcel becomes pramproving the representation of regional topographic struc-
gressively continental as it travels over land influencing tem-tures, it does not contain enough local-scale information to
perature. Hence, ACO depends on the changes of land-saapresent the permafrost distribution from IPA/FGDC obser-
distribution and on wind fields coming from the climate mod- vations. Applying the GAM-RV approach, we obtain the
els simulations. For more details about ACO and DCO seecorresponding Figs3b and4b. Downscaling shows better

Appendix??. permafrost distributions, particularly for discontinuous per-
mafrost at high latitudes. For both climate models, some
3.2.2 GAM results on present climate differences with CTRL permafrost data disappear and the

major contribution of local-scale topography clearly appears

In this section, GAM is applied to the nine climate mod- for ECHAMS with the onset of colder temperatures over the
els from the PMIP2 database. In order to make a visualSiberian mountains or the Himalayas. However, the infor-
mation provided by inferred downscaled temperatures can-

1Computerized digital images and associated databases a0t reduce the differences on the Scandinavian peninsula and
available from the National Geophysical Data Center, Nationalaround Himalayas or in eastern Siberia for IPSL-CM4.
Oceanic and Atmospheric Administration, US Department of Com-
merce http://www.ngdc.noaa.gov/.
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¢ ) Permafrost limits from downscaled permafrost - ECHAMS5

Legend :

| |

1
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| |

N | D | C

vs.
Data N

I I I I I I

I I I I I I
Model| N I N I N I D I D I D I ¢
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I I I I I I
Fig. 3. CTRL permafrost comparison between ECHAMS5 and the IPA/FGDC permafrost ifedd=.obtained with a bilinear interpolation of
temperatures and the RV conditions to derive permaffb}ts the same from the downscaled temperatures by G@EMs the downscaled
permafrost index by ML-GAM. In the legend panel,“N” corresponds to “No permafrost”, “D” to “Discontinuous permafrost” and “C” to
“Continuous permafrost”. The highlighted categories with bold letters show the agreement between model and data.
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¢ ) Permafrost limits from downscaled permafrost - IPSL-CM4

. | |
Legend : I -| -
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vs.
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Fig. 4. CTRL permafrost comparison between IPSL-CM4 and the IPA/FGDC permafrost ifajég.obtained with a bilinear interpolation
of temperatures and the RV conditions to derive permaf(b¥ts the same from the downscaled temperatures by G&Ms the downscaled
permafrost index by ML-GAM. In the legend panel,“N” corresponds to “No permafrost”, “D” to “Discontinuous permafrost” and “C” to
“Continuous permafrost”. The highlighted categories with bold letters show the agreement between model and data.
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To quantitatively assess the effect of the downscaling onThis index can take values between 0 and 1 and measures
CTRL permafrost representation, we measure the agreemettte intensity or quality of the agreemeftdhen 196Q Fleiss
between permafrost distributions from downscaled climateet al, 1969 based on a simple counting of matching and non-
models and IPA/FGDC observations with different numeri- matching grid-points in a matrix used to represent errors in
cal indices, the results of which are listed in TaBl&Vithout assigning classes. Without downscaling, ECHAMS obtains a
GAM-RV downscaling, climate models obtain a smaller to- « of 0.64, while the value is 0.68 for IPSL-CM4 correspond-
tal permafrost area than observations from IPA/FGDC, withing respectively to 72 % and 74 % of a maximum agreement
a difference of 3 x 10°km? and 31 x 10° km? respectively  beyond chance of 0.88 and 0.91. With GAM-RV, the ¥4
for ECHAM5 and IPSL-CM4. Contrary to our expecta- increases by 14 % for ECHAMS and 4% for IPSL-CM4.
tions, these differences with CTRL permafrost data increaseMoreover, all studied climate models obtaing close to
with GAM-RV downscaling to about £km? for both cli- their «. Consequently, the results obtained by GAM-RV are
mate models in comparison with interpolated fields. In or- statistically relevant and in better agreement with permafrost
der to distinguish between continuous and discontinuous perdata from IPA/FGDC than using a simple interpolation of
mafrost, we consider their respective areas. The smaller petemperatures.
mafrost area predicted by GAM-RV is mainly explained by a  Despite non-systematic improvement from GAM on per-
decrease of the continuous permafrost area of abduk 1  mafrost distribution, this method is informative for tem-
1P km? for ECHAMS5 and 08 x 10°km? for IPSL-CM4.  perature downscaling on CTRL period. All climate mod-
The area of discontinuous permafrost slightly increases fokls obtained a percentage of explained variance between 97
ECHAMS (+0.2 x 10°km?) and decreases-0.3x 10°km?)  and 100% with respect to temperature observations. GAM
for IPSL-CM4. To quantify the proportion of permafrost brings downscaled climate models closer to the CRU clima-
simulated in right location, %CP (%DP) is the percentagetology by improving the temperature distributiorréc et al,
of continuous (discontinuous) permafrost in agreement with2007a Martin et al, 2011). Hence, the limits of the GAM-
permafrost data. %CP (%DP) corresponds to the ratio oRV method are mainly due to the RV relationship. We con-
continuous (discontinuous) matching area (respectively infirm that the RV relationship does not provide enough in-
blue and turquoise areas on m&psnd 4) over the con-  formation for local-scale permafrost distribution and leads
tinuous (discontinuous) area from IPA/FGDC observations.to a close dependence between temperature and permafrost.
These percentages of common area between permafrost datée permafrost distribution from climate models is strongly
and climate models are obtained by summing up the surfaceriven by the latitudinal gradient of temperature, leading to
of the grid-cells including continuous (discontinuous) per- a disagreement with CTRL permafrost data. Furthermore,
mafrost for both. For example, 0%DP means that discon-applying the RV conditions on CRU temperatures leads to a
tinuous permafrost from climate model and data are entirelytotal permafrost area of 1x 10°km?. Based on the hy-
non-overlapping. GAM-RV reduces all percentages of aboutpothesis that CRU and CTRL permafrost data have no un-
5%, except for %DP from 16 to 31 % for ECHAM. The re- certainties, the RV relationship induces an error-@6.0 %
sults for these two climate models show the limits of the compared to permafrost data (Fig). Consequently, GAM-
GAM-RV method. Figureba shows the relative difference RV includes this error and does not improve the permafrost
with permafrost data from IPA/FGDC for all interpolated and distribution beyond the CRU permafrost distribution.
downscaled climate models. We confirm the decrease of to-
tal permafrost area for most of downscaled climate models
by GAM-RV with a median relative difference with CTRL 4 An alternative approach: the Multinomial
permafrost data of 27.4 % against-21.8 % for the interpo- Logistic — GAM
lated climate models. The plots also reveal a weaker vari-
ability between climate models results with downscaling. In- Using temperature downscaling to reconstruct permafrost
deed, in Table2 GAM-RV reduces the standard deviation limits requires conditions to go from continuous to discrete
for all area indices. Although standard deviation computedvalues. As shown in Sect8.1and3.2.2 the RV relation-
on small-sample is not very reliable statistically, it gives a ship is only based on the contribution of temperature for per-
first indication about the variability between climate models mafrost distribution. A study at a local-scale needs more
results. In conclusion, it clearly appears that the resolutioninformation. Here, we propose to enlarge the spectrum of
plays a significant role in permafrost prediction. GAM-RV relationships between permafrost and several variables.
provides local information improving the CTRL permafrost  To link a categorical variable, such as permafrost, with
distribution. continuous variables, a common statistical technique is the

