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INTERPOLATION ON THE CUBED SPHERE WITH SPHERICAL HARMONICS

JEAN-BAPTISTE BELLET†, MATTHIEU BRACHET‡, AND JEAN-PIERRE CROISILLE†

Abstract. We consider the Lagrange interpolation with Spherical Harmonics of data located on the equian-
gular Cubed Sphere. A new approach based on a suitable Echelon Form of the associated Vandermonde
matrix is carried out. As an outcome, a particular subspace of Spherical Harmonics is de�ned. This subspace
possesses a high-frequency truncation, reminiscent of the rhomboidal truncation. Numerical results show the
interest of this approach in various contexts. In particular, several examples of resolution of the Poisson
equation on the sphere are displayed.

1. Introduction

We consider the interpolation of data on the equiangular Cubed Sphere with Spherical Harmonics. The
equiangular Cubed Sphere is a particular spherical grid widely used to discretize problems on the sphere
[15]. Expanded spherical cube grids have been early considered in numerical climatology and meteorology
[13, 14, 16]. The equiangular Cubed Sphere has recently served to support discrete unknowns in a variety
of numerical schemes, such as �nite volume schemes [18], Discontinuous Galerkin methods [12], Spectral
Element methods [17] and Finite Di�erence schemes [3].

A more standard computational approach for PDE's on the sphere is based on the pseudospectral approx-
imation [8]. In this case, the discrete unknowns are expanded in a �nite sum of Spherical Harmonics. An
important parameter of this expansion is the so-called truncation scheme, typically triangular or rhomboidal,
which monitors the �nite summation limit in the Spherical Harmonics series. This parameter in�uences both
the convergence and the aliasing behaviour of the method. The discrete PDE's are then obtained by colloca-
tion at the nodes of the longitude-latitude grid. These nodes appear naturally as Gauss-Legendre quadrature
nodes [1, chap. 5.7.1, p. 204]. This approach serves as the basis of many operational dynamical cores in the
meteorological community. We refer to [5, 11] and the references therein.

Here we are interested by the Cubed Sphere nodes as a basic location for numerical unknows. We wish to
interpolate these unknowns with a set of �well adapted� Spherical Harmonics. By well adapted, we mean at
the least, a set giving existence and uniqueness for the interpolation problem. This question seems open in the
literature. Apart of its mathematical interest, this problem appears relevant from at least two points of view.
First, it sheds some light on mathematical properties of the Cubed Sphere and its �approximation power�
as a computational grid. Second, it could serve as a framework for de�ning a natural discrete harmonic
analysis on the Cubed Sphere. This could lay out a pseudospectral calculus on the Sphere, di�erent from
the standard one1.

Our �rst purpose is therefore to identify a suitable subspace of Spherical Harmonics having the �unisol-
vence� property when associated to the Cubed Sphere nodes. It turns out that this is a particular Lagrange
interpolation problem. It is treated here using mainly matrix analysis. Contrary to the standard spectral
case, the suggested Spherical Harmonics set entails a speci�c high frequency truncation. This truncation
emerges as an outcome, and is not a parameter to be selected. It carries the upper frequency limit associated
to a given Cubed Sphere. Second, as a byproduct of our analysis, we give an algorithm to numerically
evaluate a basis of the SH subspace associated to the Cubed Sphere.

The outline is as follows. Section 2 is devoted to a brief background on the Cubed Sphere (abbrev. as
CS) and the Spherical Harmonics (abbrev. as SH). The setup of the Lagrange interpolation problem (called
�CS/SH�) is described in Section 3. This involves the de�nition of Vandermonde matrices. Theorem 9 in
Section 4 is our main result. It consists in establishing a particular factorization in echelon form of the
main Vandermonde matrix of the interpolation problem. An outcome is the numerical identi�cation of a
particular SH collocation subspace associated to the Cubed Sphere (Algorithm 10). Finally in Section 5,
several numerical experiments and results are displayed. We show results on a set of Poisson equations on
the sphere, using the pseudospectral approximation based on the preceding results.
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1One of the interest of the Cubed Sphere is the isotropy and the absence of poles problem.
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2. Notation

2.1. The equiangular Cubed Sphere. We consider the interpolation problem by Spherical Harmonics
(SH) on the Cubed Sphere CSN , N ≥ 1 being a �xed resolution. In what follows, we assume that a
Cartesian frame R = (0, i, j, k) is �xed. The de�nitions depends on this frame.

The Cubed Sphere grid CSN is de�ned as the set of 6N2 + 2 nodes with coordinates

CSN =
{

1√
1+u2l +u2m

(±1, ul, um), 1√
1+u2l +u2m

(ul,±1, um), 1√
1+u2l +u2m

(ul, um,±1)
}
, (1)

where the ul are equidistribued on [−π/4, π/4] as

ul = tan lπ
2N . (2)

This equidistribution justi�es the name of equiangular Cubed Sphere. These nodes are numbered with the
index j ∈ J1 : N̄(N)K, where we denote N̄(N) = 6N2 + 2 (simply called N̄ when there is no ambiguity).
Therefore,

CSN = {xj , j ∈ J1 : N̄K}. (3)

Refer to [15] for more details and to [13] for alternative Cubed Sphere grid.

2.2. Spherical Harmonics. Our notation for Spherical Harmonic functions is as follows.

• The space Yn is

Yn = Span {Y m
n (x), −n ≤ m ≤ n} , n ≥ 0, (4)

with the SH function Y m
n de�ned by

Y m
n (x) = (−1)|m|

√
(n+1/2)(n−|m|)!

π(n+|m|)! P |m|n (sin θ)×


sin |m|λ, m < 0,

1√
2
, m = 0,

cosmλ, m > 0.

(5)

We have denoted 
x = (cos θ cosλ, cos θ sinλ, sin θ),

λ ∈ [−π, π], longitude, (or azimuth),

θ ∈ [−π
2 ,

π
2 ], latitude, (or elevation).

(6)

In (5), the associated Legendre function is

P |m|n (t) = (−1)|m|(1− t2)|m|/2 d|m|+n

dt|m|+n
1

2nn!(t
2 − 1)n. (7)

• We denote Yn the space of HS functions of degree less or equal to n,

Yn = Y0 ⊕ · · · ⊕ Yn. (8)

The set (Y m
n )−n≤m≤n is an orthonormal basis of Yn for the scalar product of L2(S2) given by

(f, g)2 =

∫
S2
f(x)g(x)dσ. (9)

The in�nite family (Y m
n )|m|≤n,n∈N is a Hilbert basis of L2(S2). We refer to [1, 9] for more details.

