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ABSTRACT

Dimensionality reduction of high-dimensional electroen-
cephalography (EEG) covariance matrices is crucial for effec-
tive utilization of Riemannian geometry in Brain-Computer
Interfaces (BCI). In this paper, we propose a novel similarity-
based classification method that relies on dimensionality re-
duction of EEG covariance matrices. Conventionally, the di-
mension of the original high-dimensional space is reduced by
projecting into one low-dimensional space, and the similarity
is learned only based on the single space. In contrast, our
method, MUltiple SUbspace Mdm Estimation (MUSUME),
obtains multiple low-dimensional spaces that enhance class
separability by solving the proposed optimization problem,
then the similarity is learned in each low-dimensional space.
This multiple projection approach encourages finding the
space that is more useful for similarity learning. Experimen-
tal evaluation with high-dimensionality EEG datasets (128
channels) confirmed that MUSUME proved significant im-
provement for classification (p < 0.001) and also it showed
the potential to beat the existing method relying on only one
subspace representation.

Index Terms— High-dimensional EEG, Riemannian
manifold, optimization, dimensionality reduction, brain-
computer interfaces

1. INTRODUCTION

Brain-Computer Interfaces (BCI) is a technology that can
identify users’ intent by extracting their specific electrophysi-
ological activity and enable users to interact with the external
world [1]. Therefore, it is a promising tool to enable motor-
impaired users to communicate without their muscle move-
ments. For non-invasive interfaces, this activity is commonly
measured with electroencephalography (EEG).

In recent years, the use of Riemannian geometry for an-
alyzing EEG described by covariance matrices has risen as
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a new generation of BCI system [2, 3, 4]. The EEG covari-
ance matrices belong to the manifold of Symmetric Positive-
Definite (SPD) and call for methods grounded in non-flat ge-
ometry to be handled rigorously. This approach shows out-
standing performance in the BCI classification compared to
the Euclidean approaches relying on spatial filters estimation
or feature selection.

However, Riemannian-based BCI classifier has also been
reported that it tends to be less effective as the number of elec-
trodes increases, whereas it is effective with a limited number
of electrodes [5]. This problem is due to as the dimension
grew, the empirical covariance matrices would suffer from
rank deficiency and may no longer be SPD. Moreover, classi-
fiers trained on a high-dimensional datasets are prone to over-
fitting. From those facts, it is desirable to reduce the dimen-
sionality of the covariance matrices to ensure that Riemannian
algorithms are used efficiently, even with many channels.

To address this limitation, several methods have been de-
veloped mainly outside of the BCI community and provide
us with interesting ideas. In [6, 7], the authors developed a
dimensionality reduction technique tailored for SPD matri-
ces. This approach finds one subspace that is able to project
the matrices such that the pairwise Riemannian distances in
the original space would be similar in the space of the low-
dimensional matrices. The problem is formulated as a su-
pervised optimization problem on the Grassman manifold.
It has been extended to an unsupervised setup to be a Rie-
mannian PCA [8]. Those supervised and unsupervised ap-
proach are applied in a BCI setting in [9]. However, the ex-
perimental results do not show significant improvement for
classification accuracy. This may be due to the fact that opti-
mizing on a single subspace is eventually too restrictive. To
overcome this shortcoming, Gao et al. [10] proposed an ex-
tensional work of [6] for multiple subspaces. The authors
developed a similarity measure between matrices using no-
tions point-to-set and set-to-set distance measure (PSSSD).
PSSSD first projects each original SPD matrix into multi-
ple low-dimensional SPD spaces (point-to-set). Then, low-
dimensional representations are aggregated as set and a sim-



ilarity is learned by distance between each set (set-to-set).
Since the model is formed with many parameter optimiza-
tions, PSSSD is more flexible than existing methods that ap-
ply a single Riemannian distance measure for metric learning.
However, for BCI applications, datasets will be hardly large
enough for learning so many parameters.

In this paper, we propose a novel similarity-based BCI
classification inspired by PSSSD. All covariance matrices be-
longing to the high-dimensional manifold are projected into
multiple low-dimensional subspaces, and the subspace which
provide the highest classification performance is selected as
the final classifier. This allows to find the most discriminant
space for similarity learning from multiple low-dimensional
representations. The proposed method was evaluated with
two high-dimensional EEG datasets (128 channels) and the
result showed superiority of the proposed method. To our
knowledge, this is the first work that embeds EEG covariance
matrix to multiple low-dimensional manifolds for classifica-
tion.