These area indices provide numerical information on theuse of logistic models representing the occurrence proba-
permafrost extent but do not quantify the statistical relevancébility of an event (often binary, e.g. permafrost or no per-
of agreement between climate models and permafrost datanafrost). This probability can take continuous values be-
To judge if the GAM-RV results are better than the agreementween 0 and 1. For instanc€alef et al.(2005 built a
by chance, we use the kappa coefficient AppendixA). hierarchical logistic regression model (three binary logistic
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Table 2. PMIP2 quantitative results for CTRL period. “DATA’ column corresponds to IPA/FGDC permafrost index. The CPA, DPA, PA,

and PD indices are respectively set for continuous, discontinuous, total permafrost areas and total permafrost difference with data and are
expressed in km?2. The %CP and %DP indices are respectively the percentages of continuous and discontinuous permafrost in agreement
with data. Thec, kmax kadj indices corresponds respectively to theoefficient, its maximum value and its adjusted value. Thendg is

the percentage afmax reached by. Numbers from 1 to 9 correspond to the PMIP2 models referenced in Tatita ECHAMS5 (n°4) and

IPSL-CM4 (rP7) models shaded in grey. Mean and standard deviation are computed with the nine climate models. For detailed explanation
see tex#d.1and3.2.2

PMIP2 MODELS DATA 1 2 3 4 5 6 7 8 9 MEeAN  STD. DEV.

CPA 69 65 56 64 74 58 65 59 85 83 6.8 1.1

DPA 72 37 44 37 33 54 47 52 35 36 42 0.8
g PA=CPA+DPA 141 102 100 10( 107 113 112 111 120 119 109 0.7
£ PD=PAnogei— PAdata 00 —-40 -41 -41 -34 -29 -29 -31 -22 -22 -32 0.7
S %CP 00 8 66 82 8 69 81 73 9 89 80 9
& %DP 100 30 26 27 16 32 32 3 21 22 27 6
S - 071 061 069 064 062 068 068 066 066 0.66 0.03

Kmax - 087 087 086 08 093 092 091 088 089 0.89 0.02

Yokmax - 8 71 80 72 67 74 74 75 75 75 4

Kad - 079 073 078 074 072 077 076 075 075 0.76 0.02
o CPA 69 67 52 53 63 43 54/ 51 73 71 5.9 1.0
3 DPA 72 36 52 39 35 56 51 49 35 36 43 0.9
S PA=CPA+DPA 141 103 104 92 98 99 105 100 107 107 102 0.5
€ PD=PhAnodel- PAdata 00 -39 -37 -49 -43 -43 -36 -42 -34 -34 —40 0.5
S %CP 100 82 64 75 84 49 67 67 8 85 73 12
>  %DP 00 29 33 32 3 30 35 38 27 27 31 3
;F K - 071 063 070 072 059 068 067 071 071  0.68 0.04
< kmax - 086 089 082 084 084 087 086 088 088 086 0.02
O Y%kmax - 83 72 8 8 70 78 78 80 80 79 5