3. Lagrange interpolation on the Cubed Sphere with Spherical Harmonics

3.1. General setup. Let (yj)1≤j≤N̄ be a set of values given at the nodes xj . We are interested in �nding
a SH function p(x) satisfying the equations

p(xj) = yj , ∀1 ≤ j ≤ N̄ . (10)

Problem (CS/HS): Find an integer N ′ = N ′(N) and a subspace Y ′N ′ ⊂ YN ′ , such that the interpolation
problem (10) with p ∈ Y ′N ′ has a unique solution.

Observe that the integer N ′ depends of N , and is part of the unknowns. In Section 4 below, we propose
a constructive algorithm to solve this problem.
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3.2. Vandermonde matrices. We analyse the structure of various Vandermonde matrices (abbreviated as
VDM) associated to the problem (CS/HS).

De�nition 1 (Vandermonde matrices). Let N be the resolution of the Cubed Sphere (1) and N̄ = 6N2 + 2
the number of nodes.

• For k �xed, the rectangular matrix Ak is the VDM matrix associated to the basis (Y m
k )−k≤m≤k of

the SH space Yk, and to the nodes xj ∈ CSN , de�ned by

Ak , [Y m
k (xj)]−k≤m≤k,1≤j≤N̄ ∈ R(2k+1)×N̄ . (11)

• For n �xed, the matrix An is the VDM matrix associated to the basis (Y m
k )|m|≤k≤n of the SH space

Yn. It is de�ned by

An ,

A0
...
An

 ∈ R(n+1)2×N̄ . (12)

Remark 2. Throughout this paper, for every n, the set of indices (k,m) such that |m| ≤ k ≤ n is sorted in
lexicographic order (m is the �fast� variable). In particular, An = [Y m

k (xj)]|m|≤k≤n,1≤j≤N̄ , where (k,m) is
the row index.

Let N ′ be a �xed integer and YN ′ = Y0 ⊕ · · · ⊕ YN ′ . Let p(x) be the HS function with decomposition in
the Legendre basis

p(x) =
∑

0≤n≤N ′

∑
|m|≤n

pmn Y
m
n (x) = [Y m

n (x)]ᵀ|m|≤n≤N ′ [p
m
n ]|m|≤n≤N ′ . (13)

The vector [p(xj)]
ᵀ ∈ RN̄ is expressed in term of the matrix AN ′ and of the vector of components [pmn ] by

[p(x1), . . . , p(xN̄ )]ᵀ = AᵀN ′ [p
m
n ]. (14)

Therefore, the interpolation problem (10) is expressed with the VDM matrix AN ′ by the system

AᵀN ′ [p
m
n ] = y, (15)

where y = [y1, . . . , yN̄ ]ᵀ. A su�cient condition for the VDM matrix An to have full rank results from the
following Proposition.

Proposition 3 (Lemma 3.13 in [10]). Let Ω = {xj , 1 ≤ j ≤ M} ⊂ S2 be a general distribution of nodes on
the 3-dimensional sphere. Let

sep(Ω) = min
j 6=l

arccos(xᵀjxl) (16)

denotes the separation distance of the nodes in Ω. Let 0 < q < sep(Ω) and let n ≥ 1 be such that n > 7.5π
q .

Then the VDM matrix
Zn ∈ R(n+1)2×M , Zn , [Y m

k (xj)]|m|≤k≤n,1≤j≤M (17)

has full column rank M .

Remark 4. In fact, Lemma 3.13 in [10] is formulated for the d-dimensional sphere Sd−1. Here we have d = 3,
which is the dimension in our context.

In the particular case where the xj are the nodes of CSN , we call sep(CSN ) the separation distance on
CSN .

Corollary 5 (su�cient condition for An to have full column rank). Let n ≥ 1 and let 0 < qN < sep(CSN )

be such that n > 7.5π
qN

. Then the VDM matrix An ∈ R(n+1)2×N̄ has full column rank N̄ .

De�nition 6 (rank and �rank increment�). For all n ≥ 0, the rank of An is denoted by rn and the rank
increment between An−1 and An is denoted by gn:{

rn , rankAn, n ≥ 0,

gn , rn − rn−1, n ≥ 0,
(18)

with the convention r−1 , 0, g0 , r0.

By Corollary 5, for n large enough, we have rank(An) = N̄ . This justi�es the following de�nition.

De�nition 7 (integer N ′(N)). We call N ′(N) (or simply N ′ in case of no ambiguity), the smallest integer
n such that An has full column rank N̄ . Equivalently, N ′ is de�ned by

N ′ = min{n ≥ 0 such that rn = N̄}. (19)



4 JEAN-BAPTISTE BELLET†, MATTHIEU BRACHET‡, AND JEAN-PIERRE CROISILLE†

It results from Corollary 5 that

∀qN ∈ (0, sep(CSN )), N ′ ≤
⌈

7.5π

qN

⌉
, (20)

where d·e denotes the ceil function. Refer to Remark 20 for further comments on the value sep(CSN ).

4. A Spherical Harmonics collocation set on the Cubed Sphere

In this section we give a constructive algorithm to build a subspace Y ′N ′ of SH functions solving the problem
(CS/HS) above. It consists in constructing a suitable factorization of the sequence of matrices (An)n≥0. The
factorization itself will reveal both the sequence (rn)n≥0 and the integer N ′ in (19). See also Section 5.1
below.

4.1. Echelon form of matrices. We recall the de�nition of a matrix in Column Echelon form (abbreviated
CE form).

De�nition 8 (Column Echelon form). Let A ∈ Rm×n be a rectangular matrix. The matrix A is said to be
in CE form, if there is some r ∈ J0 : nK such that

• the columns j ∈ J1 : rK are nonzero, with the row index j ∈ J1 : rK 7→ i(j) of the �rst nonzero
coe�cient a non decreasing function;
• the columns j ∈ Jr + 1 : nK are zero.

In that case, the coe�cient A(i(j), j), 1 ≤ j ≤ r, is called the pivot of the column j.

A matrix A ∈ Rm×n can be reduced in CE form using Gaussian elimination with partial pivoting on the
columns. In addition, the number r of pivots represents the rank of the matrix.

