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ABSTRACT
Can an agent efficiently learn to distinguish extremely similar fi-
nancial models in an environment dominated by noise and regime
changes? Standard statistical methods based on averaging or rank-
ing models fail precisely because of regime changes and noisy
environments. Additional contextual information in Deep Rein-
forcement Learning (DRL), helps training an agent distinguish dif-
ferent financial models whose time series are very similar. Our
contributions are four-fold: (i) we combine model-based and model-
free Reinforcement Learning (RL). The last model-free RL allows
us selecting the different models, (ii) we present a concept, called
"walk-forward analysis", which is defined by successive training
and testing based on expanding periods, to assert the robustness
of the resulting agent, (iii) we present a method based on the im-
portance of features that looks like the one in gradient boosting
methods and is based on features sensitivities, (iv) last but not least,
we introduce the concept of statistical difference significance based
on a two-tailed T-test, to highlight the ways in which our models dif-
fer from more traditional ones. Our experimental results show that
our approach outperforms the benchmarks in almost all evaluation
metrics commonly used in financial mathematics, namely net per-
formance, Sharpe ratio, Sortino, maximum drawdown, maximum
drawdown over volatility.
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1 INTRODUCTION
Reinforcement Learning (RL) aims at the automatic acquisition of
skills or some other form of intelligence, to behave appropriately
and wisely in situations potentially never seen before. When it
comes to real world situations, there are two challenges: having a
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data-efficient learning method and being able to handle complex
and unknown dynamical systems that can be difficult to model. Be-
cause the dynamic nature of the environment may be challenging
to learn, a first stream of RL methods has consisted in modeling
the environment with a model called model-based RL. Model-based
methods tend to excel in learning complex environments. Examples
include, robotics applications, where it is highly desirable to learn
using the lowest possible number of real-world trails [34] or in
finance where there are a lot of regime changes [26, 30, 47]. A first
generation of model-based RL, relying on Gaussian processes and
time-varying linear dynamical systems, provides excellent perfor-
mance in low-data regimes [18–20, 37, 38]. A second generation,
leveraging neural network predictive models [? ] and more recently,
deep networks [21, 27, 46], has emerged to leverage the fact that
neural networks offer high-capacity function approximators even
in domains with high-dimensional observations [24, 35, 49] while
retaining some sample efficiency of a model-based approach. Re-
cently, [17] have proposed some solutions for model-based RL to
allowing them to achieve asymptotic performance of model-free
models. For a full survey of model-based RL model, we refer to [45].

In contrast, the model-free approach aims to learn the optimal
actions blindly without a representation of the environment dy-
namics. Works like [29, 41, 44] have come with the promise that
such models learn from raw inputs (and raw pixels) regardless of
the game and provide some exciting capacities to handle new situ-
ations and environments, though at the cost of data efficiency as
they require millions of training runs.

Hence, it is not surprising that the research community has fo-
cused on a new generation of models combining model-free and
model-based RL approaches. [16] aims at combining model-based
and model-free updates for Trajectory-Centric RL. [51] uses tem-
poral difference models to have a model-free deep RL approach
for model-based control. [54] answers the question of when to use
parametric models in reinforcement learning. Likewise, [32] gives
some hints when to trust model-based policy optimization versus
model-free. [25] shows how to use model-based value estimation
for efficient model-free RL.

All these works, mostly applied to robotics and virtual envi-
ronments, have not hitherto been widely used for financial time
series. Our aim is to be able to distinguish various financial models
that can be read or interpreted as model-based RL methods. These
models aim at predicting volatility in financial markets in the con-
text of portfolio allocation according to volatility target methods.
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These models are quite diverse and encompass statistical models
based on historical data such as simple and naive moving average
models, multivariate generalized auto-regressive conditional het-
eroskedasticity (GARCH) models, high-frequency based volatility
models (HEAVY) [48] and forward-looking models such as implied
volatility or PCA decomposition of implied volatility indices. To
be able to decide on an allocation between these various models,
we rely on deep model-free RL. However, using just the last prices
does not work in our cases as the various volatility models have
very similar behaviors. Following [14] and [13], we also add con-
textual information like macro signals and risk appetite indices to
include additional information in our DRL agent hereby allowing
us to choose the pre-trained models that are best suited for a given
environment.

