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Abstract—This work presents a new approach to design the
controllers for MEMS gyroscopes based on the robust H∞
synthesis. A systematic and flexible method for designing digital
controllers for the drive and sense modes of a Coriolis vibratory
gyroscope is proposed. Furthermore, the sinusoidal signals are
directly controlled instead of their amplitude and phase, so that
(de)modulation is not required in the control loops. This fact
allows us to simplify the electronic design and to provide formal
guarantees of stability and performance. First practical results
are presented, proving the implementability of our approach.

Index Terms—Direct control, H∞ synthesis, MEMS gyroscope,
digital control.

I. INTRODUCTION

MEMS gyroscopes are microdevices used to measure the
angular rate of objects. Their working principle relies on
the oscillations of a proof mass along two perpendicular
axes – ~x and ~y –, defining the so-called drive and sense
modes. Oscillations are driven along the ~x-axis. If the device
is submitted to an angular rate Ωz (perpendicular to ~x and
~y), a Coriolis force, proportional to Ωz , appears, provoking
oscillations along the ~y-axis. Therefore, if the Coriolis force
can be estimated, Ωz can be computed [1]. For an accurate
measure of Ωz , control loops are required to (i) regulate the
amplitude and phase of the oscillations on the drive mode,
and (ii) compensate for the forces acting on the sense mode,
producing an estimate of the Coriolis force.

In the literature, several control strategies are proposed to
fulfill the above requirements. For the drive mode control, we
can mention: the automatic gain control (AGC) combined with
a phase-locked loop (PLL), see, e.g., [1], [2]; and the self-
oscillating AGC, see, e.g., [3]. For the sense mode closed-loop
operation, the most widespread architectures are: the in-phase
and in-quadrature compensation loops, see, e.g., [1], [2]; and
the electro-mechanical Σ∆ (EM-Σ∆), see [4], [5].

In general, these control architectures have the advantage of
being of a simple implementation. In addition, except for the
EM-Σ∆, they work with low-frequency signals (envelopes or
baseband signals), such that the control objectives can be cast
as to track or reject constant signals. Hence, PI-like controllers
can be employed [1]–[3]. In the particular case of the EM-Σ∆,
the controller design, inspired by the classical Σ∆ converters,
follows a more complex but still accessible framework [4].

On the other hand, the main drawback of these nonlinear
strategies is the lack of performance and stability guarantees.
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In general, drive and sense modes, despite the mechanical
coupling between them, have control loops independently
designed. Hence, there are no guarantees that when the drive
and sense loops are closed, the whole system will be stable and
achieve the desired performance. Moreover, the presence of
nonlinear elements in the loops (such as relays, modulators or
mixers, envelope detector) requires, for the controller design,
a model linearization [1], [3], [4], which is often valid for a
single operating point.

An alternative approach is to consider a classical feedback
architecture (from the Control Theory point of view), which
we name direct control. In this architecture, the controller is
directly connected to the MEMS gyroscope, without nonlinear
elements in between. Besides, since the MEMS gyroscope can
be modeled as a linear system [1], [6], well-established control
design methods can be employed, including multivariable
ones. Thus, the couplings between drive and sense modes can
be adequately considered, providing guarantees of stability and
performance for the overall closed-loop system.

The use of the direct control architecture for MEMS gyro-
scopes is not new, see, e.g., [6], [7]. However, practical results
are rarely reported in the literature, which might indicate issues
with the implementation of the proposed solutions.

In this work, we propose a design method for a multivari-
able digital controller based on the celebrated H∞ synthesis
and the direct control architecture. The proposed solution is
implemented on the platform AS3125-SDK, operating with
an experimental MEMS gyroscope, to demonstrate the imple-
mentability and the validity of the proposed approach.

The paper is organized as follows. Section II recalls the
operating principles of the MEMS gyroscopes and details the
direct control architecture. Section III presents the H∞ syn-
thesis for the digital controller design. Section IV presents the
implementation results, while Section V draws the conclusions
and perspectives of this work.

