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INTRODUCTION

Brain-Computer Interfaces (BCI) is a technology that can identify users' intent by extracting their specific electrophysiological activity and enable users to interact with the external world [START_REF] Jonathan R Wolpaw | Brain-computer interfaces for communication and control[END_REF]. Therefore, it is a promising tool to enable motorimpaired users to communicate without their muscle movements. For non-invasive interfaces, this activity is commonly measured with electroencephalography (EEG).

In recent years, the use of Riemannian geometry for analyzing EEG described by covariance matrices has risen as * FY acknowledges the support of the ANR as part of the "Investissements d'avenir" program, reference ANR-19-P3IA-0001 (PRAIRIE 3IA Institute). a new generation of BCI system [START_REF] Lotte | A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update[END_REF][START_REF] Yger | Riemannian approaches in brain-computer interfaces: a review[END_REF][START_REF] Congedo | Riemannian geometry for eeg-based braincomputer interfaces; a primer and a review[END_REF]. The EEG covariance matrices belong to the manifold of Symmetric Positive-Definite (SPD) and call for methods grounded in non-flat geometry to be handled rigorously. This approach shows outstanding performance in the BCI classification compared to the Euclidean approaches relying on spatial filters estimation or feature selection. However, Riemannian-based BCI classifier has also been reported that it tends to be less effective as the number of electrodes increases, whereas it is effective with a limited number of electrodes [START_REF] Yger | Averaging covariance matrices for EEG signal classification based on the csp: an empirical study[END_REF]. This problem is due to as the dimension grew, the empirical covariance matrices would suffer from rank deficiency and may no longer be SPD. Moreover, classifiers trained on a high-dimensional datasets are prone to overfitting. From those facts, it is desirable to reduce the dimensionality of the covariance matrices to ensure that Riemannian algorithms are used efficiently, even with many channels.

To address this limitation, several methods have been developed mainly outside of the BCI community and provide us with interesting ideas. In [START_REF] Mehrtash | From manifold to manifold: Geometry-aware dimensionality reduction for SPD matrices[END_REF][START_REF] Harandi | Dimensionality reduction on SPD manifolds: The emergence of geometry-aware methods[END_REF], the authors developed a dimensionality reduction technique tailored for SPD matrices. This approach finds one subspace that is able to project the matrices such that the pairwise Riemannian distances in the original space would be similar in the space of the lowdimensional matrices. The problem is formulated as a supervised optimization problem on the Grassman manifold. It has been extended to an unsupervised setup to be a Riemannian PCA [START_REF] Horev | Geometry-aware principal component analysis for symmetric positive definite matrices[END_REF]. Those supervised and unsupervised approach are applied in a BCI setting in [START_REF] Rodrigues | Dimensionality reduction for BCI classification using riemannian geometry[END_REF]. However, the experimental results do not show significant improvement for classification accuracy. This may be due to the fact that optimizing on a single subspace is eventually too restrictive. To overcome this shortcoming, Gao et al. [START_REF] Gao | A robust distance measure for similarity-based classification on the SPD manifold[END_REF] proposed an extensional work of [START_REF] Mehrtash | From manifold to manifold: Geometry-aware dimensionality reduction for SPD matrices[END_REF] for multiple subspaces. The authors developed a similarity measure between matrices using notions point-to-set and set-to-set distance measure (PSSSD). PSSSD first projects each original SPD matrix into multiple low-dimensional SPD spaces (point-to-set). Then, lowdimensional representations are aggregated as set and a sim-ilarity is learned by distance between each set (set-to-set). Since the model is formed with many parameter optimizations, PSSSD is more flexible than existing methods that apply a single Riemannian distance measure for metric learning. However, for BCI applications, datasets will be hardly large enough for learning so many parameters.

In this paper, we propose a novel similarity-based BCI classification inspired by PSSSD. All covariance matrices belonging to the high-dimensional manifold are projected into multiple low-dimensional subspaces, and the subspace which provide the highest classification performance is selected as the final classifier. This allows to find the most discriminant space for similarity learning from multiple low-dimensional representations. The proposed method was evaluated with two high-dimensional EEG datasets (128 channels) and the result showed superiority of the proposed method. To our knowledge, this is the first work that embeds EEG covariance matrix to multiple low-dimensional manifolds for classification.

