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Abstract: Single-pixel cameras that measure image coefficients have various promising
applications, in particular for hyper-spectral imaging. Here, we investigate deep neural networks
that when fed with experimental data, can output high-quality images in real time. Assuming that
the measurements are corrupted by mixed Poisson-Gaussian noise, we propose to map the raw
data from the measurement domain to the image domain based on a Tikhonov regularization. This
step can be implemented as the first layer of a deep neural network, followed by any architecture
of layers that acts in the image domain. We also describe a framework for training the network in
the presence of noise. In particular, our approach includes an estimation of the image intensity
and experimental parameters, together with a normalization scheme that allows varying noise
levels to be handled during training and testing. Finally, we present results from simulations
and experimental acquisitions with varying noise levels. Our approach yields images with
improved peak signal-to-noise ratios, even for noise levels that were foreseen during the training
of the networks, which makes the approach particularly suitable to deal with experimental data.
Furthermore, while this approach focuses on single-pixel imaging, it can be adapted for other
computational optics problems.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Single-pixel imaging is an extreme configuration of computational optics, where a single point
detector is used to recover an image [1]. Since the seminal work by Duarte and coworkers [2],
single-pixel imaging has been successfully applied to fluorescence microscopy [3], hyperspectral
imaging [4, 5], diffuse optical tomography [6], image-guided surgery [7], short-wave infrared
imaging [8], and imaging through scattering media [9]. Single-pixel measurements can be
modeled as dot products between an image and some two-dimensional functions that are
implemented through a spatial light modulator [1]. To limit acquisition times, it is highly
desirable to reduce the number of light patterns, which leads to an undetermined inverse problem
to recover the image.
In the field of single-pixel imaging, deep learning has been used to unmix the fluorescence

intensity and lifetime from time-resolved measurements [10,11]. Higham and coworkers [12]
proposed a convolutional auto-encoder for single-pixel image reconstruction imaging that
outperformed compressed sensing approaches. This network directly maps the measurement
vector to the desired image, using a fully connected layer followed by convolutional layers. Several
Deep Learning architectures have been proposed since then, to solve single-pixel reconstruction
problems. For instance, Li et al. in [9] used a similar network to that introduced by [12]. For
measurements with very low signal-to-noise ratios, in [13] the authors proposed a U-net for
highly compressed single-pixel Fourier imaging, while in [14], a recurrent neural network was
used. Further, Li and coworkers [15] investigated a conditional generative adversarial network to
reconstruct highly compressed data from measurements with random binary patterns.

In the present work, we propose a new deep learningmethodology for image reconstruction from
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single-pixel measurements corrupted by a mixed Poisson-Gaussian noise model. Traditionally,
inverse problems with data corrupted by Poisson noise are tackled using variance stabilizing
transforms, such as the Anscombe transform [16], followed by a Wiener filter [17]. However, the
resulting image can be blurred, and in particular for undersampled data. More recent alternatives
have been used to solve this issue by exploiting statistical or handmade image priors [18–20].
Solving the resulting problems is usually prohibitive for real-time applications, as a single
reconstructed image can take several seconds. In this regard, deep networks are ideal candidates
due to their rapid evaluation. As such, deep learning has been used for single-pixel imaging in
the presence of Poisson noise [21], although no special modifications were made to the neural
network to allow for the Poisson noise.
Many studies have explored many different neural network architectures; however, they

usually consider convolutional layers that act in the image domain, while the raw data are in
the measurement domain. Moreover, the interpretation of the output of a neural network is still
an open question, specifically in the presence of noise where robustness issues can occur, as
indicated by [22]. In particular, in the domain of single-pixel imaging, a neural network that is
not finely tuned to the system can be outperformed by linear reconstructors [23].