II. SYSTEM DESCRIPTION AND DIRECT CONTROL
ARCHITECTURE

A. MEMS Gyroscope Model

The dynamic behavior of a MEMS gyroscope can be
described through its governing differential equations, such
as in [6], defining a multi-input multi-output (MIMO) linear
system, denoted G(Ωz), whose parameters depend on the



angular rate Ωz . From the input-to-output perspective, we can
consider the following representation:[

x
y

]
= G(Ωz)

[
ux
uy

]
=

[
Gxx(Ωz) Gxy(Ωz)
Gyx(Ωz) Gyy(Ωz)

] [
ux
uy

]
,

where the diagonal terms Gxx and Gyy correspond to the
principal resonating modes (drive and sense) with resonance
frequencies ω0x and ω0y , and quality factors Qx and Qy .
The indices x and y denote the drive and sense modes,
respectively. The off-diagonal terms Gxy and Gyx correspond
to the coupling transfers between these two resonant modes.
The input signal ux (respectively uy) is a voltage proportional
to the force applied to the drive (resp. sense) mode; and the
output signal x (resp. y) is a voltage proportional to the proof
mass displacements along the ~x- and ~y-axes.

B. Closed-loop Operation

In the closed-loop operation, the proof mass is driven to
oscillate along the ~x-axis following a sinusoidal reference
signal xref of amplitude Aref and frequency ω0, that is,

xref (t) = Aref sin (ω0t) . (1)

Because of the high quality factor of the drive mode, ω0 is
intended to be as close as possible to ω0x [6].

When the device is submitted to a nonzero angular rate
Ωz , a Coriolis force appears, producing secondary oscillations
along ~y. This Coriolis force, denoted Fcy , is defined as

Fcy(t) ∝ Ωz(t) · ẋ(t). (2)

If x tracks xref , (2) can then be rewritten as

Fcy(t) ∝ Ωz(t) · cos (ω0t) . (3)

Therefore, it is possible to measure Ωz by demodulating
Fcy . In closed-loop, Fcy is often estimated through the so-
called force-to-rebalance strategy, which uses a controller to
compensate for the Coriolis force, keeping y(t) ≡ 0. If the
coupling between the drive and sense modes is negligible,
the force uy required to keep y(t) ≡ 0 is then proportional
to (3), and we can thus define the Coriolis force estimate
uest = −uy ∝ Fcy . If the cross-coupling cannot be neglected,
ancillary control loops (quadrature compensation or others)
might be necessary to provide an accurate measure.

To summarize, in order to obtain an accurate measure of
Ωz , we need: (i) a good tracking of xref by x, and (ii) an
accurate estimation of Fcy by uest.

C. Direct Control Architecture

To pursue the above requirements, we propose to use the
direct control architecture, which is depicted in Fig. 1. It is
composed of the MEMS gyroscope, a digital controller Kd

with digital-to-analog (DAC) and analog-to-digital converters
(ADC) with sampling frequency Fs, and a demodulator. The
to-be-controlled system (DACs, ADCs and G) is denoted Gd.

In the direct control architecture, the controller Kd, based on
the signals xref , x and y, directly applies the control signals
ux and uy to the drive and sense modes, respectively. We

Fig. 1. Direct control architecture with a digital controller.

also highlight that the controller is a MIMO system. Hence,
we have a single controller that operates the drive and sense
modes simultaneously, without the need for ancillary feedback
loops to deal with their couplings. This point is an essential
advantage of this control architecture compared to those with
individual control loops.

Another advantage of this architecture is that the demodula-
tion is outside the loops, simplifying the electronic design. In
addition, the to-be-controlled system Gd is linear. This is not
the case when considering the usual control architecture for
the gyroscope operation. Taking the nonlinearities out of the
closed-loop does not necessarily mean that the overall behavior
of the sensor is improved in terms of nonlinearity. However,
since the to-be-controlled system is linear, well-established
control design methods can be employed, guaranteeing sta-
bility and performance for the closed-loop system.

This architecture may present some drawbacks as well.
First, advanced control design methods may be required, and,
depending on the method, the controller may present a high
order, being more complex than PI-like controllers. Moreover,
to respect the sampling theorem, while digital implementation,
the sampling frequency Fs must be at least the double of ω0y

(here, ω0y > ω0x ). This point can be a limitation for gyro-
scopes whose resonance frequencies are too high. Finally, the
frequency of the reference signal does not keep track of ω0x .
An external mechanism would be needed to track variations
of ω0x . Despite these drawbacks, the above advantages make
this control architecture an interesting alternative. Its design
and implementation are the focus of the following sections.