Kad - 080 074 079 080 071 097 077 079 079 077 0.03
5 CPA 69 69 78 7.0 68 77 71 71 72 712 7.2 0.3
S DPA 72 59 49 62 59 44 57 54 57 58 5.5 0.6
S PA=CPA+DPA 141 128 127 137 127 121 129 125 129 129 127 0.3
S PD=PAuodel- PAtata 00 -14 -15 -10 -14 -20 -13 -16 -12 -12 -14 0.3
S  wCP 00 9 92 9 90 89 91 91 92 92 91 1
S  %DP 100 63 51 62 61 48 61 57 61 62 58 5
S « - 081 077 080 080 075 081 080 082 082 0.80 0.02
3 kmax - 094 089 095 094 087 093 092 093 094 092 0.03
2 %kmax - 87 87 8 8 87 87 87 88 88 87 1

Kad - 091 088 090 090 088 090 090 091 091  0.90 0.01

regression steps) to predict the potential equilibrium distribu-(Multinomial Logistic GAM — ML-GAM) to model the oc-
tion of four major vegetation types. More classicalgaly  currence probabilities of three permafrost indices (continu-
and Sweeney2007) used the logistic regression as SDM to ous, discontinuous and no permafrost) as illustrated inZig.
estimate the probabilities of wet and dry days occurrences. Irfright half).

the context of periglacial landform8renning(2009 (rock Here, ML-GAM is used as a SDM to estimate the occur-
glacier detection) ot.uoto and Hjort(2009 (subartic geo- rence probabilities of the explained variablg, permafrost
morphological processes prediction) obtained good resultén our case) for each category or clgdsy a sum of nonlin-
with logistic GAM. Lewkowicz and Edni€2004 used lo-  ear functions (), conditionally on numerical or categorical
gistic regression to map mountain permafrost. So, logisticpredictors &) (Hastie and Tibshiranil990:

models can be based on linear or nonlinear combinations of Py — i i

the predictors depending on the context of the study. In thg, ( (i —J)> =B; +ka(Xi,k), Vj£r, )
case of permafrost downscaling, at our knowledge, no evi- PYi=r) ]

dence allows us to focus on linear or nonlinear relationships

between permafrost and the predictors. To be consistent withhere P (Y; = j) is the probability of thej™ permafrost cat-

Sect.3.2, we use a logistic GAM in its multinomial form €gory,; is the intercept for thg"™ permafrost categorysi
are defined as cubic splines for th® predictor,n is the
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Fig. 5. Total permafrost area relative differences with data for CTR®Land LGM (b) periods. For each period, from left to right are the
relative differences obtained from each method, respectively from: the interpolated PMIP2 models, the downscaled climate models by GAM-
RV and the downscaled climate models by ML-GAM. For each case, the values of the nine models are shown by symbols with their median
on the right (red bullets). For CTRL period, permafrost relative difference derived from CRU temperatures with the RV relationship is shown
with blue bullets. IPA/FGDa) andVandenberghe et &201]) (b) data are drawn with blue dashed lines, with their respective values.

number of predictors ands the grid-cell. To use ML-GAM, isotherms combinations frorRenssen and Vandenberghe
we need to define a reference categely (Ve obtainj — 1 (2003. Figure 6 shows the probabilities to obtain each
relationships and the occurrence probability of the referencecategory of permafrost in each approach. On the pan-
category can be deduced W@';l:lP(Yi =j)=1(consid- els 6a—c, we apply the RV conditions on CRU tempera-
eringm categories). ML-GAM is performed with the R pack- tures. On the panel6d—f, we model by ML-GAM the
age “VGAM" (Yee and Wild 1996 Yee 2010ab). relationship between permafrost from IPA/FGDC and two

Local-scale data used for the calibration step are directlyPredictors: the annual mean temperature and the coldest
the local-scale observed permafrost indices from IPA/FGDC.Month mean temperature from CRU. Thus, each graph on
In order to compare ML-GAM and GAM-RV, we use the the left is directly comparable to the corresponding one on
same predictors for both methods. As discussed in Sect.  the right (Fig.6). Conditions fromRenssen and Vanden-
the topography, the temperature and the continentality inerghe(2003 clearly appear with probabilities of 0 or 1
dices were chosen for temperature downscaling. Althougtflepending on the isotherms described in S8cL.  With
the temperature and the topography are clearly necessary fOL-GAM, visible similarities with the relationships used in
permafrost representation, a study on the predictors choic€AM-RV demonstrates the consistency of the method. How-
for permafrost downscaling could be an interesting prospecgVer. the probabilities can take continuous values between
but is not the purpose of this article. 0 and 1 and allows us to obtain for each grid-point three
complementary probabilities for the continuous, discontin-

In GAM-RV we had to set the relationship between ber- uous and no permafrost categories. In ML-GAM, the mod-
mafrost and downscaled temperatures. Here, the logistic

models build a new relationship between permafrost and th élled relationship also varies according to the selected predic-

selected predictors which can be compared to the previou(?sorS and the studied climate model. Bypassing temperature
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) 20 o Mpg, o
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b ) Discontinuous permafrost - RV e ) Discontinuous permafrost - ML-GAM