In the sequel, we show that the VDM matrix An in (12) can be expressed in CE form by mean of suitable
orthogonal matrices.

4.2. Factorization of the VDM matrix An. In the next theorem, we establish a particular factorization
of the Vandermonde matrix An. This factorization serves to de�ne a computational procedure to identify
a space Y ′n ⊂ Yn satisfying (10). As a byproduct, the maximal degree N ′ in (19) and the rank increment
sequence (gn)0≤n≤N̄ will be identi�ed as well.

Recall that the VDM matrix An is de�ned by

An ,

A0
...
An

 ∈ R(n+1)2×N̄ . (21)

Theorem 9 (Structure of An). Let n ≥ 0.
The matrix An can be factorized in the form

An = UnEnV
ᵀ
n, (22)

where

• the matrices Un ∈ R(n+1)2×(n+1)2 , V n ∈ RN̄×N̄ are orthogonal;

• the matrix En ∈ R(n+1)2×N̄ is in CE form as displayed in Fig. 1 (left panel).

In particular, rank(En) = rn.

Proof. The proof is constructive. Therefore, in the course of it, recurrence formulas emerge, which play an
important role in the computational procedure. It allows to identify both the degree N ′ and a suitable space
Y ′N ′ in (10). We proceed by induction on the degree n ≥ 0. First for n = 0, Y 0

0 (x) = 1/
√

4π. Therefore

A0 = 1√
4π

[1, 1, . . . , 1] ∈ R1×N̄ . A SVD decomposition is expressed as A0 = U0S0V
ᵀ

0 with

U0 , [1], S0 ,
[
( N̄4π )1/2, 0, . . . , 0

]
, V0 , [v1, v2, . . . , vN̄ ] , (23)

where V0 ∈ RN̄×N̄ is orthogonal and v1 , N̄−1/2[1, 1, . . . , 1]ᵀ. We set

U0 , U0, V 0 , V0, E0 , S0. (24)

The matrix E0 has the shape displayed in Fig. 1, with r−1 = 0, r0 = g0 = 1.
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Figure 1. Left panel: the VDM An is equivalent to the column echelon matrix En, whose
shape is represented on the left. Right panel: elimination of redundant lines in En results in
the lower triangular matrix Ln, displayed on the right.

Assume now (induction step) that the result holds for n− 1. We have An−1 = Un−1En−1V
ᵀ
n−1 for some

orthogonal matrices Un−1 and V n−1, and for En−1 in CE form as in Fig. 1. Consider the matrix[
Uᵀn−1 0n2,2n+1

02n+1,n2 I2n+1

]
AnV n−1 =

[
Uᵀn−1 0n2,2n+1

02n+1,n2 I2n+1

] [
An−1

An

]
V n−1

=

[
Uᵀn−1 0n2,2n+1

02n+1,n2 I2n+1

] [
Un−1En−1V

ᵀ
n−1

An

]
V n−1

=

[
En−1

AnV n−1

]
. (25)

Using the CE form of En−1 shown in Fig. 1, we have[
En−1

AnV n−1

]
=

[
En−1(J1 : n2K, J1 : rn−1K) 0n2,N̄−rn−1

AnV n−1(J1 : N̄K, J1 : rn−1K) AnV n−1(J1 : N̄K, Jrn−1 + 1 : N̄K)

]
. (26)

The orthogonal matrices Un, Vn and the block diagonal matrix Sn are de�ned by the SVD of the block in
position (2, 2) in (26)

AnV n−1(J1 : N̄K, Jrn−1 + 1 : N̄K) , UnSnV ᵀn . (27)

By de�nition of the SVD, Un and Vn are orthogonal, whereas Sn is diagonal, with nonnegative and nonin-
creasing values along the diagonal. This gives that (25) can be expressed as[

Uᵀn−1 0n2,2n+1

02n+1,n2 I2n+1

]
AnV n−1 =

[
En−1(J1 : n2K, J1 : rn−1K) 0n2,N̄−rn−1

AnV n−1(J1 : N̄K, J1 : rn−1K) UnSnV
ᵀ
n

]
. (28)

Multiplying (28) on the left by

[
In2 0n2,2n+1

02n+1,n2 Uᵀn

]
, and on the right by

[
In2 0n2,2n+1

02n+1,n2 Vn

]
, yields

UᵀnAnV n = En, where the matrices Un, V n, En are de�ned by
Un ,

[
Un−1 0n2,2n+1

02n+1,n2 Un

]
, V n , V n−1

[
In2 0
0 Vn

]
,

En ,

[
En−1(J1 : n2K, J1 : rn−1K) 0n2,N̄−rn−1

UᵀnAnV n−1(J1 : n2K, J1 : rn−1K) Sn

]
.

(29)

The matrices Un and V n are orthogonal and satisfy (22). Furthermore it turns out that the matrix En

de�ned in (29) is in CE form. Concerning the ranks, combining (22) and (29) proves that rn = rankEn =
rn−1 + rankSn. At the end,

rankSn = gn, (30)

and En has exactly the shape shown in Fig. 1. This completes the proof. �
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As already mentioned, the steps in the proof of Theorem 9 can be turned into a computational algorithm,
with a loop over the integer n, as follows.

Algorithm 10. For n ≥ 0,
1. compute the matrix An;
2. compute the matrices Un, Sn, Vn, by SVD of the matrix in (27), ( (23) for n = 0);
3. assemble the matrices En, V n and Un by (29), ( (24) for n = 0);
4. compute the rank increment gn by (30), and the rank rn = rn−1 + gn.

Stopping criterion: the algorithm exits exactly when rn = N̄ = 6N2 + 2.

Corollary 11. (i) For every n ≥ 0, the columns of V n(J1 : N̄K, Jrn + 1 : N̄K) are an orthonormal basis of
KerAn.
(ii) For every n ≥ 1, the columns of Un(J1 : N̄K, J1 : gnK) are an orthonormal basis of Ran(AnV n−1(J1 :
N̄K, Jrn−1 + 1 : N̄K)).

We consider now the functional interpretation of Algorithm 10. It allows to de�ne a particular Spherical
Harmonics subspace, which provides a solution to the problem (CS/HS). First we de�ne the functions uin(x)
as follows.