1.1. Contribution

First, we explore the best way to map the raw data to the image domain, before applying a
cascade of convolutional layers. This mapping is traditionally learned or computed through the
Moore-Penrose pseudo-inverse. We describe a linear mapping that can be interpreted in terms
of traditional image reconstruction. This linear mapping is implemented as the first layer of a
(nonlinear) deep neural network. We introduced this idea in [24] for noiseless data, and here
we extend it to noisy data. In particular, we propose to estimate the image intensity, which is
unknown in practice, and to use this estimation to approximate the covariance matrix of the
measurements.
Next, we describe a machinery that allows a network to be trained in the presence of Poisson

noise. We provide a normalization scheme that allows raw data with different orders of magnitudes
to be considered, which is mandatory for realistic scenarios where the image intensity is not
known.

Finally, we validate our approach by reconstruction of an experimental dataset that we acquired
with varying integration times and light fluxes. Upon acceptance, the datasets will be made
available alongside implementations of our reconstruction methods in the Python toolbox
(SPyRiT [25]).

2. Problem, assumptions and limitations

2.1. Single-pixel imaging

Let f ∈ [0, 1]# be the image to acquire. The main idea of compressive optics is to measure
m = N1 f using hardware, and to recover f using software. The systemmatrix N1 ∈ R"×# , with
" < # , collects the patterns that are sequentially uploaded on a spatial light modulator, to obtain
the measurement vector. The patterns are traditionally chosen from within a basis N ∈ R#×# ;
i.e., N1 = YN where Y = [O" , 0] describes the subsampling strategy. Classical choices for the
basis N include Fourier, discrete cosines, wavelets, and Hadamard basis, as discussed in [26].
In the present study, we consider the Hadamard basis. The subsampling strategies can be
divided into adaptive and nonadaptive. Adaptive strategies progressively determine Y during the
acquisition [27], while nonadaptive chose Y beforehand. Here, for simplicity, we consider the
nonadaptive strategy introduced in [12, 28].



2.2. Acquisition model

As Hadamard patterns contain negative values, we adopt a differential strategy [29]. We denote
by m̂U

+ the measurements of the positive parts of the patterns, and by m̂U
− the measurements of

the negative parts. We model noise as a mixture of Poisson and Gaussian distributions [30, 31].
The Poisson noise is signal dependant and originates from the discrete nature of the electronic
charge, while the signal-independent Gaussian noise accounts for readout and circuit fluctuations.
For both the positive and negative measurements, we have

m̂U
+,− ∼  P(UN+,−1 f ) + N (`dark, f

2
dark) (1)

where P and N are the Poisson and Gaussian distributions,  is a constant that represents the
overall system gain (in counts/electron), U is the intensity (in photons) of the image (which is
proportional to the integration time), `dark is the dark current (in counts), and fdark is the dark
noise (in counts). We further hypothesize that `dark and fdark are independent of the image
intensity U.

The normalized measurements mU are finally defined as

mU = (m̂U
+ − m̂U

− )/(U ), (2)

2.3. Deep learning for image reconstruction.

Deep-learning-based methods reconstruct an image f̃ using nonlinear mapping f̃ = G8 (mU)
where the weights of the network 8 are optimized with respect to a loss functions; e.g., to
minimize the quadratic error over an image database

G8 = argmin



1
B

B−1∑
8=0
‖G
 (mU8 ) − f8 ‖2. (3)

where ( f8)0≤8≤B−1 are the image samples of the image database, and (mU
8
)0≤8≤B−1 are the

corresponding normalized noisy measurements given by Equation (2). Traditionally, neural
networks are made of cascading layers, and can be written as

G8 = G!8 ◦ . . . ◦ G1
8 (4)

where Gℓ , 1 ≤ ℓ ≤ ! is the ℓ-th (nonlinear) layer of the network, and ◦ is the function
composition. The first layer is generally a fully connected layer that maps the normalized
measurements mU ∈ R" to a raw solution in f ∗ ∈ R# . In Section 3.2, we explore different
strategies for the design of this layer.