This paper is organized as follows: Section 2 describes the principles of Riemannian geometry and our proposed method MUSUME. The experimental evaluation and the obtained results are described in Section 3. Then, Section 4 proposes a discussion while Section 5 concludes the paper.

METHODOLOGY

Riemannian geometry of EEG covariance matrix

Let X ∈ R M ×T be an EEG signal which is bandpass filtered, with M channels and T time samples. The covariance matrix of X is defined as:

C X = 1 T -1 XX (1) 
Note that the estimated covariance matrix is empirically SPD, i.e. it can always be diagonalized with strictly positive eigenvalues. Using the right metric, the manifold of SPD matrix is smooth curved space that is locally differentiable. To manipulate SPD matrices while respecting their intrinsic geometry, we can rely on Riemannian geometry. There are several possible metrics [START_REF] Chevallier | Review of Riemannian distances and divergences, applied to SSVEP-based BCI[END_REF] but the Affine Invariant Riemannian Metric (AIRM) is the most natural metric. AIRM distance δ r between two SPD matrices C 1 and C 2 on manifold is defined as:

δ r (C 1 , C 2 ) = log(C 1 -1 2 C 2 C 1 -1 2 ) F = n i=1 log 2 λ i 1/2
(2) where λ i are positive eigenvalues of C 1

-1 2 C 2 C 1 -1
2 and . F is the Frobenius norm of the matrix [START_REF] Bhatia | Positive definite matrices[END_REF]Chap.6].

In our proposed similarity-based classification, we chose AIRM distance as a similarity measure.

MUSUME: MUltiple SUbspace Mdm Estimation

Our proposed similarity-based classification, MUSUME, is divided in two parts: dimensionality reduction and supervised similarity-based classification. In the dimensionality reduction part, high-dimensional SPD matrices are projected on multiple low-dimensional manifolds that can enhance the class separability. In the classification part, first we apply a classifier on each low-dimensional manifold. Then, the subspace with the highest classification performance for validation set is selected as the final classifier.

Dimensionality reduction

Let D = {C 1 , C 2 , . . . , C n } be a set of n SPD matrices of size M × M and y = [y 1 , y 2 , . . . , y n ] is their respective label (either +1 or -1). The form to project the original SPD matrices C i ∈ R M ×M into l low-dimensional manifolds are defined as:

     f U1 (C i ) = U 1 C i U 1 . . . f U l (C i ) = U l C i U l (3) 
where f Us (•) is the s th low-dimensional manifold projection and U s ∈ R M ×p is the s th low-dimensional manifold projection matrix. Note that to ensure that the resulting lowdimensional spaces form valid SPD manifolds, we impose orthonormality constraints on U s , i.e. U s U s = I M . The optimal projection matrices U = {U 1 , U 2 , . . . , U l } are derived by solving the following optimization problem:

minimize ij y i y j N ij l s=1 δ 2 r (f Us (C i ) , f Us (C j )) subject to U 1 , U 2 , . . . , U l ∈ St(M, p) (4 
) where St(M, p) = U ∈ R M ×p : U U = I M is a manifold endowed with a Riemannian metric, so-called Stiefel manifold [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF] and N ij is the set of k-nearest neighbors of C i with respect to C j . The entries are as follows:

N ij = 1, if C i ∈ N k (C j ) or C j ∈ N k (C i ) 0, otherwise (5) 
In order to keep the computation tractable, only the samples close to each other in the sense of δ r within the original space are considered in the cost function. In practice, the cost function was optimized using a conjugate gradient method with an adaptive line search. The gradient of δ 2 r (•) with respect to U s can be computed as follows:

∇ Us δ 2 r U T s C i U s , U T s C j U s = 4 C i U s U T s C i U s -1 -C j U s U T s C j U s -1 log U T s C i U s U T s C j U s -1 (6) 
This gradient is obtained by utilizing the fact that Tr(log(V )) = log det(V ). The reader can refer to the appendix of [START_REF] Horev | Geometry-aware principal component analysis for symmetric positive definite matrices[END_REF] for the details of the derivation and to [START_REF] Absil | Optimization algorithms on matrix manifolds[END_REF] for details on optimization on manifolds.