1.1 Related works
The literature on portfolio allocation in finance using either super-
vised or reinforcement learning has been attracting more attention
recently. Initially, [26, 30, 47] use deep networks to forecast next
period prices and to use this prediction to infer portfolio allocations.
The challenge of this approach is the weakness of predictions: fi-
nancial markets are well known to be non-stationary and to present
regime changes (see [22, 52, 59]).

More recently, [11, 15, 33, 39, 40, 42, 55–58, 60] have started using
deep reinforcement learning to do portfolio allocation. Transaction
costs can be easily included in the rules. However, these studies rely
on very distinct time series, which is a very different setup from
our specific problem. Secondly, they only do one training and test
period, and never test for model stability, which is a great concern
when the environment presents regime changes. Third, they do
not provide any tools that allow the interpretation of, or at least
explain the role and the importance of the model’s features. Last
but not least, they never test the statistical difference between the
benchmark and the resulting model.

1.2 Contribution
Our contributions are precisely motivated by the shortcomings
presented in the aforementioned remarks. They are four-fold:

• The use ofmodel-free RL to select variousmodels that
can be interpreted as model-based RL. In a noisy and
regime-changing environment like financial time series, the
practitioners’ approach is to use a model to represent the dy-
namics of financial markets. We use a model-free approach
to learn from states to actions and hence distinguish between
these initial models and choose which model-based RL to fa-
vor. In order to augment states, we use additional contextual
information.

• The walk-forward procedure. Because of the non-statio-
nary nature of time-dependent data, and especially financial
data, it is crucial to test DRL model stability. We present a
new methodology in DRL model evaluation, referred to as
walk-forward analysis that iteratively trains and tests models
on extending data sets. This can be seen as the analogy of
cross-validation for time series. This allows us to validate
that the selected hyper-parameters work well over time and
that the resulting models are stable over time.

• Features sensitivity procedure. Inspired by the concept
of feature importance in gradient boosting methods, we have
created a feature importance of our deep RL model based on
its sensitivity to features inputs. This allows us to rank each
feature at each date to provide some explanations why our
DRL agent chooses a particular action.

• A statistical approach to test model stability. Most RL
papers do not address the statistical difference between the
obtained actions and predefined baselines or benchmarks.
We introduce the concept of statistical difference as we want
to validate that the resulting model is statistically different
from the baseline results.

2 PROBLEM FORMULATION
Asset allocation is a major question for the asset management
industry. It aims at finding the best investment strategy to balance
risk versus reward by adjusting the percentage invested in each
portfolio asset according to risk tolerance, investment goals and
horizons.

Among these strategies, volatility targeting is very common.
Volatility targeting forecasts the amount to invest in various assets
based on their level of risk to target a constant and specific level
of volatility over time. Volatility acts as a proxy for risk. Volatility
targeting relies on the empirical evidence that a constant level of
volatility delivers some added value in terms of higher returns
and lower risk materialized by higher Sharpe ratios and lower
drawdowns, compared to a buy and hold strategy [23, 31, 50]. Indeed
it can be shown that Sharpe ratio makes a lot of sense for manager
to measure their performance. The distribution of Sharpe ratio
can be computed explicitly [3]. Sharpe ratio is not an accident and
is a good indicator of manager performance [10]. It can also be
related to other performance measures like Omega ratio [9] and
other performance ratios [8]. It also relies on the fact that past
volatility largely predicts future near-term volatility, while past
returns do not predict future returns. Hence, volatility is persistent,
meaning that high and low volatility regimes tend to be followed by
similar high and low volatility regimes. This evidence can be found
not only in stocks, but also in bonds, commodities and currencies.
Hence, a common model-based RL approach for solving the asset
allocation question is to model the dynamics of the future volatility.

To articulate the problem, volatility is defined as the standard
deviation of the returns of an asset. Altough it is hard to predict
volatility as financial times series are particularly noisy (see [2]),
predicting volatility can be done in multiple ways:

• Moving average: this model predicts volatility based on mov-
ing averages.

• Level shift: this model is based on a two-step approach that
allows the creation of abrupt jumps, another stylized fact of
volatility.