3. Theory

3.1. Experimental set-up

Our measurements are obtained from the single-pixel camera experimental set-up depicted in
Fig. 1, as first described by [32]. The telecentric lens (Edmund Optics 62901) is positioned such
that its image side projects the image of the scene onto the digital micro-mirror device (DMD;
vialux V-7001), which is positioned at the object side of the lens. The object is transparent and
is illuminated by a LED lamp (Thorlabs LIUCWHA/M00441662). The DMD can implement
different light patterns (denoted as N1 in Section 2) by reflection of the incident light onto a
relay lens, which projects the light into an optical fiber (Thorlabs FT1500UMT 0.39NA). This
optical fiber is connected to a compact spectrometer (BWTek exemplar BRC115P-V-ST1). For
every object, we sequentially upload onto the DMD all of the " = 4096 Hadamard patterns of
dimension # = 64 × 64 pixels. We can down-sample the full measurement vector a posteriori to
achieve any sampling ratio. To consider different noise levels, we acquire the same object with
varying integration times and neutral optical densities.



Fig. 1. Optical set-up of the single-pixel camera [2]. This set-up is composed of a
sample (S) illuminated by a lamp (L) in front of a filter wheel (FW), a telecentric lens
(TL), a digital micro-mirror device (DMD), some relay lenses (RL), an optical fiber
(OF), and a spectrometer (SM).

3.2. Mapping of the raw data to the image domain

We propose to use a Tikhonov-regularized interpretable solution [33] to map the raw data into
the image domain. In particular, we choose

f̃ = G1 (m̂U) = N>y∗, (5)

where the regularized data y∗ is such that y∗ = [y∗1, y
∗
2]
>, where y∗1 ∈ R

" and y∗2 ∈ R
(#−" ) are

regularized versions of the acquired and missing coefficients, respectively.
Let �" be the variance of our noisy measurements, - and � are respectively the mean and

variance of our prior model in the Hadamard domain. The computation of - and � is described
in Section 3.3, and that of �" in Section 3.4. We derived the analytical Tikhonov regularized
solution given by

y∗1 (m
U) = -1 + �1 [�1 + �U]−1 (mU − -1), (6a)

y∗2 (m
U) = -2 + �21�

−1
1 [y

∗
1 (m

U) − -1] . (6b)

where �1 ∈ R"×" , �21 ∈ R(#−" )×" and �2 ∈ R(#−" )×(#−" ) are the blocks of the covariance
� in the measurement domain, -1 ∈ R" and -2 ∈ R(#−" ) are the blocks of - (see Section 3.3).
Interestingly, Equation (6a) can be interpreted as the denoising of the raw data in the measurement
domain, while Equation (6b) is the estimation of the missing coefficients from the denoised
acquired coefficients.
To circumvent the difficulty of inverting the signal-dependant matrix in Equation (6a), we

choose to neglect the nondiagonal terms of �1;Denoting 22
1 = diag (�1), we get

y∗1 (m
U) = -1 + 22

1 /(2
2
1 + 2

2
U) (mU − -1), (7)

where division and multiplication apply element-wise.



Fig. 2. Proposed network. The first two layers map the measurements into the image
domain according to the analytical solution given by Equation (6). These two layers can
be interpreted as a layer that denoises Equation (6a) of the raw measurements, followed
by a layer that estimates the missing coefficients from the denoised measurements of
Equation (6b). The raw image f̃ is corrected by a cascade of Image-domain convolution
layers (CL) and non-linear layers, such as the ReLU layers.

3.3. Prior mean and covariance

We compute the mean - and covariance � as introduced in Equation (6) from the the samples of
an image database. We consider the classical estimators of the mean and covariance

- =


-1

-2

 =
1
(

(∑
8=1
N f8 , (8)

� =


�1 �>21

�21 �2

 =
1

( − 1

(∑
8=1
(N f8 − -) (N f8 − -)>. (9)

Note that both quantities are computed once and for all. We load them into the graphical processor
unit when the network is initialized, with no need to re-compute them later (e.g., during training
or evaluation).