¢ ) No permafrost - RV f) No permafrost - ML-GAM

Fig. 6. Permafrost occurrence probabilities based on the annual mean local temperatures and the coldest month mean local temperatures fror
CRU data. Panel&@-c) (on the left) corresponds to the fixed temperature conditions RRemssen and Vandenberg{#903 (isotherms
combinations) used for the GAM-RV downscaling method; pa(e#$) (on the right) shows the modelled relationship between permafrost

and the two same variables by the ML-GAM downscaling method. The grey area corresponds to the cells mathematically impossible
(i.e. when the annual mean temperature is colder than the coldest month mean temperature).
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downscaling allows computing a more complex relationshipthat our results are statistically better than chance agreement.
between predictors and permafrost. To calibrate on a largéMoreover, all climate models havexagj closer tox than
region as Eurasian continent also allows to build a global rewith GAM-RV: the intrinsic biases are slightly weaker with
lationship, which could be tested on other region of interest ML-GAM.

Moreover, the multinomial logistic models could take into  Nevertheless, some inconsistencies persist. A high dis-
account other permafrost categories (e.g. sporadic or isolatedgreement on the permafrost category persists at high lat-

permafrostfrench 2007). itudes for ECHAM5S (Fig.3c). As previously mentioned,
this is due to the physics included in the statistical model:
4.1 Comparison GAM-RV vs. ML-GAM on present the predictors choice is relevant for temperature downscal-
climate ing. Soil temperature, vegetation type and snow cover

could bring more consistent physics to reconstruct a high-
To confront ML-GAM with GAM, F|g83C and 4c com- resolution permafrost distribution.
pare the permafrost indices downscaled by ML-GAM (re-  without temperature downscaling ML-GAM leads to a
spectively for ECHAMS and IPSL-CM4) with the permafrost more precise spatial representation of permafrost in bet-
indices downscaled by ML-GAM correspond in each grid- pypassing temperature downscaling provides an adapted
pOInttO the hlgheStOCCUI‘rence probablllty. Permafrostd|Str|'re|ationship between permafrost and predictors for each
bution obtained with ML-GAM shows better agreement with ¢[imate model.
CTRL permafrost data than that obtained with GAM-RV oy resuilts are the byproduct of several factors such as: the
(I_:|gs.3(:_and4c). The co_ntnbut_lon of local-scale topography ability of climate models to correctly represent temperature,
directly improves the discontinuous permafrost representathe relationship between permafrost and chosen variables,
tion in the Himalayas and Tibetan plateau and in other areagyc. |t is thus difficult to independently quantify the error
with mountain permafrost (Alps, Scandinavian and Siberiansf each factor in the final result. Such a sensitivity analysis

mountains). For both climate models, most of the differ- s heyond the scope of our paper and will be the subject of
ences persisting with the GAM-RV downscaling disappearfyther studies.

with ML-GAM, as in eastern Siberia for IPSL-CM4.
In Table2, the ML-GAM downscaling improves the con-
tinuous and discontinuous permafrost areas for both climat&  Application to LGM permafrost
models. In comparison with interpolated climate models,
ML-GAM reduces the total permafrost difference with obser- In a climate change context it is interesting to test the abil-
vations from IPA/FGDC to % x 10° km? for ECHAMS5 and ity of the statistical models to represent past climates when
1.6 x 1P km? for IPSL-CM4. The percentages of continuous they have been calibrated on present climate. In terms of
and discontinuous areas in agreement with CTRL permafrostemperatures and precipitatidartin et al.(2011) obtained
data also increase to values close to 90 % for %CP and 53 %emarkable results from the EMIC CLIMBERG@nopolski
for %DP. In the Figha ML-GAM downscaling clearly shows etal, 200Q Petoukhov et a|2000 in comparison with GCM
improvements for all climate models with a median relative outputs for the Last Glacial Maximum (LGM) climate and
difference with CTRL permafrost data 9.6 %, compared concluded to a great potential of GAM for applications in
with GAM-RV (—21.8 %). paleoclimatology {rac et al, 2007 Martin et al, 2011).
Moreover, the permafrost distribution is very similar be- Can we thus export the statistical models at a different
tween ECHAMS5 and IPSL-CM4. The same patterns canpast climate, as the LGM, in terms of permafrost distribu-
also be observed on the maps of the different climate modelsion? To answer this question, we apply the three SDMs on
(not shown) especially for continuous permafrost. Figgge LGM outputs from the PMIP2 climate models. For this time
clearly shows that ML-GAM reduces the variability between period, the permafrost distribution used to compare with cli-
climate models results, more than with GAM-RV. Indeed, mate models is fronvandenberghe et a12011).
ML-GAM has a weaker standard deviation whatever the in- Figures7a and8a compare the permafrost distribution
dex (Table2). This alternative method brings all climate from interpolated climate models (with the RV conditions)
models closer to the permafrost distribution from IPA/FGDC with the LGM permafrost data. Without downscaling,
observations. ECHAMS5 and IPSL-CM4 already appear too warm to cor-
In terms ofk statistics, ML-GAM systematically improves rectly represent permafrost limits from LGM data. For
the statistical agreement from 0.64 to 0.80 for ECHAM5 and ECHAMS5, the permafrost limits do not comply with the
from 0.68 to 0.80 for IPSL-CM4. The higheréqax reflects  Fennoscandian ice-sheet contours. Moreover, its coarse
a better agreement with CTRL permafrost data. Note that therography is not enough to represent mountain permafrost
standard deviation is also reduced komdices: the quality in Himalayas. IPSL-CM4 is colder and has a higher reso-
of the agreement is equal for all climate models. ML-GAM lution, providing a more representative permafrost distribu-
provides more confidence than GAM-RV, based on the facttion around the ice-sheet and the Tibetan plateau. Figllres
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Fig. 7. LGM permafrost comparison between ECHAMS5 andaedenberghe et 82011 permafrost index(a) Is obtained with a bilinear
interpolation of temperatures and the RV conditions to derive permaflids the same from the downscaled temperatures by G&Ms
the downscaled permafrost index by ML-GAM. In the legend panel,“N” corresponds to “No permafrost”, “D” to “Discontinuous permafrost
and “C” to “Continuous permafrost”. The highlighted categories with bold letters show the agreement between model and data.