This paper is organized as follows: Section 2 describes the
principles of Riemannian geometry and our proposed method
MUSUME. The experimental evaluation and the obtained re-
sults are described in Section 3. Then, Section 4 proposes a
discussion while Section 5 concludes the paper.

2. METHODOLOGY

2.1. Riemannian geometry of EEG covariance matrix

Let X ∈ RM×T be an EEG signal which is bandpass filtered,
with M channels and T time samples. The covariance matrix
of X is defined as:

CX =
1

T − 1
XX> (1)

Note that the estimated covariance matrix is empirically SPD,
i.e. it can always be diagonalized with strictly positive eigen-
values. Using the right metric, the manifold of SPD matrix is
smooth curved space that is locally differentiable. To manip-
ulate SPD matrices while respecting their intrinsic geometry,
we can rely on Riemannian geometry. There are several pos-
sible metrics [11] but the Affine Invariant Riemannian Metric
(AIRM) is the most natural metric. AIRM distance δr be-
tween two SPD matrices C1 and C2 on manifold is defined
as:

δr(C1, C2) = ‖log(C1
− 1

2C2C1
− 1

2 )‖F =

(
n∑

i=1

log2λi

)1/2

(2)
where λi are positive eigenvalues of C1

− 1
2C2C1

− 1
2 and ‖.‖F

is the Frobenius norm of the matrix [12, Chap.6].
In our proposed similarity-based classification, we chose

AIRM distance as a similarity measure.

2.2. MUSUME: MUltiple SUbspace Mdm Estimation

Our proposed similarity-based classification, MUSUME, is
divided in two parts: dimensionality reduction and super-
vised similarity-based classification. In the dimensionality
reduction part, high-dimensional SPD matrices are projected
on multiple low-dimensional manifolds that can enhance the
class separability. In the classification part, first we apply
a classifier on each low-dimensional manifold. Then, the
subspace with the highest classification performance for vali-
dation set is selected as the final classifier.

2.2.1. Dimensionality reduction

Let D = {C1, C2, . . . , Cn} be a set of n SPD matrices of
size M ×M and y = [y1, y2, . . . , yn] is their respective la-
bel (either +1 or −1). The form to project the original SPD
matrices Ci ∈ RM×M into l low-dimensional manifolds are
defined as: 

fU1
(Ci) = U>1 CiU1

...
fUl

(Ci) = U>l CiUl

(3)

where fUs
(·) is the sth low-dimensional manifold projection

and Us ∈ RM×p is the sth low-dimensional manifold pro-
jection matrix. Note that to ensure that the resulting low-
dimensional spaces form valid SPD manifolds, we impose
orthonormality constraints on Us, i.e. U>s Us = IM .

The optimal projection matrices U = {U1, U2, . . . , Ul}
are derived by solving the following optimization problem:

minimize
∑

ij yiyjNij

∑l
s=1 δ

2
r (fUs (Ci) , fUs (Cj))

subject to U1, U2, . . . , Ul ∈ St(m, p)
(4)

where St(M,p) =
{
U ∈ RM×p : U>U = IM

}
is a man-

ifold endowed with a Riemannian metric, so-called Stiefel
manifold [13] and Nij is the set of k-nearest neighbors of
Ci with respect to Cj . The entries are as follows:

Nij =

{
1, if Ci ∈ Nk(Cj) or Cj ∈ Nk(Ci)
0, otherwise (5)

In order to keep the computation tractable, only the sam-
ples close to each other in the sense of δr within the orig-
inal space are considered in the cost function. In practice,
the cost function was optimized using a conjugate gradient
method with an adaptive line search. The gradient of δ2r(·)
with respect to Us can be computed as follows:

∇Us

(
δ2r
(
UT
s CiUs, U

T
s CjUs

))
=

4
(
CiUs

(
UT
s CiUs

)−1 − CjUs

(
UT
s CjUs

)−1)
log
(
UT
s CjUs

(
UT
s CjUs

)−1) (6)

This gradient is obtained by utilizing the fact that Tr(log(V )) =
log det(V ). The reader can refer to the appendix of [8] for the



details of the derivation and to [13] for details on optimization
on manifolds.