3.4. Noise covariance estimation

To use the mapping proposed in Section 3.2, we need an estimation of the covariance matrix of
our measurements. Assuming that the raw measurements are independent, from Equation (2) we
can determine the values of the covariance as

�U = Diag
(
22
U

)
= Diag

(
1
U
N+1 f +

1
U
N−1 f

)
+

2f2
dark

 2U2 O, (10)

where Diag (x) refers to the diagonal matrix where the diagonal coefficients are the elements of
x, and O refers to the identity matrix.

As 22
U depends on the unknown image f as well as on the intensity U, we exploit the raw data

that also depends on f and U. Recalling that the variance of a Poisson variable is the same as its
expected value, we approximate the expected value by the noisy sample; i.e.,

22
U ≈

1
U2 
(m̂U+ + m̂U− − 2`dark) +

2f2
dark

 2U2 . (11)
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Fig. 3. Box plot of the distribution of the relative error on the estimation of U using
Equation (12) with six combinations of values of (U, ").

The experimental parameters `dark,  and fdark can be estimated as described in [31]. We
describe how to estimate U in Section 3.5.

3.5. Estimation of the image intensity

For image denoising, estimation of U can be achieved through fitting methods (e.g., see [30]).
These methods usually exploit homogeneous regions of the image, and are therefore not suited to
raw measurements. Instead, we propose a simple empirical method, which consists of estimating
U from a rough estimate of the nonnormalized image U f . Considering the pseudo inverse, which
is a linear operator that scales with U, we consider

Ũ = max
8∈{1,...,# }

(N>y∗)8 , with y∗ =

m̂U

0

 (12)

In practice, this simple estimator can provide the order of magnitude of U with good
approximation, but it obviously leads to some inaccuracies. This is illustrated in Fig. 3, where we
show the distribution of the error of our estimation over the STL-10 dataset [34] (i.e., 113,000
images obtained by merging the unlabeled, training and testing sets) for different values of "
(512, 1024) and U (5, 50, 2500 photons). Overall, the relative error is usually below 50%.

4. Experiments

4.1. Training neural networks using simulated data

We train our network using the STL10 database [34], with ( = 105, 000 images that correspond
to the ‘unlabeled’ and ‘train’ subsets. We consider 8,000 images for the testing (i.e., the ‘test’
subset). The original 96×96 images are resized to 64×64 using bicubic transform, and are
normalized between −1 and 1.

We implement the full networks using Pytorch [35] (version 1.5.1; cuda V10.2.89). We train
the network by solving Equation (3) using the ADAM optimizer [36], with an initial learning rate
of 10−3, which is halved every 10 epochs, for a maximum of 100 epochs. In our experiments,
the validation loss traditionally stops decreasing after 70 epochs. The training phase takes 3 h
and 45 min on a NVIDIA GP107GLM [Quadro P1000 Mobile]. As seen in Section 3.5, it is not
realistic to consider the intensity U as a known constant. Therefore, we make U vary during the



training, with mean `U and standard deviation fU. Therefore, the network has to learn how to be
robust to vary U about `U. To fit with the observations made in Fig. 3, we choose fU = 0.5`U to
account for the worst-case scenarios. As shown in Section 5, varying alpha during the training
phase, i.e., considering different noise levels, is crucial to get a robust network.

However, such an approach does not guarantee that a network trained around a given intensity
`U can perform well for another intensity. A neural network trained for a certain probability
distribution cannot generalize ’for free’ to another probability distribution. We will further
develop this point in Section 5.

Our experiments were done with the same Image domain layer structure as in [12]. This means
that our network has three convolutional layers, with each layer separated by a ReLU layer. The
first has a kernel size of 9 and a depth of 64, the second has a kernel size of 1 and a depth of 32,
and the final one has a kernel size of 5 and a depth of 1. This structure can, however, be changed.