”

Clim. Past, 7, 12251246 2011 www.clim-past.net/7/1225/2011/



G. Levavasseur et al.: Statistical downscaling applied to permafrost distribution 1239

¢ ) Permafrost limits from downscaled permafrost - IPSL-CM4
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Fig. 8. LGM permafrost comparison between IPSL-CM4 and\ardenberghe et 82011 permafrost index(a) Is obtained with a bilinear
interpolation of temperatures and the RV conditions to derive permaflids the same from the downscaled temperatures by G&Ms
the downscaled permafrost index by ML-GAM. In the legend panel,“N” corresponds to “No permafrost”, “D” to “Discontinuous permafrost”
and “C” to “Continuous permafrost”. The highlighted categories with bold letters show the agreement between model and data.
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and 8b compare in the same way the permafrost distribu-
tion from GAM-RV with the permafrost distribution from
Vandenberghe et 8)2011). The contribution of the local-
scale topography appears particularly with the onset of
mountain permafrost in Himalayas for ECHAMS as for
present climate. IPSL-CM4 obtains slightly warmer temper-
atures with GAM, leading to permafrost limits at higher lat-
itudes. Permafrost downscaled with ML-GAM is compared
with LGM permafrost data in Figg§c and8c. For those two
climate models continuous permafrost over Himalayas and
Tibetan Plateau disappears almost completely and discontin-
uous permafrost reaches higher latitudes than GAM-RV for
both climate models.

We give in Table3 the numerical indices for LGM pe-
riod. Quantitatively, GAM-RV does not systematically im-
prove the total permafrost area: .41for ECHAMS and
—1.6 x 10 km? for IPSL-CM4 with respect to interpolated
fields. Contrary to present climate, ML-GAM increases this
discrepancy with +2 for ECHAMS and—4.2 x 10° km? for
IPSL-CM4. Then, even if GAM-RV degrades the permafrost
distribution for IPSL-CM4, it remains the best representa-
tion with the highest %CP (63 %) and %DP (7 %) for this
method. ML-GAM improve the percentage of discontinuous
permafrost predicted in right location for each climate model.

Nevertheless, whatever SDM is used, the surface differ-
ences with LGM permafrost data are more pronounced than
in CTRL period. Continuous permafrost derived from down-
scaled temperature is still underestimated. Moreover, de-
pending on CMs, no or few discontinuous permafrost is pre-
dicted at the right place (%DP ranges between 0 and 20 %).
No significant decrease appears in terms of variability be-

tween all climate models results: the measured standard de-4.

viation (Table3) is higher than CTRL period and remains
fairly stable around & 10° km2, except for ML-GAM which
halves the variability between climate models results. Fig-
ure 5b for LGM clearly shows that GAM-RV or logistic
models face difficulties in improving the nine climate models
with median relative differences with LGM permafrost data
around—40%. This shows that the permafrost distribution
in the LGM is strongly driven by the large-scale temperature
from climate models and we cannot base our interpretation of
the LGM results on CTRL results. The SDMs cannot correct

the large gap between interpolated climate models and LGM 5-

permafrost data (Figob). With a simulated LGM climate
closer to LGM data, downscaling could have more impact.

The larger differences with LGM permafrost data than at
CTRL period imply a lowerc coefficient (Table3). With
GAM-RV no changes appear for ECHAM5 except for the
Kkadj showing larger biases in calculation of For IPSL-
CM4 thek coefficient decreases from 0.63 to 0.58. GAM-
RV does not improve the statistical agreement, reflecting the
weak potential of climate models to correctly represent per-
mafrost limits for the LGM period. ML-GAM gives similar
performances.
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We can summarize with some remarks:

1. The contribution of GAM or ML-GAM is not suffi-

cient to reduce the gap between climate models and
LGM permafrost data in reproducing local-scale per-
mafrost. ML-GAM produces a more realistic LGM per-
mafrost distribution reaching latitudes similar to those
from LGM data and improving the agreement with it.
Nevertheless, the SDMs do not reduce the variability
between climate models results at LGM.