• GARCH: a generalized auto-regressive conditional heteroske-
dasticity model assumes that the return 𝑟𝑡 can be modeled
by a time series 𝑟𝑡 = 𝜇 + 𝜖𝑡 where 𝜇 is the expected return
and 𝜖𝑡 is a zero-mean white noise, and 𝜖𝑡 = 𝜎𝑡𝑧𝑡 , where 𝜎2𝑡 =

𝜔 + 𝛼𝜖2
𝑡−1 + 𝛽𝜎2

𝑡−1. The parameters (𝜇, 𝜔, 𝛼, 𝛽) are estimated
simultaneously by maximizing the log-likelihood.
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• GJR-GARCH: theGlosten-Jagannathan-Runkle GARCH (GJR-
GARCH) model is a variation of the GARCHmodel (see [28])
with the difference that 𝜎𝑡 , the variance of the white noise 𝜖𝑡 ,
is modelled as: 𝜎2𝑡 = 𝜔+(𝛼+𝛾𝑡−1)𝜖2𝑡−1+𝛽𝜎

2
𝑡−1 where 𝐼𝑡−1 = 1

if 𝑟𝑡−1 < 𝜇 and 0 otherwise. The parameters (𝜇, 𝜔, 𝛼,𝛾, 𝛽) are
estimated simultaneously by maximizing the log-likelihood.

• HEAVY: the HEAVY model utilizes high-frequency data for
the objective of multi-step volatility forecasting [48].

• HAR: this model is an heterogeneous auto-regressive (HAR)
model that aims at replicating how information actually
flows in financial markets from long-term to short-term
investors.

• Adjusted TYVIX: this model uses the TYVIX index to forecast
volatility in the bond future market.

• Adjusted Principal Component: this model uses Principal
Component Analysis to decompose a set of implied volatil-
ity indices into its main eigenvectors and renormalizes the
resulting volatility proxy to match a realized volatilty metric.

• RM2006: RM2006 uses a volatility forecast derived from an
exponentially weighted moving average (EWMA) metric.

In addition, volatility is the subject of intense modeling in option
pricing as presented in [4], [6], [5] or [7], and can even modeled
with Levy process see [1].

2.1 Mathematical formulation
We have𝑛 = 9models. Each model predicts a volatility for the rolled
U.S. 10-year note future contract that we shall call "bond future"
in the remainder of this paper. The bond future’s daily returns are
denoted by 𝑟𝑏𝑜𝑛𝑑𝑡 . These forecasts are then used to compute the
allocation to the bond future’s models. Mathematically, if the target
volatility of the strategy is denoted by 𝜎𝑡𝑎𝑟𝑔𝑒𝑡 and if the model 𝑖
predicts a bond future’s volatility 𝜎𝑖,𝑝𝑟𝑒𝑑𝑡 , the allocation in the bond
future’s model 𝑖 at time 𝑡 is given by the ratio between the target
volatility and the predicted volatility: 𝑏𝑖𝑡 =

𝜎𝑡𝑎𝑟𝑔𝑒𝑡

𝜎
𝑖,𝑝𝑟𝑒𝑑

𝑡−1
.

Hence, we can compute the daily amounts invested in each of the
bond future volatility models and create a corresponding time series
of returns 𝑟 𝑖𝑡 = 𝑏𝑖𝑡 ×𝑟𝑏𝑜𝑛𝑑𝑡 , consisting of investing in the bond future
according to the allocation computed by the volatility targeting
model 𝑖 . This provides 𝑛 time series of compounded returns whose
values are given by 𝑃𝑖𝑡 =

∏
𝑢=𝑡1 ...𝑡

(
1 + 𝑟 𝑖𝑢

)
. Our RL problem then

boils down to selecting the optimal portfolio allocation (with respect
to the cumulative reward) in each model-based RL strategies 𝑎𝑖𝑡
such that the portfolio weights sum up to one and are non-negative∑
𝑖=1..𝑛 𝑎

𝑖
𝑡 = 1 and 𝑎𝑖𝑡 ≥ 0 for any 𝑖 = 1..𝑛. These allocations are

precisely the continuous actions of the DRL model. This is not an
easy problem as the different volatility forecasts are quite similar.
Hence, the 𝑛 time series of compounded returns look almost the
same, making this RL problem non-trivial. Our aim is, in a sense,
to distinguish between the indistinguishable strategies that are
presented in Figure 1.

Compared to standard portfolio allocation problems, these strate-
gies’ returns are highly correlated and similar as presented by the
correlation matrix 2, with a lowest correlation of 97%.