2.2.2. Supervised similarity-based classification

Each low-dimensional manifold spanned by {U1, U2, . . . , Ul}
provide different representations of original SPD matrices. To
make the most out of this abundance of representations, we
apply the minimum distance to mean (MDM) classifier [14]
on each low-dimensional manifold, then the subspace yield-
ing the maximum classification accuracy for validation set is
selected as the final classifier for test set.

3. EXPERIMENTAL EVALUATION

3.1. Data description

For evaluation, we used two different publicly available high-
dimensionality Motor Imagery (MI) datasets. The first dataset
is Munich MI dataset provided by Grosse-Wentrup et al. [15].
This set comprises EEG signals from 10 healthy subjects
who performed left- and right-hand MI. EEG signals were
recorded using 128 EEG channels placed according to the
extended 10 − 20 system. A total of 150 trials per condition
were carried out by each subject, each MI interval lasting 7
sec. In our experiment, we used 96 trials per condition as
training set, 24 trials per condition as validation set, 30 trials
per condition as testing set.

The second dataset is the high-gamma dataset described
in [16], hereinafter called Schirrmeister MI dataset. The
EEG signals were recorded with 128 EEG channels from 14
healthy subjects while they performed 4 classes MI, the left
hand, right hand, both feet, and rest. In this work, we only
used the left and right hand MI. In training sets, different
number of trials are available from 80 to 224 per condition
depending of the subject and the classes are balanced, thus we
used 80% of training data as training set and remaining 20%
is for validation. For the testing set, a total of 40 trials per
condition is available. Each MI interval lasted 4 sec. In our
experiment, we used 13 subjects except S02 since its training
data was not balanced in two classes.

EEG signals in both datasets were bandpass filtered in the
8−32 Hz frequency band, using a 4th order Butterworth filter.
To estimate covariance matrices, we used the filtered EEG
signals from the whole MI interval. All pre-processing was
conducted via the Mother of all BCI Benchmark (MOABB)
[17] to ensure the replicability of this study.

3.2. Evaluation

To evaluate MUSUME, we compare its classification perfor-
mance with two baselines:

• MDM-noDR: MDM without dimensionality reduction

Table 1. Classification accuracy (in %) for Munich MI dataset
MDM-noDR MDM-1DR MUSUME

S01 96.67 100.00 100.00
S02 75.00 76.67 78.33
S03 48.33 53.33 56.67
S04 45.00 66.67 66.67
S05 51.67 51.67 51.67
S06 41.67 51.67 51.67
S07 66.67 68.33 65.00
S08 46.67 58.33 61.67
S09 36.67 46.67 45.00
S10 60.00 63.33 65.00
Ave. 56.83 63.67 64.17

• MDM-1DR: MDM with dimensionality reduction on
one low-dimensional manifold (l = 1) with 20NN

• MUSUME: dimensionality reduction on four low-
dimensional manifolds (l = 4) with 20NN

In order to compare how the difference in the number of
spaces (single or multiple) affects the classification accuracy,
we set up MDM-1DR by using our cost function with l = 1
instead of implementing the cost function proposed in [9].

We performed a one-way ANOVA for repeated measures
to see statistical difference in three compared methods.

Applying MDM to multiple low-dimensional manifolds
gives a wider range of possible classification accuracy than
applying MDM to a single low-dimensional space. There-
fore, we investigate the maximum accuracy for validation set
among subspaces by changing the number of subspaces with
l = 1, 2, 4, 6, 8, 10. We assumed this accuracy is the upper
bound that MUSUME can achieve.

3.3. Results

The classification accuracy for Munich dataset is summarized
in Table 1. The results in bold indicate the maximum score
in the subject. MUSUME showed equal or increased accu-
racy for all subjects except one subject from MDM-noDR
and especially it provided more than 10% improvement for
3 subjects (mean gain: 7.33± 6.7%). In the comparison with
MDM-1DR, MUSUME showed equal or increased accuracy
for 8 subjects (mean gain: 0.50± 2.0%).

Table 3 shows the result for Schirrmeister MI dataset. The
accuracy with MUSUME was equal or increased for 10 sub-
ject (mean gain: 2.98 ± 4.3%) compared to MDM-noDR. In
the comparison with MDM-1DR, MUSUME showed equal or
increased accuracy for 10 subjects (mean gain: 0.77± 2.3%).