III. MULTIVARIABLE DIGITAL CONTROL DESIGN

A. Control Design Towards Digital Implementation

The presence of ADCs and DCAs modifies the dynamics
of the to-be-controlled system Gd with respect to G. Thus,
they have to be properly considered for the controller design.
Here, the gyroscope model Gd is obtained through system
identification [8], [9], taking into account the effects of the
ADCs and DACs. The steps to design a digital controller are
thus summarized:

1) Given a discrete-time (DT) model Gd, a continuous-
time (CT) model Gc is obtained through the bilinear (or
Tustin) transform.

2) Based on Gc, a CT controller Kc is designed. Here, we
use the H∞ synthesis, detailed in the next subsection.

3) The DT model Kd of the controller is finally obtained
through the bilinear transform of Kc.

Further details can be found in [10] and references therein.



Fig. 2. H∞ criterion.

B. H∞ Synthesis

In this work, we adopt the H∞ synthesis, in which the
controller design is formulated as an optimization problem
subject to mathematical constraints. These constraints express
stability, performance and robustness requirements as a math-
ematical criterion to be minimized. Here, we present the most
relevant aspects of the method. For further details, we refer
the interested reader to [11], for instance.

For the controller design, the Coriolis forces are assumed
to be exogenous disturbances dx and dy of the type

dx(t) = Adx
sin (ω0t+ φx)

dy(t) = Ady
sin (ω0t+ φy) , (4)

where Adx
∈ R, φx ∈ R, Ady

∈ R and φy ∈ R. In this case,
Gc becomes a linear time-invariant (LTI) system (computed
with Ωz = 0). Then, the estimation specification can be recast
as the rejection of the disturbance dy on the estimation error.
Indeed, if we define uest = −uy and the estimation error
udy

= dy−uest = dy +uy , by rejecting dy on udy
, uest tends

to the Coriolis force dy .
Based on the above discussion and on Sec. II-B, the main

control objectives are defined as follows:
(i) reference tracking: x tracks the signal xref of (1), i.e.,

εx , xref − x→ 0;
(ii) disturbance rejection: dy of (4) is rejected on the signal

udy
, i.e., udy

→ 0.
For our application, we consider the scheme of Fig. 2,

where we include the measurement noises nx and ny and
define the signals of interest w̃ = (xref , dx, dy, nx, ny)T

and z̃ = (εx, ux, udy
)T , weighting functions Ww =

diag (Ww1
, . . . Ww5

) and Wz = diag (Wz1 , . . . Wz3) such
that w = (w1, w2, w3, w4, w5)T = W−1w w̃ and z =
(z1, z2, z3)T = Wz z̃. The problem is then formulated as to
compute a controller such that the closed-loop system of Fig. 2
is stable and

‖Tw→z(s)‖∞ < γ, (5)

where Ta→b denotes the transfer from a signal a to a signal b
and the variable γ > 0 defines the performance level.

If this problem has a solution for γ < 1, then (5) implies

∀ω ∈ R, ∀k ∈ {1, ..., 5} , ∀l ∈ {1, ..., 3} ,
|Tw̃k→z̃l (jω)| < |Wzl (jω)Wwk

(jω)|−1 .
(6)

Hence, it is possible, via a judicious choice of the weighting
functions, to impose upper bounds on |Tw̃k→z̃l (jω)|, and,

as a consequence, the desired control specifications. Several
specifications can thus be addressed, including robust stability.
The complete description is available in [12]. In the sequel,
we focus on the two main control objectives.

(i) Reference tracking: From (6) (k = l = 1), we have

∀ω ∈ R,
∣∣Txref→εx (jω)

∣∣ < |Wz1 (jω)Ww1
(jω)|−1 .

For xref given in (1) with ω0 = ω0x , the objective is to
obtain |εx| < εxmax |Aref | in steady-state, which is equiv-
alent to

∣∣Txref→εx (jω0x)
∣∣ < εxmax , where εxmax ∈ R+ is

the maximum allowed relative tracking error. The weighting
functions Ww1

and Wz1 are then chosen to express this control
specification. For instance, we can use

Ww1(s)Wz1(s) = k
1 + α1s+ βs2

1 + α2s+ βs2
,

where the parameters k > 0, α1 > α2 > 0 and β > 0 are
tuned such as |Ww1

(jω0x)Wz1 (jω0x)|−1 ≤ εxmax
.

(ii) Disturbance rejection (Coriolis force estimation):
Similarly to the previous specification and from (6) with k =
l = 3, Wz3 and Ww3

are chosen such as,∣∣∣Tdy→udy
(jω0x)

∣∣∣ < |Wz3(jω0x)Ww3
(jω0x)|−1 < εumax

,

where εumax
∈ R+ is the maximum allowed estimation error

with respect to the disturbance dy .