Figure 1: Volatility targeting model price evolution

Following [53], we formulate this RL problem as a Markov De-
cision Process (MDP) problem. We define our MDP with a 6-tuple
M = (𝑇,𝛾,S,A, 𝑃, 𝑟 ) where:

• 𝑇 is the (possibly infinite) decision horizon,
• 𝛾 ∈ ]0, 1] is the discount factor,
• S is the state space,
• A is the action space,
• 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) is the transition probability from the state 𝑠𝑡
to 𝑠𝑡+1 given that the agent has chosen the action 𝑎𝑡 ,

• 𝑟 (𝑠𝑡 , 𝑎𝑡 ) is the reward for a state 𝑠𝑡 and an action 𝑎𝑡

Figure 2: Correlation between the different volatility target-
ing models’ returns

The agent’s objective is to maximize its expected cumulative
returns, given the start of the distribution. If we denote by 𝜋 the
policy mapping specifying the action to choose in a particular state,
𝜋 : S → A, the agent wants to maximize the expected cumulative
returns. This is written as: 𝐽𝜋 = E𝑠𝑡∼𝑃,𝑎𝑡∼𝜋

[∑𝑇
𝑡=1 𝛾

𝑡−1𝑟 (𝑠𝑡 , 𝑎𝑡 )
]
.

MDP assumes that we know all the states of the environment
and have all the information to make the optimal decision in every
state.

From a practical standpoint, there are a few limitations to ac-
commodate. First of all, the Markov property implies that knowing
the current state is sufficient. Hence, we modify the RL setting
by taking a pseudo state formed with a set of past observations
(𝑜𝑡−𝑛, 𝑜𝑡−𝑛−1, . . . , 𝑜𝑡−1, 𝑜𝑡 ). The trade-off is to take enough past ob-
servations to be close to a Markovian status without taking too
many observations which would result in noisy states.
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In our settings, the actions are continuous and consist in finding
at time 𝑡 the portfolio allocations 𝑎𝑖𝑡 in each volatility targeting
model. We denote by 𝑎𝑡 =

(
𝑎1𝑡 , ..., 𝑎

𝑛
𝑡

)𝑇 the portfolio weights vector.
Likewise, we denote by 𝑝𝑡 =

(
𝑝1𝑡 , ..., 𝑝

𝑛
𝑡

)𝑇 the closing price vector,

and by 𝑢𝑡 = 𝑝𝑡 ⊘ 𝑝𝑡−1 =
(
𝑝1𝑡 /𝑝1𝑡−1, ..., 𝑝

𝑛
𝑡 /𝑝𝑛𝑡−1

)𝑇
the price relative

difference vector, where ⊘ denotes the element-wise division, and
by 𝑟𝑡 =

(
𝑝1𝑡 /𝑝1𝑡−1 − 1, ..., 𝑝𝑛𝑡 /𝑝𝑛𝑡−1 − 1

)𝑇
the returns vector which is

also the percentage change of each closing prices 𝑝1𝑡 , ..., 𝑝
𝑛
𝑡 . Due

to price change in the market, at the end of the same period, the
weights evolve according to 𝑤𝑡−1 = (𝑢𝑡−1 ⊙ 𝑎𝑡−1)/(𝑢𝑡−1 .𝑎𝑡−1)
where ⊙ is the element-wise multiplication, and . the scalar product,
as shown by figure 3.

Figure 3: Weights evolution due to cost

The goal of the agent at time 𝑡 is hence to reallocate the portfolio
vector from𝑤𝑡−1 to 𝑎𝑡 by buying and selling the relevant assets, tak-
ing into account the transaction costs that are given by 𝛼 |𝑎𝑡−𝑤𝑡−1 |1
where 𝛼 is the percentage cost for a transaction (which is quite
low for future markets and given by 1 basis point) and |.|1 is the 𝐿1
norm operator. Hence at the end of time 𝑡 , the agent receives a port-
folio return given by 𝑎𝑡 .𝑢𝑡 − 𝛼 |𝑎𝑡 −𝑤𝑡−1 |1. The cumulative reward
corresponds to the sum of the logarithmic returns of the portfo-
lio strategy given by E

[∏𝑇
𝑡=1 log (𝑎𝑡 .𝑢𝑡 − 𝛼 |𝑎𝑡 −𝑤𝑡−1 |1)

]
, which

is easier to process in a tensor flow graph as a log sum expression
and is naturally given by E

[
log

(∑𝑇
𝑡=1 𝑎𝑡 .𝑢𝑡 − 𝛼 |𝑎𝑡 −𝑤𝑡−1 |1

)]
.