De�nition 12 (Functions uin). For all 0 ≤ n ≤ N ′ and 1 ≤ i ≤ 2n+ 1, the Spherical Harmonics uin(x) ∈ Yn
is de�ned from the i-th column vector of the matrix Un by

uin(x) := [Y m
n (x)]ᵀ−n≤m≤nUn(J1 : N̄K, i). (31)

The uin form on orthonormal family of Yn.

De�nition 13 (SH spaces Y ′n and Y ′n). (i) For all 0 ≤ n ≤ N ′, we call Y ′n and Y ′′n the spaces de�ned by

Y ′n , Span{uin, 1 ≤ i ≤ gn} ⊂ Yn, Y ′′n , Span{uin, gn + 1 ≤ i ≤ 2n+ 1} (32)

and

Yn = Y ′n
⊥
⊕ Y ′′n . (33)

(ii) The SH subspace Y ′N ′ is de�ned by

Y ′N ′ , Y ′0 ⊕ · · · ⊕ Y ′N ′ = Span{uin, 1 ≤ i ≤ gn, 0 ≤ n ≤ N ′}. (34)

Note that the spaces Y ′′n , Y
′
n, and Y ′N ′ are intrinsically de�ned; they can be de�ned independently of

our algorithm. Indeed, the space Y ′′n represents the space of SH functions of degree n which are �incorrectly
represented� on the Cubed Sphere CSN . This means that their restriction to CSN coincide with the restriction
of a SH functions of smaller degree. This is expressed as follows.

Corollary 14 (Interpretation of the space Y ′′n ). For n ≥ 1, the SH subspace Y ′′n satis�es

Y ′′n = {f ∈ Yn : f |CSN
∈ RanAᵀn−1} = {f ∈ Yn : ∃g ∈ Y0 ⊕ · · · ⊕ Yn−1, f |CSN

= g|CSN
}.

Proof. Let ΠKerAn−1 , (resp. ΠRanAᵀ
n−1

) be the matrix of the orthogonal projection on KerAn−1, (resp.

on RanAᵀn−1). Then the columns of the matrix V n−1(J1 : N̄K, Jrn−1 + 1 : N̄K) form an orthonormal basis

of KerAn−1. Similarly, the columns of the matrix Un(J1 : N̄K, J1 : gnK) form an orthonormal basis of the
space RanAnV n−1(J1 : N̄K, Jrn−1 + 1 : N̄K). Therefore, the columns of Un(J1 : N̄K, J1 : gnK) form an

orthonormal basis of the space Ran(AnΠKerAn−1) =
(

Ker(I−ΠRanAᵀ
n−1

)Aᵀn
)⊥

. This space represents the

Spherical Harmonics of degree n with restriction to CSN in RanAᵀn−1. This means that when restricted to
CSN , they coincide with Spherical Harmonics of lower degree. �

Remark 15. In [7, p. 602], a method is considered to numerically identify the subspace KerM1 ∩ KerM2,
where M1 and M2 are two matrices. The following SVDs are evaluated{

M1 = U1S1V
ᵀ

1 ,

M2V1 = U2S2V
ᵀ

2

(35)

The space KerM1∩KerM2 is deduced from the knowledge of the matrices S1, V1 and S2, V2. The factorization
in (25) in our approach uses a similar idea. However, a �rst di�erence is that our method uses (35) iteratively
and not just once. Second, our goal is to identify a range subspace and not a kernel. Indeed, at step n, the
orthonormal basis Un(J1 : N̄K, J1 : gnK) of the space RanAnV n−1(J1 : N̄K, Jrn−1 + 1 : N̄K) is stored, since it
de�nes the orthonormal basis (uin)1≤i≤gn of Y ′n ⊂ Y ′N ′ .
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4.3. Row compression. Consider again the factorization (22). It is expressed as

UᵀnAn = EnV
ᵀ
n. (36)

We perform a row compression by eliminating redundant rows in (36). This leads to de�ne the matrices

Ũn ∈ R(n+1)2×rn and Ln ∈ Rrn×N̄ by

Ũn ,

U0(J1 : 1K, J1 : g0K)
. . .

Un(J1 : 2n+ 1K, J1 : gnK)

 , (37)

Ln ,

I1(J1 : g0K, J1 : 1K)
. . .

I2n+1(J1 : gnK, J1 : 2n+ 1K)

En. (38)

The matrix Ln in (38) is lower triangular. It contains the pivot rows of the column echelon matrix En.
Doing so, the rows of Sk, k ≤ n, with nonzero singular values are conserved and the zero rows of Sk are
eliminated. This is summarized in the following corollary.

Corollary 16. (i) The matrix Ũ
ᵀ
nAn admits the LQ factorization

Ũ
ᵀ
nAn = LnV

ᵀ
n, (39)

where the matrix Ln is lower triangular and has full row rank rn, and Ũn satis�es the orthogonality relation
Ũ
ᵀ
nŨn = Irn.

(ii) In particular, for the degree n = N ′ in (19), we have rN ′ = N̄ and the matrix AN ′ has full column rank.
The factorization (39) of AN ′

Ũ
ᵀ
N ′AN ′ = LN ′V

ᵀ
N ′ (40)

is such that the lower triangular matrix LN ′ ∈ RN̄×N̄ is non singular.

The compressed factorization (40) now gives a solution to the interpolation problem (CS/HS).

Corollary 17 (Solution to Problem (CS/HS)). The space Y ′N ′ is unisolvent for the Lagrange interpolation
problem (CS/HS), i.e.

∀y ∈ RN̄ , ∃!u ∈ Y ′N ′ , u(xj) = yj , 1 ≤ j ≤ N̄ . (41)

The SH function u(x) is expressed in the basis Y m
n by{

u(x) = [Y m
n (x)]ᵀ|m|≤n≤N ′ŨN ′α,

α = (LᵀN ′)
−1V ᵀN ′y.

(42)

The vector α is obtained by backward substitution in the upper triangular system LᵀN ′α = V ᵀN ′y.