To assess the statistical validity of those findings, we
performed a one-way ANOVA for repeated measures of all
23 subjects. It revealed a significant effect of “Method”
(F (2, 44) = 13.7; p < 0.001). Post-hoc analyses with
Tukey’s honestly significant difference test showed that



Table 2. Upper-bound accuracy with respect to the number of low-dimensional manifolds.
Subspace number 1 subspace 2 subspaces 4 subspaces 6 subspaces 8 subspaces 10 subspaces
Upper bound accuracy[%] 69.04 70.76 71.30 71.18 71.82 71.79

Table 3. Classification accuracy (in %) for Schirrmeister MI
dataset

MDM-noDR MDM-1DR MUSUME
S11 58.75 60.00 57.50
S12 97.50 98.75 98.75
S13 82.50 82.50 82.50
S14 52.50 61.25 67.50
S15 61.25 58.75 60.00
S16 52.50 52.50 51.25
S17 82.50 82.50 83.75
S18 60.00 67.50 65.00
S19 82.50 88.75 88.75
S20 53.75 57.50 58.75
S21 96.25 97.50 97.50
S22 71.25 72.50 76.25
S23 71.25 71.25 73.75
Ave. 70.96 73.17 73.94

our proposed method is significantly better than MDM-
noDR (MD = 4.87; p < 0.001) but the statistical differ-
ence between MUSUME and MDM-1DR was not revealed
(MD = 0.65; p = 0.789).

Table 2 shows the influence of the number of subspaces
on the classification accuracy. The results in bold indicate the
accuracy which beat the single subspace accuracy.

4. DISCUSSION

In the comparison with MDM-noDR, MUSUME showed a
significant improvement globally for the classification ac-
curacy with two datasets. It validates that our method can
achieve both dimensionality reduction of covariance matri-
ces and improves the classification performance at the same
time. Furthermore, MUSUME showed higher classification
accuracy than MDM-1DR for 10 out of 23 subjects, while
MDM-1DR beat MUSUME only in 5 subjects. This may be
explained because the MDM-1DR relies on only one repre-
sentation of the covariance matrix, whereas MUSUME adopts
the space showing the highest classification accuracy among
multiple representations for the final decision, thus, the op-
portunity to meet higher classification accuracy increases.
Therefore, we expected that if we increase the number of
low-dimensional subspaces, it would offer more options to
find useful subspaces for classification. As it is shown in Ta-
ble 2, the upper-bound accuracy is higher than MDM-1DR.
However, a significant increase was not revealed. This may
be due to MUSUME overfitting for the training data since

the number of available training set is often limited in BCI
datasets.

MDM-1DR is a non-convex (and even non-g-convex [18,
chap.11]) problem which makes its solution very sensitive to
the choice of the initialization. On the contrary, as MUSUME
tries to optimize several subspaces in parallel in order to find
the best of them, it is more robust to a poor initialization.
Hence, MUSUME acts in the spirit of an ensemble method
and this may explain why MUSUME performs in practice
better than MDM-1DR.

5. CONCLUSION

In this paper, we proposed a novel similarity-based classifica-
tion method for high-dimensional EEG covariance matrices.
Our method, MUSUME, addresses the potential limitation of
the current Riemannian approach, i.e. the inefficiency for
high-dimensional EEG covariance matrix, with projection on
multiple low-dimensional manifolds. The experimental result
with high-dimensional EEG datasets confirmed its superior-
ity than baseline methods. In particular, MUSUME showed
significant improvement from MDM operated on the origi-
nal high-dimensional covariance space. This suggests that
MUSUME can reduce the dimension of EEG covariance ma-
trices without unexpected loss of information, hence, it is use-
ful for BCI applications recorded with many electrodes.

In this study, we started with the simple classification
model to highlight the impact of multiple projections, but
as a future task, we will aim to built classification models
that enables us to integrate the covariance features extracted
by multiple projection. It would be achieved by referring to
other ensemble learning techniques or promoting diversity of
the subspaces using a regularization [19].

The MDM is known as a classifier that is strongly im-
pacted by outliers since it learns similarity based on dis-
tance from intra-class Riemannian mean. Therefore, to make
MUSUME more robust, it would be interesting to use Rie-
mannian geometric median [20] to estimate intra-class center
on each subspace instead of using Riemannian mean or to
incorporate an outlier detection method [21] in MUSUME.
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