Actions are modeled by a multi-input, multi-layer convolution
network whose details are given by Figure 6. As noted in [12], [11]
and [15], convolution networks are better for selecting features in
DRL for portfolio allocation problem. The goal of the model-free
RL method is to find the network parameters. This is done by an
adversarial policy gradient method summarized by the algorithm 1
using traditional Adam optimization so that we have the benefit
of adaptive gradient descent with root mean square propagation
[36] with a learning rate of 5% and a number of iteration steps of
100,000 with an early stop criterion if the cumulative reward does
not improve after 15 iteration steps.

Figure 4: Overall architecture

2.2 Benchmarks
2.2.1 Markowitz. In order to benchmark our DRL approach, we
need to compare to traditional financial methods. Markowitz allo-
cation as presented in [43] is a widely-used benchmark in portfolio
allocation as it is a straightforward and intuitive mix between per-
formance and risk. In this approach, risk is represented by the
variance of the portfolio. Hence, the Markowitz portfolio mini-
mizes variance for a given expected return, which is solved by
standard quadratic programming optimization. If we denote by
𝜇 = (𝜇1, ..., 𝜇𝑛)𝑇 the expected returns for our 𝑛 model strategies
and by Σ the covariance matrix of these strategies’ returns, and
by 𝑟𝑚𝑖𝑛 the targeted minimum return, the Markowitz optimization
problem reads

Minimize 𝑤𝑇 Σ𝑤

subject to 𝜇𝑇𝑤 ≥ 𝑟𝑚𝑖𝑛,
∑

𝑖=1...𝑙
𝑤𝑖 = 1,𝑤 ≥ 0

2.2.2 Average. Another classical benchmark model for indistin-
guishable strategies, is the arithmetic average of all the volatility
targeting models. This seemingly naive benchmark is indeed per-
forming quite well for indistinguishable models as it mixes diversi-
fication and the mean reversion effects of these strategies.

2.2.3 Follow the winner. Another common strategy is to select the
best performer of the past year, and use it the subsequent year. If
there is some persistence of the models’ performance over time, this
simple methodologyworks well. It replicates the standard investor’s
behavior that tends to select strategies that have performed well
in the past. This strategy is referred to as "follow the winner" or
simply "the winner" strategy.

2.3 Procedure and walk forward analysis
The whole procedure is summarized by Figure 4. We have 𝑛 models
that represent the dynamics of the market volatility. We then add
the volatility and the contextual information to the states, thereby
yielding augmented states. The latter procedure is presented as
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the second step of the process. We then use a model-free RL ap-
proach to find the portfolio allocation among the various volatility
targeting models, corresponding to steps 3 and 4. In order to test
the robustness of our resulting DRL model, we introduce a new
methodology called walk forward analysis.

2.3.1 Walk forward analysis. In machine learning, the standard
approach is to do 𝑘-fold cross-validation. This approach breaks the
chronology of data and potentially uses past data in the test set.
Rather, we can take sliding test set and take past data as training
data. To ensure some stability, we favor to add incrementally new
data in the training set, at each new step.

Figure 5: Overall training process

Algorithm 1 Adversarial Policy Gradient
1: Input: initial policy parameters 𝜃 , empty replay buffer D
2: repeat
3: Reset replay buffer
4: while not Terminal do
5: Observe observation 𝑜 and select action 𝑎 = 𝜋𝜃 (𝑜) with

probability 𝑝 and random action with probability 1 − 𝑝 ,
6: Execute 𝑎 in the environment
7: Observe next observation 𝑜 ′, reward 𝑟 , and done signal 𝑑

to indicate whether 𝑜 ′ is terminal
8: Apply noise to next observation 𝑜 ′
9: Store (𝑜, 𝑎, 𝑜 ′) in replay buffer D
10: if Terminal then
11: for however many updates in D do
12: Compute final reward 𝑅
13: end for
14: Update network parameter with Adam gradient ascent

®𝜃 −→ ®𝜃 + 𝜆∇ ®𝜃 𝐽 [0,𝑡 ] (𝜋 ®𝜃 )
15: end if
16: end while
17: until Convergence

This method is sometimes referred to as "anchoredwalk forward"
as we have anchored training data. It is also called "extending walk
forward" as we progressively extend the training set. The negative
effect of using extending training data set is that it adapts slowly
to new information. In our experience, since we have limited data
to train our DRL model, we use anchored walk forward to make
sure we have enough training data. Last but not least, as the test
set is always after the training set, walk forward analysis gives less
steps compared with cross-validation. In practice, and for our given
data set, we train our models from 2000 to the end of 2013 (giving
us at least 14 years of data) and use a repetitive test period of one
year from 2014 onward. Once a model has been selected, we also

test its statistical significance, defined as the difference between the
returns of two time series. We therefore do a T-test to validate how
different these time series are. The whole process is summarized
by Figure 5.