Proof. Let u ∈ Y ′N ′ . There exists a unique family of N̄ reals,

α = (αin)0≤n≤N ′,1≤i≤gn ,

such that

u(·) =
∑

0≤n≤N ′

∑
1≤i≤gn

αinu
i
n(·) = [Y m

n (·)]ᵀ|m|≤n≤N ′ŨN ′α. (43)

By Theorem 16, we have

[u(xj)]1≤j≤N̄ = AᵀN ′ŨN ′α = V N ′L
ᵀ
N ′α, (44)

where V N ′ is orthogonal, and LN ′ is lower triangular and nonsingular. Therefore the SH function u(x)

interpolates the data y ∈ RN̄ on CSN if, and only if, the vector α sati�es V N ′L
ᵀ
N ′α = y, which is equivalent

to α = (LᵀN ′)
−1V ᵀN ′y. �

1LQ factorization is identical to QR factorization up to transposition.
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5. Numerical results

5.1. Numerical estimate of the rank increment. Let N ≥ 0 be the integer representing the accuracy
of the Cubed Sphere CSN . Corollary 5 asserts that Algorithm 10 necessarily exits after a �nite number of
iterations on n with exit index n = N ′, de�ned in (19). Regarding the rank increment gn, Theorem 9 shows
that gn = rankSn is the number of nonzero singular values of Sn, see (30). Thus gn is numerically estimated
by some thresholding of the diagonal of Sn. This kind of thresholding is commonly used to numerically
determine the rank of a given matrix by using the SVD2. Here, we have used such a rank evaluation to
infer the value rank(An) − rank(An−1). This value has been systematically tabulated with Matlab. Table
1 reports the rank increment in An for N increasing from N = 1 (Cubed Sphere with 8 nodes) to N = 6
(Cubed Sphere with 218 nodes). This has led to the following claim.

Claim 18. (1) A2N−1 has full row rank. Equivalently, r2N−1 = 4N2.
(2) A3N has full column rank. Equivalently, r3N = N̄ .
(3) The sequence of rank increments gn in (18) is numerically observed as given by

g0 = 1, gn =


2n+ 1, 1 ≤ n ≤ 2N − 1,

4(3N − n)− 2, 2N ≤ n ≤ 3N − 2,

3, n = 3N − 1,

1, n = 3N.

From now on, if not otherwise mentioned, Claim 18 will be used to further perform numerical approxima-
tions. In particular we assume that r2N−1 = 4N2 for n = 2N − 1, and r3N = N̄ = 6N2 + 2 for n = 3N .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 1 3 3 1
2 1 3 5 7 6 3 1
3 1 3 5 7 9 11 10 6 3 1
4 1 3 5 7 9 11 13 15 14 10 6 3 1
5 1 3 5 7 9 11 13 15 17 19 18 14 10 6 3 1
6 1 3 5 7 9 11 13 15 17 19 21 23 22 18 14 10 6 3 1

Table 1. Numerically evaluated rank increment gn of the Vandermonde matrix An, for
1 ≤ N ≤ 6 (row), 0 ≤ n ≤ 3N (column). The matlab function rank has been used.

Some consequences of Claim 18 are as follows.

(1) The smallest n ≥ 0 such that rn = N̄ is

N ′ = 3N. (45)

(2) For every 0 ≤ n ≤ 2N−1, Y ′n = Yn. In particular, the unisolvent space Y ′3N contains all SH of degree
n < 2N , i.e. Y0 ⊕ · · · ⊕ Y2N−1 ⊂ Y ′3N . We call

Y ′a = Y0 ⊕ · · · ⊕ Y2N−1. (46)

(3) For all 2N ≤ n ≤ 3N , Y ′n ( Yn. There exists a SH of degree n, f ∈ Yn, such that f /∈ Y ′3N . We call

Y ′b = Y ′2N ⊕ · · · ⊕ Y ′3N . (47)

In summary, assuming that Claim 18 holds, the SH subspace attached to the Cubed Sphere CSN by the
analysis above is the space Y ′3N . It is decomposed as

Y ′3N = Y ′a ⊕ Y ′b. (48)

As a corollary, we have that for all n > 3N and f ∈ Yn, there exists u ∈ Y ′3N such that f |CSN
= u|CSN

.

Remark 19. A proof of Claim 18 is open for the moment.

Remark 20. In (20), an upper bound of N ′ has been proved to be

N ′ ≤ d 7.5π
(1−ε) sep(CSN )e, (49)

where 0 < ε < 1 is arbitrary small. One may wonder how (49) compares to the value N ′ = 3N in (45).
The analysis in [2] has etablished that the shortest geodesic distance sep(CSN ) is realized for any short arc

2This is the principle behind the rank function in Matlab.
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around the center of any edge on the Cubed Sphere. Expressing this distance in terms of the Cubed Sphere
step angle π/2N (equatorial grid size), it turns out that

sep(CSN ) ∼
√

2

2

π

2N
.

A straightforward consequence is that the upper bound above behaves like

5
√

2
1−εN

′ ≈ 7.07N ′, (50)

which is a signi�cantly larger value than N ′.

5.2. Truncation analysis. Approximating functions on the sphere is commonly obtained with a truncated
Spherical Harmonic series. A function x ∈ S2 7→ f(x) is expanded as

f(λ, θ) =

+∞∑
n=0

∑
|m|≤n

fmn Y
m
n (λ, θ), (51)

or equivalently

f(λ, θ) =
+∞∑
|m|=0

+∞∑
n=|m|

fmn Y
m
n (λ, θ). (52)

A �rst truncation pattern is the triangular scheme. It consists in de�ning fT ' f by the �nite sum

fT (λ, θ) =

NT∑
n=0

∑
|m|≤min(n,MT )

fmn Y
m
n (λ, θ). (53)

Here MT , NT are parameters de�ning the truncation.
A second truncation is the rhomboidal scheme. We de�ne fR ' f by

fR(λ, θ) =
∑

|m|≤MR

m+NR∑
n=m

fmn Y
m
n (λ, θ). (54)

Both truncations are represented in Fig 2. In [6] the two truncations are compared in the context of ocean

−n ≤ m ≤ n
m

n

−MT MT

NT

−n ≤ m ≤ n
m

n

NR

−MR MR

Figure 2. Left: triangular truncation with parameters MT and NT . Right: rhomboidal
truncation with parameters MR and NR.

numerical simulations in the case MT = NT and MR = NR.
Here we are interested in identifying which truncation is related to the approximation with the space

Y ′3N in (48). In our case, there is no additional parameter to select to de�ne a particular truncation. The
truncation, which necessarily occurs, automatically emerges from the relations (45)-(46).