. The SDMs include the strong contribution of tempera-

ture and topography. Nevertheless as for CTRL period,
the predictors ACO and DCO are not informative for
permafrost. So common differences appear between the
two periods. Despite consistent patterns, the permafrost
distribution is still strongly driven by the latitudinal gra-
dient of temperature and incorrect transitions from con-
tinuous to no permafrost appear.

. With the hypotheses that LGM and CTRL permafrost

data have no uncertainties, that the simulated climates
from climate models are at equilibrium with permafrost
data, and that the relationships between permafrost and
chosen variables are stable with time, the nine climate
models from PMIP2 cannot simulate a cold enough cli-
mate to represent the LGM period. Another study from
Saito et al(2010 confirms this result. Thus, the meth-
ods are limited by large-scale errors from climate mod-
els in the LGM time period. The better climate models
are, the larger the improvement by the SDMs.

The differences observed between downscaled climate
models and data partly come from the relationship be-
tween permafrost and the other variables. The RV con-
ditions are based on present observations. The relation-
ship between permafrost and predictors from ML-GAM
is also calibrated in the CTRL period. The continuous
or discontinuous permafrost extents may not be defined
by the same isotherms seen in secfioh in the case of
multinomial logistic models, the influence of different
predictors may change in another climate.

Finally, LGM permafrost data are best currently avail-
able and based on geological observations of the max-
imum permafrost extent and correspond to the coldest
time period around LGM (21 kyr BP). The LGM time
period is defined with the maximum extent of the ice-
sheets which is probably not directly related to tem-
perature minimum. A lag may exist between the LGM
data and the LGM climate simulated by climate models.
Therefore, LGM permafrost data are likely to be over-
estimated. The differences between downscaled per-
mafrost from PMIP2 models and LGM permafrost ex-
tent fromVandenberghe et 82011 should be taken as

a gross estimate.
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Table 3. PMIP2 quantitative results for LGM period. “DATA’ column correspondd/émdenberghe et 82011 data. The CPA, DPA, PA,

and PD indices are respectively set for continuous, discontinuous, total permafrost areas and total permafrost difference with data and are
expressed in km?2. The %CP and %DP indices are respectively the percentages of continuous and discontinuous permafrost in agreement
with data. Thec, kmax kadj indices corresponds respectively to theoefficient, its maximum value and its adjusted value. Theadg is

the percentage afmax reached by. Numbers from 1 to 9 correspond to the PMIP2 models referenced in Tatita ECHAMS5 (n°4) and

IPSL-CM4 (rP7) models shaded in grey. Mean and standard deviation are computed with the nine climate models. For detailed explanation

see texb.

PMIP2 MoDELS DATA 1 2 3 4 5 6 7 8 9 MEAN STD. DEV.
CPA 293 170 120 10¢ 141 138 158 202 147 135 14.7 2.8
DPA 45 45 5.3 48 40 3.7 4.6 6.3 4.4 4.6 4.7 0.8
- PA=CPA+DPA 338 215 172 157 181 175 204 265 191 182 19.4 3.2
£ PD=PAnogel- PAdata 00 -123 -16.6 -181 -157 -163 -134 7.3 -147 -156 -—14.4 3.2
S %CP 100 58 41 37 48 47 54 69 50 46 50 9
& %DP 100 0 3 1 0 1 0 7 1 1 1 2
£« - 054 040 039 047 045 050 0.63 047 044 0.48 0.07
Kmax - 065 051 049 058 061 062 074 059 055 0.59 0.07
YoKmax - 82 79 78 81 73 82 85 81 80 80 3
Kadj - 055 045 029 047 051 043 064 040 036 0.45 0.10
CPA 293 174 123 94 145 132 148 184 133 124 14.0 2.7
3 DPA 45 4.2 5.6 59 49 41 4.8 6.6 4.7 47 5.0 0.8
§ PA=CPA+DPA 338 216 178 15: 195 172 196 249 180 171 19.0 2.9
S PD=PAnodel~ PAdata 00 -122 -160 -185 -143 -166 -142 -89 -158 -167 -1438 2.9
g %CP 100 59 42 32 50 45 51 63 45 42 48 9
>  %DP 100 1 3 1 4 2 0 0.757 1 1 2 2
;F K - 054 041 035 047 043 048 058 044 041 0.46 0.07
< kmax - 066 051 045 058 054 059 068 055 052 0.56 0.07
O %max - 83 79 77 81 80 81 84 80 79 81 2
Kadj - 055 046 024 053 049 040 058 043 040 0.45 0.10
5 CPA 293 157 142 144 135 155 174 164 129 135 14.9 15
S DPA 45 5.7 47 73 638 4.3 5.9 5.9 5.6 5.8 5.8 0.9
9 PA=CPA+DPA 338 215 189 21.¢ 202 198 233 223 185 193 20.6 1.6
S PD=PAnodel— PAdata 00 -123 -148 -12.0 -135 -140 -105 —-115 -152 -145 -13.2 1.6
5 %cP 100 54 49 49 46 52 59 56 44 46 51 5
s %DP 100 9 10 11 9 8 11 10 9 9 10 1
S o« - 052 047 048 046 050 057 053 044 045 0.49 0.04
2 kmax - 062 057 058 057 060 0.68 064 054 056 0.60 0.04
2 YKmax - 83 82 82 81 83 84 83 81 81 82 1
Kadj - 069 065 065 064 068 073 070 062 063 0.66 0.04
6 Conclusions to describe the permafrost distribution at a local-scale. The