Figure 6: Multi-input DRL network

2.3.2 Model architecture. The states consist in two different types
of data: the asset inputs and the contextual inputs.

• Asset inputs are a truncated portion of the time series of
financial returns of the volatility targeting models and of
the volatility of these returns computed over a period of 20
observations. So if we denote by 𝑟 𝑖𝑡 the returns of model 𝑖 at
time 𝑡 , and by 𝜎𝑖𝑡 the standard deviation of returns over the
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last 𝑑 = 20 periods, asset inputs are given by a 3-D tensor

denoted by 𝐴𝑡 = [𝑅𝑡 ,𝑉𝑡 ], with 𝑅𝑡 =
©«

𝑟1𝑡−𝑛 ... 𝑟1𝑡
... ... ...

𝑟𝑚𝑡−𝑛 .... 𝑟𝑚𝑡

ª®¬ ,
and 𝑉𝑡 =

©«
𝜎1𝑡−𝑛 ... 𝜎1𝑡
... ... ...

𝜎𝑚𝑡−𝑛 .... 𝜎𝑚𝑡

ª®¬.
This setting with two layers (past returns and past volatil-
ities) is very different from the one presented in Jiang and
Liang [33], Liang et al. [40], Zhengyao et al. [60] that uses lay-
ers representing open, high, low and close prices, which are
not necessarily available for volatility target models. Adding
volatility is crucial to detect regime change and is surpris-
ingly absent from these works.

• Contextual inputs are a truncated portion of the time se-
ries of additional data that represent contextual information.
Contextual information enables our DRL agent to learn the
context, and are, in our problem, short-term and long-term
risk appetite indices and short-term and long-termmacro sig-
nals. Additionally, we include the maximum and minimum
portfolio strategies return and the maximum portfolio strate-
gies volatility. Similarly to asset inputs, standard deviations
is useful to detect regime changes. Contextual observations
are stored in a 2D matrix denoted by 𝐶𝑡 with stacked past
𝑝 individual contextual observations. The contextual state
reads

𝐶𝑡 =
©«
𝑐1𝑡−𝑛 ... 𝑐1𝑡
... ... ...

𝑐
𝑝
𝑡−𝑛 .... 𝑐

𝑝
𝑡

ª®¬.
The output of the network is a softmax layer that provides the

various allocations. As the dimensions of the assets and the con-
textual inputs are different, the network is a multi-input network
with various convolutional layers and a final softmax dense layer
as represented in Figure 6.

2.3.3 Features sensitivity analysis. One of the challenges of neural
networks relies in the difficulty to provide explainability about their
behaviors. Inspired by computer vision, we present a methodology
here that enables us to relate features to action. This concept is
based on features sensitivity analysis. Simply speaking, our neu-
ral network is a multi-variate function. Its inputs include all our
features, strategies, historical performances, standard deviations,
contextual information, short-term and long-term macro signals
and risk appetite indices. We denote these inputs by 𝑋 , which lives
in R𝑘 where 𝑘 is the number of features. Its outputs are the action
vector 𝑌 , which is an 𝑛-d array with elements between 0 and 1. This
action vector lives in an image set denoted by Y, which is a subset
of R𝑛 . Hence, the neural network is a function Φ : R𝑘 → Y with
Φ(𝑋 ) = 𝑌 . In order to project the various partial derivatives, we
take the L1 norm (denoted by |.|1) of the different partial derivatives
as follows: | 𝜕Φ(𝑋 )

𝜕𝑋
|1. The choice of the L1 norm is arbitrary but is

intuitively motivated by the fact that we want to scale the distance
of the gradient linearly.

In order to measure the sensitivity of the outputs, simply speak-
ing, we change the initial feature by its mean value over the last 𝑑
periods. This is inspired by a "what if" analysis where we would
like to measure the impact of changing the feature from its mean

Figure 7: Features sensitivity summary

value to its current value. In computer vision, the practice is not to
use the mean value but rather to switch off the pixel and set it to the
black pixel. In our case, using a zero value would not be relevant
as this would favor large features. We are really interested here in
measuring the sensitivity of our actions when a feature deviates
from its mean value as presented in figure 7.