The approximation space Y ′3N in (48) is decomposed as

Y ′3N = Y ′a ⊕ Y ′b. (55)

Consider a given function Y m
n (x), n ≥ 0, |m| ≤ n. The truncation scheme of the space Y ′3N is evaluated by

using the least square value
d(Y m

n ,Y ′3N ) , ‖Y m
n −ΠY ′3NY

m
n ‖2, (56)

where ΠY ′3NY
m
n ∈ Y ′3N stands for the orthogonal projection of Y n

m on Y ′3N . They are three cases.

(1) n < 2N . In this case, d(Y m
n ,Y ′3N ) = 0. This means that Y n

m ∈ Y ′a ⊂ Y ′3N .
(2) n > 3N . In this case, d(Y m

n ,Y ′3N ) = 1. This means that Y m
n is orthogonal to Y ′3N .
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(3) 2N ≤ n ≤ 3N . This is the region where the truncation occurs. This case is analyzed below.

The orthogonal projector on Y ′3N , (resp. on (Y ′3N )⊥), is represented by the matrix Ũ3N Ũ
ᵀ
3N , (resp.

I−Ũ3N Ũ
ᵀ
3N ). We have [

d(Y m
n ,Y ′3N )

]
|m|≤n≤3N

=
[
‖cj(I−Ũ3N Ũ

ᵀ
3N )‖2

]
1≤j≤N̄

, (57)

where cj(M) stands for the column j of the matrix M . In Table 2, the distance d(Y m
n ,Y ′3N ) is reported in

the case of the Cubed Sphere CS2 (N = 2). The results are in conformity with the case 1. above, where
Y ′1 = ⊕n≤2N−1Yn ⊂ Y ′3N . The distances of Table 2 are reported in logarithmic scale in Fig. 3 (top-left panel).
The same results for N = 4, 8, 16, 32 are reported in the same fashion in the left side in Fig. 3. As can be
observed, some rhomboidal pattern emerges for the case 3. (case 2N ≤ n ≤ 3N). Two regimes of (n,m)
appear:

• Y m
n is accurately approximated by the space Y ′3N if Mn ≤ |m| < 2N , where n 7→ Mn is some

increasing function;
• Y m

n is orthogonal to the approximation space Y ′3N for |m| > 2N , and for |m| < Mn.

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

0 0
1 0 4.7e-17 4.7e-17
2 0 6.2e-16 7.6e-17 2.3e-16 3.5e-16
3 2.2e-16 7.7e-17 2.2e-16 3.3e-16 3.6e-16 4.9e-16 3.2e-16
4 1 0.35 5.1e-16 0.94 4.8e-16 0.94 1.6e-15 0.35 9.3e-16
5 0.99 1 0.32 1 0.96 0.89 0.96 1 0.32 0.45 0.99
6 1 1 1 1 1 1 0.94 1 1 1 0.35 1 1

Table 2. Distance d(Y m
n ,Y ′3N ) = ‖Y m

n − ΠY ′3NY
m
n ‖2, for 0 ≤ n ≤ 3N (rows), −n ≤ m ≤ n

(columns); N = 2.

5.3. SVD factorization of the VDMmatrix AN ′. In Section 4.1, a particular echelon form has been used
as a building block to obtain a factorization of Vandermonde matrices. One may wonder how this compares
to the more standard SVD factorization. Here we consider the alternative of using the SVD decomposition
of the full VDM matrix AN ′ , instead of (40). It is given by

UᵀSVDAN ′ = SSVDV
ᵀ
SVD.

This factor form gives that the matrix USVD ∈ R(N ′+1)2×N̄ contains an orthonormal basis of RanAN ′ . The

matrix V SVD ∈ RN̄×N̄ is orthogonal, and SSVD ∈ RN̄×N̄ is diagonal, nonsingular and has the positive
singular values of AN ′ on the diagonal. Suppose that, according to Claim 18, it holds that N ′ = 3N . Then,
an approximation space Y ′SVD is deduced from the columns of USVD. This space is a priori di�erent from

the space Y ′3N in (48). The interpolating function associated to the set of data y ∈ RN̄ is given by

uSVD(x) = [Y m
n (x)]ᵀ|m|≤n≤3N (Aᵀ3N )†y, with (Aᵀ3N )† , USVDS

−1
SVDV

ᵀ
SVD.

Here, (Aᵀ3N )† is the Moore-Penrose inverse of Aᵀ3N .
We now comment on how the two spaces Y ′3N and Y ′SVD compare in terms of approximation power. Table

3, is the counterpart of Table 2 when replacing the space Y ′3N by the space Y ′SVD. Similarly, in Fig. 3, the
right column is the counterpart of the left column. As can be observed, the truncation pattern is di�erent
for Y ′3N and Y ′SVD: when using Y ′SVD the nonzero distances are smaller. But the proportion of the well
represented SH is also smaller. Notice nonzero distances in the region N ≤ n ≤ 2N . Overall, the space Y ′SVD
has less approximation power than Y ′3N .

Table 4 reports a repartition analysis of the distance values when using each subspace, Y ′SVD and Y ′3N . At
least 25% of the Y m

n , n ≤ 3N , are in the space Y ′3N . And at least 25% are almost orthogonal to Y ′3N . The
interquartile Q3 −Q1 and the standard deviation indicate that the distances are less dispersed in the SVD
approach. The �rst quartile in the SVD case is larger than the median in the echelon case. In particular a
larger proportion of the Y m

n , n ≤ 3N , is accurately interpolated in Y ′3N than in Y ′SVD. Finally, the observed
minimum value 3.8 · 10−4 for the SVD approach with N = 4 indicates that none of the Y m

n belongs to
the space Y ′SVD. Moreover, the median 1.4 · 10−3 (N = 32) shows that half of the Y m

n , n ≤ 3N , are well
represented in Y ′3N . Finally we plot the histograms of the distances for N = 32 in Fig. 4. Again, these
histograms support the preference to the subspace Y ′3N compared to Y ′SVD. The picture is as follows. Either
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-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

0 8.3e-16
1 9.9e-16 8.3e-16 1.2e-15
2 0.68 0.68 0.74 0.68 0.74
3 0.71 1.1e-15 0.68 0.75 0.68 0.64 0.71
4 1 0.75 0.71 0.97 0.15 0.97 0.23 0.75 0.18
5 0.71 1 0.25 1 0.69 0.59 0.69 0.77 0.25 0.3 0.71
6 0.71 0.84 1 0.84 0.73 0.79 0.59 0.79 0.9 0.84 0.22 0.84 0.76

Table 3. Distance d(Y m
n ,Y ′SVD) = ‖Y m

n −ΠY ′SVD
Y m
n ‖2, for 0 ≤ n ≤ 3N (rows), −n ≤ m ≤ n

(columns); N = 2.