4.2. Experimental data

As shown in the first column of Fig. 4, we acquire three different objects: the LED lamp directly
(first row); a cat from the STL-10 test set printed on a transparent sheet (middle row); and
the Siemens Star resolution target (bottom row) [37]. The ground-truth image is computed
(see Section 4.3) from a fully sampled measurement vector that is acquired with the highest
signal-to-noise ratio (i.e., high flux illumination, long acquisition time). Specifically, we consider
no neutral density, and the integration time to 1 ms per pattern for the lamp, to 4 ms per pattern
for the STL-10 cat, and to 8 ms per pattern for the Siemens target,

For each object, we also acquire a high-noise dataset by placing neutral optical density behind
the lamp, to reduce the light flux. We consider optical densities of 1.3 for the LED lamp, 0.6
for the STL-10 cat, and 0.3 for the Siemens target. We set the integration time to 4 ms for both
the LED lamp and the STL-10 cat, and to 8 ms for the Siemens target, we retain only " = 512
measurements for both the LED lamp and the STL-10 cat, which accelerates the acquisition by a
factor of 8. For the Siemens target, which has a richer spatial frequency content, we keep more
measurements (" = 2048; acceleration factor of 2).
Our estimated instrumental parameters were : `dark = 1070 counts,  = 1.54 count/electron,

and fdark = 53 counts.

4.3. Evaluation metrics

Given the ground-truth image f , we compute the peak signal-to-noise ratio (PSNR) of a
reconstructed image f ∗ as

PSNR( f ∗, f ) = 10 log10
22

‖ f ∗ − f ‖2
(13)

For the experimental data, we have no direct access to the ground truth image. This image is
computed as f = N>ygt, where ygt is a fully sampled measurement with high signal-to-noise
ratio. Before computing the PSNR according to Equation (13), we normalize the ground-truth
image in the range [−1, 1].

5. Results

5.1. Simulated results

Training for different levels of noise In Table 1, we evaluate the effects of training a network
under varying noise levels. We also simulate the acquisition of the test images with the same source
intensity (U = 50 photons) and for varying intensities (mean values `U = 50 photons and standard
deviation fU = 25 photons). Training a network under different noise levels is detrimental when
the image intensity is known; on average, it results in a PSNR drop of 23.19 − 22.13 = 1.06 dB.



On the contrary, noise-varying training improves the reconstruction when the image intensity is
unknown; on average, we obtain an enhancement of 21.07 − 19.33 = 1.74 dB (second row of
Table 1).

This observation is crucial, as the exact image intensity is not available beforehand in real-life
experiments. Although we can estimate the image intensity from the raw data (e.g., by the
method introduced in Section 3.5), this inevitably leads to inaccuracies. In the following, we
only consider realistic scenarios where the image intensity is not known, which requires training
with varying noise levels.

Testing Training

U (in ph.) 50 50 ± 25

50 23.19 ± 1.98 22.13 ± 1.88

50 ± 25 19.33 ± 1.67 21.07 ± 1.63

Table 1. Training and testing under varying noise levels. Top row: Data simulated for a
given source intensity (U = 50 photons), which is the same for all of the test images.
Bottom row: Data simulated for test images with varying intensities (mean `U = 50
photons, standard deviation fU = 25 photons). Reconstruction PSNRs are reported for
a network trained using constant intensity (middle column) and varying intensity (right
column).

In Table 2, we report the reconstruction PSNRs obtained using the proposed network, and for
a network with the same architecture where the mapping is learned (‘Free Layer’) for different
levels of noise dictated by different image intensities U (U = ∞ corresponds to the noiseless
version of the proposed network). The standard deviation of the image intensity is set to 50%, in
agreement with the findings of Section 3.5.
As expected, the network trained with no noise (i.e., U = ∞) performs very poorly in the

presence of noise. Therefore, we focus our analysis on the cases where our network is trained
with noise. We divide our analysis into three cases, which depend on the relative noise levels
used during training and testing.