Supervised similarity-based classification

Each low-dimensional manifold spanned by {U 1 , U 2 , . . . , U l } provide different representations of original SPD matrices. To make the most out of this abundance of representations, we apply the minimum distance to mean (MDM) classifier [START_REF] Barachant | Multiclass brain-computer interface classification by riemannian geometry[END_REF] on each low-dimensional manifold, then the subspace yielding the maximum classification accuracy for validation set is selected as the final classifier for test set. The second dataset is the high-gamma dataset described in [START_REF] Tibor Schirrmeister | Deep learning with convolutional neural networks for eeg decoding and visualization[END_REF], hereinafter called Schirrmeister MI dataset. The EEG signals were recorded with 128 EEG channels from 14 healthy subjects while they performed 4 classes MI, the left hand, right hand, both feet, and rest. In this work, we only used the left and right hand MI. In training sets, different number of trials are available from 80 to 224 per condition depending of the subject and the classes are balanced, thus we used 80% of training data as training set and remaining 20% is for validation. For the testing set, a total of 40 trials per condition is available. Each MI interval lasted 4 sec. In our experiment, we used 13 subjects except S02 since its training data was not balanced in two classes.

EXPERIMENTAL EVALUATION

EEG signals in both datasets were bandpass filtered in the 8-32 Hz frequency band, using a 4 th order Butterworth filter. To estimate covariance matrices, we used the filtered EEG signals from the whole MI interval. All pre-processing was conducted via the Mother of all BCI Benchmark (MOABB) [START_REF] Jayaram | MOABB: trustworthy algorithm benchmarking for BCIs[END_REF] to ensure the replicability of this study.

Evaluation

To evaluate MUSUME, we compare its classification performance with two baselines:

• MDM-noDR: MDM without dimensionality reduction • MDM-1DR: MDM with dimensionality reduction on one low-dimensional manifold (l = 1) with 20NN

• MUSUME: dimensionality reduction on four lowdimensional manifolds (l = 4) with 20NN

In order to compare how the difference in the number of spaces (single or multiple) affects the classification accuracy, we set up MDM-1DR by using our cost function with l = 1 instead of implementing the cost function proposed in [START_REF] Rodrigues | Dimensionality reduction for BCI classification using riemannian geometry[END_REF].

We performed a one-way ANOVA for repeated measures to see statistical difference in three compared methods.

Applying MDM to multiple low-dimensional manifolds gives a wider range of possible classification accuracy than applying MDM to a single low-dimensional space. Therefore, we investigate the maximum accuracy for validation set among subspaces by changing the number of subspaces with l = 1, 2, 4, 6, 8, 10. We assumed this accuracy is the upper bound that MUSUME can achieve.

Results

The classification accuracy for Munich dataset is summarized in Table 1. The results in bold indicate the maximum score in the subject. MUSUME showed equal or increased accuracy for all subjects except one subject from MDM-noDR and especially it provided more than 10% improvement for 3 subjects (mean gain: 7.33 ± 6.7%). In the comparison with MDM-1DR, MUSUME showed equal or increased accuracy for 8 subjects (mean gain: 0.50 ± 2.0%).

Table 3 shows the result for Schirrmeister MI dataset. The accuracy with MUSUME was equal or increased for 10 subject (mean gain: 2.98 ± 4.3%) compared to MDM-noDR. In the comparison with MDM-1DR, MUSUME showed equal or increased accuracy for 10 subjects (mean gain: 0.77 ± 2.3%).

To assess the statistical validity of those findings, we performed a one-way ANOVA for repeated measures of all 23 subjects. It revealed a significant effect of "Method" (F (2, 44) = 13.7; p < 0.001). Post-hoc analyses with Tukey's honestly significant difference test showed that Table 2 shows the influence of the number of subspaces on the classification accuracy. The results in bold indicate the accuracy which beat the single subspace accuracy.