Figure 3. Left column: distance d(Y m
n ,Y ′3N ). Right column: distance d(Y m

n ,Y ′SVD). From
top to bottom line: N = 2, 4, 8, 16 and 32.
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d(Y m
n ,Y ′3N ) d(Y m

n ,Y ′SVD)

N min Q1 median Q3 max mean std min Q1 median Q3 max mean std
2 0 3.5e-16 0.35 1 1 0.51 0.47 8.3e-16 0.52 0.71 0.79 1 0.62 0.3
4 0 5.9e-16 0.37 0.99 1 0.46 0.46 1.7e-15 0.52 0.69 0.73 1 0.59 0.27
8 0 8.8e-16 0.1 0.98 1 0.42 0.45 0.00038 0.48 0.68 0.71 1 0.56 0.26
16 0 1.1e-15 0.024 0.93 1 0.4 0.45 3.1e-05 0.48 0.67 0.71 1 0.54 0.26
32 0 1.4e-15 0.0014 0.91 1 0.39 0.44 2.3e-08 0.45 0.66 0.71 1 0.53 0.26

Table 4. Comparison statistics of the distances d(Y m
n ,Y ′3N ) and d(Y m

n ,Y ′SVD), for |m| ≤
n ≤ 3N : minimum, �rst quartile, median, third quartile, maximum, mean and standard
deviation.

Figure 4. Histogram of the distances d(Y m
n ,Y ′3N ) (left panel) and d(Y m

n ,Y ′SVD) (right panel),
with |m| ≤ n ≤ 3N = 3 · 32.

Y m
n almost belongs to Y ′3N , either Y m

n is almost orthogonal to Y ′3N . And more that 50% of the Y m
n almost

belong to Y ′3N , whereas less than 15% are close to Y ′SVD.
In conclusion, the incremental approach in Algorithm 10 has led to associate the approximation space

Y ′3N to the grid CSN . This space displays a rhomboidal like truncation in the range 2N ≤ n ≤ 3N . In
terms of approximation power, this space seems more promising than the space Y ′SVD This is particularly
true regarding the inclusion of a SH Legendre subspace as large as possible in the approximation space.

5.4. Interpolation test cases. We interpolate the following set of test functions on the sphere S2:

f1(x, y, z) = 1 + x+ y2 + yx2 + x4 + y5 + x2y2z2,

f2(x, y, z) = 3
4 exp

[
− (9x−2)2

4 − (9y−2)2

4 − (9z−2)2

4

]
,

+ 3
4 exp

[
− (9x+1)2

49 − 9y+1
10 − 9z+1

10

]
,

+ 1
2 exp

[
− (9x−7)2

4 − (9y−3)2

4 − (9z−5)2

4

]
,

− 1
5 exp

[
−(9x− 4)2 − (9y − 7)2 − (9z − 5)2

]
,

f3(x, y, z) = 1
9 [1 + tanh(−9x− 9y + 9z)],

f4(x, y, z) = 1
9 [1 + sign(−9x− 9y + 9z)].

The function f1 is polynomial and f1 ∈ ⊕n≤6Yn. The functions f2 and f3 are regular and they have many
SH components in their expansion (51). The function f4 is discontinuous. In Fig. 5, the interpolation errors
with N = 2 and N = 4 for this set of functions is displayed. Furthermore, we display in Fig. 6 the uniform
error and the root mean squared error (RMSE) on CSM , with M = 65; they are de�ned by

e∞(N, fi) , ‖fi|CSM
− INfi|CSM

‖∞ = max
x∈CSM

|fi(x)− (INfi)(x)|,

e2(N, fi) , 1
(6M2+2)1/2

‖fi|CSM
− INfi|CSM

‖2

=
(

1
6M2+2

∑
x∈CSM

|fi(x)− (INfi)(x)|2
)1/2

,

(58)
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Figure 5. Interpolation of the test functions f1, f2, f3 and f4. Left column: the four test
functions. Middle column: interpolation error on CS2. Right column: interpolation error on
CS4.

where INf ∈ Y ′3N stands for the interpolating function of [f(xj)]. For N large enough, f1 ∈ Y ′3N , which
gives a null error. The smooth function f2 is interpolated with an error decreasing with N . This is also the
case for the function f3, with a decreasing rate smaller than the one for f2. This re�ects the C

p regularity
of the functions f2 and f3. Finally, as expected, the discontinuous function f4 is not well interpolated. The
RMSE decreases very slowly, and the uniform error does not decrease.

5.5. Poisson equation on the sphere. Let g : x ∈ S2 7→ g(x) a function de�ned on the sphere. We
consider the null mean Poisson equation on the sphere in the class of regular functions (say C∞): ∆u = g on S2,∫

S2
udσ = 0.

(59)

Consider the expansion (51) of g

g =
∑
n≥0

∑
|m|≤n

gn,mY
m
n . (60)

Then, using that
∆Y m

n = −n(n+ 1)Y m
n , (61)

the solution of (59) is expressed as

g = −
∑
n≥1

∑
|m|≤n

gn,m
n(n+ 1)

Y m
n . (62)

The null mean assumption on u gives that there is no contribution for n = 0.
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Figure 6. Interpolation error of test functions on CSN , for 1 ≤ N ≤ 32. Left: uniform error
e∞; right: RMSE e2. Each error is evaluated on CS65, and represented in logarithmic scale.

Consider the Cubed-Sphere CSN . Our numerical scheme to approximate (59) using the space Y ′3N in (48)
is to use a pseudospectral approach as follows.

(1) De�ne g∗, the restriction of g(x) to CSN , by

g∗j , [g(xj)], j ∈ J1 : N̄K. (63)

(2) Calculate the SH function gh(x) ∈ Y ′3N de�ned by

gh(x) ,
∑

|m|≤n≤3N

ĝmn Y
m
n (x), (64)

where the vector ĝ ∈ RN̄ is given by ĝ , Ũ3N (Lᵀ3N )−1V ᵀ3Ng
∗.