Training noise and testing noise have the same levels In Table 2, the PSNRs of these
experiments are shown in blue (i.e., diagonals). In all of our simulations, the proposed method
outperforms the ‘Free layer’ network proposed in [12].

Training noise is higher than testing noise In Table 2, the PSNRs of these experiments are
shown in red (below lower diagonal). We can observe that networks trained on high levels
of noise (e.g., U = 2 or 5 photons) with our proposed method perform poorly when they are
tested on data with low levels of noise (e.g., U = 50 or 2500 photons). For instance, a neural
network trained with U = 2 photons yields an average PSNR of 17.40 dB when it is tested for
U = 2500 photons. This is a PSNR drop of 4.77 dB compared to the optimal training conditions
(Utrain = Utest = 2500 photons). We can also observe that in these cases the ‘Free Layer’ [12]
outperforms the proposed method. We can see that in the most extreme cases where the training
was with very high levels of noise, and the testing was with very low levels of noise, the ‘Free
Layer’ network can increase the PSNR by 20.09-17.40 = 2.69 dB on average.



Training noise is lower than testing noise In Table 2, the PSNRs of these experiments are
shown in green (above diagonals). We can see that the proposed network behaves similarly to
the optimal training conditions. The worst drop in PSNR is relatively low, as 0.71 dB. This
shows that the proposed network has high reconstruction quality provided that it is trained with
relatively low levels of noise (e.g., U = 50 or 2500 photons). Contrary to the previous scenario,
the proposed method outperforms the ‘Free Layer’ network in all of these experiments. Here, the
presence of the denoising layer has a great advantage; the proposed method generalizes better to
high noise experiments.

Testing Training

U (in ph.) ∞ 2 ± 1 10 ± 5 50 ± 25 2500 ± 1250

2 ± 1 9.48 ± 1.78 18.79 ± 1.47 18.60 ± 1.55 18.31 ± 1.55 18.14 ± 1.55

Proposed 10 ± 5 13.58 ± 1.94 19.88 ± 1.33 20.82 ± 1.51 20.55 ± 1.61 20.21 ± 1.62

50 ± 25 15.32 ± 2.06 18.68 ± 1.43 21.04 ± 1.39 21.86 ± 1.54 21.69 ± 1.61

2500 ± 1250 15.88 ± 2.11 17.40 ± 1.71 19.94 ± 1.59 21.69 ± 1.51 22.17 ± 1.56

2 ± 1 18.72 ± 1.44 17.93 ± 1.35 17.35 ± 1.37 16.99 ± 1.37

Free 10 ± 5 19.80 ± 1.64 20.10 ± 1.48 20.04 ± 1.45 19.91 ± 1.42

Layer 50 ± 25 20.03 ± 1.71 20.63 ± 1.58 20.81 ± 1.56 20.75 ± 1.53

2500 ± 1250 20.09 ± 1.72 20.76 ± 1.61 21.02 ± 1.60 20.97 ± 1.58

Table 2. Reconstruction of peak signal-to-noise ratios (PSNRs) for different training
strategies. ‘Proposed’ refers to the neural network method with the proposed mapping
in Section 3. ‘Free Layer’ refers to the neural network method where the mapping of the
raw measurements is learnt jointly with the postprocessing layers, as in [12]. Note that
the network trained with no noise (U = ∞) corresponds to the case where we choose
�U = 0. From top to bottom, image acquisition is simulated assuming increasing light
intensity U (i.e., decreasing noise levels). From left to right, images are reconstructed
by networks that are trained using decreasing noise levels. Blue font, the testing and
training noise levels are the same; green font, the testing noise is lower than the training
noise; and red font, the testing noise is higher than the training noise. To facilitate the
comparison between the two networks, we underline similar PSNRs (i.e., difference
<0.1 dB) and use bold font to indicate the best performing networks (i.e., difference
>0.1 dB).