DISCUSSION

In the comparison with MDM-noDR, MUSUME showed a significant improvement globally for the classification accuracy with two datasets. It validates that our method can achieve both dimensionality reduction of covariance matrices and improves the classification performance at the same time. Furthermore, MUSUME showed higher classification accuracy than MDM-1DR for 10 out of 23 subjects, while MDM-1DR beat MUSUME only in 5 subjects. This may be explained because the MDM-1DR relies on only one representation of the covariance matrix, whereas MUSUME adopts the space showing the highest classification accuracy among multiple representations for the final decision, thus, the opportunity to meet higher classification accuracy increases. Therefore, we expected that if we increase the number of low-dimensional subspaces, it would offer more options to find useful subspaces for classification. As it is shown in Table 2, the upper-bound accuracy was higher than MDM-1DR. However, a significant increase was not revealed. This may be due to MUSUME overfitting for the training data since the number of available training set is often limited in BCI datasets.

MDM-1DR is a non-convex (and even non-g-convex [18, chap.11]) problem which makes its solution very sensitive to the choice of the initialization. On the contrary, as MUSUME tries to optimize several subspaces in parallel in order to find the best of them, it is more robust to a poor initialization. Hence, MUSUME acts in the spirit of an ensemble method and this may explain why MUSUME performs in practice better than MDM-1DR.

CONCLUSION

In this paper, we proposed a novel similarity-based classification method for high-dimensional EEG covariance matrices. Our method, MUSUME, addresses the potential limitation of the current Riemannian approach, i.e. the inefficiency for high-dimensional EEG covariance matrix, with projection on multiple low-dimensional manifolds. The experimental result with high-dimensional EEG datasets confirmed its superiority than baseline methods. In particular, MUSUME showed significant improvement from MDM operated on the original high-dimensional covariance space. This suggests that MUSUME can reduce the dimension of EEG covariance matrices without unexpected loss of information, hence, it is useful for BCI applications recorded with many electrodes.

In this study, we started with the simple classification model to highlight the impact of multiple projections, but as a future task, we will aim to built classification models that enables us to integrate the covariance features extracted by multiple projection. It would be achieved by referring to other ensemble learning techniques or promoting diversity of the subspaces using a regularization [START_REF] Yamane | Multitask principal component analysis[END_REF].

The MDM is known as a classifier that is strongly impacted by outliers since it learns similarity based on distance from intra-class Riemannian mean. Therefore, to make MUSUME more robust, it would be interesting to use Riemannian geometric median [START_REF] Fletcher | The geometric median on riemannian manifolds with application to robust atlas estimation[END_REF] to estimate intra-class center on each subspace instead of using Riemannian mean or to incorporate an outlier detection method [START_REF] Sayu Yamamoto | Detecting EEG outliers for BCI on the riemannian manifold using spectral clustering[END_REF] in MUSUME.

Table 1 .

 1 Classification accuracy (in %) for Munich MI dataset

		MDM-noDR MDM-1DR MUSUME
	S01	96.67	100.00	100.00
	S02	75.00	76.67	78.33
	S03	48.33	53.33	56.67
	S04	45.00	66.67	66.67
	S05	51.67	51.67	51.67
	S06	41.67	51.67	51.67
	S07	66.67	68.33	65.00
	S08	46.67	58.33	61.67
	S09	36.67	46.67	45.00
	S10	60.00	63.33	65.00
	Ave.	56.83	63.67	64.17

Table 2 .

 2 Upper-bound accuracy with respect to the number of low-dimensional manifolds.

	Subspace number	1 subspace 2 subspaces 4 subspaces 6 subspaces 8 subspaces 10 subspaces
	Upper bound accuracy[%]	69.04	70.76	71.30	71.18	71.82	71.79
	Table 3. Classification accuracy (in %) for Schirrmeister MI			
	dataset						
		MDM-noDR MDM-1DR MUSUME			
	S11	58.75	60.00	57.50			
	S12	97.50	98.75	98.75			
	S13	82.50	82.50	82.50			
	S14	52.50	61.25	67.50			
	S15	61.25	58.75	60.00			
	S16	52.50	52.50	51.25			
	S17	82.50	82.50	83.75			
	S18	60.00	67.50	65.00			
	S19	82.50	88.75	88.75			
	S20	53.75	57.50	58.75			
	S21	96.25	97.50	97.50			
	S22	71.25	72.50	76.25			
	S23	71.25	71.25	73.75			
	Ave.	70.96	73.17	73.94			
	our proposed method was significantly better than MDM-			
	noDR (M D = 4.87; p < 0.001) but the statistical differ-			
	ence between MUSUME and MDM-1DR was not revealed			
	(M D = 0.65; p = 0.789).					
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