approach by multinomial logistic models is more adapted for
We described three statistical downscaling methods (SDMsj}his application. The modelled relationship, as a function of
for permafrost studies. In order to obtain high-resolution per-several variables, provides a better representation of continu-
mafrost spatial distribution, we first applied these SDMs onous permafrost and mountain permafrost (especially discon-
climate models outputs for the present climate (CTRL). Thetinuous permafrost) and reduces the variability between all
approach by Generalized Additive Model (GAM) is suitable climate models from PMIP2 database with a larger statisti-
for representing the temperature behavior at a local-scaleal relevance. The results from a multinomial logistic model
(Vrac et al, 2007H. According toMartin et al.(201)) re- (Multinomial Logistic GAM — ML-GAM) confirm that a
sults, choosing a GAM leads to a relevant physical modelstudy at a local-scale needs more physics about permafrost,
for the small scales with simple statistical relationships thatsuch as the hydrological physical processes for example.
are easily interpretable. Applying the conditions defined by
Renssen and Vandenbergt2903 on downscaled tempera- Applying the SDMs on a different climate, the Last Glacial
tures improves the spatial distribution of discontinuous per-Maximum (LGM), leads to permafrost distribution in slightly
mafrost but underestimates the total permafrost area. Thibetter agreement with LGM permafrost data. Neverthe-
GAM-RV method reaches some limits with a permafrost less, downscaling of LGM permafrost extent faces difficul-
strongly driven by the latitudinal gradient of temperatures.ties with larger differences than CTRL period. None of
Indeed, a simple combination of isotherms is not sufficientthe studied climate models can represent a LGM permafrost
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extent comparable to observed data. This is true for GAM-Appendix A

RV and ML-GAM. The variability between climate models

strongly depends on large-scale temperature that cannot bEhe kappa statistic

completely corrected by the SDMs. The differences with

LGM data reduce the contribution of downscaling and haveThe following example details the calculation of theoef-

different sources: (i) an assumed stationarity of the RV con-ficient:

ditions for GAM-RV and the modelled relationship for ML-

GAM; (ii) an initial bias from climate models which can-

not simulate a proper LGM climate; (iii) a complex per- C D N

mafrost dynamics under-represented in the SDMs by pre-

dictors; (iv) a possible lag between the LGM period from

climate models and the period represented by LGM data

from Vandenberghe et a{2011). Our approach is thus es-

sentially limited by the ability of climate models to produce Total n1 np2 ng3 n

correct climatic signal, especially for climates different from

CTRL. In order to obtain better contribution of the SDMs,

climate models need to improve the representation of largefobs= —an i (A1)

scale temperature on continents at LGM. i=1

To complement this study, some points would deserve to

be deepened to improve our results. Permafrost is an hetpy,ance= 22”' Xn i, (A2)

erogeneous variable with few observations. Climate mod- i=1

els temperature, used to derive permafrost distribution, is a

global and continuous variable. Therefore, we need local« = )

scale predictors that will add local variability to climate sig- 1= Penance

nal. Our SDMs use local-scale topography but other vari-where “C”, “D” and “N” correspond to the three categories

ables used in permafrost dynamic models, such as vegetatidiContinuous”, “Discontinuous” and “No” permafrost, ;

or soil properties Nlarchenko et a).2008, are required to  are the cell counts with the classification totajsandn ;, n

have a representative physics of permafrost processes andisithe number of grid-cells,psis the proportion of observed

better distribution. The potential of the multinomial logis- agreement anéchancelS the proportion of random agreement

tic models lies in the control of the physics included in the or expected by chance with independent samples «TWed-

predictors. In this study we used the same predictors fouues are difficult to interpret because the kappa'’s scale (be-

both approaches. It is obvious that they can and should béween 0 and 1) depends on the number of categories and on

changed in the ML-GAM methods to represent more accu-the sample-size. To gauge the strength of agreement without

rately the permafrost distribution. Future research shouldan arbitrary scale, we use the kappa maximugnf). Based

include snow cover and thickness and soil temperature, essn the same counting as the it estimates the best possi-

pecially for mountain permafrost influenced by snow cover.ble agreement (the maximum attainakle We adjust the

We can also imagine building new “geographical” predic- cell counts £; ;) maximizing the agreement (celig ;—;),

tors such as exposure to the sun depending on the orientatidteeping the same classification totals of each category for

of the topography slopeBfown, 1969. The balancing and climate models and data;( and»n ;); this allows a more

choice of “geographical” and “physical” predictors is cru- appropriate scaling of (Sim and anhxzooa The differ-

cial to maintain good local representation and a consistenence betweer and 1 indicates the total unachieved agree-

and robust physical model applicable to different climates.ment. Accordingly, the difference betweerand«max indi-