5.2. Experimental Data

Fig. 4 illustrates the performance of our networks on experimental data acquired with the
experimental set-up of a single-pixel camera presented in Section 3.1. We compare the
performance of our proposed method with the result of the total variation regularized solution
[38], the Tikhonov-regularized solution of Equation (6), the proposed method trained without
noise (‘Noiseless Net’), and with noise (‘Proposed’), as well as the Tikhonov-regularized
solution of Equation (6) to which we applied a state-of-the-art denoising method BM3D [39]
(‘Tikhonov+bm3d’), and a neural network reconstructor with the same architecture as the
proposed method but where the mapping is learned jointly with the postprocessing layer (‘Free



Layer’), as in [12].
First, we observe that the network trained with no noise performs very poorly on noisy data,

and it is outperformed by the pseudo-inverse in the case of the LED lamp and the STL-10 cat.
Visually, the reconstructed image retains many of the artifacts introduced by Poisson noise, which
emphasizes the need for accounting for noise when training a neural network. Furthermore, we
observe that learning the fully connected layer leads to many artifacts and a loss of detail (see the
star sector target with the ’Free Layer’). This can be attributed to the learning of the mapping
for specific noise values, instead of adapting to the noise, as in our proposed method. We also
observe that the Tikhonov-regularized reconstruction is itself quite powerful. Even if it keeps
some of the reconstruction artifacts, it compares very well to the results obtained using total
variation regularization. In terms of PSNRs, Tikhonov-regularized reconstruction performs very
similarly to the ‘Free Layer’ neural network, which is strong motivation to use it for mapping to
the image domain.
Finally, we observe that the proposed network and ‘Tikhonov+bm3d’ offer the smoothest

reconstructed images that are almost free of the artifacts introduced by down-sampling or Poisson
noise. In terms of PSNRs, we observe that our method outperforms the others on experimental
data, while being similar to ‘Tikhonov+bm3d’. However, the proposed method is 1,000 times
faster than the latter (0.2 seconds for BM3D versus 0.2 milliseconds for the proposed network).
Moreover, ‘Tikhonov+bm3d’ is a two-step method where denoising is agnostic to reconstruction,
while our method solves both problems at once, adapting denoising to the noise level. Although
the PSNR gain is relatively low compared to the Tikhonov-regularized reconstruction, the
proposed network leads to images that are well enhanced visually.

6. Discussion

The proposed mapping generalises much better to higher levels of noise than the learned mapping
proposed in [12]. This is an advantage when dealing with experimental data in real time, as it can
be time consuming to dynamically load different neural networks for different lighting conditions.
In experimental scenarios, we do not know U, and therefore our proposed mapping with a training
value of U = 2500 ± 1250 is the most suited for processing experimental data. Indeed, for all of
the testing conditions, that neural network offers a very similar quality of reconstruction to the
optimally trained neural network for that noise value.

Our method allows visually convincing reconstructions and good performance with respect to
PSNR against several levels of noise, when trained for low levels of noise (high values of U). It
therefore shows good proprieties for dealing with experimental data. Unlike previous single-pixel
deep-learning studies, such as [12–14,38], we have showcased the robustness of our method to
different lighting conditions, and given an interpretable meaning to the first layer of our neural
network.
The noise level of the image under acquisition is a key feature in real-life experiments. This

parameter can be estimated first, and then the network that fits the actual noise level can be
evaluated. However, as the noise level is unknown, this requires the loading of several networks,
which might be a severe limitation for real-time applications, and in particular if the models
are too large to be all stored on the graphics processor unit. Our proposed method is robust to
different levels of noise as long as it was trained with low levels of noise (high values of U).
Therefore, the same network can be used almost optimally in a wide variety of situations. The
Tikhonov-regularized mapping that we propose helps to denoise the raw data, to provide an
approximate reconstruction to the convolutional layers that can focus on learning spatial features.