The resulting value is computed numerically and provides us for
each feature a feature importance. We rank these features impor-
tance and assign arbitrarily the value 100 to the largest and 0 to the
lowest. This provides us with the following features importance
plot given below 8. We can notice that the HAR returns and volatil-
ity are teh most important features, followed by various returns
and volatility for the TYVIX model. Although returns and volatility
are dominating among the most important features, macro signals
0d observations comes as the 12th most important feature over
70 features with a very high score of 84.2. The features sensitivity
analysis confirms two things: i) it is useful to include volatility fea-
tures as they are good predictors of regime changes, ii) contextual
information plays a role as illustrated by the macro signal.

Figure 8: Model explainability
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3 OUT OF SAMPLE RESULTS
In this section, we compare the various models: the deep RL model
using states with contextual inputs and standard deviation, the
deep RL model without contextual inputs and standard deviation,
the average strategy, the Markowitz portfolio and the "the winner"
strategy. The results are the combination of the 7 distinct test pe-
riods: each year from 2014 to 2020. The resulting performance is
plotted in Figure 9. We notice that the deepRL model with con-
textual information and standard deviation is substantially higher
than the other models in terms of performance as it ends at 157,
whereas other models (the deepRL with no context, the average, the
Markowitz and "the winner" model) end at 147.6, 147.8, 145.5, 143.4
respectively. To make such a performance, the DRL model needs to
frequently rebalance between the various models (Figure 10) with
dominant allocations in GARCH and TYVIX models (Figure 11).

Figure 9: Model comparison

Figure 10: DRL portfolio allocation

3.1 Results description
3.1.1 Risk metrics. We provide various statistics in Table 1 for dif-
ferent time horizons: 1, 3 and 5 years. For each horizon, we put
the best model, according to the column’s criterion, in bold. The
Sharpe and Sortino ratios are computed on daily returns. Maximum
drawdown (written as mdd in the table), which is the maximum ob-
served loss from a peak to a trough for a portfolio, is also computed
on daily returns. DRL1 is the DRL model with standard deviations

Figure 11: Average model allocation

and contextual information, while DRL2 is a model with no con-
textual information and no standard deviation. Overall, DLR1, the
DRL model with contextual information and standard deviation,
performs better for 1, 3 and 5 years except for three-year maximum
drawdown. Globally, it provides a 1% increase in annual net return
for a 5-year horizon. It also increases the Sharpe ratio by 0.1 and
is able to reduce most of the maximum drawdowns except for the
3-year period. Markowitz portfolio selection and "the winner" strat-
egy, which are both traditional financial methods heavily used by
practitioners, do not work that well compared with a naive arith-
metic average and furthermore when compared to the DRL model
with context and standard deviation inputs. A potential explanation
may come from the fact that these volatility targeting strategies are
very similar making, the diversification effects non effective.

Table 1: Models comparison over 1, 3, 5 years

return sharpe sortino mdd mdd/vol

1 Year

DRL1 22.659 2.169 2.419 - 6.416 - 0.614
DRL2 20.712 2.014 2.167 - 6.584 - 0.640
Average 20.639 2.012 2.166 - 6.560 - 0.639
Markowitz 19.370 1.941 2.077 - 6.819 - 0.683
Winner 17.838 1.910 2.062 - 6.334 - 0.678

3 Years

DRL1 8.056 0.835 0.899 - 17.247 - 1.787
DRL2 7.308 0.783 0.834 - 16.912 - 1.812
Average 7.667 0.822 0.876 - 16.882 - 1.810
Markowitz 7.228 0.828 0.891 - 16.961 - 1.869
Winner 6.776 0.712 0.754 - 17.770 - 1.867

5 Years

DRL1 6.302 0.651 0.684 - 19.794 - 2.044
DRL2 5.220 0.565 0.584 - 20.211 - 2.187
Average 5.339 0.579 0.599 - 20.168 - 2.187
Markowitz 4.947 0.569 0.587 - 19.837 - 2.074
Winner 4.633 0.508 0.526 - 19.818 - 2.095
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3.1.2 Statistical significance. Following ourmethodology described
in 5, once we have computed the results for the various walk-
forward test periods, we do a T-statistic test to validate the sig-
nificance of the result. A first and naive T-stat test is to test the
statistical significance of the returns difference between the strate-
gies with 0. This is provided in Table 2. Given two models, we test
the null hypothesis that the difference of returns between the two
models is equal to 0. We provide the T-statistic and, in parenthesis,
the p-value. We take a p-value threshold of 5%, and put he cases
where we can reject the null hypothesis in bold. Hence, we conclude
that the DRL1 model is statistically different from DRL2 and "the
winner" models. For the other models, we fail to reject that they
are statistically different.