(3) De�ne û ∈ RN̄ by û , Λĝ where Λ is the diagonal matrix

Λ ,


Λ(0)

Λ(1) 0

0
. . .

Λ(3N)

 ∈ RN̄×N̄ , with Λ(0) , 0, Λ(n) , − 1

n(n+ 1)
I2n+1, 1 ≤ n ≤ 3N.

(4) De�ne uh(x) by

uh(x) ,
∑

|m|≤n≤3N

ûmn Y
m
n (x). (65)

(5) Evaluate u∗h, the restriction of uh(x) to CSN .

Selecting Λ(0) = 0 implies that
∫
S2 uhdσ = 0 at the discrete level. Second, according to Corollary 17,

uh = u in the case where g ∈ Y ′3N .
We consider the test case of [4,19]. Let g = ga + gb be given in longitude-latitude coordinate (λ, θ) where{

ga(λ, θ) = −(m+ 1)(m+ 2) sin(θ) cosm(θ) cos(m(λ− dm)),

gb(λ, θ) = m(m+ 1) cosm(θ) cos(m(λ− em)).
(66)

The exact solution is u = ua + ub withua(λ, θ) =

{
− sin(θ) cosm(θ) cos(m(λ− dm)), if m > 0,
− sin(θ)− 1, if m = 0,

ub(λ, θ) = cosm(θ) cos(m(λ− em)).

(67)
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Figure 7. Poisson equation solver error on CSN for N ∈ {8, 16, 32}. The relative error is
plotted related to the value m for 30 random values em and dm in [0, 2π].

m = 2N − 1 m = 2N m = 2N + 1

N = 8 4.53× 10−9 3.25× 10−4 2.74× 10−1

N = 16 3.31× 10−13 2.96× 10−6 1.31× 10−1

N = 32 1.91× 10−12 1.33× 10−9 6.40× 10−2

Table 5. Poisson equation error on CSN for N ∈ {8, 16, 32}. The relative error E in (68) is
related to the value m. It is averaged over 30 random values em and dm in [0, 2π].

In the sequel, the values em and dm are phase angles in [0, 2π], picked at random. The accuracy is evaluated
by

E =

(∑
xj∈CSN

|uh(xj)− u(xj)|2∑
xj∈CSN

|u(xj)|2

)1/2

. (68)

This evaluation is repeated for 30 random values of em and dm in [0, 2π]. Fig 7 reports the mean value
of log10(E) in function of m. Three Cubed Spheres are considered, CS8, CS16 and CS32. For a given grid
CSN , the error E increases with m, which is expected, due to the cut-o� in resolution of the grid. The
magnitude of the error E is similar to the one reported in [4] which uses a standard pseudospectral solver
with a lon-lat grid. Here, there is no loss in accuracy, despite that the function (67) is expressed in lon-lat
coordinates. The truncation reported in Section 5.2 is analyzed as follows. In Table 5 the error E is reported
for m ∈ {2N − 1, 2N, 2N + 1}. Consider for example CS16. For m = 2N − 1, the error is of the order of
10−13. For m = 2N , the error is augmented by a factor of 105, which gives E ' 10−6. Finally, another
augmentation by the same factor of 105 occurs again leading to E ' 10−1 for m = 2N + 1. This corresponds
to an undersampling of the function g along the equator.

6. Conclusion

In this study, a methodology to associate a Spherical Harmonics subspace to the Cubed Sphere CSN has
been introduced. The particular subspace considered in Section 4 is based on a speci�c Column Echelon
factorization of the Vandermonde matrix. This space seems promising in terms of approximation power. As
seen in Section 5.2, it compares favourably to alternatives factorizations, such as the SVD.

This work took its origin in the numerical observation of the rank increment property stated in Claim
18. A proof of this claim, which is not available at time, is an objective of further studies. Using the new
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interpolation procedure to various contexts is also a future goal. First, spherical quadrature rules will be
addressed elsewhere. Another issue is the symmetry properties of the interpolation space. This includes
studying the invariance under the action of the group of the sphere, has to be undertaken, in the line of [2].
Computational issues clearly require further analysis. Preliminary observations are presented in Appendix
A (condition number of the Vandermonde matrix and run time to evaluate the SH basis).

Finally, an important goal is the application of this new framework to PDE's in meteorology, in the spirit
of the approach in Section 5.5.

Appendix A. Computational issues

We report in Table 6, some data related to the computation of the Vandermonde matrix A3N in (22) and
of the lower triangular matrix L3N in (38). A condition number of magnitude 1 − 10 is observed in both

N 1 2 4 8 16 32
N̄ = 6N2 + 2 8 26 98 386 1538 6146

condA3N 2 2 2.1 2 2.5 6.1
condL3N 2 2.2 2.1 2.3 3 7.4

CPU time (s) 8.8e-03 1.7e-03 6.7e-03 1.1e-01 4.7e+00 3.0e+02

Table 6. For the Cubed Sphere CSN , the condition number of the matrices A3N and L3N

are similar, (see Claim 18 and Corollary 16). The reported CPU time in secs. corresponds to
a matlab code performed using a CPU Intel i9-9880H@2.30 GHz.

Figure 8. Condition number of the matrices A3N and L3N for 1 ≤ N ≤ 32.

cases; for example, for N = 32, the number of grid points is N̄ = 6146, and condL3N = 7.4. As a result,
at moderate values of N̄ , we expect an accurate evaluation of the interpolating functions. The condition
numbers of A3N and L3N in function of N are similar. This indicates that the factorization (39) practically
preserves the condition number of the full VDM matrix A3N .

In last line of Table 6, the reported CPU time corresponds to the computation of the matrix L3N , of the
full basis Uk of Yk, 0 ≤ k ≤ 3N , and of the orthogonal matrix V 3N . It also includes assembling the matrices
Ak, k ≤ 3N . For each value N = 1, 2, 4, 8, 16, 32, the computations are repeated �ve times and the reported
CPU time is the average.

Appendix B. Representation of the basis functions for N = 2

For completeness, we display the computed basis for N = 2. Fig. 9 shows the basis of the subspace Y ′6
and Fig. 10 displays the basis of the orthogonal set (Y ′6)⊥. For each basis function u, the convention is the
following: we plot u on the sphere, and we draw the CS2 mesh; then six views of this sphere are displayed,
corresponding to the six panels of the cubed sphere.
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