One limitation of our deep network compared to more classic approaches such as [18, 20, 40]
is that there is no theoretical guarantee that it will work for any image; in particular, if the image
under acquisition significantly differs from those of our training set. This is a common concern
for deep-learning approaches that are, however, seen to work well in practice. While this tends to
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Fig. 4. Reconstructions of three experimental datasets by the different methods (top
row: LED lamp with " = 512; middle row: STL-10 cat with " = 512; bottom row:
Siemens Star resolution target with " = 1024). We display the images reconstructed
from a fully sampled dataset (ground-truth; GT) acquired with high image intensity
(first column, U = 148 photons, U = 195 photons and U = 295 photons for the LED
lamp, STL-10 cat and Siemens Star resolution target, respectively) and lower image
intensity (‘Noisy GT’ second column, U = 9 photons, U = 10 photons and U = 25
photons for the LED lamp, STL-10 cat and Siemens Star resolution target, respectively).
The following columns show reconstructions using the total variation regularized
solution [38], the Tikhonov-regularized solution of Equation (7), the noiseless proposed
network (Noiseless Net) Section 3.2 (network trained with no noise and where we
assume �U = 0), a Deep neural network with the same architecture as our proposed
method, where the mapping is learned as in [12] (Free Layer), the Tikhonov-regularized
method combined with BM3D [39] denoising and the proposed network Section 3.2
(trained with `U = 50 photons and fU = 0.5`U). All of the PSNRs are computed as
described in Section 4.3, with the first column as the ground-truth.



be confirmed by our experimental results where our approach worked on the Siemens Star sector
and on a LED light (both of which are very different from the images of the stl-10 database),
there are no theoretical guarantees that this will always be the case.

Another limiting aspect of our study might be the choice of our architecture, which is shallower
than popular architectures, such as the U-Net used in [41], and more recent variants. However, we
are keen to keep the number of network parameters as low as possible, to keep both the training
and evaluation times as short as possible. Another limitation of this study concerns the analysis
of the PSNRs of the images reconstructed from the experimental data, where the ground truth is
not known. We limit this common issue by acquiring fully sampled low-noise images. Finally,
we only test our algorithms on # × # pixel images, with # = 64. By considering a database
with high-resolution images (e.g., ImageNet), our network can be generalized to handle the case
where # > 64, either directly or by implementing a patch-based strategy to limit the memory
requirements.
Compared to most studies dedicated to deep learning for inverse problems, we mainly focus

on the (fully connected) layers of the network, which acts in the measurement domain. The
post-processing layers that act in the image domain can be replaced by any variants (e.g., U-Net,
resNet, others). Moreover, our approach is compatible with architectures inspired by conventional
variational methods (e.g., [42]). This will be the object of future work. Although this work
focuses on single-pixel imaging, it can be used for any linear problem where the measured data is
scarcely sampled in an orthogonal basis, just by setting N to the corresponding basis. Finally,
this network can easily be adapted to other noise models, as we only need an estimation of the
mean and covariance of the noisy measurements.

7. Conclusion

We present a deep learning method to recover an image in single-pixel imaging by introducing
mapping of the raw data to the image domain. This mapping is implemented as the first layer
of a neural network, which provides an approximate reconstruction to a traditional cascade of
convolutional layers. We also describe a framework for training a network using simulated data
only. We describe how to exploit all of the experimental parameters to deal with experimental
data, and also how to normalize the measurement, which is fundamental when a nonlinear
reconstructor (e.g., neural network) is considered.

Although our network is trained using simulations only, it performs very well on experimental
data, even when the noise level is unknown. The estimation of the noise covariance coupled
with an appropriate training process appears to be efficient in a wide variety of scenarios. This
is particularly interesting in real-time configurations where it is not possible to evaluate many
different reconstructors. In future work, we will explore more complex interpretable network
architectures.
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