To reconcile models and data, it would also be interesting tocates the unachieved agreement beyond chance, and the dif-

downscale permafrost at colder periods simulated by climatderence betweernax and 1 shows the effect on agreement

models, such as Heinrich evenikageyama et al2005. We of pre-existing factors that tend to produce unequal classifi-

would be able to determine the needed temperatures to obtairation totals such as nonlinearities or different sensitivities

the best permafrost limits according to the data fidanden-  of climate models. Moreover, to provide useful information

berghe et al(2011). In this context, we also have to keep in to interpret the magnitude af coefficient, we add the per-

mind our strong assumption of a near-surface permafrost ircentage okmay reached by (%oxmax). Calculation of thec

equilibrium with climate signal. Downscaling of transient coefficient implies intrinsic biase<{cchetti and Feinstejn

climate simulations could help us to evaluate how large thel990. The adjusted kappa{gj, also called the prevalence-

difference is due to this disequilibrium. adjusted bias-adjusted kappa - PABAK) is also based on the
same counting as thewith adjusted cell counts minimizing
those intrinsic biases. It gives an indication of the likely ef-
fects of biases alongside the true valuecofif the value of

MODEL Total

C my1 ni12 ni3  ng.
D np1 mn22 np3 np.
N ng1 n32 n33z n3,

DATA

Pobs— Pchance (A3)
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Kadj IS close tak, then the biases are weaki and Wright rate of this changes of continentali#y”, along one patlp
2009. kagjis necessary to interpret in an appropriate mannerduring a time d can be written:
the statistical meaning af coefficient.

. dr
dcp =[ico— C]? (Cl)
Appendix B The indexic gives the local relaxation state, that is O over
sea or 100 over lands. For each land point, we compute the
continentality by considering a large number of regularly dis-

tributed radial pathes converging towards the point from all
directions. We affect a probability , to each path, and form

List of abbreviations

CTRL Pre-industrial or present time period .
LGM Last Glacial Maximum time period the weighted average:
SDM Statistical Downscaling Method
RV Renssen and Vandenberg2€03 C= pr xCp (C2)
permafrost-temperature relationships p
GAM Generalized Additive Model
ML-GAM  Multinomial Logistic Generalized Firstly, we define a diffusive continentality (DCO) which cor-
Additive Model _ responds to the shortest distance to the ocean. If a point is
GAM-RV  Renssen and Vandenberg(903 relation- close to a sea or an ocean, then DCO is close to zero. Con-
ships applied after downscaling by GAM versely, a point far away from the sea translates into a DCO
cM ?“mate.M?dels . . close to one. This index might be adapted to account for lo-
ACO ‘Advective” COntinentality . i, . -
DCO “Diffusive” COntinentality cal thermal influence of maritime air. The rate in the decay
: . i =n2x 4 wher
%CP Percentage of continuous permafrost IaV\_’ of Eq. C) takes t_he simple for t=In Ia’ e_ e
in agreement with permafrost data. dl is an elementary displacement along the path, ignd
%DP Percentage of discontinuous permafrost a tunable characteristic distance to the sea which was set to
in agreement with permafrost data. 200km in this study. In such a case the wind tends to alternate
between sea-land and land-sea directions, leaving no specific
monthly mean direction. Hence, all the radial pathes are con-
sidered equiprobable. Therefore, DCO does not effectively
depend on the large scale wind simulated by the model.
Appendix C

Secondly, we define the advective continentality (ACO),
which will depend on the large scale monthly mean wind
produced by the model. This might be suited to represent
water vapour transport from the sea. The decay probabil-
ity will now depend on the local magnitude of this wind
Description taken from Vrac et al. (20073 and U =|U|, by % —1In2 x ;ﬂ % UL whereU, =10ms! and
Martin et al.(2011): 1, is a tunable characteristic distance set to 200 km in this

The proximity to the sea can locally induce a milder and study. Also, the large scale wind direction will define a pref-
wetter climate. To take into account this effect, we use theerential direction for local winds, penalizing an air-mass trav-
wind simulated by a climate model and the topography toeling against the wind, via the total probability of each path
build a continentality index, which can help to representwhich is computed by:
coastal effects and inland air drying. We can define differ-
ent types of continentality, corresponding to different types 1 max( x U, 0)
of wind circulations, different spatial scales, and different Wr = ) wp/ U] x
effects on climate. prEep

Thug, we defin.e a quantity WhiCh is asked to account forwhere 1 is the path local unit vector, and the face?
the drying of an air parcel moving from the sea over the land, o pWP
or in reverse the wetting of an air parcel leaving the land toindicates a subsequent normalization.
move over the sea. This continentali®; should also ac-
count for the effect of oceans thermal inertia upon coastalAcknowledgementsVe thank C. Dumas for deriving LGM
areas. Practically, it is a percentage between 0 and 100: @pography from GRISLI data. G. Levavasseur is supported by
for a purely maritime air, and 100 for a purely continental UVSQ, D. Roche by INSU/CNRS.
air. To build this index, we assume that when an air parcel
moves along one patp, its continentality follows a simple
decay law. Thus, we define a local decay titrguch that the

“Diffusive” (DCO) and “Advective” (ACO)
continentality predictors

dl (C3)

Edited by: M. Claussen
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