Table 2: T stat andP-values (in parenthesis) for the statistical
difference between returns.

Returns DRL2 Average Markowitz Winner

DRL1 2.7 (0.7%) 0.2 (85%) 1.5 (14.2%) 2 (4.9%)

DRL2 0 (99.8%) 0.4 (71.5%) 0.7 (48.2%)

Average 0.1(95.4%) 0.1 (92.7%)

Markowitz 0.2 (84.1%)

If we do the test on the returns running average (computed as
(∑𝑡

𝑢=0 𝑟𝑢/𝑡) for various times 𝑡 ) , the conclusions of the Student
test results are very different as shown in table3. For a p-value
threshold of 5%, we conclude that all the models are statistically
different, except when comparing the DRL2 and Average models or
the Average and "the winner" models. For the latter, we fail to reject
that they are statistically different. These results on the running
average are quite intuitive as we are able to distinguish the curve
in Figure 9.

Table 3: T-statistics and P-values (in parenthesis) for run-
ning average returns difference

Avg Return DRL2 Average Markowitz Winner

DRL1 72.1 (0%) 14 (0%) 44.1 (0%) 79.8 (0%)

DRL2 1.2 (22.3%) 24.6 (0%) 10 (0%)

Average 7.6(0%) 0.9 (38.7%)

Markowitz -13.1 (0%)

3.1.3 Results discussion. It is interesting to understand how the
DRLmodel achieves such a performance as it provides an additional
1% annual return over 5 years, and an increase in Sharpe ratio of
0.10. This is done simply by selecting the right strategies at the
right time. We notice that the DRL model selects the GARCHmodel
quite often and, more recently, the HAR and HEAVY model (Figure
10). When targeting a given volatility level, capital weights are
inversely proportional to the volatility estimates. Hence, lower
volatility estimates give higher weights and in a bullish market give
higher returns. Conversely, higher volatility estimates drive capital

weights lower and have better performance in a bearish market.
The allocation of these models evolve quite a bit as shown by Figure
12, which plots the rank of the first 5 models.

Figure 12: Volatility estimates rank

We can therefore test if the DRL model has a tendency to select
volatility targeting models that favor lower volatility estimates. If
we plot the occurrence of rank by dominant model for the DRL
model, we observe that the DRL model selects the lowest volatility
estimate model quite often (38.2% of the time) but also tends to
select the highest volatility models giving a U shape to the occur-
rence of rank Figure as given in 13. This U shape confirms two
things: i) the model has a tendency to select either the lowest or
highest volatility estimates models, which are known to perform
best in bullish markets or bearish markets (however, it does not
select these models blindly as it is able to time when to select the
lowest or highest volatility estimates); ii) the DRL model is able to
reduce maximum drawdowns while increasing net annual returns
as seen in Table 1. This capacity to simultaneously increase net
annual returns and decrease maximum drawdowns indicates a ca-
pacity to detect regime changes. Indeed, a random guess would only
increase the leverage when selecting lowest volatility estimates,
thus resulting in higher maximum drawdowns.

Figure 13: Occurrence of rank for the DRL model

3.2 Benefits of DRL
The advantages of context based DRL are numerous: (i) by design,
DRL directly maps market conditions to actions and can thus adapt
to regime changes, (ii) DRL can incorporate additional data and be
a multi-input method, as opposed to more traditional optimization
methods.
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3.3 Future work
As nice as this may look, there is room for improvement as more
contextual data and architectural networks choices could be tested.

4 CONCLUSION
In this work, we propose a model-free RL approach to select volatil-
ity targeting models that can be interpreted as a mix of model-free
and model-based RL. The last model-free step enables us to select
the allocation in each model. These models aim at describing and
simplifying the volatility behavior. Thanks to the addition of volatil-
ity and context, we are able to find an efficient allocation among
these volatility targeting models. The profitability and ability of this
method to reduce risk are verified as we are able to overperform
the various benchmarks. The use of successive training and testing
sets enables us to stress test the robustness of the resulting agent.
Features sensitivity analysis confirms the importance of volatility
and contextual variables and explains the DRL agent’s better per-
formance. Last but not least, statistical tests validate that results
are statistically significant.
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