IV. IMPLEMENTATION RESULTS

The proposed approach is implemented on the Asygn
platform AS3125-SDK, which contains a high-performance
front-end IC and a high-speed FPGA, where the controller
is programmed. We use Fs ≈ 5.5 ω0x/(2π). The gyroscope
is a prototype adapted to the experimental protocol. Tests at
rest and on a rotating table are made at room temperature.
The purpose of these tests is to evaluate the implementation
of the control loops and their efficiency. In particular, the
reference tracking and the disturbance rejection specifications
are evaluated. We consider the following specifications:
• reference tracking with εxmax

= 0.5%;
• disturbance rejection with εumax

= 1%.
A DT MIMO model of the gyroscope is obtained by

identification and the electrical coupling is compensated, as
presented in [8]. The key parameters of the drive and sense
modes are ω0x = 2π · 11 586 rad/s, ω0y = 2π · 11 677 rad/s,
Qx = 80502 and Qy = 8099.

Based on this model and following the approach of Sec. III,
we design a DT MIMO controller with γ = 0.95. Further
details on the identification results and on the controller design
are provided in [12].

To verify the reference tracking specification, we apply
a reference signal of the form of (1) with Aref = 0.5 V.
The results at rest (Ωz = 0) are presented in Fig. 3 (left),
where we observe that the signals x and xref are almost
superposed, indicating a good reference tracking. The ratio of
the power spectral densities of εx and xref gives an estimate
of
∣∣Txref→εx

∣∣ and allows to evaluate the reference tracking



Fig. 3. Implementation results for the reference tracking (left) and for the
disturbance rejection (right) at rest (Ωz = 0).

Fig. 4. Power spectral density estimates of the relative tracking error εx/xref

(left) and of the relative estimation error udy/dy (right) at rest (Ωz = 0).

specification. At the frequency ω0x , Fig. 4 (left) reveals that
this gain is around −68 dB, i.e., 0.04% < 0.5%, fulfilling the
specification.

The estimation error cannot be directly obtained, since the
real Coriolis force is unknown. To evaluate the estimation
error, an artificial disturbance dy (see (4)) of amplitude
Ady

= 0.5 V is added on uy . The results at rest (Ωz = 0)
are presented in Fig. 3 (right) and an estimate of

∣∣∣Tdy→udy

∣∣∣ is
presented in Fig. 4 (right), revealing a gain close to −56 dB,
i.e., 0.16% < 1%. Therefore, the estimation specification is
fulfilled as well.

We also test the closed-loop operation of the sen-
sor and its performance on a rotating table with Ωz ∈
{−300, −200, −100, 100, 200, 300} °/s. Regarding the ref-
erence tracking and the disturbance rejection specifications for
different angular rates, the results are similar to those with
Ωz = 0 (see Fig. 3 and Fig. 4), proving the validity of the
proposed approach. Finally, the Coriolis force estimate uest is
demodulated and multiplied by the scale factor, obtaining Ω̂z ,
which is compared to the actual Ωz in Fig. 5. Although the
estimation lacks of linearity (scale factor nonlinearity is around
3%; the optimization of the MEMS prototype can probably
improve it), these experiments validate the proposed concept.

V. CONCLUSIONS AND PERSPECTIVES

In this work, we propose a design method for a multivariable
digital controller of a MEMS gyroscope. The proposed method
is based on the H∞ synthesis, which is a very flexible
design method, allowing to express and to ensure different
performance specifications in the frequency domain. These
specifications are ensured through the choice of the weighting
functions, which can be adapted by the designer.

Although the gyroscope prototype used for the test might
be optimized to improve linearity of the output signal, the

Fig. 5. Values of Ω̂z compared to the true value of Ωz .

implementation results prove the implementability of the con-
trol architecture and constitute a first step towards a possible
industrialization.

Some improvements are to be considered. Currently, we
work on the tracking of ω0x in real time, such that the
reference frequency and the controller can be parameterized
by ω0x . The first theoretical results on the controller parame-
terization can be found in [10].

Sometimes, relays are used to actuate the drive and sense
modes, introducing a nonlinear element between the controller
and the gyroscope, similarly to the EM-Σ∆ feedbacks. Our
approach can also be considered in these cases, as in [5].
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